Welcome to Eclipse

Lab User

Welcome to Eclipse

Table of Contents

Platform Plug—in DeVEIOPREIGUIAE.........cciieiiiee i iee e bbb e bt e e e et st s sessssssssssssssssenssnnsennnnes 1

[TUTTo LS TP

AT (oo A=) (o o [T 0 Y= USSP |
L0 (oL TR

PN o 1o 1L A I 21T @0 01 (=] | SR
[T TR

(@F0] 0111 10110 T '

Who needsaplatfOrmM2.........ooooii e ————————— |
10 10T R
SOfWAIEAEVEIOPELSo —————————————————— 8

B aT=Y 2T 1Yo =V SRR

OPRENAICHITECIULE. ... ——— ¢
P A O T S I TUCIULE. .. e et ettt ettt ettt et ettt ettt et e et e et e et e e e e e ea e e e e e e ea e e eanereenreesneerenraenns ¢

(@ LTI 0) AT 010) TP 1.

adFo (0] AN (o AT1(=Yo (U TR 1

PlatformSDK rOAAMAR.........ceiiie i —————————— 13
UL AT L0 (= TR K

ST 0 U 0.1 =T =10 [<] 0 01T o PPN 13
LTAT L0 20T T 1 6 1 12
=2 1S 6] T T4 PP 14
1= 010 [0 1S U 0] 0T . PP 14
[(= 0TSV (=] 1.4 PP 14
JavaDevelopmenTOoIS (IDT)....cccoviiiiiiiii e, 14
Plug-inDevelopmenEnvironmMeNntPDE).............cccovviiiiiiiiiiee e, 14

== 1 =T 0 00 1
A= 010 IST1 (0T, o] (0 AViT0 [T TP PRSPPI 16
=T 011000101101 A USSR 1€
Implementinga REPOSItONYPIOVIAEN..........uuuuiiiiiiiriiierieerieerseereeeseeseeesreereeerrereeeerrerrerrrrrrrrrrrrrrrerree 16
(@0 ailo 18 TaTaTe F= 1 o] =Y o} G 17
LT a0 =1 00 LY/ T =Y PP 18
RepositoryProvidersandCapabiliti@S..........uuuuruuurriiiiiiiiiiiiiiriieeirrrirerrrererereeerere——————————————————.. 18
ResourcaMOodifiCatiONNOOKS.coevueiii it e et e e et e e s e e e e e e e e e e e b aeaees 19
RdoTSY 0L UL (0 210 0= 1 1= PR 2C
ResourcanodifiCatiONNOOKS.iiieii ittt e et e e e e e e e e s e b e e e e e e e er e araaas 21
REeSOUIrCANOVE/AEIETENOOKS ciieei ettt et e e e e e e s et e e e s e e e e s e eba e e s sebbaeeeees 24
File ModificatioNVAlIAALOLS.uuiiieii it e e e e st e e s e e e e e e et e e e e e aba e e eseaaaaes 26

RepOSItOrreSOUICENANAGEIMENL.evviiiiiiiieieeeeieeeeeeeeee et et e et e et e et e et e e et e e et e e e e e e e e e e e e e e e aaaeaaeeaeaaeaaaaaaaaens 26
10 LT (=T 11 = PP 2
1= IR 1= 2
TeamMaANAlNKEA TESOUICESuu.iiieetiiei et ee ettt e ettt e e e s et e e e s et e e s eab s e e sataa s esseataeeseebaeesserrseaeees 29
T AMPIIVALEIESOUICES. .. v uuvvtutrruuerererreesrasssessessrsssssessesssesssessseeseeereeeereeraeeeerereetreererrrrerrrrtrrrtrrrreen 29

0T LYo Y= = 3
[T a] (Yo BT Yo TN o<t TP 3]

Welcome to Eclipse

Table of Contents

Team support
gz L ANV Z= A E=1 0] [T 3

BlOK I IIKS. .. e et ettt ettt ettt ettt ettt et e et e et e et e e et e et e et e et e e e et it et 3

Compatibility with inStalledpIUg—iNS.........cceviiiiiiiiiiiiiieeeeeeeeee e 36
a1 (Yo BT Yo TN (o a1 o100 (< TP 38

(0 =T o (A= LU (= USRS URURPPR 3

TNV o]0 1T ST ool PP 5E
Implementinga SubscribeFrom SCratCh.............ooooiiiii . 56
N TN Y YA U] o LYol] o= PP 57
ThreeWaySYNCHIONIZEAL.........coooiiiiieieee e, 59
THrEEWAYREMOIE T I . .uuuuuiiutriuiiruttruessrastresrresressrsasresereessessaesseeereeeeeeeteeeterreretreerrrrrrrrrrerrrrtarereens 61

CaACNEARESOUICEV AL ... ceeeeeeee e eeee et et e e e e ettt e e et et e e ee e e e e e e ea e e et e eeaereereeeaaeeenareenans 62
Building on Top of ExistingWorkspaceSynchronizatiQn..............eeeeereeeeeeeeeeeeeeeeeeeeereeereeeeeeeeeeens 64
=TTl =T 0T 1T 1o YA 0 1Yo L= PP 65

(OF0] aXilo [T =V iTo] A TN 4= 10 PSPPSR URRPRRR 6

MOV E/ D EIEEEHOOK ettt ettt ettt et ettt et ettt e et et ettt e e et e e e e e e e e et e e e e e e e aa e s e e s e e e e e e e st reean e eentareeareennereranraes 6

0T TST o AT PP (
SynchronizeParticipant Creation WIZAIAS..........cuvveiiiiiiiiiiiiiiiee ettt a e e e e e e e 68

Program debugand [aUNCh SUPPOIT.........coooi i ————— 70

Welcome to Eclipse

Table of Contents
[[0 o To T aTo T T L= 1TSS 7
=1 o) [0 M Of0] 1) 0] =Y (/@ O PN 72

Plugit in: Hello World meetsthe WOIKDENCRL...........uuiiiiiiiiiiiiiiiiiiiiiiiiiieeeveee e ee e e e e e eeeeeeeeeeeeeereeeeeees 78
A MINIMAIPIUGTIN. .. ——————————— 7€
[=11 Lo RV 0] o (o VT 79
Creatingthe plUg=—INPIOJECL.......cccee e anrannes 79

(O (Y= (011017010 L o) 18T 11 00T T= o} S 79
AT = o AT o (o RN T YRR 81

LYoo 18 Tt 1T o 9’
RUNNINGINE EXAMPIE. ettt eeaeee s ee s e essbesseesssssssssssssssssssessnssssnssnssnnssnnsnens 92
D12 7= 11T 9
A L0 0 9
WorkbenchmenUCONTIDULIONS.uuiiiii ettt e e e e e s e e e e s e e e e e aaaaaes 94

INSEANlING the EXAMPIES ... uuuuiiiiiiiiiiiiiiei it ee e e e e e e e e ee et e e e e eeteeettettaeettattataaataataaataaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaees or
PN \VZ=Talot=To KVt o]0 d o =T aTo ATt 0] aTol=) o] PP 97

Plugging into the WOIKDENCK...........i bbbt ee bt e s b e s s b e s s s sssssssssessssssnnsennenes 98
QUICK tOUT Of tHEWOIKDENCKvuiiieeeeieeeeteee et e e e e e e e e et e s e e e e e e e e esbb e e e eaeeeeeens 98

JFace: Ul framework for PIUG=INS.........cooiiiiiiii oo raan e 100
JEACEAANAINEWOIKIDENCKN. ... ettt ettt ettt et e et e et e e e e e e reenreeans 100

R STY o U 61or 01V VA L= L TR 10:

Workbenchwizard @XtENSIOMDOINTS.uuuuuiuiiiiiiiiiiauiattaaaeaatearreareeaeeeeaeebeessesssessssesssssssesssnseessseeseees 103
RdEo (0] AT (U 10T AT TR 105

LAY L0 6T = o = PSPPSR 10!

Welcome to Eclipse

Table of Contents

Resourcesoverview
el F L0 L[PP P PP PPTPPPRPPPPPP 10¢
L0 o T=T o] P PP PPPPPP PP 10t
LT 1 PP R PP PPPPTPTRR 10
3] o R UPTROPR TSR 10
HEID ettt ettt ettt ettt ettt ettt ettt e et et ettt et e et n ettt eiens 10
L@ 1141 ST PP P TP PP P OTPPRPN 10
Platform EXIENSIONPOINTS.eeiieiiiiiie ettt e e e e e e et et e e et r e e s e e e e e anees 107
FaXe F2 0] (=] £ TP PP P TP PP T PPPPPPPPPPRPI 1
FaY o]0 [Tor= L1 T TP ST PO PP PP UPPPRPPI 11
L0101 (=] 1 N7 0T PP P PP PP P PP PP PP PPPPPPRPPPPP 11
PIEIEIEIICES. ...ttt e et e e e e e e a e e 1:
(00 18 o3 £ ST PP P T POTPPPUPPPRT 1.
Incremental ProjeCt BUIIAEISuiiiiiiiiie ittt s e e e e e e e anreeeeea 127
File MOdIfiCAtiON VAIIAALOL.cceiereieeiiiiee ettt s et e e e et e e e e e b e e e e inneeeean 13C
RESOUICEIMAIKEIS. ...ttt etttk e oot e ekttt e 2okt e ookt e e e ekt e e e s e e e e e e e e e e s es 13
AULO—TEITESN PIOVITEBIS. ... eeeeeiiiieie ettt ettt e e et e e et e e e e e et e et e e e e e b e e e e e aanees 13t
PN alaTe) r= Lu[o A M.V oo (=] @A (=T 1 o] o NPT PP PP PP PP PPPPPPON 137
DOCUMENECTEALION ...ttt ettt etttk e ekt ee ettt e 4o st e o4 a s et e e e st e et e e e s bt e e e e aab e e e e aasbe e e e s anbneeeenan 13
Do o181y A1 Y= (T o J TR 14
FN A TaTe] r= LA o I LY 0T TP TP PPPRPP PP 14
DOCUMENEPIOVIARIS.tteeeeite ettt ettt e ekt e ekt e o4kt e e e ekt e e e s et e e ekt e e e e e e e e e e e nnre s 144
Marker ANNOotation SPECIFICALION. c.uvreieiiitiie ettt e e s e e e s b e e e e e e 149
YT O oo b (] £ P PP PP PP PPPPPPPRRN 15
o Lo A =T 0] o] £ (PO TP PSP TP PPPPPP PP 15
RIS (o A101= (014 6 1= ST PP PP PP PPPUP PP PPPPRPI 16

Welcome to Eclipse

Table of Contents

Accelerator CONfIQUIALIONSot e et ae et s te s b e s s s ss s s s s ssssssssssesseesssnssensenesenesneeeenes 163
(@40 10110471010 K- TRPTT PP 16
Yot [0 A Y= £ 1
ACCEIEIAION SCOPES. ... oot ———————— 18
J ool <Y (<Y =1 (] AT <1 =TT 19
F Xt [o A DY T aTL AT TR 19
ACHION SOt P AN ASSOCIALIONS. . eevuteert ettt ettt et et et et e et e e et et eee e ee e e tee e tee et reeentee et ree et eee s reeanseessaseenreeenarernareees 199
F LAY TR 2
(O AT ST AT<Y 1 (O] 1) 01 TR 20
Cheat SheetContent File XIML FOIMIAEuieeeeeete et et e et e et e et e et e e e et e e e e e e et e e eaeeeeaeeeeaseeenarerreeeenes 211
ol A1SY= 1o A1) <) AT 21
1010 TP 2]
[0 LTS 0] 1o o PP PPPPP 21
10T 0 TP TR 2]
LY U] o1 (<Y 0 DT 21
[oT0] aTe [11ToaT=1 1| 011 (=1 ¢ ¢ FE TP 213
rePEAtEA—SUDITEIM.....coeiiieiieeee e 214
P2 (o1 110 A HUT TP TR 2]
QL= 1010 i1 1= PP 21!
EXAMPIE. ..o 21
(O a1 LT ATeY S (T A DA (=Y A 1T (0] TR 218
@10 11 (=4 1= 2
DS o067 (0] =P 2:
DIOD ACHIONS. ... ———————————————————————————————— 2
Editor MenUS, TOOIDAIS A0 ACTIONS - cevneeere e et e et ettt e e e et e et et e et e e et e e eee e e et e e eaeeeeteeeeeeeeetarereerennans 234
[T r= =T A Lol o =T A = | B =0 [1(0] ST 247
YT ALl Yo 0 A [<E TP 25
EXDOI WIZAIAS. ..1uuvvvttiitiiiiiiiiiiiiiisteeatesseessaeessesssesseeesseeeeeeeeeeeeeeeeeseeeeeeeeeeeaaeeaeeeeeaaaaaeateaeaeaeaaaaaaaaaaeaaaaaaaaaaaaaaaaaes 25

Welcome to Eclipse

Table of Contents

oY1 8 B =) (T AT T0] AT TR 25
[1= [ST U o] o0 o 2F
Y L 1= o 2¢
Marker IMage PrOVIAEIS........ccoo o ————— 264
IMAEKEE RESOIULIONS. . e evv ettt et ettt et e et ettt e et e et e e e et e ea e e e e e e e e e e e e e e s e e e e e e e s e e e e s e eneeesesennnrarseeeenarernnns 26
Project NALUIE IMAGES.......ciiiiiiieiieee e s 27(
Y0 1001 w11 =TT 27
IMIPOIT MVIZAEAS . .uuvvvvuiiuiiiiieitiritsaeteeesesseesssssssasssssseeesseseeeseeeeseeseeeseeesaeeseeeaeeeaeetteeeeaaeaeaataaaeaaaaaaaaaaeaaaaaaaaaaaaaaaaanes 27
L0 T > P 2
INtro Part CONfIQUIALION.cco e 28(
INtro CONtENE FIlE XIML FOIMIAE. .o eeteeieeteeete et e e et e et e e ettt e et e e et e et e e e et e e e e e eeenere e e e eeaneseetreeanreennareranrees 293
Ta1 A0 @] a1 =) o) TP 29

7= (0 [>T 2

1015 T 2

1T PR 2

011001 TR 2¢
LTSRN 2

S 2

TaTe [0 L= TP 2¢€

ST 1o PR 2¢

0o P PPPPP 3(

Loy AT 10] A1 OGN 0] 1) 4| ST 30(

2T ATe] 10| ST 3C

(010 A1 =Y 11 md (0 AVAT0 [=) TR 30!

Intro Part Configuration EXIENSION.uuuuuruuuiuuuiiuiiiuiirtirrrerrrrrrerrrrrs ... 303
(O LSy= N[0 AT A 4= (0 TP 30
PersSPECHVEEXIENSIONS.ciiiiiiie e ——— 31
P OISPECHIVESevttiiieeieee ettt ettt ettt ettt et et e et e et e et e e e et et e e e e e e et e e et e aaaaaaaaaas 3!
0 0Tt 0 1Y/ 1P 32
o 1= (=] A0 = 10 (== R 34

Vi

Welcome to Eclipse

Table of Contents

PreSentatiONEACIONIES. ... ueeiiiiiiiee ettt e e e e r et e e 34
PIOPEILY PAUES. .. .o oo ettt r e 34
SEATEUD vttt ettt et et et et e et et et et et et e et et et et ettt e et e e et et ettt e e e e et et ettt e et et et et e et e ettt e et et et erer s 3
SYStEMSUMMEAIY SECHIOMNS. ..+ euvteteeiiteeee ettt e e ettt e et bt e e et e e e s st e e e e s b e e e e e b b et e e e aabe et e e e sb e e e e e aabr e e e e asbeeeeennnes 351
T BIMIES. .ttt oo et e e e e e e e e s 3
View Menus. TooIDArSAN ACLIONS.coiureiieiitiiie ettt e e e e e et e e s e e e e s s 365

A0 T ATs ST =] £ TP PP P PP TP PP PPPPRPN 37
SYNCNIONIZEPAITICIDANES. ... eeeeeeteeee ittt e ettt e et e e et e e e e bn et e e e ab e e e e e aabne e e e e anes 381
BIEAKIDIOINES ...ttt ettt ettt e e e ke e e e e R et e et e e et e et e e et e e e 3¢
Launch Configuration COMPATAIOIS..........uueiiiiriiie ittt e ettt e et e et e e e e e e 386

Launch ConfIQUIAtioN TYDES.ciuueeieiiiiiie ettt ettt et e et e e ekt e e et e e e e e e e e e e ann e e e e anneeeeaas 388
LAUNCH DEIEGALES. ... eeeeiiieie ettt ettt ettt oo e et e e ekt e e et e e e ek et e e e b e e e e e arr e e e nanes 39
LaUNCher (OBSOIBLE)........ocoiieeeeee e ———— 39
LAUNCH IMOAES. ...ttt ettt oot oottt e oo st e e ekttt e e ekt e e e n bbb e e e e s e e e e s 3¢
LOQICAI SIUCTUIE TWPDES .. eeteeiuttiiee ettt e ettt ettt e e et e et e e e et e oo a bt e e e e bt e e e ab et e e et et e e e nabn e e e e anne s 39¢
PrOCESSEACTONIES. . ettt ettt ettt ettt oot e oo a bt e e 4kt ee oo e e e e ekt e e e e e e e e e e e e e e e e 40
SOUICE CONTAINEE TYIDBS . e tuttttteeiiiete e ettt ettt e ettt e e ekt e e e e b e e e e ek b e et e e ek b et e e 4 e s b e e e e e ekt e et e e anbb et e e e anbbeeeeanneeeeeas 404
SOUICELOCALOIS.cciiiieiieee e 40
SOUICEPAtN COMPULEIS. ... eeiiitiiie ittt e ekt e e e e e e e ekt e e e et e e e e e s e e e e e b et e e e anbnn e s 40¢
1 L0 ST =T A6 (] £ PO P TP PP PP RPTPOUPPPPTRRIN 41
WALCHEXPIESSIONDEIEGALES. eeeiitiiie ittt e et e e ekt e e et e e et e e e e e e e e e anne s 412
CONSOIECOIOL PIOVIARIS. ...ttt ettt e et e e ekt e e e et e e ek et e e et et e e e anbb e e e e anneeeeeas 414
CONSOIELINGE TIACKEIS ciutteieiettete e ettt e ettt e et e e ekt e oo ettt e ek et e 4 s b et e e ek et e e e s e e e e e b e et e e s e e e e ensnn e e e e nnnes 41¢

Vii

Welcome to Eclipse

Table of Contents

CONEXE VIBW BINGINGS ..t teee ettt ettt ettt ettt e e et e e e e bt e e 4kttt e e e st e e e st e e e e sb et e e e e b e e e e e nbne e e e aannes 41¢
DebugModel CONEXE BINAINGS ...« ++teeturrereeiitrieeaitrie e et e e e et e e st e e s s s e e e s b et e s abb et e e e abn e e e e anneeeeaarreeeeans 421
DebUGMOAEl PrESENLALION.eveeiiitiieeiiie ettt ettt ettt et e e e e e e e e e et e e e e e e e e e 42¢
Launch Configuration Tab GIrOUDS..........ccuiiiiiiiiiiiie ittt e e e s bnee e e 425
Launch Configuration TYPE IMBGES.ccoruurreeiiiriieeiiieie e ettt e et e ettt et e e st e e e s e e e s et e e e e asnne e e e e annes 428
LAUNCH GIOUDS. ...ttt ettt etttk e e st e 44kt e e 4 skt e a4 ekt e o4 e s ket e e e e st e e e e e e bt e e e e e nnneeeeeaan 43
LAUNCH SNOIICULSteeeeite ettt ettt e ot e e ekt e e e st e e e e e s e e e e e b e e e e e abn e e e e e 43
SourceContaiNer PrESENTALIONS.........cciiutiiieiiiiiie et e ettt e et e e e e et e e e e et e e e e e eeeeannee s 441
String Variable PreSentatiOnNS.veiiiiriiie ittt 444
L=l T O o]0 (=] 1 (010 [V O TP TP TP PP PUPPPPPPTPRN 44¢
L0101 (24 PP 4.
0TS] TP 4
LUCEINE ANBIYZEE ... ettt ettt oottt e st e o4k et e o sk e et e e okt e o4 ek et e e e e et e e e e e e e e 45
N L (0] 1= 1= S TP PP U PP PP P PPPRPRPPPPP 45
N L 172 ST T PO PP PR PPPPPP PP 4
N A Y €< TR 4
Extra Ant ClasSPatNENTIIESeieiiiiiieeiiei ettt e e et e e e 465
CONENIIMEITE VIBWELS. ... eeeeeieie et e ettt ettt e ettt e e e e bt e e 4k b et e e ek e e e e e st e e e e bb e et e e e b et e e e nbne e e e aannes 46’
(G0 C=) ALY ATS Y= £ PP PP PP PPPRTN 46
YA Sr=] AL 0 =T TP 47
Y1 (0o (U (I O (=T 1 (0] £ PR 47
SHUCIUTEMEITE VIBWELSee it e ettt ettt ettt ekt e e bt e e e st e e e ekt e e e e e e e e e e e e e anbn e e e e e anes 47¢
0] 0TS YA S (<] £ TR 47

viii

Welcome to Eclipse

Table of Contents

Dynamic Stirng SUbstitution VariableS............ciiiiii bbb e e e e rerbrrabraarrrrraarranrees 481
N 2= [T SR 2= LT o] (<Y 48
ST T= L e] 1 = To = TP 4¢
ST 0|01 (=T £ TR 4¢
SearChRESUILVIEBW PAQES........ccoo oottt ettt ae e ab s esnaeeneeaaeeensennrnnene 49¢
Configuration DUPIICAtION MADS.uuuuuuirriiiuiiiiiriiierererieerrrerreereeer ...ttt 495
oy LI YA T o= (o 0] PP 49
(o) oF=T M [Ty = | I F= T T LT 49(¢
SHE TYPE FACIOINY....ci i 50
U LTSI 0NV AV 1= 50
TheruntimeplUug—iNMOUE.........uuuiiiiiiiiiiiiiiiieiie e ee e aeereeeaeeeeeeeeeeeeeerreerrererersrerarrteeeerereeeees 503
Plug=insandbUunIES........ccceeiiiiiiiiiiiiieeee e, 503
org.osqi.frameworlnterfaceBundleConteXt...........ccovvviiiiiiiiiii 505
(011 (0] 0T Y PR 507
QEIBUNALE.ceiiieeeeeeeeeeeeee e 50(
LTy = 11| 21U T o | 50¢
LTy = 11| 21U T o | 50¢
QEIBUNALE. ..o 511
[0S0 00 [P 511
FoX0 [0 ST YA ToL] S (=) 7= (A 510
FoX0 [0 ST YA To1] S (=) 7= (A 511
YOV LSIS oY AVATo1s I ESY (=) [G 511
FoX0 [0 | 2101 aTe | [SY I TS (=] 4=y 511
FEMOVEBUNAIELISIENET. ..vue ettt et e et e e et e e s e e e e e e et e e s s eaba e e s eaba e e s eeabansas 512
FoX0 [0 | e L] I Y (=) 1= ST 512
[EMOVEFTAMEWOTKLISIEIEE .. uvti ittt e et e et e e et e e e et e e e s et e e s e eb e e s seba s e s seban s eeeeerans 512
0TI =T Y= VAo = PSPPI 512
0TI =T Y= VAo = PSPPI 514
(oIS Y T V(o] R (=) =) 1ot PP 514
QELSEIVICEREIEBIENCE. ... —— 515
[0S YT Vo = PP 51¢
BT L= Y=Y Vi o= PP PPRRPR 517
QEIDATARIE. ... eeeeeiieeeeee e 517
(o1 (Y= 1 (=)l L= (T 51
0rg.0sqi.frameworlClassBUNAIEEVENL............uuuuuiiiiiiiiiiiiiiiiiitieeeieererereeereeereerrees e 518
L S I I I = 5 52(
SN I I = 0 TR 52(
SN @] = = TR 52:
LG L od N I 0 52

Welcome to Eclipse

Table of Contents

Runtime overview

L0 L SN I 521
L Y@] L I 521
[0 AT ST @] IRV 521
L30T Lo 1S oYL= o) S 522
QEIBUNALE. ...t 52:
[0 T30 1N U 52
org.osqi.frameworknterfaceBundI@ACHVALOL............ccvvvviiiiiiiii e 523
05 = 1 52
151 (0] o PPN 52
org.osqgi.frameworknterfaCeBUNAIE.ccccoiiiiiii bbb re e aaraaaaaaes 525
L8 L SN I 527
L S I I I 5 527
L Y@] L I 52¢
RSN N = 1 TR 52¢
SN @] = 1N T 52¢
N O I LY R 52
[0 7= 11 =P 52
1S =2 1 52
151 (0] o PP 53
0T 0T F= L= USSP URPPPRR 53
0T 0T F= L= PSSP UUPPPRR 53
U1 0T) = | 53
(0= (<=1 L= £ 53:
QEIBUNAIEIA. —————————————— 53¢
(o<1 0T 07= 1110] o FE PSSR 53¢
QEIREQISIEIEASEIVICES......ceiiiiieeeeeeee et 535
ELSEIVICESINUSE ittt ettt eb et et e ae et e et et e s st e et e e s se e e s e s st s s s s s st s e st snnsesssnnnsnnnennnnes 535
=Sy a1 ISTS 10 A T 53¢
[0S TS0 U (0] =P 53¢
(0= (=1 =) £ 53
QetSYMDBOIICNAME.o ————————— 537
1= Lo [F= TR 53
[0 CT 0 10] = L1 A LSS RRRRRPR 53¢
0 1 111U 53
EXtensionpointsandthe regiStry........oooeeiiii e 539
RUNIMEPIEIEIENCESceiiiiiieeeeeeee e 540
PreferenCECOPES.coe oo —— 541
USINGSCOPERANANOUES.......ceiiiiiiiiiiiiiiieieee ettt e aeeeas 542
EXtENAINGINE SCOPES. ... uuuuuiiiuiiiiiiiiiiitiitttitet bt tes e sbeeseessssssssssseessesssessasssessseessessseeeseeseeeeeeeeeeeeeees 542
PrOAUCTSANATEAIUIES. ... ccieeee ettt et e et e et e e e e et e e e s et s e e s eebaeeses b e essebbn e ssesanneaaes 542
00 (03 £ Sy (=) 1 Y100 010 0 PP 544
(O1U S (o]0 4T T0 7= o) 010 L1 o PP 545
ADOULAIAIOGS. ... ————————— 54¢
WINAOW IMAGES.ceeiieeeeeee e s 546
JTAY L] (o A= o= 1< PP 54¢
PreferE@NCEBIEIAUILS.ccieeeee et e e e e e e e e e e e e earas 546
ST 0] 1] 1 Yol (1= 1 SRS SSS RPN 54¢

Welcome to Eclipse

Table of Contents

Runtime overview

Y0 ST U1] 6T o PR 547
== L L0 (= R 55
AT RR T VAV AT=Y= 100 PP 554
Project=SCOPREEAIEIEIENCES —————————————————— 555
ST oT=To 1AV 1A Lo L1 A TST T 010] o = 560
Project—scope@referenCaOUEs.cooooi oo 567
L0081 (<] 1184 0T PR 56
[DITiTalTalelr=Talo Lo [cTYot T oTTaTe oo)1 0=] o) SO PP 568
Finding 0ut abOUICONTENIEYPES. ... uuuuuuuiuuteuriiutiitueteteaeeeerreareeareeaeesrerereesrssssssssssssssssessssssssssssssnnsees 568
CONCUIMENCNNTTASIIUCTUIE. uuuiitiiiiiiitiieiiiettetebbteeteaseeeseeesessseessssssssssssssssssssssessasssssssessseesseesseesaeeeeees 569
N1 0TS 56
(OT0]aalnaTe]al[0] o]0 oT=Y = 1u[0] 0L PP 570
N[0 0 1] 71 (= 57
JODChANQEISIENELS.o e 571
N aT=N (0 o AT L= Lo (=) (P 572
N L0] 072110011 1= TR 57:
=T oTo Tl To o o e (=T T TP PPPPPPPPP 573
Progressnonitorsandthi@ ULcccooiiiiiiii bbb e rrrr e b b rarrarrranaees 573
(010 1o o (0T 6T USSP 573
WorkbenchCONCUIMENCMSUDPOIEcvviiiiiiiiiieiee ettt ettt ettt e e e e e e e e et e e e e e e e e e e e e e e e e aaeaaaaaaaaaas 574
PrOQIESSEIVICE ..o —— 575
ShowiNGtNAta PAITIS DUSY .. .uuvvueiiiiiiiiiiiieiiieiiesieereeeeeeereeeeeeeseeeeeeeseeeeereeeereeeeeeerereaeeeaeeeaeetareaaeeaeeess 575
ProgresPropertieSor JODSvvviiiiiieeeeeeeeeeeee 576
WOIKDENCHIODS. ... —— 577
LONG—TUNNINQOPEIALIONScciiiiiiiiiiiiiieieee ettt e 578
AU F= 10 (X5 e [0 T0 0 [T T 579
V[0 F= 1o o T=] 7= LT PP 579
L 00 T =TSR =Y Yo = 579
B AT == (0 [T AT FoT ST 1= RS 57¢
Native eVeNntdiSPATCNING.ccoieeeieieiei bbb ae e e e eeeeae s besssessssssssessssssasssssssensenessnes 580
B oo | A 4 == o [580
X AT IO IR 1 V(== Vo 58C
Executingcodefrom anon=UIhread..........c.cccevvviiiiiiiiiiiiiii e 580
TheworkbenNChANAAIEAAS..........cvveiieiei e e et e e e e e s e et e e s e eaa s 581
JODBSChEAUIING......cooiiieeie e, 581
SChEAUINGUIES.ot eenneearaarre 582
Y o R TN L1 1 = 583
UL [S] T[T =T (0] 41T 583
0 1o 2 TR 58
WOrKDENCHUNAEINE COVELS.coeeeiieieee et e e e e e e e e e et e e e s et e e e e eaaa s 587
LTAT L0201 1o TR 58’
= 1 1SS 58
=5 1= 04 115 PR 58¢
BTSN SR= T 10 [0 110 =N 589
OF(Q.ECHPSE.UILVIBWS. .. .etveviieiieeiieeteeeeeeeeeeeeeeee et e e eeeeeeeeeee ettt ee et ee e e e e et et e e e e e et e e e taeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaens 590
BT =T 59
Y =T L0 P L0 TN i) Y 591

Xi

Welcome to Eclipse

Table of Contents

Runtime overview

TN T e Lo T (=T03 LU < 592
ViewersandtheWOIrKDENCKouue e e e e et e e e e e e e abaa s 594
0rg.eClPSE.ULVIEWACHIONS. ..o 595
OrQ.ECHPSE.UILEAILAIS. ... ——— 596
Contributingnewretargetabl@CHONS..........ccoovvviiiiiiiiiii 597
[OF0)01 (=1 0101011 [T T=] £ TR 597
TexteditorsandplatforMEEXL...........oooeiii i —————— 598
(o]0 =Y o 11 01T =T U [N =Y0 [1 (0] ¢ o o1 [0) 1= 601
0rg.eClipSe.Ui.POPUPMENLS... ..o i 601
OrQ.ECHPSE.ULACHONSELSceiiiiiiiiiiieeeeeee e e e e e e e e e 603
PN o] o] [To=\iTo T o [F= 1o Yo 1= PP 604
PreferenCAUES.oo i, 60~
Contributinga preferenNCEAQE.........cvvvvviiiiiieii e, 608
Implementinga PrefereNCEIAQE.covvvviiiiiiiiiieee e, 611
[0 S0 10T TR 613
B L= o [0 To T o] T USSP RR SRR 61
Plug=indefinition...........cooi i ————— 615
ADBSLIACtUIPIUGIN. ... 618
[or= 1 =Y AN (o 1AV = TR 61
Eclipseplatform plug=in ManifeSt..........ccooviiiiiiiiii 619
Eclipseplatform feature ManifeSt.........coovvvviiiiiiiiiiii 619
DialOQS ANA WIZAIAS ...1vvvvvvvreeiietiieiieesiesseeeseesseeeseeeseeeseeeeeeseerteetetetttetatttttttttttttttttttttaattattaattaataaaaaaaeaaaeaaaaaaaaaaaeans 62
1Y 7= a0 F= T 0 7= 10T 1 PP 62]
DIAlOg SELINGS ...ci e e —————— 62:
ALY A2 1o £ 62
LAY 4= 10 Lo 7= 1[0 PP 623
LAY A= 1o TR 62
LY=L 0 | o=V [P 623
0rg.eclipse.Ui.NEWWIZArAS........ccoo i 623
0rg.eclipse. Ui.imPOrtWIZardS..........coooeeii i ——— 628
0rg.eclipse.ui.eXPOrtWIZardS...........ooiveiiie e 629
LAY A= 10 Lo 7= 10T £ PP 63(
Ll =T L= 4= 10 631
ValidationandpageCONntrol..........ccoooiiii i 631
ACHIONS ANACONIIIDULIONScceeveeieeiee et e et e e e e e s e et e e e seba e e e s e sba e esesbaeeeseabaneeeeeeas 632
o3 10 1R 63
(OF0) 811110101 1T0) A1 (=] 0101 633
ContribUtIONMANAGELSccei e e e anarnne 633
O 10 6 =100 (=10 UL (o= T 633
ImagedescriptorNAtNE rEQISIIYcvvviiiieiiiiiieeeeeeeee e 634
Plug—inpatternSor USINQIMAQES.uuuuuuuiurriuuiiuuiiurerrrerrrerrresrerrresrrrerrerrer—————————————————————————. 635
O 10 =T) (PSPPSR 63¢
e 0T <] = EoT0 11 (o =T 636

Xii

Welcome to Eclipse

Table of Contents

Dialogs and wizards

WIAQELS. ..o —— 63
WidgetappliCAtIONSIIUCTUIEuuuuieiiiitiei ettt eaaeaaeeeaeeaabeaseessesssesssssssssssssssssssnssnsssnnnees 637
WIAQELITE CYCIE ..o 638
RUNNINGINE EXAMPIE. et b e e e e e e b es e e e s s ssssssssssssssssessssessnnseneseeeeenes 639

SWT standalonexample= HElIO WOIId.............oovviiiiiiiiiii 640

SWT standalon@XampleSEIUD..........ovviiiiiiiieeee e, 640
IMPOrING EXAMPIESOUICE.cciiiiiieiiieeieee ettt 640
RUNNINGINE EXAMPIEceiiiiiiiiiieeeeeeeeee e 641
EXQMPIEIOVEIVIEW.o —— 642

SWT standalonexample= ADdreSSBOOKcviiiiiiiiiiiiiiieie e 642
RUNNINGINE EXAMPIE. e e e bbb e e e e s ea s e s b e s s sssssssssssssesseasssessnnsnneseneenees 642
A0 0 64

SWT standalonexample= ClIPBOAIH............euiiiiiiiiiiieeieeeeeeeeeee e 643
RUNNINGINE EXAMPIE. bbbt b e e b ee s e e e s e s s s sessssssssssssssaassennsneseneseeeeeees 643

SWT standalon@Xample= Fil@ VIEWEE...........uuuuuuiuuiiiiiiiiiiiiiiiiieriernrerierrsreeresrresrresrse—————————————. 643
RUNNINGINE EXAMPIE.t b s e et e e b e e s eesssssssssssssssessaasssessnnseneeeeeeeees 643

SWT standalon@Xxample= HOVEIHEID..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiereierreeraeesressresrrssressesssssesreerrresraee.. 643
RUNNINGINE EXAMPIE. e et s et s e e se s e es s ssssssssssssssssessssessnnseneseeeeeees 644

SWT standalon@Xxample= IMAQEANGIYZEL..........uuuiureieeiieeeieieeeeeeeeeeeeeeeerreerrerreereerrreeeeertareareeaeeaaeees 644
RUNNINGINE EXAMPIE.ttt e e e e e b es st es s sssssssssssssssseassanssensneeeeeeennes 644

SWT standalon@example= JavaSyNtaXVIEWEE..........uuuuurururrurrrrrrrnsrersrresrssrseeereerreeeeeererrer. 645
RUNNINGINE EXAMPIE. e bbb e e ee e b e e e s s s sesssssssssssesssassenssnnsnneeeeeenees 645

SWT standalon@example= TeXTEAIIOL.........ccoeiiiiiiiee e eee e e e ane e annennnes 645
RUNNINGINE EXAMPIE. et e e et e e e e s e e e s s sessssssssssssssasssaessnnseneeeneseees 645
(@70 8110 £ 64
V7= 1Y 64
(10 1Y (0] 0101V 10 [0 1= £ SRS 650

IS Y0 1 PP 65
1112 Y0 PP 65!
01T 7= 1Y/ T | PN 65"
0] 111 7= Y0 1 | PPN 65¢
(T o | P2 1Y 0T | USRS RPN 65¢
SEACKLAYOUL ..o ————————————————————— 65¢
(@101 (0] 0117 1 V001U > PRSPPI 66C

[T oo =T o [T T PSPPSR PRSP 66(
1Yo P o T T AT a1 o =T o1 (Lo o PP 661
NV I (=Y o) (o 1RSSR 661
XY AL I =1 1 0] 66.

LCT7=1 o] 1o TSRS 66
(1= o] 103 00 1= N 661
L0111 PP 66
(@70 0] 1= TR 66
=0 T PN 66
GraphicobJECLIfECYCIE. ... —————— 663

ResourceaNdtheWOIKSPACE.ooiiiiiiieeeee e, 664
A SAMPIEIESOUICHIEE.evvvieieeeiieiieeeeeee ettt eee ettt et e et e e et et e e e e e et e e e e e e e e e e et e e e e e e e e e e e e e e e e e e e aaaaaeaaaaaaaaaaaens 664

Resourceandthelocalfil@ SYSIEM........uuuiiiiiiiiiiiiiieeeeeeeeee e 665

Welcome to Eclipse

Table of Contents

Dialogs and wizards

(@I sT=TaaT o) (= (=TT a o 111 PP 665
(@Y= TanT o)1= (=TT T o0 0 [RPN 666
Mappingresource$o diSKIOCAtIONSccvvviiiiiiiiiiiiiieieee e, 668
ResourceAPl andthefile SYStEML.........ccoiiiiiii e 668
LTS 0 0] (0N VA0 [P 66¢
File encodinganNdCONtENYPES.ccvviiiiiiiiiiiieeee e 669
Y ua] o P o] Ao o1 (=] Y= AP PPTPPPPPP 669
(@ 1U [A1 aTo (A T=Y o T L= (oa (=) Y= PP PPPPPPP 670
RESOUICENAIKELS.coieeeeeii ettt et e e e et e e et e e e e et e e e s et e e s eab e e s seban e s seaba e eseenaasens 67(
MarKErOPEIALIONScce e e —————— 671
Extendingthe platformwith newmarkemtypes..........cccovvvvviiiiiiiiiiii 673
Modifying thEWOIKSPACE.........coo i rnrerrreanrrrrre 674
BatChingreSOUICENANGES.ciiiiieiiiei i e b e e e e e e s e sssessssasssssseessenenees 675
TrackinQreSOUICEENANGES......cvvviiiiiieiiieeeeee ettt e aaaaaaaaaens 677
Concurrenc\andtheWOrKSPACE..........ccoee e 680
TaTel =T na T a1e= o o (Yo d o101 (o =T PSP PP 681
TN YL0] T 1= W 0T 1o 682
DefininganincrementabrojeCthuUilder...........ooooiiei oo iie e 683
Associatinganincrementaprojectbuilderwith aproject...........cccco 685
DEIIVEAIESOUICES.eettuieeeete ettt e ettt e et et e e e e e at e e e e et e e s e e b ees e et e ee s e baa s esesetaaeesea b eessebanseaseban s 68~
T EAMPIIVAIEIESOUICES. ... vvvvvretirereererereeesrerseeeeeeeeereeeerererteetterttetttttttttttttattattaattaaataaaaaaaaaaaaaaaaaaaees 686
WorkspacesavepartiCIDAtIONcoeeeiiiie e e ee s ee s ee e e e e aanraane 686
Implementinga SavePaItiCIPANL............ccooviiiiiiiie e 686
UsSING PreviousIySavedState ..o 689
Menuandtoolbarpaths..............oovviiiiii 690
MENUPALNScoeiiieeeeeee e ——————— 69(
B0 Y0 I 0T T o 7= 14 PP 69:
Using pathsfrom anothemlug—in.............coooiiiiiiiiiii i nrrennees 695
ACtioN SetPartasSOCIALIONS.........ccoeei i ———————————— 695
Booleanexpressionsndactionfilters...........c.ovvvviiiiiiiii 696
BOOIEANEXPIESSIONS. ... e e ————————————————— 696
Using objectStatavith CONtENIYPES.cvviiiiiiiiiiiiiiieeeeeee e 698
a1 e= 100 =1 7= 0] [-=Tod 110] 01 J PP 69¢€
Settinga globalactioNANAIEE..............uuuiuuiiiiiiiiiiiiii e rrrrrrrrererreereeees 700
=T 15 01T o1 11V PP 70
WOrKBENCHDAIIAYOUL.evviiiiiiiiiieeeeeeeeeeeee et 706
Linking viewsandeditorswith "ShOW=in"...........ccccccviiiiiiii 706
(010 =Y 1] TSI T 01 5] 0T oL 1Y/ == PSP 707
org.eclipse.ui.perspeCtiVEEXIENSIAMNSuuuuuuriiriiiiieiriiiterrerrrrerrerrrerrrrerrerrrrreree——————————————————. 708
[T od0] = L0 £ T 70¢
Workbenchkey BINAINGS.cvvviiiiiiiiiiieeeeeeeee e, 711
(OF0] 101 81F=1 810 £ TR 71:
[NV o 1T [T o PP 714
[NV o0 a0 [0 1= Y10 PP 715
(070 01 (=0 A== 10 | (YA o110 [T PP PPPPPPPP 716
L0 1 1=K 71
(S]] 01175 (o1 (0 A <Y 718

Xiv

Welcome to Eclipse

Table of Contents

Dialogs and wizards

ACCESSIDIBUSEINIEITACES.ue ettt e e e e e e et e e e e et e e e s e ab e e s s et e e e s eabanaas 720
ASSISHIVETECANOIOY. ... ——— 720
ACCESSIDIlTY TESOUICES i aa e aa b et aa bt b et e e st ee s es e s s st s ssssssssasssensnnssnnnnnnnenes 721
SWT ANAACCESSIDIIILY . . .vvvvvvurrrurrriiiirirrtirrirerueereeerererreereerr—er—————————eeereeerrrererrrerrrrrtrrtrrrtrrrtrrrareraree 721

Tips for making userinterfacesacCesSIbIe. ... ———— 722

HonoringsiNgIECHICK SUPPOEL........cevviiiiiiiiei e, 723
SINIECHCK IN JEQCEVIEWELS.......ceviieiiieiieeeeeeeeee ettt 724
SiNQIECIICK IN SWT CONIOIS.uuuuiiiiiiiiiiiiiiiiiiiiieiiesresreersresssessseeseeeseeeeeerreeerererrerrerrrerrrrrrerrareereees 724
Activating @ditOrSON OPEN.coi i e e i ar i arae 724

WOTKING SBES. ... ———— 72
Adding NEWWOIKING SEIYPES.......coeiiieeiieeieeeeeee e, 725

(OF0] a1 (101 W1 (T ale [=TSToT Ul o =111 =] o= PP 726
Filtering largeUSEHNIEITACESuuiiiiiiiieieeeeeeee e e 728
o LAY (T 72!
ACHVItIES VS. PEISPECHIVES....coiiieiiieeeeee e, 728
GuIdingthe USENIOUQNEASKS. bbb bbb b a b e e se e s s e ssssssssssssssssassnnssensnnes 732
(O 1151 AT<T) £ TR 73
WOorkbenchreSOUICESUPPOIL......cco e 736
Contributinga PrOPEITYDAGE. ... uvvvvrrrrrrrrrerrrrrterrrrrrrerrersrerereeeresrreeseeereeee—e————errrrrrrrrrrrrrrrrrrr 736
IMPleMENtiNGA PrOPEITYPAGE. .. vvvverreereeeeeeereeeeeeeeeeereereeereerreerteeetertaetaattaataaaaaaataaaaaaaaaaaaaaaaaaaaaaaans 738
MarkerhelpandreSOIULION.cooooiiii i 739
=] LT o Yo [T o PP 742
0 110 7
LTAY L0 o T=T T 0 =Y 10 =N 74E
Editor partsandtheilriNPULES.cooviiiiiiiiieeeeeee e, 745
RdTSYeani a0 £ T=X=Te [1(] 10 | PP 745
N F Ao F= LT a T 4 TSX=T0 [0 T o 745

DocumentANdPAITItIONS.........coooe i ——————————————— 745
DocumentprovidersaNdAOCUMENES. .. .uuvuverieeeeeeieieeeeeeeeereeeeeereeee e e e e e e et e e e e e e e e e e e e e eeeaaaaaaaaaaaaaaaaaaaaaaas 746

YY1z b (oo] (0] AT RS PRSURSRPRRPPRR 74
Damagerepair,aNdreCONCIHING.uuuuuuuuuuiiuriiiriieiiurrerrererrrrer ... 748

CoNfiQUNNQASOUICEVIEWEN.......ceeiiiiiiieiieee ettt 750

SourceviewerSaNdaANNOLALIONSuu.iiiieie e eeieeieee et e e e et e e s e e e e s e st e e s e ab e e sseta e ssesaaeeseebaneesseaanns 751
ANNOLALIONSANAIUIEIS ccieeee ettt e et e e et e e s e et e e e ee b e e e s eaaa e eseabaeessetbeessabanseeseras 751

=110 LA U1 (ST a0 A= A 75E
B 10 1YY T 75!
UL TST A 10 Y=Y 75¢

(00081 (=T 01F= 1511 1) 75
CONEENIAS S SIIIOCESSOIS. . vvvvvvrreerereeeereeereeeeeeeeteerrterrettttetttttttttttttttttttttttttttattaaataattaaaaaaaaaaaaaaaaaaaes 758
ContentassiStCoNfiQUIATION...........ooiieii e 759

RegisterinQEdItOrACHIONS.........ccoe e ——————————————— 760
Editor MENUDAIACTIONS.uu ittt e e et e e ettt e e e e et e e e s etbe e e s seba s eseebbaeeseeaans 760
o T1 0 o1 1 A L) A0 1= 761
=T 1 1T £ 76.

Othertext editor rTESPONSIDIIILIES.vvvvvrrrrirrriiiiiietiitrrereeeererrreereerreeerrererer———————————eaerr—————reerrrrrrrrrrrrrrere 763

XV

Welcome to Eclipse

Table of Contents

Editors

Preferencdandling...........cvviiiiiiiieiiiieeee e, 763
[NV o 1T [T o PP 763
S TUT1Fo Lo IF= W AT o o LU o T PP 764
Tableof contentdtOC) filES.. ... ————— 765
[(= O RSY=Y AVL=) r= Lo kil =30 fo o= L0 0 T 766
Completingthe plug=inManifest............cccooo e, 767
Building nesteddocumentatiomBtrUCIUIES.uuuuuuriririirriirirrrerrrerrreerresererresrreeereerreerrerrrrrereeeee 769
DYNAMICHEIN. ... ———————— 77
170 0T 0L P 77

Y= 1] 1 15T U1 0] 010 o PP 77

(OT0] a1 (10T U1 1T aT0 t=WoToY= 103 0 0= Lo [777
IMPleMENtiNGtNE SEAICHDAGE vvviiiiiieiiieee ettt e aaaaaaaaaaaaaaaaaens 778
Contributinga SearCHESUIIDAGE.oeeieee i ee e e b ba b s eeeeeesessssesssesssssssnnnees 778

L0010 0= =11 6] 60] AN 77
(70801 0T 1= A1 TL=] = PSPPSR T7¢
IMPleMENtINGA CONTENIVIEWEL.cciviiiieiiieeeeee ettt e 779
SIMPIECONIENIVIEWETS. ... uuuuiiiitiitiitttiuteaeteeebeeseeeaeeeeesseessesssssssssssaessasssssssesssssssesseeeseeeeeesereseeeeeeees 779
CONENIMEIGEVIEWETSceeeieiieeiieeeeee ettt ettt ettt ettt et et ettt e e e e e e et e e e e e et e e et e aaeaaaeaaaaaaaaeens 780

IMPlEMENTINGA SITUCTUIEVIEWEL ... veiieeeieeeeeeeeeeeeee ettt ettt e e e et et e aaaaaaaaaaaaaas 781
N Y U [(YA TSN =) £ TR 781

OtherhierarChiCatIUCTUIBVIEWELS.oiiieeii e et e et e e e e e e st e e s et e e s e et e s e eabaaeeees 782
MergingmMUItiDIE SITEAIMS.ooi i e et e aaeaaseannebneenneennernnnes 783
AdvancedcompPar8EChNIQUES.coivviiiiiiiei e 784

WIriting COMPAIEDPEIALIONS.cvviiiiiiiiiieiieiieee ettt ettt e aaaaaaaaaeeas 784

Comparefunctionality outsideof compareeditors.........c..ovvvvviiiiiiiiiiiiee e 784

aTo A=Y= T a1 (=To 1= (o] PP 785

GettiNGSIAMEU.ciiieiieeeeeeeee e 787

ENNaNCINGTESOUICEB/IEWS......covvieiieeiiieieee ettt 787

Handlingusereditingandchanged0 rESOUICES...........ccoooeeeeiiiie i 787

Streamliningrepository—relatetasKS..........cooovvviiiiiiiiii 788

Enhancinglatformintearation..........ccccccccoiiiiiiiiet bbb e aessessbseesessessssesssesseesrees 788

PN [0 [T Y0 =Yz T2 T= Loa (0] 0 PP 788
TN 1o [o0 7= 1 (0] o PR 79C

TeamMaNAlNKEA TESOUICESuuu i iiieitieee ettt ee et e et e e e e et e e e e e et e e e e et s e e s eaba e eseebaa s eesebbaeeesernnsss 791
0T L=T o1 Y= = PRSP PPPPPRRPP 79:
FHlE tWPES. ..o ——— 79
Adding preferenCeaNAPIOPEITIES.....cccvvviiiiiiiiiieiiiee e 796
LauNChiNQaPIOOIAML.ccceiiiiiiieeeeee e, 798
Adding launchergo theplatform..............ooooiii i 798

XVi

Welcome to Eclipse

Table of Contents

Compare support

Handlingerrorsfrom alaunchedorogramy.uuuuuuuuuiuuiiiriiiieinieriinererserrrrerreeereeeeeeeeeereee. 800
Launchconfigurationdialog............coovviiieiiiiiie . 800
LaunchconfigurationtyPEIMAGES......cvvviiiiiiiiiieeeieee ettt a e 802
IS0 Tod 1S 0] (LU 1 €= 803

DY 018 o o [TaTo’= ¥ o] (o ir-1 0 o PP 803
PlatformdebugmOodel............oooiiiiiiii . 803
BIEAKPOINLS.ceeviiiiiiiiiiei ettt ettt e 80!
EXDIESSIONS. ..ceeiiiieiieeeeeee ettt a e e e e 80
DebugmOodelpreSENtALION.cvviiiiieeieeee e 806
DebugUI ULITY CIASSES.....ciiviiiiiiieeeeee e, 807

PIAtfOrM ANT SUDDOIT. .. uvttutittieiiiiitietieesseetessseessesssssseeeseeeseeeeeeeeeeeeeeeeeereeettetteettttttaettttttttatatatttaetaaetaaeaaaaaaeaaaeeees 80!

RunningAnt buildfiles programmatiCally..............ueeueerreeiieiiiieeiiiiieeeeeeeeeeee e e e e e e e e 808
Specialcarefor nativelibrariesif build occurswithin the sameJREastheworkspace........... 808

Ant tasksprovidedby the PIAtfOIML..........vuiiiiiiieieiei e e e e e e e e e e e e e e eeaaeees 809
(<10l 10 ST (=1 =11 11 0 o= | F PRSP PPPRRPRR 809
eclipse.incrementalBUild...............oooo i —————— 809
[<T0d 10 FSY= T 001 01Y/=) 4 = 1 PP 809

ContributingtaskSaANALYPESccoo e ——— 809
ProgreSaVIONITOrScco e ———— 810

ADOULAIAIOGS. ... ————————— 817
WINAOW IMAGES.ceeiieeeeeee e s 813
JTAY L] (o A= o=V 1< PP 813
ST 0] 1] Yol (=1=T 1 PSSR USRR PRSP 814
PreferE@NCEBIEIAUILS.cieevee e et e e e e e e e e e e e earas 814

D=yl o TN = Vo T AT 0 £ T 814

Packagingand delivering EClipSebasedprOQUECTS..........uuuivieiieiiieiiieeieeeeeeeeeee e ee e e e e e e e e e e e e e e e e aeaaaees 815

F N o To 1V L T VI 1[N o] 4 = | TR 81

I Yoo 1 [T 0T o 1 1o 1= PP 817
Plug=insandfragmentS..........cooooiiiiiii e ——————————————— 818

L0 o T o Y7 PSP 81

ProductinstallationQUIAEIINES............cooiiiiii e 819
MU USEEISSURS. et ee ettt et e et et e e e et e et e e e et et e e e e e e e e e e e e e e e et e e e e e ea s e ean e eenreeaneeeanrenneeennn 820

U DD SEAIL IS SUEBS. . e evt ettt ettt ettt ettt et et ettt e e et et e et e et e e e e e e e e e e e e e eaeeesereenereerneenarennans 821
a1 ars =1 T To 1 aT=T o) oo 11 o CA 821

How to write an ECliPSEINSAIIEN...........ccovviieeeeee e, 822

ProductinStallerCrEe@tiONSCIIPL.vviiiiiiiiieeiee e e ettt e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaeeas 822
TR vz 1T 01 A= AV [0 AT 826

XVii

Welcome to Eclipse

Table of Contents

How to write an Eclipseinstaller

Installerbehaviowhenproductalreadyinstalled..............uuvveevieiiieiiiiiieeiieeeeeeeeeeeeee e 826
Associatinga JREINSAllEAEISEWRNELE.uuuviiiiiiiiieiiiieiieeieeee e e e ee e e e e e ee e e e e e e eeaaeaaaeees 827
EXtensioninStallerCrEatIONSCIIDL. .. .vvvvvrerieerieeiieeieieeee et ee et e e e et e e e e e e e e e e et e e et e e e e e e e e e e e e e e e e eaaeaaaaaaaaaaaaaaaaaaaaas 827
0L TTa ISt | [T 0] AT VA0 A 829
Installerbehaviowhenextensiomalreadyinstalled...............euvuiiiiiiiiiiiiiiiiieeieeieeeeeeeee e 830
Ra 1010 1[0 () (=] 15110 T 83(
Installing anduninstallingeXtENSIONS.cooeeeiiee e anenanes 831
Updatinga produCtOr EXEENSION.......c..ceviiiiiiiiiiei ettt 832
Featureandplug—in packaging...........coooiiiiiiiiiiiii e 832
UPAAtESEIVEHAYOULceeviiiiiiiiiieeeeee ettt 832
Y1 C 1YL= o P 83
DefaUlt SItELAYOUL.......cciiiiiiieeeeee s 834
(@70 2] (0] |ITaTo o= PP 836
(000 F= L CS TS AV ST 1= 1A= o PP 83
Building a Rich Client Platform appliCation...........cevveiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 838
Eclipse Platform Map of Platform PIUQ=iNS.........ccciiiiiiiiiiiiiiiiiieiieeeeeee e, 839
THE DI OWSEIEXAMPIE. ... vvvvviiitiieiiieiiteeteeteeeeeeeseeeseeeeeeeseeseeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaaaeaeaaaaaaaeaaaaaaaaaaaaaaeaes 842
[BINiTallaTo = WaTod a Wl [T=T) =1 0] o] o= L Te) o PP 844
CustomizingheWOorkbenChL...........oooo i —— 845
Theworkbenchife—CYCI.........cooo i 845
DefiniNngthEaCtIONS........cooviieieee 846
LYo MO T oo T 1] 0TV LT 0 848
AdAING NG PEISPECHIVEeveiiiieeeieeeeeeeeee et 848
AAINGVIBWS. ... ——————— 84C¢
RSN (=) 1oL =R 8!
OSGiServicePlatformSpecificationREIEASES APL...........uuvuiuriiiiiiiiiieiieeiieeeeeeeeeeeeeereererrereereerreeeeee 855
Other ReferenNCeINFOMMALIONc.cvveiie it e e e e et e e e s et e e s e ab e e s se b e eseebba s eesesbaeessennneeaes 857
BasicplatforminformMation...............uerieeiiiiiiieeeeeeeeee e e e e e e e e e e e e e e 857
USerinterfaCeiNfOrMALION.oiieeie et e e e e et e e e et e e s et e e s e et e e e sebba e e esaraaaes 857
HElp INFOIMALION......eeiiieiieeeeeeeeeee e, 857
Productinstall andconfigurationinformMation...................uuuuuireiiiiiiiiiiiiieiiereeeeereere e ————————————— 857
ECliPSE.0rQaAItICIESINAEX.vveviieiieiiieeeeeee ettt e e e e e e e e e e e e e e e 857
The EClipSeruntime OPTIONS.......ccoiiiiiiiiesiee s iee et e e e e e e e e e e e e et aaa e aa et eaeeaaae s s seessessss s sesssensssssssessnnnnnnnnes 858
CoMMANAINE AIQUIMENES.vuuuutuutturetsuersrerreesreerresrererresseeeeaee.—..——————————————r———er—rr ... 858
ObsoletecomMmMAaNdiNg ArQUIMENTS.uuuvuuerruerurerrenrrerrresrersresssessesssrserreeeree—————————————. 859
L 1 1) - 86
YY1 (=100 0] (0T 0 1T = PSPPI 86(
[0 To7- 1 10] 01 TR 86
0T L 0 1] = 86:

XViii

Welcome to Eclipse

Table of Contents

Starting ECHPSETIOM JAVA.uuuuuiiiiiiiiiiiiiiiiiiiiieiiesieeseeeeeeeeeeeeeeeeeeeseer et et e eettetttettttetttaattaattaataaataaaaaaaaaaaaaaaaaaaaes 866
Eclipseplatform API rules of engagement...........ccoooviiiiiiiiii i, 867
Whatit MEANTO DEAPL......ee et e et e e e e et s e s s e e e e s eebaeeseebbaeaeees 867
[(0N A QR (=) AN ol IR0 0 A 1 A T0] 0 e Y P 867
LT oY A= =1 (U] =5 TR 86
Calling public API MELhOAS.......coiiiiiiiiiiieeeee e, 868
TaTS e=TalaF=NaTaTe o] Pz Uil AN md o] o Ty PP 869
SubclassingDlatfOrM APT CIASSES......uuuuuuuuiiuuiuitiiiiiuuteuuerrerrrrerrrre ... 869
Calling protectedAP] MELNOMAS. oo bbb e e e eeseesaesseesssssssssssssssassenssensnnes 869
(@AY Z=Y o [TaTo FAN md I 0 T= 1 T0 0 869
ImplementingplatformM AP INTEITACES.uuuuiiiiiiiiiiiiiiiiiiiiii e r e reeeeeeeseesrrrreeeeeeeeeees 870
TaaTo (=T ant=Yakilale o]0 o] ITody N o I aT=] T o o KPP 870
Accessindields in API classe@andinterfaces..........oooiiiiiiii e 870
Castingobjectsof akKNOWNAPIIYPE.......ccooo i 870
NOt fFOllOWING tRETUIES.......coveiieeeeeeeeeeee e, 871
EclipsePlatform Naming CONVENTIONS.cciiiiiiieiiieiieieeei s e aaa e aaa e aaaeaeseaaesssesssessssssssssssssnnssnes 872
JAVAPACKAQES.cciiiiiiiieieee e, 87:
ClaSSERANAINIEITACES.ciieeeieee ettt e e e e et e e ettt e e e s et e e s eab e e s seba e e s setaa e eserbaa s 873
YT T 87
RN =1 = 1 0] (S 87
(@0 1151 = 1] N 87
Plug=—inSandEXIENSIONPOINTS.uuvuriirriiriieeiieirreereeeeeeeeeeerreereereeeeeeeteeeee et teeeaateaeaaataaaaaaataaaaaaaaaaaaaaaees 875
ettt eeeetteeeseetaeessetssseseessssesessssssessessasesssssassessessatestettatettettattetettntettttun ettt —etteteeatetaraeterrnaaares 87
LT[0 TToY= 1Y (=110 1 87
The project description fil€..........ooovvviiiiiii 878
Pre—built dOCUMENTALIONINUEX........uuuieieeteee it e et e e et e e e e s e et e e e e e tba e e e e et e eeseabeesseban e ssesbaeesesannasns 881
Building anindeXfor @ PrOAUCL.........cuviiiiiiiiieiieeeeeeeeee e 881
PackagincandInstallationof pre—bUiltiNAEX............uuuriuuiiiiiiiiiiiiiiiiiiiiiiiieeeeee e ————————————— 881
Installing the stand—alonehelp SYSIEM.........coooii i 883
TaTSY 7= 1 =0T T F= od = Vo 11 o PP 883
How to call thehelpclassedrom JAVa ... 883
How to call thehelpfrom commanding...............oooooi i 884
[Optional] Installinga minimal setof PlUG=INS..........cc.cccovvviiiiiiii e, 884
Help SYStEMPIEfEIENCES ... ———— 88¢
(o]0 =Y o 110 TT =0 1=] L1 o 1 886
org.eclipse.help.bagBug—in:.........ccccooeiiii i, 886
(0110 Yol [101SY=H AT=1 | =T 0] TSYSIAY, < 10 fmul | HEUURE TR 888
(o]0 M=o [1 01T o]0 T0x= ¢ 111 o e P 888

XiX

Welcome to Eclipse

Table of Contents

Installing the help systemasan INfOCENTEL............cvviiviiiiii e, 889
LTSy 7= 1 =0 T F= od = Vo 11 o PP 889
How to startor stopinfocenterfrom commanding.............ooooeiiiiiiiiiiicicccc e 890
USINGLNEINTOCENTIEL. ... ——— 89C
How to startor stopinfoCenterfrOmM JAVA.ccccciiiuuuuiiiiiiiiiiiiiee bbb e eesssesssesreeseeesseeeeees 890
Making infocenteravailableon tEWED..............uviiiiiiiiiiiiiiieeieeeeeee e e e e e e 890
Runningmultiple inStanceof INfOCENTIEL..........vuiiiiiiiiiiieiiiieieeeeeeeeee e e e e e e e e e e aees 891
[Optional] Installinga minimal setof PlUG=INS..........ccccoeviiiiiiiii e, 891
Updating a running infocenter from commandling.............ooooieiiiiiiii i 893
Eclipse Update PONCY CONLIOL.....cccciiiiiiiiiiiiiiieee ettt 895
2. UpdatepoliCy t0 tNETESCUE. e et e s b eeeeee s e s sssasssssssessasssessseeseneenees 895
2.1 Supportfor creatinglocal (ProXy) UPAALESIEES.covvuenieiierieiee e et e e s e e e 895
VA ©%e]1110110] 010010 F= 0= Lo [[oxYAeT0] a1 o) KN 895
2.3 Automaticdiscoveryof UPAates..........coovvviiiiiiiiiiiieeeeeee e, 897

LG TS 1110100 YO 89
1. Plug=inmanifeSIVEISION........ccooee e —— 898
2. Restructuringf PlatformUI pIUG=iNS........cccoiieiiiiiieiiiecccc e eeeneennennreneesnnnes 901
3. Restructuringf PlatformCoreRuntimeplug=ins..............ccoeeeee i 902
4. Removalof XercespIUQ—iN..........cciiiiiiiiiiiiiiic e 903
5. EClipSE3.01S MOIECONCUITENL. . .uuuvuettrstueerersssssressessssessssssssssessssseeressrrrereeerererrerrrrerrrrrrrrrrrrre 905
6. 0OpeningeditorSONIFIIESo 905
7. EdItOr QOIOMAIKEL......iiiiiiiiieeeeee e 906
oI o T1 0T F= 10 [T T o 907
oI o 1 0T =10 (1Y 1 A 2RSSR 908
10. WorkbenchmarkerNelprEQISIIY.........uuuuiiuiiiiiiiiiiiiiiittiriiat bbb eeebeessessseessesssessesesseneees 908
11. TexteditordOCUMENDIOVIELS........ccoeiee e et ennannnes 909
A =) =Y L1 (] TR 91C
13. HeadleSRNNOtAtiOMBUDPIOLL.t e abeeabeaseeaebeebesssessesessssssssssnssennnees 910
B @0] 1Yo (Y= 911
15. JavabreakpOiNtiStENEIScvvvieiieeiieeeeee e, 911
16. Clipboardaccessn Ul thread.............ooooiiiiiiiiii i renaees 912
17 KEY AOWNEBVENLS.....cco i nannnes 912
18. Tabtraversalof CUSLOMCONTIOLS.cuuueiiiiiie ettt e e e e e e e e s e ab e e s e ebaaas 914
19. Selectioneventorderin SWT tableandtreewidgets............ccoooeeeeeeeiie e, 914
20. New severitylevelin StatUSODJECTS........ccvviiiiiiiiieiieeeeeeeeeee e, 914
21. Build-relatedresourceehangenotifiCationS............cevvviiieiiieiiieiiiiiicceeee e, 915
22. Intermediatenotificationsduringworkspaceperations.............ccceeeeeeeeee e, 915
23. URL streamNandIereXIENSIONS.uuuiiierinieeiieieeee ittt e e e eet e e e set s eesesbseeseebasessesbasessseraaeeses 915
B O =TT 0= 10 [0 0 L= TR 915
25. ClassloaderprotectiondomainnNOt SEL...........covvviiiiiiiiiiiie e, 916
26. PluginModelobjeCtCaSINGceviiiiiiiiiieiieeeeeeeeeee e, 916
27. ILibrary implementationnCOMPIELE...........cociviiiiiiiee e, 917
28 Invalid assumptionsegardindform of URLS.............cooviiiiiiiiiiiii 917
29. Bootl cademethodIMoVed/dEIEIEA.cooiverieeieee e 918
30. Plug-inexportdoesnotincludethe plug-in'sJARsautomatically..............ccccceeuurrrnrrnnnnnns 918
31. Re—eXPOrtiNQUNLIMEAPL.uuuiitiieiiieiiite it aeressseesessssessesssssssseseessaneseersreeseereeees 919

XX

Welcome to Eclipse

Table of Contents

Eclipse Update Policy Control

32. Plug—inparsingmethodon PIAtfOrm..............uuuuuiiiiiiiiiiiiiiiiiiiiieiieeeeeseeseeessseesreereeeseereeeeeeeeee. 919
33. Plug-inlibrariessuppliedby fragmMeENtS.............uuuuuuuiuuuimiiiiiiiiiiiiiiriieeiirrrrrerere——————————————. 919
34.Changeg0 build SCHPLS........ccooei i 920
o O F= Lo [1ol ad B =1 o TN 1 [o 17N a1 = 1 920
36. Changedo eclipse.bUildANT tASK...........cvvviiiiiiiiiiie 920
37.Changed0 eclipSe.fEtChANT tASK.........uuuuuiiiiiiiiiiiiiiiieiiriiiirirr e eeereesreesseeseeessreseesrereerreeees 920
38. Replacemendf INSLAILINI........c.ceviiiiiiiiiiiiieceeee e 921
Changegequiredwhenadopting3.0mechanismandAPIS.........ccccceeiiiiii 921
Gettingoff of org.eclipse.core.runtime.compatibility...............coeeeeeeei e, 922
NL fragmentSIIUCIUIEoeeiieeeeeeeeee e, 922
API ChanQE®VEIVIEW.........ceei e, 922
Running update managerfrom commandling..............ooooiiiiiiiii i —— 923
YT = LT o S UU RSP PURRPPR 9;
Eclipse 3.0 Plug=in Migration GUIE.............coeeiiiiiiiiiie oo an e nneanneanrennrennees 923
Eclipse 3.0 Plug—in Migration FAQ..........uuuuuuuuutuurruuuuuuteeteerrersaersrerrresressresees.....——.———————.—————————————————————————. 926
Incompatibilities betweenEclipSE2.1aNd 3.Q.......uuuuuiuuiiiiiiiiiiiiiiiiiriierierrrrrr ... 926
D= 0101][RP 9.
SWT EXaMPIELAUNCREL.......ccoiiiiieeeeeeeeeeeeeeeeee e 942
Runningthe EXampPlELAUNCREE.uuuiiiiiiiiiiiiiiiiiiiiiieeiereee e eeeareereeseeseeessssssessssessssssssssessseeeees 943
A L0107 94
LY =)= T 0]][l =T (01 =Y o 943
RUNNINGINE EXAMPIE. bbbt b e et e e b es s e es s sssssssssssssessessssessnnseneeeeeeeees 943
A L0 0 94
VA =N = L] o] [@0 0] (o) =P 943
RUNNINGINE EXAMPIE. e et bt e e e e e e e e s s b e ssssssssssssssssssesssaessnnssneseneeenes 943
A L0107 94
SWT example— CUSIOMCONIIOIS.uuuuuuuuuruuuruuriusruertrnresraersrrrrerrrrrrreerrrsree.———.——————————————————————————————————. 944
RUNNINGINE EXAMPIE. e b et bt e e bt e e b se s e esssssssssssssssssseasssessnnseneeeeeeenes 944
SWT eXAMPIE= LAYOULS.cciiiiiieiiiei e ee it ae et a e e et e et e st s s s ts st ss st s ssssssssesssassnnsnneeneesenes 944
RUNNINGINE EXAMPIE. bbbt e et e e e e s s essssssssssssssssessaasseessnnssneseeeenees 944
A L0107 94
SWT example= OLE WEDBIOWSEL........coviiiiiiiiiieiieeeeeee ettt 945
RUNNINGINE EXAMPIE. bbb e e bt e e e e s s b es s sssssssssssssesseasseessnnsnneeeeeeeees 945
A L0107 94
VA =D = V] o] (=l =Vl e T 945
RUNNINGINE EXAMPIE. bt e e et e s e e e s ee s s sesssssssssssesseasssessnnssneneneeeees 945
L0 [0 94
= 1001 0] [- V7= =0 [1(0] G USSP RUPPPRRPPUR 946
LYoo 18 Tt o T 94¢
Featureglemonstrateth the eXampleeditOr...........uuiiiiiiiiiiiiiiieiieeeeeeeeeeeeeee e 946
Feature ot dEMONSITALEM.cvvei et e et e e e e e s s et e e s s e et e eeseaaaeeaes 946

XXi

Welcome to Eclipse

Table of Contents

Examples
Runningthe eXxampleeditOr..........o.ovvviiiiiiiiieee e, 946
Principlesfor creatingCuStOMEEXt @AItOISuuvvvrriiiiiiriiiiiiieeirerreerreeseereeerrerrr e rrrrrrrererereeeees 947
Codeorganizatiorf the eXamPIE. ..o bbb e eesreeaaesaaeaeaeeeees 948
A0 A0 94

Example= TemplateEditor........ccooee it 948
a1 ao o [U o110 FH PP 94

Featureglemonstrateth thetemplateeditor............uviviiiiiiiiiiiiieiieeeeeeeeeeeeee e 948
Feature ot dEMONSITALEM.cvve et e e e e et e e e e e s s et e e s s e aba e eeseaaaeeees 949
Codeorganizatiorof thetemplateeditorexample...........cccccevvvviiiiiiiii e 949
Example= MUlti—pagdeEditor.........ccoiiiii oo 949
LYoo 18 T[0T 94¢
RUNNINGINE EXAMPIE.uuiiiiiiiiiiiiiiiiiie it b e esssesssssssasssessssssaessessseessessssesseeseeeeeeeeeeeeeees 949
D272 11 95
A L0 [0 95
= 1] 0] [l (0101 Y] 1Y AP 950

LYoo 18 Tt o T 95(
RUNNINGINE EXAMPIE.uuiiiiiiiiiiiiiiiiii bbb eaeseseessss s sasssesssessasssessseessessseesseeseeeeeeeeeeeeeees 950
DTS2 11 95
A L0 0 95

[=11 OSSR PRSPPI eL:
o100 [V o110 TP 95!

Team-— File SystemRepositonProviderEXample..........oooooiiiiiiii i 951

o100 [V o110 TR 95!

RUNNINGINE EXAMPIE.t b e e e e e s e ee s e essssssssssssssssssaasssessnnssneseeeeeees 952
L0 (oL TR 95

Team-— Local History SynchronizeParticipantEXample............oooooeiiiiiiiii e 952
[TaT A0 T0 18 Tt 10 o TR 95,
RUNNINGINE EXAMPIE. bbbt a et e s e s e e e s s s ssssssssssssssseasssassnnseneseneeeees 953
CompareExample— StructuralComparefor Key/ValuePairS..........ccccccevveeiiiiiiiii 953
[TaT 0T 0 18 Tt 10 o TR 95
RUNNINGINE EXAMPIE. ... uuuiiiiiiiiiiiiiiiiii bbb eeaes s eessssssessseessessasssesssesssessseesseeseeeeeeeaeeeeeees 953

Codeorganizationf theexample...........cccoovvviiiii i, 953
L0 (oL TR 95

IBM _EclipsePlatform XML COMPAIE.......ccuviiiiiiiiiiiiieiieiiiee ettt ettt e e e e e e e e e e e e e e 955
TR TSy =11 T o o = o] [T T PP 95E
L0 LTI To LT o] o [P 95!
1D = o] o110 IS Ted 1 1=T001= TS USRS 955
(@0 [T =10 Y 1A= E- T 95¢
Defining ID MappingSchemeaindOrderedentries.........ccoeeeeeeeeeiieeiiiieeiveeae e 956

(S AT T0] Al d 0111 PR 95

XXii

Welcome to Eclipse

Table of Contents

VLo ar= I LT [= 1]] [PP 95¢
GeneraMatchingvs. ID MappingSchemesiow to createanlD MappingSchemeo improve
COMPAIEESUILS.o 95¢
AddiNg OrderEAENITIES.ovveeiieeiieeeeeee e, 960

A L0 0 96
GettiNGSIAMEA.ceeieiieeeeeeeeee 963
(OF0 (=Y U1 011100 N 97"
ST 01U o= TR 97!
New file typesin theUl.........oovviiiiiiiie 975
RTAT L0 o1 T 1 TR 97~
InstallationandUPGIrAGE........cooovviiiiiiiieeee e, 975
IAMABPDING. ettt —— 9
[F= L0 0 T 0 2T (10T TS T T = 97¢

XXiii

Platform Plug—in Developer Guide

» Programmer's Guide

» Reference

3.0 Plug-in Migration Guide
» Examples Guide

* Questions Index

* Legal

Platform Plug—in Developer Guide

Guide

» Welcome to Eclipse
¢ Who needs a platform?
¢ The holy grail
¢ What is Eclipse?

¢ Go to eclipse.org
 Platform architecture

¢ Platform SDK roadmap

» Simple plug-in example
¢ A minimal plug-in
¢ Creating the plug=in project
¢ The Hello World view
¢ The Hello World manifest
¢ Running the plug=in
¢ Beyond the basics
* Runtime overview
¢ The runtime plug=in model
¢ Plug=ins and bundles
¢ Extension points and the registry
¢ Runtime preferences
+ Content types
¢ Concurrency infrastructure
¢ Reporting progress
¢ Job scheduling

¢ Scheduling rules
O Locks

« Plugging into the workbench

+ Workbench under the covers

¢ Basic workbench extension points
¢ org.eclipse.ui.views
¢ org.eclipse.ui.viewActions
¢ org.eclipse.ui.editors
¢ org.eclipse.ui.editorActions
¢ org.eclipse.ui.popupMenus
¢ org.eclipse.ui.actionSets

¢ Preference pages
¢ Contributing a preference page
¢ Implementing a preference page
¢ Field editors

¢ The plug-in class

« Dialogs and wizards

¢ Standard dialogs

¢ Application dialogs

¢ Dialog settings

¢+ Wizards

+ Workbench wizard extension points
¢ org.eclipse.ui.newWizards
¢ org.eclipse.ui.importWizards
¢ org.eclipse.ui.exportWizards

Guide

http://www.eclipse.org

Welcome to Eclipse

¢ Wizard dialogs

¢ Multi-page wizards
* JFace Ul framework

+ Viewers
+ Actions and contributions
+ User interface resources
¢ Long-running operations
« Standard Widget Toolkit

+ Widgets

¢ Controls

¢ Events

¢ Custom widgets
¢ Layouts
O EillLayout
¢ RowLayout
¢ EormLayout
¢ GridLayout
¢ StackLayout
¢ Custom Layouts
¢ Threading issues
¢ Error handling
¢ Graphics
» Resources overview
¢ Resources and the workspace
¢ Resources and the local file system
¢ Resource properties
¢ Project—scoped preferences

¢ File encoding and content types
+ Linked resources

¢ Resource markers

¢ Modifying the workspace
¢ Batching resource changes
¢ Tracking resource changes
¢ Concurrency and the workspace

¢ Incremental project builders

+ Derived resources

+ Workspace save patrticipation

¢ Project natures

+ Resource modification hooks

¢ Refresh providers

» Advanced Workbench Concepts
+ Workbench menu contributions

¢ Menu and toolbar paths
¢ Action set part associations
¢ Boolean expressions and action filters
¢ Retargetable actions
¢ Setting a global action handler
¢ Contributing new retargetable actions
[Retargetable editor actions
[Retargetable action set actions
¢ Perspectives

Guide

Welcome to Eclipse

¢ org.eclipse.ui.perspectives
¢ org.eclipse.ui.perspectiveExtensions
¢ Decorators

¢+ Workbench key bindings
¢ Commands
¢ Key bindings
¢ Key configurations

¢ Contexts and key bindings
¢ Element factories

+ Accessible user interfaces

¢ Honoring single click support
¢ Working sets
¢ Filtering large user interfaces
O Activities
¢ Contexts
¢ Guiding the user through tasks
O Cheat sheets
¢ Intro support
+ Workbench concurrency support
+ Workbench resource support
¢ Contributing a property page
¢ Implementing a property page
O Marker help and resolution
[(Contributing marker help

[Contributing marker resolution

¢ Contributing resource filters
¢ Text file encoding

» Editors

+ Workbench editors

¢ Text editors and platform text
Documents and partitions
Source viewers and annotations

Configuring a source viewer
Text and ruler hover

Syntax coloring
Content assist
Registering editor actions

Other text editor responsibilities
Content outliners

@ S & 6 ¢ 6 0o

« Plugging in help

Guide

¢ Building a help plug=in
¢ Table of contents (toc) files
¢ Help server and file locations
¢ Completing the plug-in manifest

¢ Building nested documentation structures

¢ Dynamic help
¢ Infopops
¢ Declaring a context id

¢ Describing and packaging infopop content

¢ Active help
¢ Writing the help action

Welcome to Eclipse

¢ Invoking the action from HTML
¢ Tips for debugging active help
 Search support
¢ Contributing a search page
¢ Contributing a search result page
* Compare support
¢ Merging multiple streams
¢ Implementing a content viewer
¢ Implementing a structure viewer
¢ Advanced compare technigues
» Team support
¢ Repository providers
¢ Resource management
¢ Synchronization Support
¢ Local History Synchronization Example
¢ Beyond the basics
¢ Rich Team Integration
¢ Adding team actions
O Team decorators
¢ Adding preferences and properties
» Program debug and launch support
¢ Launching a program
¢ Adding launchers to the platform
¢ Handling errors from a launched program
¢ Launch configuration dialog
¢ Launch configuration type images
¢ Launch shortcuts
¢ Debugqing a program
¢ Platform debug model
¢ Breakpoints
O Expressions
¢ Debug model presentation
¢ Debug Ul utility classes
« Platform Ant support
¢ Running Ant buildfiles programmatically
¢ Ant tasks provided by the platform
¢ Contributing tasks and types
¢ Developing Ant tasks and types within Eclipse
¢ Expanding the Ant classpath
» Packaging and delivering Eclipse based products
¢ Defining a Product
¢ The products extension point
¢ Customizing a product
¢ Products as primary features
¢ Customizing a primary feature
¢ Features
¢ Plug-ins and fragments
¢ Locale specific files
¢ Product installation guidelines
¢ Product extensions

¢ Updating a product or extension

Guide

Welcome to Eclipse

« Building a Rich Client Platform application
¢ The browser example
¢ Defining a rich client application
¢ Customizing the workbench
¢ Making Ul contributions
¢ Adding the perspective
¢ Adding views
¢ Defining the actions

Guide

Welcome to Eclipse

Welcome to the Eclipse platform!

The following sections discuss the issues and problems with building integrated tool suites, and how the
Eclipse tooling platform can help solve these problems.

© Copyright IBM Corporation and others 2000, 2004.
Notices
The material in this guide is Copyright (c) IBM Corporation and others 2000, 2004.

Terms and conditions regarding the use of this guide.

About This Content

20th June, 2002

License

Eclipse.org makes available all content in this plug—in ("Content"). Unless otherwise indicated below, the
Content is provided to you under the terms and conditions of the Common Public License Version 1.0
("CPL". A copy of the CPL is available_at http://www.eclipse.org/legal/cpl-v10.html. For purposes of the
CPL, "Program" will mean the Content.

Contributions

If this Content is licensed to you under the terms and conditions of the CPL, any Contributions, as defined ir
the CPL, uploaded, submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or t
host of Eclipse.org web site, by you that relate to such Content are provided under the terms and conditions
the CPL and can be made available to others under the terms of the CPL.

If this Content is licensed to you under license terms and conditions other than the CPL ("Other License"),
any modifications, enhancements and/or other code and/or documentation ("Modifications") uploaded,
submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or the host of Eclipse.or
by you that relate to such Content are provided under terms and conditions of the Other License and can be
made available to others under the terms of the Other License. In addition, with regard to Modifications for
which you are the copyright holder, you are also providing the Modifications under the terms and conditions
of the CPL and such Modifications can be made available to others under the terms of the CPL.

Who needs a platform?

On any given day, you can probably find an announcement about a strategic alliance, an open architecture,
a commercial API that promises to integrate all your tools, seamlessly move your data among applications,
and simplify your programming life.

Down in the trenches, you're trying to apply enough import/export duct tape to let marketing say "suite" with

Welcome to Eclipse 7

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse

a straight face.

Where is all this integration pressure coming from? Why is everyone trying to integrate their products into
suites or build platforms to support open integration? Who needs these platforms?

End users
Let's face it. End users do not call the support line to say, "What | really need is an open tools platform."

But they do ask why your product doesn't integrate with their other tools. They ask for features outside of the
scope of your application because they can't get their data to a tool that would do the job better. They run in
problems importing and exporting between different programs. They wonder why their programs have
completely different user interfaces for doing similar tasks. Doesn't it seem obvious that their web site desig
tool should be integrated with their scripting program?

Your users want the freedom to pick the best tool for the task. They don't want to be constrained because Yy«
software only integrates with a few other programs. They have a job to do, and it's not managing the flow of
files and data between their tools. They're busy solving their own problems. It's your job to make the tools
work, and even better if you can make them work together.

Software developers

Meanwhile, you are slaving on your tool implementing the next round of critical features, fixing bugs, and
shipping releases. The last thing you need is another emergency import feature added to your list.

Wouldn't it be nice if you could just publish enough hooks to make integrating with your tool everyone else's
problem? Unfortunately, unless you work for one of the giants, you just don't have enough clout to get away
with that.

© Copyright IBM Corporation and others 2000, 2004.

The holy grail

What we all want is a level of integration that magically blends separately developed tools into a well
designed suite. And it should be simple enough that existing tools can be moved to the platform without
using a shoehorn or a crowbar.

The platform should be open, so that users can select tools from the best source and know that their supplie
has a voice in the development of the underlying platform.

It should be simple to understand, yet robust enough to support integration without a lot of extra glue.
It should provide tools that help automate mundane tasks. It should be stable enough so that industrial
strength tools can build on top of it. And it should be useful enough that the platform developers can use it tc

build itself.

These are all goals of Eclipse. The remainder of this programming guide will help you determine how close
Eclipse has come to delivering on these ideals.

© Copyright IBM Corporation and others 2000, 2004.

End users 8

Welcome to Eclipse
What is Eclipse?

Eclipse is a platform that has been designed from the ground up for building integrated web and application
development tooling. By design, the platform does not provide a great deal of end user functionality by itself
The value of the platform is what it encourages: rapid development of integrated features based on a plug-i
model.

Eclipse provides a common user interface (Ul) model for working with tools. It is designed to run on multiple
operating systems while providing robust integration with each underlying OS. Plug-ins can program to the
Eclipse portable APIs and run unchanged on any of the supported operating systems.

At the core of Eclipse is an architecture for dynamic discovery, loading, and running of plug-ins. The
platform handles the logistics of finding and running the right code. The platform Ul provides a standard use
navigation model. Each plug-in can then focus on doing a small number of tasks well. What kinds of tasks”
Defining, testing, animating, publishing, compiling, debugging, diagramming...the only limit is your
imagination.

Open architecture

The Eclipse platform defines an open architecture so that each plug—in development team can focus on thei
area of expertise. Let the repository experts build the back ends and the usability experts build the end user
tools. If the platform is designed well, significant new features and levels of integration can be added withou
impact to other tools.

The Eclipse platform uses the model of a common workbench to integrate the tools from the end user's poir
of view. Tools that you develop can plug into the workbench using well defined hooks called extension
points.

The platform itself is built in layers of plug—ins, each one defining extensions to the extension points of
lower—level plug-ins, and in turn defining their own extension points for further customization. This
extension model allows plug—in developers to add a variety of function to the basic tooling platform. The
artifacts for each tool, such as files and other data, are coordinated by a common platform resource model.

The platform gives the users a common way to work with the tools, and provides integrated management o
the resources they create with plug-ins.

Plug—-in developers also gain from this architecture. The platform manages the complexity of different

runtime environments, such as different operating systems or workgroup server environments. Plug-in
developers can focus on their specific task instead of worrying about these integration issues.

Platform structure

The Eclipse platform itself is structured as subsystems which are implemented in one or more plug-ins. Thi
subsystems are built on top of a small runtime engine. The figure below depicts a simplified view.

What is Eclipse? 9

Welcome to Eclipse

¢ Eclipse Platform

/"Workbench

The plug-ins that make up a subsystem define extension points for adding behavior to the platform. The
following table describes the major runtime components of the platform that are implemented as one or mor
plug-ins.

Defines the extension point and plug—in model. It dynamically
discovers plug-ins and maintains information about the plug-ins and
Platform runtime their extension points in a platform registry. Plug—ins are started up
when required according to user operation of the platform. The
runtime is implemented using the OSGi framework.

Resource management Defines API for creating and managing resources (projects, files, and
(workspace) folders) that are produced by tools and kept in the file system.

Implements the user cockpit for navigating the platform. It defings
extension points for adding Ul components such as views or m¢nu

actions. It supplies additional toolkits (JFace and SWT) for building

user interfaces. The Ul services are structured so that a subset|of the
Ul plug—ins can be used to build rich client applications that are
independent of the resource management and workspace model.
IDE-centric plug—ins define additional function for navigating and
manipulating resources.

Defines extension points for plug-ins to provide help or other
documentation as browsable books.

Defines a team programming model for managing and versioning
resources.

Defines a language independent debug model and Ul classes fpr
building debuggers and launchers.

Other utility plug—ins supply function such as searching and
Other utilities comparing resources, performing builds using XML configuratio
files, and dynamically updating the platform from a server.

Workbench Ul

Help system

Team support

Debug support

>S5

Platform structure 10

Welcome to Eclipse
Out of the box

Out of the box — or off the web - the basic platform is an integrated development environment (IDE) for
anything (and nothing in particular).

£ Resource - index. html - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

C3 - E Q- [34 = ' ' £ [9Resource
&5 Mavigator &3 = 5 |[@ *index.html &2 5
= \':» v <hl>Welcome to ny web</hl>

+ b‘] MyServlet
== MyWeb
(= images
|= .project
& index.html

25 utline 52 =0 R A
An outline is not available. 4 items
\ | | Description
] Build award-winning web tool
] Deploy award-winning web site
[] 9 Take vacation
9 Learn about the Eclipse platform

Deploy award-winning web site

It's the plug—ins that determine the ultimate functionality of the platform. That's why the Eclipse SDK ships
with additional plug-ins to enhance the functionality of the SDK.

Your plug-ins can provide support for editing and manipulating additional types of resources such as Java
files, C programs, Word documents, HTML pages, and JSP files.

@ Copyright IBM Corporation and others 2000, 2004.

Out of the box 11

Platform architecture

The Eclipse platform is structured around the concept of plug—ins. Plug—ins are structured bundles of code
and/or data that contribute function to the system. Function can be contributed in the form of code libraries
(Java classes with public API), platform extensions, or even documentation. Plug-ins can define extension
points, well-defined places where other plug-ins can add functionality.

Each subsystem in the platform is itself structured as a set of plug—ins that implement some key function.
Some plug-ins add visible features to the platform using the extension model. Others supply class libraries
that can be used to implement system extensions.

The Eclipse SDK includes the basic platform plus two major tools that are useful for plug—in development.
The Java development tools (JDT) implement a full featured Java development environment. The Plug-in
Developer Environment (PDE) adds specialized tools that streamline the development of plug-ins and
extensions.

These tools not only serve a useful purpose, but also provide a great example of how new tools can be add
to the platform by building plug—ins that extend the system.

/Eclipse Platform

Java
Development
Tooling

(JDT)

Wworkbench

SWT

Plug-in
Developer
Environment
(PDE)

Workspace

latform Runtime

Eclipse SDK

@ Copyright IBM Corporation and others 2000, 2004.

Platform architecture 12

Welcome to Eclipse

Platform SDK roadmap

Runtime core

The platform runtime core implements the runtime engine that starts the platform base and dynamically
discovers and runs plug-ins. A plug-in is a structured component that describes itself to the system using a
manifest (plugin.xml) file. The platform maintains a registry of installed plug—ins and the function they
provide.

A general goal of the runtime is that the end user should not pay a memory or performance penalty for
plug-ins that are installed, but not used. A plug-in can be installed and added to the registry, but the plug-i
will not be activated unless a function provided by the plug—in has been requested according to the user's
activity.

The platform runtime is implemented using the OSGi services model. While implementation details of the
runtime may not be important to many application developers, those already familiar with OSGi will
recognize that an Eclipse plug-in is, in effect, an OSGi bundle.

The best way to get a feel for the runtime system is to build a plug—-in. See Plug it in: Hello World meets the
workbench to get started building a plug—in. To understand the nuts and bolts of the runtime system, see
Runtime overview.

Resource management

The resource management plug-in defines a common resource model for managing the artifacts of tool
plug-ins. Plug—ins can create and modify projects, folders, and files. Resource extension points allow
plug-ins to define other their own resource types.

Resources overview provides an overview of the resource management system.

Workbench Ul

The workbench Ul plug-in implements the workbench Ul and defines a number of extension points that allo
other plug-ins to contribute menu and toolbar actions, drag and drop operations, dialogs, wizards, and cust
views and editors.

Plugging into the workbench introduces the workbench Ul extension points and API.

Additional Ul plug-ins define frameworks that are generally useful for user interface development. These
frameworks were used to develop the workbench itself. Using the frameworks not only eases the
development of a plug—in's user interface, but ensures that plug—-ins have a common look and feel and a
consistent level of workbench integration.

The Standard Widget Toolkit (SWT) is a low-level, operating system independent toolkit that supports
platform integration and portable API. It is described in Standard Widget Toolkit.

The JFace Ul framework provides higher-level application constructs for supporting dialogs, wizards,
actions, user preferences, and widget management. The functionality in JFace is described in Dialogs and

wizards and JFace: Ul framework for plug-ins.

Platform SDK roadmap 13

Welcome to Eclipse

Team support

The Team plug-ins allow other plug-ins to define and register implementations for team programming,
repository access, and versioning. The Eclipse SDK includes a CVS plug-in that uses the team support to
provide CVS client support in the SDK.

Team support is described in Team support.

Debug support

The Debug plug-ins allow other plug-ins to implement language specific program launchers and debuggers
Debug support is described in Program debug and launching support.

Help System

The Help plug-in implements a platform optimized help web server and document integration facility. It
defines extension points that plug-ins can use to contribute help or other plug—in documentation as browsal
books. The documentation web server includes special facilities to allow plug—ins to reference files by using
logical, plug—in based URLs instead of file system URLSs.

Additional features are provided for integrating help topics in product level documentation configurations.

The help facility is described_in Plugging in help.

Java Development Tools (JDT)

The Java development tools (JDT) plug-ins extend the platform workbench by providing specialized feature
for editing, viewing, compiling, debugging, and running Java code.

The JDT is installed as a set of plug—ins that are included in the SDK. The Java Development User Guide

describes how to use the Java tools. The JDT Plug-in Developer Guide describes the structure and API of
JDT.

Plug—in Development Environment (PDE)

The Plug-in Development Environment (PDE) supplies tools that automate the creation, manipulation,
debugging, and deploying of plug-ins.

The PDE is installed as a set of plug-ins that are included in the SDK. The PDE Guide describes how to us
the environment.

© Copyright IBM Corporation and others 2000, 2004.

Team support 14

Team support

The Eclipse Team support defines API that allow plug—-ins to integrate the function of a versioning and
configuration management repository. The function provided by a repository fundamentally affects the user
workflow, since there are additional steps for retrieving files, comparing their content with local content,
versioning them, and returning updated files to the repository. The goal of the team plug—in APl is to be
passive enough to allow repository plug—in providers to define their own workflow so that users familiar with
their product can use the platform in a similar fashion and provide support for worflows that we have found
are useful for team plug-ins.

This goal is accomplished by supplying several building blocks:

» Repository Providers

A repository provider allows synchronization of workspace resources with a remote
location. At a minimum it allows pushing resources in the workspace to a remote
location and pulling resources from a remote location into the workspace. A
repository provider is associated with a project and controls the resources in the
project by optionally providing_a IFileModificationValidator and IMoveDeleteHook.
There is only one repository provider associated with each project. A user associates
a repository provider with a project by providing a IConfigurationWizard. Repository
providers can also participate in exporting and importing of projects into the
workspace via the team project set feature. To support this a repository provider
should implement_a ProjectSetCapability.

» Resource Management

Allows other plug-ins to indicate special handling of resources with respect to team
operations. The repository provider can mark resources as team-private which
essentially hides the resource from other plug-ins. This is done via the
IResource#tsetTeamPrivateMember method and is commonly done to hide repository
provider specific metafiles from the user. Also, builders will often mark build output
as derived which is a hint to a repository provider that the resource is transient and
could be ignored by the repository provider. A provider can check this flag on a
resource via the IResource#isDerived method.

In addition, other plug-ins can add provide hints to the repository provider about file
type information via the org.eclipse.team.core.fileTypes extension and about common
files that should be ignored by the repository via the org.eclipse.team.core.ignore
extenstion.

 Synchronization Support [new in 3.0]

Synchronize support provides classes and interfaces for managing dynamic
collections of synchronization information (Syncinfo, SyncinfoSet). This support
helps you manage information about variants of the resources in the workspace. For
example, with FTP you could store timestamps for the latest remote file and the base
for the currently loaded resource. Synchronization support provides APIs to help
manage and persist resource variants and display synchronization state to the user.

Team support 15

Welcome to Eclipse

The Ul support is also structured passively. Placeholders for team provider actions, preferences, and
properties are defined by the team Ul plug—-in, but it's up to the team plug—-in provider to define these Ul
elements. The team Ul plug-in also includes a simple, extendable configuration wizard that lets users
associate projects with repositories. Plug-ins can supply content for this wizard that let the user specify
repository specific information.

Multiple repository providers can coexist peacefully within the platform. In fact, it's even possible to have
different client implementations for the same repository installed. For example, one could install a CVS clien
designed for experts and a different one for novice users.

© Copyright IBM Corporation and others 2000, 2004.

Repository providers

A repository provider_(RepositoryProvider) is the central class in the implementation of your repository.

This class is responsible for configuring a project for repository management and providing the necessary
hooks for resource modification. Providers are mapped to a project using project persistent properties. The
mechanism for mapping providers to a project is not central to the team API, but you'll need to be aware of i
when filtering out resources in your Ul. For the most part, you'll be using team API to work with projects anc
associate them to your provider.

To implement a provider, you must define a repository using org.eclipse.team.core.repository and supply a
class derived from_RepositoryProvider. We'll use the CVS client as an example to see how this works.

Extension point

The_org.eclipse.team.core.repository extension point is used to add a repository definition. Here is the
markup for the CVS client.

<extension
point="org.eclipse.team.core.repository">
<repository
class="org.eclipse.team.internal.ccvs.core.CVSTeamProvider"
id="org.eclipse.team.cvs.core.cvsprovider">
</repository>
</extension>

This registers your team provider with the team support plug-in and assigns an id that should be used wher
your provider is associated with a project. The specified class for the repository must extend

RepositoryProvider.

Implementing a RepositoryProvider

The class identified in the extension must be a subclass of RepositoryProvider. Its primary responsibilities
are to configure and deconfigure a project for repository support, and supply any necessary resource

modification hooks. The CVS client serves as a good example. Its repository provider is
CVSTeamProvider.

public class CVSTeamProvider extends RepositoryProvider {

Repository providers 16

Welcome to Eclipse

RepositoryProvider defines two abstract methods, configureProject and deconfigure. All providers must
implement these methods.

A project is configured when it is first associated with a particular repository provider. This typically happen:
when the user selects a project and uses the team wizards to associate a project with your repository.
Regardless of how the operation is triggered, this is the appropriate time to compute or cache any data abol
the project that you'll need to provide your repository function. (Assume that mapping the project to your
provider has already happened. You'll be taking care of this in your configuration wizard.)

The CVS provider simply broadcasts the fact that a project has been configured:

public void configureProject() throws CoreException {
CVSProviderPlugin.broadcastProjectConfigured(getProject());

}

We won't follow the implementation of the plug—in broadcast mechanism. Suffice to say that any parties tha
need to compute or initialize project specific data can do so at this time.

A project is deconfigured when the user no longer wants to associate a team provider with a project. Itis u
to your plug—in to implement the user action that causes this to happen (and unmapping the project from yo
team provider will happen there). The deconfigure method is the appropriate time to delete any project
related caches or remove any references to the project in the Ul. The CVS provider flushes project related
caches kept in its views and broadcasts the fact that the project is deconfigured.

public void deconfigure() throws CoreException {

try {

EclipseSynchronizer.getinstance().flush(getProject(), true, true /*flush deep*/, null);
} catch(CVSException e) {

throw new CoreException(e.getStatus());

} finally {
CVSProviderPlugin.broadcastProjectDeconfigured(getProject());
}

}
Configuring a project

Typically, the first step in building a team Ul is implementing a wizard page that allows users to configure a
project for your plug—in's team support. This is where your team provider's id will be added to the project's
properties. You participate in project configuration by contributing to the
org.eclipse.team.ui.configurationWizards extension point. This wizard is shown when the user chooses
Team->Share Project...

We'll look at this in the context of the CVS client implementation. Here is the CVS Ul markup for its
configuration wizard:

<extension
point="org.eclipse.team.ui.configurationWizards">
<wizard
name="%SharingWizard.name"
icon="icons/full/wizards/newconnect_wiz.gif"
class="org.eclipse.team.internal.ccvs.ui.wizards.SharingWizard"
id="org.eclipse.team.ccvs.ui.SharingWizard">
</wizard>
</extension>

Configuring a project 17

Welcome to Eclipse

As usual, plug-ins supply a class that implements the extension and a unique id to identify their extension.
The name and icon are shown in the first page of the project configuration wizard if there are multiple
providers to choose from.

Once the user has selected a provider, the next page shows the specific configuration information for your
provider. (If your provider is the only team provider plug—in installed, then the wizard skips directly to your
page.) Your wizard must implement IConfigurationWizard, which initializes the wizard for a specified
workbench and project. The rest of the implementation depends on the design of your wizard. You must
gather up any information needed to associate the project with your team support.

When the wizard is completed, you must map your team provider to the project using

RepositoryProvider.map(IProject, String). Mapping handles the assignment of the correct project
persistent property to your project.

The CVS client does this work in its provider's setSharing method, which is called when its wizard is
finished:

public void setSharing(IProject project, FolderSynclinfo info, IProgressMonitor monitor) throws TeamException {
I/l Ensure provided info matches that of the project
// Ensure that the provided location is managed

/I Register the project with Team
RepositoryProvider.map(project, CVSProviderPlugin.getTypeld());
}

Finding a provider

Static methods in RepositoryProvider make it easy for clients to map projects to providers and to find the
providers associated with a given project.

» map(IProject, String) — instantiates a provider of the specified provider id and maps the specified
project to it. This call sets the proper project persistent property on the project.

« unmap(IProject, String) — removes the association of the specified provider id from the specified
project. Leaves the project unassociated with any team provider.

« getProvider(IProject) — answers the provider for a given project. Can be used to find any team
provider for a project.

« getProvider(IProject, String) — answers the provider for a given project with the specified provider
id. Can be used to check whether a particular team provider type is associated with a given project.
is commonly used by providers to quickly check whether a given project is under their care. This cal
is safer for clients since it does not return a provider that does not match the client's id.

Repository Providers and Capabilities

If a product chooses to add a Repository plug—in to a capability, it should bind the capability to the repositor
id. Here are the two steps to take to enable a RepositoryProvider as a capability:

1. Bind the capability to the repository provider id. This allows the Team plug-in to activate/disable based or
repository provider ids.

<activityPatternBinding

Finding a provider 18

Welcome to Eclipse

activityld="org.eclipse.team.cvs"
pattern="org\.eclipse\.team\.cvs\.core/.*cvsnature">
</activityPatternBinding>

2. Next bind the capability to all Ul packages for the provider:

<activityPatternBinding
activityld="org.eclipse.team.cvs"
pattern="org\.eclipse\.team\.cvs\.ui/.*">

</activityPatternBinding>

There are two capability triggers points defined by the Team plug-ins. The first is the Team > Share Project
wizard which allows filtering of repository providers based on the enabled/disabled state of workbench
capabilities, and the other is the Team plug—in auto—enablement trigger.

Resource modification hooks

Most of the interesting function associated with a repository provider occurs as the user works with resource
in the project that is configured for the provider. In order to be aware of changes the user makes to a resou
the provider can implement resource modification hooks. The resources plug-in provides these hooks as
extension points. The documentation for IMoveDeleteHook, IFileModificationValidator and
ResourceRuleFactory describe the details for implementing these hooks.

The team plug—-in optimizes and simplifies the association of the hook with appropriate resources by
registering generic hooks with the resources plug-in. These generic hooks simply look up the repository
provider for a given resource and obtain its hook. This has the advantage of calling only one provider hook
rather than having each provider implementation register a hook that must first check whether the resource
managed by the provider.

What this means to your plug-in is that you provide any necessary hooks by overriding methods in
RepositoryProvider. The default implementation of these methods answers null, indicating that no hook is
necessary (except for the resource rule factory, as described below):

» getMoveDeleteHook — answers an IMoveDeleteHook appropriate for the provider. This hook
allows providers to control how moves and deletes occur and includes the ability to prevent them
from happening. Implementors can provide alternate implementations for moving or deleting files,
folders, and projects. The CVS client uses this hook to monitor folder deletions and ensure that any
files contained in deleted folders are remembered so that they can later be deleted from the reposito
if desired.

« getFileModificationValidator — answers an IFileModificationValidator appropriate for the
provider. This hook allows providers to pre—check any modifications or saves to files. This hook is
typically needed when a repository provider wants to implement pessimistic versioning. In
pessimistic versioning, a file must be checked out before modifying it, and only one client can check
out a file at any given time. Pessimistic versioning could be implemented by checking out a file (if
not already checked out) whenever a file is edited, and checking the file back in when it is saved.
Since CVS uses an optimistic versioning scheme, it does not implement this hook.

« getRuleFactory — answers a resource rule factory appropriate for the provider. Providers should
always override this method as the default factory locks the workspace for all operations for
backwards compatibility reasons. Provides should subclass ResourceRuleFactory and override thos
rules required to ensure that the proper rules are obtained for operations that invoke the move/delete
hook and file modification validator. The rule methods of particular interest to repository providers
are:

Resource modification hooks 19

Welcome to Eclipse

+ deleteRule — move/delete hook

+ moveRule -move/delete hook

+ validateEditRule - file modification validator validateEdit
+ modifyRule - file modification validator validateSave

© Copyright IBM Corporation and others 2000, 2004.

Resource properties

Resources have properties that can be used to store meta—information about the resource. Your plug—in cal
use these properties to hold information about a resource that is specific to your purpose. Resource propert
are declared, accessed, and maintained by various plug—ins, and are not interpreted by the platform. When
resource is deleted from the workspace, its properties are also deleted.

There are two kinds of resource properties:

 Session properties allow your plug—-ins to easily cache information about a resource in key-value
pairs. The values are arbitrary objects. These properties are maintained in memory and lost when a
resource is deleted from the workspace, or when the project or workspace is closed.

* Persistent properties are used to store resource—specific information on disk. The value of a
persistent property is an arbitrary string. Your plug—in decides how to interpret the string. The strings
are intended to be short (under 2KB). Persistent properties are stored on disk with the platform
metadata and maintained across platform shutdown and restart.

If you follow the convention of qualifying property key names with the unique id of your plug—in, you won't
have to worry about your property names colliding with those of other plug-ins.

If your plug—in needs to store persistent information about a project that is much larger than 2 KB, then thes
properties should be exposed as resources in their own right, rather than using the persistent properties AP

See IResource for a description of the API for getting and setting the different kinds of resource properties.

© Copyright IBM Corporation and others 2000, 2004.

Resource properties 20

Team Repository Provider

Identifier:

org.eclipse.team.core.repository

Since:

2.0

Description:

The Team plugin contains the notion of Repositories. The job of a repository is to provide support for sharin
resources between Team members. Repositories are configured on a per—project basis. Only one repositon
can be mapped to a project at a time.

Repositories that extend this extension point can provide implementations for common repository specific
rules for resource modifications, moving and deleting. See the following interfaces for more details
IFileModificationValidator and MoveDeleteHook.

A Repository type can also be specified in order to provide non—project specific funtionality such as a
org.eclipse.team.core.ProjectSetCapability.

Optionaly, a repository provider type can designate that it can import projects from second provider, in the
case where the second provider's plugin is not available in the current install. This is provided as a means tc

support the migration from one provider implementation to another where the resuse of the same id for the
two providers was not possible.

Configuration Markup:

<IELEMENT extension_(repository)>
<IATTLIST extension

point CDATA #REQUIRED>

<IELEMENT repository EMPTY>
<IATTLIST repository

id CDATA #IMPLIED

class CDATA #REQUIRED
typeClass CDATA #IMPLIED
canimportld CDATA #IMPLIED>

« id — an optional identifier of the extension instance

Team Repository Provider 21

Welcome to Eclipse

« class - the fully—qualified name of a subclass of
org.eclipse.team.core.RepositoryProvider.

« typeClass - the fully—qualified name of a subclass of
org.eclipse.team.core.RepositoryProviderType.

« canlmportld — The id of an older version of this provider. Including this means that this provider can
import the project sets that were created by using the older version of the provider. Since 3.0.1

Examples:

<extension point=
"org.eclipse.team.core.repository"

>

<repository class=

"org.eclipse.myprovider.MyRepositoryProvider
typeClass=
"org.eclipse.myprovider.MyRepositoryProvider"
id=

"org.eclipse.myprovider.myProviderID"
canimportld=

"org.eclipse.myprovider.myOldProviderID"
>

</repository>

</extension>

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.team.core.RepositoryProvider and the value of the typeClass attribute must
represent a subclass of org.eclipse.team.core.RepositoryProviderType

Supplied Implementation:

The provided implementation of RepositoryProvider provides helper methods and common code for mappin
and unmapping providers to projects. The optional RepositoryProviderType provides project set import and
export through a ProjectSetCapability.

Team Repository Provider 22

Welcome to Eclipse

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Team Repository Provider 23

http://www.eclipse.org/legal/cpl-v10.html

Configuration Wizards

Identifier:

org.eclipse.team.ui.configurationWizards

Description:

This extension point is used to register a method for configuration of a project. Configuration involves the
association of a project with a team provider, including all information necessary to initialize that team
provider, including such things as username, password, and any relevant information necessary to locate th
provider.

Providers may provide an extension for this extension point, and an implementation of

org.eclipse.team.ui.IConfigurationWizard which gathers the necessary information and
configures the projects.

Configuration Markup:

<IELEMENT extension_(wizard?)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT wizard EMPTY>
<IATTLIST wizard
name CDATA #REQUIRED
icon CDATA #REQUIRED
class CDATA #REQUIRED
id CDATA #REQUIRED>
« name — The name of the configuration type as it should appear in the configuration wizard. Example
are "CVS", "WebDAV".
« icon — the icon to present in the configuration wizard next to the name.
« class - a fully qualified name of the Java class implementing

org.eclipse.team.ui.IConfigurationWizard.
« id — a unique identifier for this extension.

Configuration Wizards 24

Welcome to Eclipse

Examples:

Following is an example of a configuration wizard extension:

<extension point=
"org.eclipse.team.ui.configurationWizards"
>

<wizard name=
"WebDAV"

icon=

"webdav.gif"

class=
"com.xyz.DAVDecorator"
id=

"com.xyz.dav"

>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.team.ui.IConfigurationWizard. This interface supports configuration of a wizard
given a workbench and a project.

Supplied Implementation:

The plug-in org.eclipse.team.provider.examples.ui contains sample implementations of IConfigurationWizar
for the WebDAV and filesystem provider types.

Copyright (c) 2002 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Configuration Wizards 25

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse
Resource modification hooks

So far, we've assumed that resource API is being used to modify resources that are located in the user's file
system. This is indeed the fundamental structure of the workspace, but it's also possible that a plug-in add:
capabilities for manipulation of resources that are managed somewhere else. For example, the platform Te
support plug—ins add the ability to work with resources that are under the management of a versioning
repository.

The resource API includes capabilities that have been added specifically to enable the team support plug-ir
and plug-ins that implement repository providers using the team support. The following discussion covers
the generic mechanism for registering resource hooks. See Implementing a repository provider for a
discussion of how team uses these hooks.

Resource move/delete hooks

This hook allows the team plug—in and its providers to control how resource moves and deletes are
implemented. The hook includes the ability to prevent these operations from happening. Implementors can
provide alternate implementations for moving or deleting files, folders, and projects.

The team plug-in uses the org.eclipse.core.resources.moveDeleteHook extension point to register its hook:

<extension point="org.eclipse.core.resources.moveDeleteHook" id="MoveDeleteHook">
<moveDeleteHook class="org.eclipse.team.internal.core.MoveDeleteManager"/>
</extension>

The supplied class must implement IMoveDeleteHook, which is called by the platform whenever a resource
is moved or deleted. The team plug—in installs a move delete hook manager that can determine which tean
provider is managing a resource and invoke its specific hook.

Note: The move delete hook was designed specifically for use by the team core plug-in and
other team repository provider clients. It is not intended for general use. Team providers
should not install the hook using the extension point, but instead implement their hook in their
RepositoryProvider class. See Team resource modification hooks for more information about
using these hooks.

File modification validators

It's also possible that team repository providers will need to prevent or intervene in the editing or saving of a
file. The team plug-in accomplishes this by using the extension point

org.eclipse.core.resources fileModificationValidator to register a validator that is called whenever a
resource is to be modified.

<extension point="org.eclipse.core.resources.fileModificationValidator" id="FileValidator">
<fileModificationValidator class="org.eclipse.team.internal.core.FileModificationValidatorManager"/>
</extension>

The supplied class must implement IFileModificationValidator, which is called by the platform whenever a

resource is saved or opened. The team plug-in installs a file modification manager that can determine whi
team provider is managing a resource and invoke its specific validator.

Resource modification hooks 26

Welcome to Eclipse

Note: The file modification validator hook was designed specifically for use by the team core
plug—in. Itis not intended for general use. Team providers should not install the hook using
the extension point, but instead implement their hook in their Repository Provider class. See
Team resource madification hooks for more information about using these hooks.

© Copyright IBM Corporation and others 2000, 2004.

Resource modification hooks 27

Move/Delete Hook

Identifier:

org.eclipse.core.resources.moveDeleteHook

Since:

2.0

Description:

For providing an implementation of an IMoveDeleteHook to be used in the IResource.move and
IResource.delete mechanism. This extension point tolerates at most one extension.

Configuration Markup:

<IELEMENT extension_(moveDeleteHook?)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT moveDeleteHook EMPTY>
<IATTLIST moveDeleteHook
class CDATA #REQUIRED>

« class - the fully—qualified name of a class which implements
org.eclipse.core.resources.team.IMoveDeleteHook

Examples:

The following is an example of using the moveDeleteHook extension point. (in file plugin.xml)

<extension point=

Move/Delete Hook 28

Welcome to Eclipse

"org.eclipse.core.resources.moveDeleteHook"
>

<moveDeleteHook class=
"org.eclipse.team.internal.MoveDeleteHook"
/>

</extension>

API Information:

The value of the class attribute must represent an implementation of
org.eclipse.core.resources.team.IMoveDeleteHook.

Supplied Implementation:

The Team component will generally provide the implementation of the move/delete hook. The extension poi
should not be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Repository resource management

Once you have created a RepositoryProvider, there are other resource management mechanism that shouls
be understood:

« In order to allow other plug-ins to indicate special handling for their projects and files the team
plug-in defines extension points that other providers and other plug—ins can use tq reqister file types
and to declare files that should be ignored by a repository provider.

» Team providers can also register a class that can be used to persist a set a projects so that referenc
the project can be shared across a team, with the actual contents coming from the repository.

» Repository providers should consider how they will handle linked resources.

« Finally, team providers can mark resources that should be hidden from the_user as team private.

Ignored files

In several cases, it may be unnecessary to keep certain files under repository control. For example, resourc
that are derived from existing resources can often be omitted from the repository. For example, compiled
source files, (such as Java ".class" files), can be omitted since their corresponding source (".java") file is in t
repository. It also may be inappropriate to version control metadata files that are generated by repository
providers. The org.eclipse.team.core.ignore extension point allows providers to declare file types that
should be ignored for repository provider operations. For example, the CVS client declares the following:

Move/Delete Hook 29

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse

<extension point="org.eclipse.team.core.ignore">
<ignore pattern = ".#*" selected = "true"/>
</extension>

The markup simply declares a file name pattern that should be ignored and a selected attribute which
declares the default selection value of the file type in the preferences dialog. It is ultimately up to the user tc
decide which files should be ignored. The user may select, deselect, add or delete file types from the defau
list of ignored files.

& Preferences }:\@@

+ - Workbench Ignored Resources
+- Ant
Build Order Use this page to specify a list of resource name patterns to
+- Debug exclude from version control,
+- Help
I Patt :
+- InstalljUpdate L LSS AL
+-Java ¥ A add...
+/- Plug-In Development RCSLOG
Readme Example CV¥S.adm
= Team &+
4 CYS *In
File Content make. state

Ny
.DS_Store

* exe

RCS

SCCS

A

* 50

5

tags =
e
.nse_depinfo
* bak

del-*
Ocore

M*.Bak v

Impotrt... I Export... | | oK I Cancel

File Types

Some repositories implement different handling for text vs. binary files._The org.eclipse.team.core.fileTypes
extension allows plug-ins to declare file types as text or binary files. For example, the Java tooling declares
the following:

<extension point="org.eclipse.team.core.fileTypes">
<fileTypes extension="java" type="text"/>

<fileTypes extension="classpath" type="text"/>

<fileTypes extension="properties" type="text"/>
<fileTypes extension="class" type="binary"/>

File Types 30

Welcome to Eclipse
<fileTypes extension="jar" type="binary"/>

<fileTypes extension="zip" type="binary"/>
</extension>

The markup lets plug-ins define a file type by extension and assign a type of text or binary. As with ignored
files, it is ultimately up to the user to manage the list of text and binary file types.

& Preferences |:}@E]

+- Workbench File Content
+- Ant
Build Order File extensions with known content:
+Debug Extension | Contents A add... |
+-Help ‘bp Binary
+- InstallfUpdate class Binary
+-Java classpath ASCII
+/- Plug-In Development cvsignore A_SCH
Readme Example di Binary
5. Team doc Binary
emsd ASCII
+- QY5 exe Binary
File Content aif Binary
Ignored Resources htm ASCII
htl ASCIT
ico Binary
jar Binary
java ASCIL
jpage ASCII
jpeq Binary
iPg Binary
launch ASCII
mxsd ASCII
options ASCII
pdf Binary
pnag Binary
ppt Binary
project ASCIT v
< >
Import... I Export... | oK | Cancel

Team and linked resources

A project may contain resources that are not located within the project's directory in the local file system.
These resources are referred to as linked resources.

Consequences for Repository Providers

Linked resources can pose particular challenges for repository providers which operate directly against the f
system. This is a consequence of the fact that linked resources by design do not exist in the immediate proj
directory tree in the file system.

Providers which exhibit the following characteristics may be affected by linked resources:

1. Those which call out to an external program that then operates directly against the file system.

Team and linked resources 31

Welcome to Eclipse

2. Those which are implemented in terms of IResource but assume that all the files/folders in a project
exist as direct descendents of that single rooted directory tree.

In the first case, lets assume the user picks a linked resource and tries to perform a provider operation on it.
Since the provider calls a command line client, we can assume that the provider does something equivalent
first calling IResource.getLocation().toOSString(), feeding the resulting file system location as an argument
to the command line program. If the resource in question is a linked resource, this will yield a file/folder
outside of the project directory tree. Not all command line clients may expect and be able to handle this cas
In short, if your provider ever gets the file system location of a resource, it will likely require extra work to
handle linked resources.

The second case is quite similar in that there is an implicit assumption that the structure of the project
resources is 1:1 with that of the file system files/folders. In general, a provider could be in trouble if they mix
IResource and java.io.File operations. For example, for links, the parent of IFile is not the same as the
java.io.File's parent and code which assumes these to be the same will fail.

Backwards Compatibility

It was important that the introduction of linked resources did not inadvertantly break existing providers.
Specifically, the concern was for providers that reasonably assumed that the local file system structure
mirrored the project structure. Consequently, by default linked resources can not be added to projects that a
mapped to such a provider. Additionally, projects that contain linked resources can not by default be shared
with that provider.

Strategies for Handling Linked Resources

In order to be "link friendly”, a provider should allow projects with linked resources to be version controlled,
but can disallow the version controlling of linked resources themselves.

A considerably more complex solution would be to allow the versioning of the actual linked resources, but
this should be discouraged since it brings with it complex scenarios (e.g. the file may already be version
controlled under a different project tree by another provider). Our recommendation therefore is to support
version controlled projects which contain non-version controlled linked resources.

Technical Details for Being "Link Friendly"

Repository provider implementations can be upgraded to support linked resources by overriding the
RepositoryProvider.canHandleLinkedResources() method to return true. Once this is done, linked
resources will be allowed to exist in projects shared with that repository provider. However, the repository
provider must take steps to ensure that linked resources are handled properly. As mentioned above, it is
strongly suggested that repository providers ignore all linked resources. This means that linked resources (&
their children) should be excluded from the actions supported by the repository provider. Furthermore, the
repository provider should use the default move and delete behavior for linked resources if the repository
provider implementation overrides the default IMoveDeleteHook.

Team providers can use IResource.isLinked() to determine if a resource is a link. However, this method only
returns true for the root of a link. The following code segment can be used to determine if a resource is the
child of a link.

String linkedParentName = resource.getProjectRelativePath().segment(0);
IFolder linkedParent = resource.getProject().getFolder(linkedParentName);

Team and linked resources 32

Welcome to Eclipse

boolean isLinked = linkedParent.isLinked();

Repository providers should ignore any resource for which the above code evaluates to true.

Team private resources

It is common for repository implementations to use extra files and folders to store information specific about
the repository implementation. Although these files may be needed in the workspace, they are of no interes
to other plug-ins or to the end user.

Team providers may use IResource.setTeamPrivateMember(boolean) to indicate that a resource is private
to the implementation of a team provider. Newly created resources are not private members by default, so
method must be used to explicitly mark the resource as team private. A common use is to mark a subfolder
the project as team private when the project is configured for team and the subfolder is created.

Other resource API that enumerates resources (such as resource delta trees) will exclude team private
members unless explicitly requested to include them. This means that most clients will not "see" the team
private resources and they will not be shown to the user. The resource navigator does not show team priva
members by default, but users can indicate via Preferences that they would like to see team private resourc

Attempts to mark projects or the workspace root as team private will be ignored.

Project sets

Since the resources inside a project under version control are kept in the repository, it is possible to share
projects with team members by sharing a reference to the repository specific information needed to
reconstruct a project in the workspace. This is done using a special type of file export for team project sets.

Team private resources 33

Welcome to Eclipse

£ Team Project Set @

Export a Team Project Set =
‘-

Select the projects to include in the Team Project Set:

O & org.eclipse. platform.doc.user
[platform-doc-home

Select the export destination:

File name: | Browse... I

< Back Iy | | I Cancel I

In 3.0, APl was added to ProjectSetCapability to allow repository providers to declare a class that implemen
project saving for projects under their control. When the user chooses to export project sets, only the projec
configured with repositories that define project sets are shown as candidates for export. This API replaces tl
old project set serialization API (see below).

The project set capability class for a repository provider is obtained from the RepositoryProviderType class
which is registered in the same extension as the repository provider. For example:

<extension point="org.eclipse.team.core.repository">
<repository
typeClass="org.eclipse.team.internal.ccvs.core.CVSTeamProviderType"

class="org.eclipse.team.internal.ccvs.core.CVSTeamProvider"
id="org.eclipse.team.cvs.core.cvsnature">
</repository>
</extension>

Team private resources 34

Welcome to Eclipse

Prior to 3.0, The org.eclipse.team.core.projectSets extension point allowed repository providers to declare a
class that implements project saving for projects under their control. When the user chooses to export proje
sets, only the projects configured with repositories that define project sets are shown as candidates for expc

For example, the CVS client declares the following:

<extension point="org.eclipse.team.core.projectSets">
<projectSets id="org.eclipse.team.cvs.core.cvsnature" class="org.eclipse.team.internal.ccvs.ui.CVSProjectSetSerializer"/>

</extension>

The specified class must implement IProjectSetSerializer. Use of this interface is still supported in 3.0 but
has been deprecated.

© Copyright IBM Corporation and others 2000, 2004.

Team private resources 35

lgnore

Identifier:

org.eclipse.team.core.ignore

Since:

2.0

Description:
This extension point is used to register information about whether particular resources should be ignored; th

is, excluded from version configuration management operations. Providers may provide an extension for thit
extension point. No code beyond the XML extension declaration is required.

Configuration Markup:

<IELEMENT extension_(ignore*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT ignore EMPTY>
<IATTLIST ignore

pattern CDATA #REQUIRED
enabled (true | false) >

* pattern — the pattern against which resources will be compared.
 enabled - one of "true" or "false", determines whether this ignore pattern is enabled.

Examples:

Following is an example of an ignore extension:
<extension point=

Ignore 36

Welcome to Eclipse

"org.eclipse.team.core.ignore"
>

<ignore pattern=

"* class"

enabled=

"true"

/>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Ignore 37

http://www.eclipse.org/legal/cpl-v10.html

File Types

Identifier:

org.eclipse.team.core.fileTypes

Since:

2.0

Description:

This extension point is used to register information about whether particular file types should be considered
contain text or binary data. This information is important to some repository providers as it affects how the
data is stored, compared and transmitted.

Providers may provide an extension for this extension point. No code beyond the XML extension declaratior
is required.

Configuration Markup:

<IELEMENT extension (fileTypes*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT fileTypes EMPTY>
<IATTLIST fileTypes
extension CDATA #REQUIRED
type CDATA #REQUIRED>
« extension - the file extension being identified by this contribution.

* type — one of either "text" or "binary", identifying the contents of files matching the value of
extension.

Examples:

Following is an example of a fileTypes extension:

File Types 38

Welcome to Eclipse

<extension point=
"org.eclipse.team.core.fileTypes"
>

<fileTypes extension=

"txt"

type=

"text"

/>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available_at http://www.eclipse.org/legal/cpl=v10.html

Linked resources

Earlier discussions of resources and the file system (Mapping resources to disk locations) assumed that all
resources in a project are located in the same place in the file system. This is generally true. However, the
concept of linked resources in the workbench is provided so that files and folders inside a project can be
stored in the file system outside of the project's location.

Linked resources must have a project as their parent resource. They can be located virtually anywhere in th
file system. They can reside outside the project location, or even within another project. There are only a fev
restrictions on linked resource locations. The method IWorkspace.validateLinkLocation can be used to
ensure that a given location is valid for creating a linked resource.

Linked resources are created using the method IFolder.createLink or IFile.createLink. To determine
programmatically whether a given resource is a linked resource, you can use the method IResource.isLinke
Note that this method will only return true for linked resources, not for children of linked resources.

Apart from these special methods for creating linked resources and finding out if a resource is linked, you ce
use normal workspace APl when manipulating linked resources. In most respects, linked resources act exac
like any other resource in the workspace. However, some restrictions apply when moving, copying, or
deleting linked resources. See IResource and its sub—classes for information on individual operatiosn and
their limitations.

Path variables

Path variables can be used when specifying the location of linked resources. A path variable is a simple
(String —>_IPath) mapping that defines a shortcut for a location in the file system. Variables can ease the

Linked resources 39

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse

management of linked resources by reducing the number of places where hard—coded, absolute file system
paths are used.

Path variables streamline the management of linked resources for users in several ways:

« Allows a single reference to the absolute path when defining several linked resources under a
common root

« Allows the location of several resources to be redefined by changing a single variable

« Allows users to share projects containing linked resources without updating the paths of each resour
(since the absolute path can vary from one machine to another.)

The last item in this list deserves a bit of explanation. When a user creates a linked resource in a project, a
description of the linked resource is added to the project description file (".project") in the project's location.
By using a path variable, users can share a project (by copying the project's content or by using a repository
and redefine the variable to suit each individual workstation. For example, one user might store external
resources under c:\temp on one system, while another user using Unix might store the same resources in
/home/username/tmp. Defining a path variable on each workspace (TEMP=c:\temp and
TEMP=/home/userb/tmp) allows users to work around this difference and share the projects with linked
resources as is.

IPathVariableManager defines the API for creating, manipulating, and resolving path variables. It also
provides methods for validating variable names and values before creating them, and for installing a listener
to be notified when path variable definitions change. You can obtain an instance of this class using
IWorkspace.getPathVariableManager. See the code examples at the end of this section for more detail.

The method IResource.getRawLocation can be used to find out the unresolved location of a linked resource
That is, to get the actual path variable name instead of resolving it to its value. If a resource location is not
defined with a path variable, the getRawLocation method acts exactly like the getLocation method.

Broken links

Clients that manipulate resources programmatically need to be aware of the possibility of broken links.
Broken links occur when a linked resource's location does not exist, or is specified relative to an undefined
path variable. The following special cases apply when using IResource protocol:

» The copy and move methods will fail when called on broken links.

« Calling refreshLocal on a broken link will not cause the resource to be removed from the workspace,
as it does for normal resources that are missing from the file system.

» The method getLocation will return null for linked resources whose locations are relative to
undefined path variables.

* You can still use delete to remove broken links from the workspace.

Compatibility with installed plug—-ins
Some plug—-ins may not be able to handle linked resources, so there are a number of mechanisms available
disabling them. If you are writing a plug—in that absolutely needs all of a project's contents to be located in t

project's default location, you can use these mechanisms to prevent users from creating linked resources
where you don't want them to appear.

Broken links 40

Welcome to Eclipse

The first mechanism is called the project nature veto. If you define your own project nature, you can specify
in the nature definition that the nature is not compatible with linked resources. Here is an example of a natur
definition that employs the nature veto:

<extension
id="myNature"
name="My Nature"
point="org.eclipse.core.resources.natures">
<runtime>

<run class="com.xyz.MyNature"/>

</runtime>
<optionallowLinking="false"/>

</extension>

The second mechanism for preventing linked resource creation is the team hook. If you define your own
repository implementation, you can make use of the org.eclipse.core.resources.teamHook extension point t
prevent the creation of linked resources in projects that are shared with your repository type. By default,
repository providers do not allow linked resources in projects connected to the repository.

If the repository support is provided by an older plug—in that is not aware of linked resources, you will not be
able to create linked resources in those projects.

Finally, there is a preference setting that can be used to disable linked resources for the entire workspace.
While the previous two veto mechanisms work on a per—project basis, this preference affects all projects in
the workspace. To set this preference programatically, use the preference
ResourcesPlugin.PREF_DISABLE_LINKING. Note that even when set, users or plug-ins can

override this by turning the preference off.

Linked resources in code

Let's go into some examples of using linked resources in code. We'll start by defining a path variable:

IWorkspace workspace = ResourcesPlugin.getWorkspace();

IPathVariableManager pathMan = workspace.getPathVariableManager();

String name = "TEMP";

IPath value = new Path("c:\\temp");

if (pathMan.validateName(nhame).isOK() && pathMan.validateValue(value).isOK()) {
pathMan.setValue(hame, value);

}else {
/linvalid name or value, throw an exception or warn user

}
Now we can create a linked resource relative to the defined path variable:

IProject project = workspace.getProject("Project");//assume this exists
IFolder link = project.getFolder("Link");
IPath location = new Path("TEMP/folder");
if (workspace.validateLinkLocation(location).isOK()) {
link.createLink(location, IResource.NONE, null);
}else {
/linvalid location, throw an exception or warn user

}

That's it! You now have a linked folder in your workspace called "Link" that is located at "c:\temp\folder".

Linked resources in code 41

Welcome to Eclipse

Let's end with some code snippets on this linked resource to illustrate the behavior other methods related to
linked resources:

link.getFullPath() ==> "/Project/Link"
link.getLocation() ==> "c:\temp\folder"
link.getRawLocation() ==> "TEMP/folder"
link.isLinked() ==> "true"

IFile child = link.getFile("abc.txt");

child.create(...);

child.getFullPath() ==> "/Project/Link/abc.txt"
child.getLocation() ==> "c:\temp\folder\abc.txt"
child.getRawLocation() ==> "c:\temp\folder\abc.txt
child.isLinked() ==> "false"

© Copyright IBM Corporation and others 2000, 2004.

Project natures

Project natures allow a plug—in to tag a project as a specific kind of project. For example, the Java
development tools (JDT) use a "Java nature" to add Java—specific behavior to projects. Project natures are
defined by plug-ins, and are typically added or removed per—project when the user performs some action
defined by the plug-in.

A project can have more than one nature. However, when you define a project nature, you can define spec
constraints for the nature:

» one—of—nature — specifies that the nature is one of a named set. Natures in a set are mutually
exclusive; that is, only one nature belonging to the set can exist for a project.

* requires—nature — specifies that the nature depends on another nature and can only be added to a
project that already has the required nature.

To implement your own nature, you need to define an extension and supply a class which implements
IProjectNature.

Defining a nature

The_org.eclipse.core.resources.natures extension point is used to add a project nature definition. The
following markup adds a nature for the hypothetical com.example.natures plug-in.

<extension
point="org.eclipse.core.resources.natures"
id="myNature"
name="My Nature">
<runtime>
<run class="com.example.natures.MyNature">
</run>
</runtime>
</extension>

The class identified in the extension must implement the platform interface IProjectNature. This class
implements plug—in specific behavior for associating nature—specific information with a project when the
nature is configured.

Project natures 42

Welcome to Eclipse

public class MyNature implements IProjectNature {
private IProject project;

public void configure() throws CoreException {
/I Add nature-specific information
/I for the project, such as adding a builder
/ to a project's build spec.
}
public void deconfigure() throws CoreException {
/I Remove the nature-specific information here.
}
public IProject getProject() {
return project;
}
public void setProject(IProject value) {
project = value;
}
}

The configure() and deconfigure() methods are sent by the platform when natures are added and removed
from a project. You can implement the configure() method to add a builder to a project as discussed in
Builders.

Associating the nature with a project

Defining the nature is not enough to associate it with a project. You must assign a nature to a project by
updating the project's description to include your nature. This usually happens when the user creates a new
project with a specialized new project wizard that assigns the nature. The following snippet shows how to
assign our new hature to a given project.

try {
IProjectDescription description = project.getDescription();

String[] natures = description.getNaturelds();
String[] newNatures = new String[natures.length + 1];
System.arraycopy(natures, 0, newNatures, 0, natures.length);
newNatures[natures.length] = "com.example.natures.myNature";
description.setNaturelds(newNatures);
project.setDescription(description, null);

} catch (CoreException e) {
/I Something went wrong

}

The natures are not actually assigned to (and configured) for the project until you set the project description
into the project. Also note that the identifier used for the nature is the fully qualified name (plug—in id +
extension id) of the nature extension.

If the nature has been defined with constraints, then workspace API can be used to validate the new nature.
For example, suppose a nature is defined with a prerequisite:

<extension
point="org.eclipse.core.resources.natures"
id="myOtherNature"
name="My Other Nature">
<runtime>
<run class="com.example.natures.MyOtherNature">
</run>

Associating the nature with a project 43

Welcome to Eclipse

</runtime>
<requires—nature id="com.example.natures.myNature"/>
</extension>

The new nature is not valid unless the first nature exists for the project. Depending on the design of your
plug—-in, you may want to check whether the prerequisite nature has been installed, or you may want to add
the prerequisite nature yourself. Either way, you can check on the validity of proposed combinations of
project natures using workspace API.

try {
IProjectDescription description = project.getDescription();

String[] natures = description.getNaturelds();

String[] newNatures = new String[natures.length + 1];
System.arraycopy(natures, 0, newNatures, 0, natures.length);
newNatures[natures.length] = "com.example.natures.myOtherNature";
IStatus status = workspace.validateNatureSet(natures);

/I check the status and decide what to do
if (status.getCode() == IStatus.OK) {
description.setNaturelds(newNatures);
project.setDescription(description, null);
}else {
Il raise a user error

}...

} catch (CoreException e) {
/I Something went wrong

}
Nature descriptors
In addition to working with natures by their id, you can obtain the descriptor (IProjectNatureDescriptor)
which describes a nature, its constraints, and its label. You can query a particular nature for its descriptor,

get descriptors from the workspace. The following snippet gets the project nature descriptor for our new
nature:

IProjectNatureDescriptor descriptor = workspace.getNatureDescriptor("com.example.natures.myOtherNature");
You can also get an array of descriptors for all installed natures:

IProjectNatureDescriptor[] descriptors = workspace.getNatureDescriptors();

© Copyright IBM Corporation and others 2000, 2004.

Nature descriptors 44

Project Natures

Identifier:

org.eclipse.core.resources.natu res

Description:

The workspace supports the notion of project natures (or "natures” for short"). A nature associates lifecycle
behaviour with a project. Natures are installed on a per—project basis using the setDescription method defin
on org.eclipes.core.resources.IProject. They are configured automatically when a project is

opened and deconfigured when a project is closed. For example, the Java nature might install a Java builde
and do other project configuration when added to a project

The natures extension—point allows nature writers to register their nature implementation under a symbolic
name that is then used from within the workspace to find and configure natures. The symbolic name is id of
the nature extension. When defining a nature extension, users are encouraged to include a human-readabl
value fo rth e"name" attribute which identifies their meaning and potentially may be presented to users.

Natures can specify relationship constraints with other natures. The "one—of-nature" constraint specifies the
at most one nature belong to a given set can exist on a project at any given time. This enforces mutual
exclusion between natures that are not compatible with each other. The "requires—nature" constraint specifi
a dependency on another nature. When a nature is added to a project, all required natures must also be adt
The natures are guaranteed to be configured and deconfigured in such a way that their required natures will
always be configured before them and deconfigured after them. For this reason, cyclic dependencies betwe
natures are not permitted.

Natures cannot be added to or removed from a project if that change would violate any constraints that were
previously satisfied. If a nature is configured on a project, but later finds that its constraints are not satisfied,
that nature and all natures that require it are marked as disabled, but remain on the project. This can happel
for example, when a required nature goes missing from the install. Natures that are missing from the install,
and natures involved in dependency cycles are also marked as disabled.

Natures can also specify which incremental project builders, if any, are configured by them. With this
information, the workspace will ensure that builders will only run when their corresponding nature is present
and enabled on the project being built. If a nature is removed from a project, but the nature's deconfigure
method fails to remove its corresponding builders, the workspace will remove those builders from the spec
automatically. It is not permitted for two natures to specify the same incremental project builder in their
markup.

Natures also have the ability to disallow the creation of linked resources on projects they are associated witt

By setting the allowLinking attribute to "false", a nature can declare that linked resources should never be
created. This feature is new in release 2.1.

Configuration Markup:

<IELEMENT extension_(runtime , (one—of-nature | requires—nature | builder)* ., options?)>

<IATTLIST extension
point CDATA #REQUIRED

Project Natures 45

Welcome to Eclipse
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT runtime (run)>

<IELEMENT run (parameter*)>
<IATTLIST run
class CDATA #REQUIRED>

« class - the fully—qualified name of a class which implements
org.eclipse.core.resources.|ProjectNature

<IELEMENT parameter EMPTY>
<IATTLIST parameter
name CDATA #REQUIRED
value CDATA #REQUIRED>
* name - the name of this parameter made available to instances of the specified nature class

« value — an arbitrary value associated with the given name and made available to instances of the
specificed nature class

<IELEMENT one-of-nature EMPTY>
<IATTLIST one—of-nature
id CDATA #REQUIRED>

« id — the name of an exclusive project nature category.

<IELEMENT requires—nature EMPTY>

Project Natures 46

Welcome to Eclipse

<IATTLIST requires—nature
id CDATA #REQUIRED>

« id - the fully—qualified id of another nature extension that this nature extension requires.

<IELEMENT builder EMPTY>
<IATTLIST builder
id CDATA #REQUIRED>

« id - the fully—qualified id of an incremental project builder extension that this nature controls.

<IELEMENT options EMPTY>
<IATTLIST options
allowLinking (true | false) >

« allowLinking — an option to specify whether this nature allows the creation of linked resources. By
default, linking is allowed.

Examples:

Following is an example of three nature configurations. The waterNature and fireNature belong to the same
exclusive set, so they cannot co—exist on the same project. The snowNature requires waterNature, so
snowNature will be disabled on a project that is missing waterNature. It naturally follows that snowNature

cannot be enabled on a project with fireNature. The fireNature also doesn't allow the creation of linked
resources.

<extension id=
"fireNature"
name=

"Fire Nature"
point=

"org.eclipse.core.resources.natures"

Project Natures 47

>
<runtime>

<run class=
"com.xyz.natures.Fire"
/>

</runtime>
<one-of-nature id=
"com.xyz.stateSet"

/>

<options allowLinking=
"false"

/>

</extension>
<extension id=
"waterNature"

name=

"Water Nature"

point=

"org.eclipse.core.resources.natures"

>
<runtime>

<run class=
"com.xyz.natures.Water"
/>

</runtime>
<one-of-nature id=

Project Natures

Welcome to Eclipse

48

"com.xyz.stateSet"
/>

</extension>
<extension id=
"snowNature"
name=

"Snow Nature”

point=

"org.eclipse.core.resources.natures"

>
<runtime>

<run class=
"com.xyz.natures.Snow"

>

<parameter name=
“installBuilder"

value=

"true"

/>

</run>

</runtime>

<requires—nhature id=
"com.xyz.coolplugin.waterNature"
/>

<builder id=
"com.xyz.snowMaker"

Project Natures

Welcome to Eclipse

49

Welcome to Eclipse

/>
</extension>

If these extensions were defined in a plug—in with id "com.xyz.coolplugin", the fully qualified name of these
natures would be "com.xyz.coolplugin.fireNature", "com.xyz.coolplugin.waterNature" and
"com.xyz.coolplugin.snowNature".

API Information:

The value of the class attribute must represent an implementor of
org.eclipse.core.resources.|ProjectNature. Nature definitions can be examined using the
org.eclipse.core.resources.|ProjectNatureDescriptor interface. The descriptor objects
can be obtained using the methods getNatureDescriptor(String) and
getNatureDescriptors() on org.eclipse.core.resources.lWorkspace.

Supplied Implementation:

The platform itself does not have any predefined natures. Particular product installs may include natures as
required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Project Natures 50

http://www.eclipse.org/legal/cpl-v10.html

Team Hook

Identifier:

org.eclipse.core.resources.teamHook

Since:

2.1

Description:

For providing an implementation of a TeamHook that is used for mechanisms available only to team
providers. This extension point tolerates at most one extension.

Configuration Markup:

<IELEMENT extension_(teamHook)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT teamHook EMPTY>
<IATTLIST teamHook
class CDATA #REQUIRED>

« class - the fully—qualified name of a class which subclasses
org.eclipse.core.resources.team.TeamHook

Examples:

The following is an example of using the teamHook extension point. (in file plugin.xml)

<extension point=

Team Hook 51

Welcome to Eclipse

"org.eclipse.core.resources.teamHook
>

<teamHook class=
"org.eclipse.team.internal. TeamHook"
/>

</extension>

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.core.resources.team.TeamHook.

Supplied Implementation:

The Team component will generally provide the implementation of the team hook. The extension point shou
not be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Team Hook 52

http://www.eclipse.org/legal/cpl-v10.html

Project Sets

Identifier:

org.eclipse.team.core.projectSets

Since:

2.0

Description:

This extension point is used to register a handler for creating and reading project sets. Project sets are
lightweight, portable method of sharing a particular lineup of team-shared projects in a workspace. A projec
set file may be used to provide team memebers with a simple way of creating a workspace with a particular
lineup of projects form one or more team providers. Providers may provide an extension for this extension
point.

deprecated: see RepositoryProvider#getProjectSetCapability.

Configuration Markup:

<IELEMENT extension _(projectSets*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT projectSets EMPTY>
<IATTLIST projectSets
id CDATA #REQUIRED
class CDATA #REQUIRED>
« id - the nature id of the provider for which this handler creates and reads project sets.

« class - the fully qualified name of a class implementing
org.eclipse.team.core.|ProjectSerializer.

Project Sets 53

Welcome to Eclipse

Examples:

Following is an example of a projectSets extension:

<extension point=
"org.eclipse.team.core.projectSets"

>

<projectSets id=
"org.eclipse.team.cvs.core.cvsnature"

class=
"org.eclipse.team.cvs.core.CVSProjectSetSerializer"
>

</projectSets>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Synchronization Support

New in Eclipse 3.0 are APIs for managing and displaying synchronization state between workspace resourc
and resources in another location. We refer to a resource outside of the workspace as a variant. Synchroniz
is the act of displaying the changes between resources in different locations and optionally allowing the usel
to affect the synchronization state by performing an action. The synchronize APIs are orthogonal to the
RepositoryProvider APIs and can be used without a repository provider. The purpose of the synchronization
APl is to ease the task of implementing different ways of presenting the synchronization state of resources.
such, the API requires a means to query the synchronization state of resources but does not require a mear
affect the state. The means of affecting the state is left to the implementer (although the Ul does provide
hooks for adding provider specific menu items to menus).

Terminology

Before the synchronization API is described, it is helpful to present some of the terminology and concepts th
apply when discussing workspace synchronization.

Resource Variant: A local resource that is mapped to a resource that exists at another location

Project Sets 54

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse

can be referred to as a variant of that resource. That is, the resources are usually very similar
but may differ slightly (either due to modifications to the local resource or changes made the
remote copy by other users). We take a local workspace centric view of this, referring to the
local copy as the resource and any remote copy as resource variants.

Synchronize: We refer to synchronize as the action of displaying to the user the differences
between resource variants. Synchronizing doesn't affect the state of the variants, but instead
provides a view to help the user understand the differences between different sets of variants.
It is common however to allow users to affect the states of the variants (e.g. allowing to
check-in, or revert) while synchronizing.

Two—-way vs. Three—way Synchronization: There are two basic types of synchronization state
determination: two—-way and three—way. A two—way comparison only considers the local
resource and a single resource variant, referred to as the remote resource variant. This type of
comparison can only show the differences between the two resources but cannot offer hints as
to how the changes interrelate. Most code repository systems support a three-way
comparison for synchronization state determination. This type of comparison involves the

local resource, a remote resource variant and a base resource variant. The base resource
variant represents a common ancestor for the local and remote resources. This allows for
more sophisticated synchronization states that indicate the direction of the change.

Table 1: The synchronization states

Two-Way| Three-Way

Outgoing Change
Incoming Change
Outgoing Deletion
Changed |Incoming Deletion
Deleted [Outgoing Addition
Added Incoming Addition
Conflicting Change
Conflicting Deletion
Conflicting Addition

The Basics — Syncinfo

The classes in the org.eclipse.team.core.synchronize are used to describe the synchronization state. The m
important class is Syncinfo because it is the class that actually defines the synchronization state. It can be u
as follows:

Synclinfo info = getSyncinfo(resource); // this is a simulated method of obtaining the sync info for a resource
int changekind = info.getKind();
if(info.getResourceComparator().isThreeWay()) {
if((changeKind & Syncinfo.DIRECTION_MASK) == SyncInfo.INCOMING) {
// do something

} else if(changeKind == Syncinfo.CHANGE) {
// do something else

}

The Synclinfo class provides both the two-way and three—way comparison algorithms, a client must provide

The Basics — Syncinfo 55

Welcome to Eclipse

the resources and a class that can compare the resources (IResourceVariantComparator). Here is an exam
variant comparator:

public class TimestampVariantComparator implements IResourceVariantComparator {
protected boolean compare(IResourceVariant el, IResourceVariant e2) {
if(el.isContainer()) {
if(e2.isContainer()) {
return true;

}

return false;

}

if(el instanceof MyResourceVariant && e2 instanceof MyResourceVariant) {
MyResourceVariant myE1 = (MyResourceVariant)el,;
MyResourceVariant myE2 = (MyResourceVariant)e2;
return myE1l.getTimestamp().equals(myE2.getTimestamp());

}

return false;

}

protected boolean compare(IResource el, IResourceVariant e2) {

}
public boolean isThreeWay() {
return true;

}
}

Synclinfo info = new Synclinfo(resource, variantl, variant2, new TimestampComparator());
info.init(); // calculate the sync info

This package also contains collections specifically designed to contain Syncinfo and filters that can be appli
to Synclinfo instances.

Managing the synchronization state

As we have seen in the examples above, Syncinfo and IResourceVariantComparator classes provide acces
the synchronization state of resources. But what we haven't seen yet is how the state is managed. A Subsct
provides access to the synchronization state between the resources in the local workspace and a set of resc
variants for these resources using either a two-way or three—way comparison, depending on the nature of t
subscriber. A subscriber provides the following capabilities:

« local workspace traversal: a subscriber supports the traversal of the local workspace resources that
supervised by the subscriber. As such, the subscriber has a set of root resources that define the
workspace subtrees under the subscriber's control, as well as a members method that returns the
supervised members of a workspace resource. This traversal differs from the usual workspace
resource traversal in that the resources being traversed may include resources that do not exist loca
either because they have been deleted by the user locally or created by a 3rd party.

* resource synchronization state determination: For supervised resources, the subscriber provides acc
to the synchronization state of the resource, including access to the variants of the resource. For eac
supervised resource, the subscriber provides a Syncinfo object that contains the synchronization sta
and the variants used to determine the state.The subscriber also provides an
IResourceVariantComparator which determines whether two—-way or three—way comparison is to be
used and provides the logic used by the Syncinfo to comparing resource variants when determining
the synchronization state.

« refresh of synchronization state and change notification: Clients can react to changes that happen to
local resources by listening to the Core resource deltas. When a local resource is changed, the

Managing the synchronization state 56

Welcome to Eclipse

synchronization state of the resource can then be re—obtained from the subscriber. However, clients
must explicitly query the server to know if there are changes to the resource variants. For subscriber
this process is broken up into two parts. A client can explicitly refresh a subscriber. In response the
subscriber will obtain the latest state of the resource variants from the remote location and fire
synchronization state change events for any resource variants that have changed. The change
notification is separate from the refresh since there may be other operations that contact the remote
location and obtain the latest remote state.

The APIs do not not define how a Subscriber is created, this is left to the specific implementations. For
example the CVS plugin creates a Subscriber when a merge is performed, another for a comparison, and
another when synchronizing the local workspace with the current branch.

So let's revisit our first example of using Syncinfo and see how a Subscriber could be used to access
Synclinfo.

/I Create a file system subscriber and specificy that the
/I subscriber will synchronize with the provided file system location
Subscriber subscriber = new FileSystemSubscriber("c:\temp\repo");

/I Allow the subscriber to refresh its state
subscriber.refresh(subscriber.roots(), IResource.DEPTH_INFINITE, monitor);

/I Collect all the synchronization states and print

IResource[] children = subscriber.roots();

for(int i=0; i < children.length; i++) {
printSyncState(children[i]);

}

void printSyncState(Subscriber subscriber, IResource resource) {
System.out.printin(subscriber.getSyncinfo(resource).toString());
IResource[] children = subscriber.members(resource);
for(int i=0; i < children.length; i++) {
IResource child = children(il;
if(! child.exists()) {
System.out.printin(resource.getFullPath() + " doesn't exist in the workspace");

}
printSyncState(subscriber, childrenli]);

}
}

The important point to remember is that the Subscriber knows about resources that do not exist in the
workspace and non-existing resources can be returned from the Subscriber#members() and

Synclinfo#getlLocall().
Displaying the synchronizations state in the Ul

We could spend more time explaining how to manage synchronization state but instead let's see how to
actually get the state shown to the user. A ISynchronizePatrticipant is the user interface component that
displays synchronization state and allows the user to affect its state. The Synchronize View displays
synchronize participants, but it is also possible to show these in dialogs and wizards. In order to provide
support for users to show any type of synchronization state to the user, even those not based on Syncinfo a
Subscribers, a participant is a very generic component.

Displaying the synchronizations state in the Ul 57

Welcome to Eclipse

There is also an extension point called org.eclipse.team.ui.synchronizeWizards to add a synchronization
creation wizard. This will put your wizard in the global synchronize action and in the Synchronize View, so
that users can easily create a synchronization of your type.

However, if you have implemented a Subscriber you can benefit from a concrete participant called
SubscriberParticipant which will provide the following functionality:

« Collects Syncinfo from a Subscriber in the background.

« Listens to changes in the workspace and those found when a Subscriber is refreshed and keeps the
synchronization state updated dynamically.

* Provides the user interface that support modes for filtering the changes, and layouts.

» Support scheduling a refresh with the Subscriber so that the synchronization states are kept
up—to—-date.

 Supports refreshing a Subscriber in the background.

» Supports navigation of the changes and showing the differences between the files.

» Supports configuration of the actions, toolbars, and decorators by subclasses.

The best way to explain these concepts are to see them used in the context of a simple example. Go to the

local history synchronization example to see how all of these pieces can be used together. Or if you want
pointers on how to use the more advanced APIs, go to Beyond The Basics.

© Copyright IBM Corporation and others 2000, 2004.

Displaying the synchronizations state in the Ul 58

Synchronize Participant Creation Wizards

Identifier:

org.eclipse.team.ui.synchronizeWizards

Since:

3.0

Description:

This extension point is used to register a synchronize participant creation wizard. These wizards are used tc
create synchronize participants that will appear in the Synchronize View. A provider will typically create a
creation wizard to allow the user to perform and manage a particular type of synchronize participant.

Providers may provide an extension for this extension point, and an implementation of
org.eclipse.jface.wizard.lWizard.

Configuration Markup:

<I[ELEMENT extension_(wizard?)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT wizard EMPTY>
<IATTLIST wizard
name CDATA #REQUIRED
description CDATA #REQUIRED
icon CDATA #REQUIRED
class CDATA #REQUIRED
id CDATA #REQUIRED>
« name — The name of the synchronize participant creation type. Examples are "CVS", "CVS Merge",
"WebDAV",

« description — The description for the creation wizard.
« icon — The icon to be shown when this wizard type is shown to the user.

Synchronize Participant Creation Wizards 59

Welcome to Eclipse

« class — A fully qualified name of the Java class implementing
org.eclipse.jface.wizard.lWizard.
« id — A unigue identifier for this extension.

Examples:

Following is an example of a synchronize participant creation wizard extension:

<extension point=
"org.eclipse.team.ui.synchronizeWizards"
>

<wizard name=

"WebDAV"

description=

"Create a WebDAYV participant to view changes between workspace resources and their remote WebDAV
location”

icon=

"webdav.gif"

class=

"com.xyz.DAVWizard"

id=
"com.xyz.dav.synchronizeWizard"
>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.jface.wizard.lWizard.

Synchronize Participant Creation Wizards 60

Welcome to Eclipse

Supplied Implementation:

The plug-in org.eclipse.team.cvs.ui contains example definitions of synchronizeWizards extension point.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Local History Example

The best way to understand the Synchronize APIs is to create a simple example that actually works. In this

example we will be creating a page in the Synchronize View that will display the latest local history state for
all files in the workspace. The local history synchronization will update automatically when changes are mac
to the workspace, and a compare editor can open to browse, merge, then changes. We will also add a custc
decorator to show the last timestamp of the local history element and an action to revert the workspace files
their latest saved local history state. This is an excellent example because we already have a store of resou
variants available and we don't have to manage it.

For the remainder of this example we will make use of a running example. Much, but not all, of the source
code will be included on this page. The full source code can be found in the local history package of the
org.eclipse.team.examples.filesystem plug—in. You can check the project out from the CVS repository and u
it as a reference while you are reading this tutorial. Disclaimer: The source code in the example plugin may
change over time. To get a copy that matches what is used in this example, you can check out the project
using the 3.0 version tag (most likely R3_0) or a date tag of June 28, 2004.

Synchronize Participant Creation Wizards 61

http://www.eclipse.org/legal/cpl-v10.html
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/

Welcome to Eclipse

8} Java - MultiPageEditor. java - Eclipse Platform

File Edit Mavigate Search Project Job Run Window Help

Wi RIPFIH-0-Q- | BHFCG- | O |[® |- B &R
[% Package Explorer &2 . Hierarchy = B EOmultiPageEditor.java 52
¢ B8 - Jav 1]
SR g L_ocalHlstory | Local File Remote File {Jun 20, 21
-5 src : S P - '
88 Localist import org.eclipse.ul.part import org.ecl
+ ocalHistory . .] .
< }55 LocaHistory.adiors import org.eclipse.ui.part import org.ecl
i @ MultiPageEditor . java — ||| import org.eclipse.ui.ide,. import org.ecl
- [J] MultiPageEditorContributor.java |RROR | |]
+ -3 LocalHistory.wizards 201 A
- = * An example showing how * An exawple
\ == * This example has 3 page * This exampl
& 408 v * o *
= = * <lirpage 0 contains a 1 * page 0O
* <lirpage 1 allows you t * <lirpage 1
* <lirpage 2 shows the wd * page 2

S sample. if {(Jun 20, 2004 10:04:42 E]) e
S & srefLocalHistoryEthess R

g Open In Compare Editor
@ MultiPageEditor.java (Jun 20, 2004 1 Open

o srcfLocalHistoryfwizards Open With 4 —},, public class N

*/

[J] sampleNewwizard.java (Jun 21, 2004 = , lultiPageEdit .
= .project (Jun 20, 2004 10:04:41 PM) Edit /** The te
aib build.properties {Jun 21, 2004 12:47:58 PM Synchronize Xt editor ug private Te

Remove from Yiew ZERclcoried)

fEE e fo
Expand Al ' [Cheyta

,,,,,,,, 2 &

Revert to latest in local history
LocalHistory ficonsfsample. gif

ges

This screen shot shows the local history synchronization in the Synchronize View. With it you can browse th
changes between the local resource and the latest state in history. It has a custom decorator for displaying t
timestamp associated with the local history entry and a custom action to revert your file to the contents in th
local history. Notice also that the standard Synchronize View presentation is used which provide problem
annotations, compressed folder layout, and navigation buttons.

Defining the variants for local history

The first step is to define a variant to represent the elements from local history. This will allow the
synchronize APIs to access the contents from the local history so it can be compared with the current contel
and displayed to the user.

public class LocalHistoryVariant implements IResourceVariant {
private final IFileState state;

public LocalHistoryVariant(IFileState state) {
this.state = state;

}

public String getName() {
return state.getName();

}

Defining the variants for local history 62

Welcome to Eclipse

public boolean isContainer() {
return false;

}

public IStorage getStorage(IProgressMonitor monitor) throws TeamException {
return state;

}

public String getContentldentifier() {
return Long.toString(state.getModificationTime());

}

public byte[] asBytes() {
return null;

}
}

Since the IFileState interface already provides access to the contents of the file from local history (i.e.
implements the IStorage interface), this was easy. Generally, when creating a variant you have to provide a
way of accessing the content, a content identifier that will be displayed to the user to identify this variant, an
a name. The asBytes() method is only required if persisting the variant between sessions.

Next, let's create a variant comparator that allows the Syncinfo calculation to compare local resources with
their variants. Again, this is easy because the existence of a local history state implies that the content of the
local history state differs from the current contents of the file. This is because the specification for local
history says that it won't create a local history state if the file hasn't changed.

public class LocalHistoryVariantComparator implements IResourceVariantComparator {
public boolean compare(IResource local, IResourceVariant remote) {
return false;

}

public boolean compare(IResourceVariant base, IResourceVariant remote) {
return false;

}

public boolean isThreeWay() {
return false;

}
}

Because we know that the existence of the local history state implies that it is different from the local, we ca
simply return false when comparing the file to it's local history state. Also, synchronization with the local
history is only two-way because we don't have access to a base resource so the method for comparing two
resource variants is not used.

Note that the synchronize calculation won't call the compare method of the comparator if the variant doesn't
exist (i.e. is null). It is only called if both elements exist. In our example, this would occur both for files that

don't have a local history and for all folders (which never have a local history). To deal with this, we need to
define our own subclass of Syncinfo in order to modify the calculated synchronization state for these cases.

public class LocalHistorySyncinfo extends Syncinfo {
public LocalHistorySyncInfo(IResource local, IResourceVariant remote, IResourceVariantComparator comparator) {
super(local, null, remote, comparator);

}

Defining the variants for local history 63

Welcome to Eclipse

protected int calculateKind() throws TeamException {
if (getRemote() == null)
return IN_SYNC,;
else
return super.calculateKind();
}
}

We have overridden the constructor to always provide a base that is null (since we are only using two—-way
comparison) and we have modified the synchronization kind calculation to return IN_SYNC if there is no
remote (since we only care about the cases where there is a local file and a file state in the local history.

Creating the Subscriber

Now we will create a Subscriber that will provide access to the resource variants in the local history. Since
local history can be saved for any file in the workspace, the local history Subscriber will supervise every
resource and the set of roots will be all projects in the workspace. Also, there is no need to provide the abilit
to refresh the subscriber since the local history changes only when the contents of a local file changes.
Therefore, we can update our state whenever a resource delta occurs. That leaves only two interesting metl
on our local history subscriber: obtaining a Syncinfo and traversing the workspace.

public Syncinfo getSyncinfo(IResource resource) throws TeamException {
try {
IResourceVariant variant = null;
if(resource.getType() == IResource.FILE) {
IFile file = (IFile)resource;
IFileState[] states = file.getHistory(null);
if(states.length > 0) {
/I last state only
variant = new LocalHistoryVariant(states[0]);
}
}
Synclnfo info = new LocalHistorySyncinfo(resource, variant, comparator);
info.init();
return info;
} catch (CoreException e) {
throw TeamException.asTeamException(e);
}
}

The Subscriber will return a new Synclinfo instance that will contain the latest state of the file in local history.
The Syncinfo is created with a local history variant for the remote element. For projects, folders and files wit
no local history, no remote resource variant is provided, which will result in the resource being considered
in—sync due to the calculateKind method in our LocalHistorySyncinfo.

The remaining code in the local history subscriber is the implementation of the members method:

public IResource[] members(IResource resource) throws TeamException {
try {
if(resource.getType() == IResource.FILE)
return new IResource[0];
IContainer container = (IContainer)resource;
List existingChildren = new ArrayList(Arrays.asList(container.members()));
existingChildren.addAll(
Arrays.asList(container.findDeletedMembersWithHistory(IResource. DEPTH_INFINITE, null)));
return (IResource[]) existingChildren.toArray(new IResource[existingChildren.size()]);
} catch (CoreException e) {

Creating the Subscriber 64

Welcome to Eclipse

throw TeamException.asTeamException(e);

}
}

The interesting detail of this method is that it will return non-existing children if a deleted resource has local
history. This will allow our Subscriber to return Syncinfo for elements that only exist in local history and are
no longer in the workspace.

Adding a Local History Synchronize Participant

So far we have created the classes which provide access to Syncinfo for elements in local history. Next, we
will create the Ul elements that will allow us to have a page in the Synchronize View to display the last
history state for every element in local history. Since we have a Subscriber, adding this to the Synchronize
View is easy. Let's start by adding an synchronize participant extension point:

<extension
point="org.eclipse.team.ui.synchronizeParticipants">
<participant

persistent="false"
icon="synced.gif"
class="org.eclipse.team.synchronize.example.LocalHistoryParticipant"
name="Latest From Local History"
id="org.eclipse.team.synchronize.example"/>

</extension>

Next we have to implement the LocalHistoryParticipant. It will subclass SubscriberParticipant which will
provide all the default behavior for collecting Syncinfo from the subscriber and updating sync states when
workspace changes occur. In addition, we will add an action to revert the workspace resources to the latest
local history.

First, we will look at how a custom action is added to the participant.

public static final String CONTEXT_MENU_CONTRIBUTION_GROUP = "context_group_1"; //SNON-NLS-1$

private class LocalHistoryActionContribution extends SynchronizePageActionGroup {
public void initialize(ISynchronizePageConfiguration configuration) {
super.initialize(configuration);
appendToGroup(
ISynchronizePageConfiguration.P_CONTEXT_MENU, CONTEXT_MENU_CONTRIBUTION_GROUP,
new SynchronizeModelAction("Revert to latest in local history”, configuration) { //$NON-NLS-1$
protected SynchronizeModelOperation getSubscriberOperation(ISynchronizePageConfiguration configuration, IDiffElement][] el
return new RevertAllOperation(configuration, elements);
}
i
}
}

Here we are adding a specific SynchronizeMoidelAction and operation. The behavior we get for free here is
the ability to run in the background and show busy status for the nodes that are being worked on. The actior
reverts all resources in the workspace to their latest state in local history. The action is added by adding an
action contribution to the participants configuration. The configuration is used to describe the properties use
to build the participant page that will display the actual synchronize UlI.

The patrticipant will initialize the configuration as follows in order to add the local history action group to the
context menu:

Adding a Local History Synchronize Participant 65

Welcome to Eclipse

protected void initializeConfiguration(ISynchronizePageConfiguration configuration) {
super.initializeConfiguration(configuration);
configuration.addMenuGroup(
ISynchronizePageConfiguration.P_CONTEXT_MENU,
CONTEXT_MENU_CONTRIBUTION_GROUP);
configuration.addActionContribution(new LocalHistoryActionContribution());
configuration.addLabelDecorator(hew LocalHistoryDecorator());

}

Now lets look at how we can provide a custom decoration. The last line of the above method registers the
following decorator with the page's configuration.

public class LocalHistoryDecorator extends LabelProvider implements ILabelDecorator {
public String decorateText(String text, Object element) {
if(element instanceof ISynchronizeModelElement) {
ISynchronizeModelElement node = (ISynchronizeModelElement)element;
if(node instanceof |IAdaptable) {
Synclinfo info = (Syncinfo)((IAdaptable)node).getAdapter(Syncinfo.class);
if(info != null) {
LocalHistoryVariant state = (LocalHistoryVariant)info.getRemote();
return text+ " ("+ state.getContentldentifier() + ")";
}
}
}

return text;

}

public Image decoratelmage(Image image, Object element) {
return null;
}
}

The decorator extracts the resource from the model element that appears in the synchronize view and appe
the content identifier of the local history resource variant to the text label that appears in the view.

The last and final piece is to provide a wizard that will create the local history participant. The Team
Synchronizing perspective defines a global synchronize action that allows users to quickly create a
synchronization. In addition, the ability to create synchronizations in available from the Synchronize view
toolbar. To start, create a synchronizeWizards extension point:

<extension

point="org.eclipse.team.ui.synchronizeWizards">
<wizard

class="org.eclipse.team.synchronize.example.LocalHistorySynchronizeWizard"
icon="synced.gif"
description="Creates a synchronization against the latest local history state of all resources in the workspace"
name="Latest From Local History Synchronize"
id="ExampleSynchronizeSupport.wizard1"/>

</extension>

This will add our wizard to the list and in the wizards finish() method we will simply create our participant
and add it to the synchronize manager.

LocalHistoryPartipant participant = new LocalHistoryPartipant();
ISynchronizeManager manager = TeamUI.getSynchronizeManager();
manager.addSynchronizeParticipants(new ISynchronizeParticipant[] {participant});
ISynchronizeView view = manager.showSynchronizeViewlnActivePage();
view.display(participant);

Adding a Local History Synchronize Participant 66

Welcome to Eclipse

Conclusion

This is a simple example of using the synchronize APIls and we have glossed over some of the details in orc
to make the example easier to understand. Writing responsive and accurate synchronization support is
non-trivial, the hardest part being the management of synchronization information and the notification of
synchronization state changes. The user interface, if the one associated with SubscriberParticipants is
adequate, is the easy part once the Subscriber implementation is complete. For more examples please refe
the org.eclipse.team.example.filesystem plugin and browse the subclasses in the workspace of Subscriber «
ISynchronizeParticipant.

The next section describes some class and interfaces that can help you write a Subscriber from scratch
including how to cache synchronization states between workbench sessions.

© Copyright IBM Corporation and others 2000, 2004.

Beyond the Basics

If you plan on providing synchronization support and don't have an existing mechanism for managing
synchronization state, this section explains how to implementing a Subscriber from scratch. This means thai
there is no existing synchronization infrastructure and illustrates how to use some API that is provided to
maintain the synchronization state.

For the remainder of this example we will make use of a running example. The source code can be found in
the file system provider package of the org.eclipse.team.examples.filesystem plug—in. You should check the
project out from the CVS repository and use as a reference while you are reading this tutorial.

Implementing a Subscriber From Scratch

This first example assumes that there is no existing infrastructure for maintaining the synchronization state c
the local workspace. When implementing a subscriber from scratch, you can make use of some additional A
provided in the org.eclipse.team.core plugin. The org.eclipse.team.core.variants package contains two
subclasses of Subscriber which can be used to simplify implementation. The first is
ResourceVariantTreeSubscriber which will be discussed in the second example below. The second is a
subclass of the first: ThreeWaySubscriber. This subscriber implementation provides several helpful classes
managing the synchronization state of a local workspace. If you do not have any existing infrastructure, this
a good place to start.

Implementing a subscriber from scratch will be illustrated using the file system example available in the
org.eclipse.team.examples.filesystem plugin. The code in the following description is kept to a minimum
since it is available from the Eclipse CVS repository. Although not technically a three-way subscriber, the
file system example can still make good use of this infrastructure. The FTP and WebDav plugins also are bt
using this infrastructure.

ThreeWaySubscriber

For the file system example, we already had an implementation of a RepositoryProvider that associated a la
project with a file system location where the local contents were mirrored. FileSystemSubscriber was create
as a subclass of ThreeWaySubscriber in order to make use of a ThreeWaySynchronizer to manage worksp:
synchronization state. Subclasses of this class must do the following:

Conclusion 67

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/

Welcome to Eclipse

create a ThreeWaySynchronizer instance to manage the local workspace synchronization state.
create an instance of a ThreeWayRemoteTree subclass to provide remote tree refresh.
¢ The class FileSystemRemoteTree was defined for this purpose
implement a method to create the resource variant handles used to calculate the synchronization ste
¢ The class FileSystemResourceVariant (a subclass of CachedResourceVariant) was defined
this
implement the roots method.
¢ The roots for the subscriber are all the projects mapped to the FileSystemProvider. Callbacks
were added to FileSystemProvider in order to allow the FileSystemSubscriber to generate
change events when projects are mapped and unmapped.

In addition to the subscriber implementation, the get and put operations for the file system provider were
modified to update the synchronization state in the ThreeWaySynchronizer. The operations are implemente
in the class org.eclipse.team.examples.filesystem.FileSystemOperations.

ThreeWaySynchronizer

ThreeWaySynchronizer manages the synchronization state between the local workspace and a remote
location. It caches and persists the local, base and remote timestamps in order to support the efficient
calculation of the synchronization state of a resource. It also fires change notifications to any registered
listeners. The ThreeWaySubscriber translates these change events into the proper format to be sent to liste
registered with the subscriber.

The ThreeWaySynchronizer makes use of Core scheduling rules and locks to ensure thread safety and pro
change notification batching.

ThreeWayRemoteTree

A_ThreeWayRemoteTree is a subclass of ResourceVariantTree that is tailored to the ThreeWaySubscriber.
must be overridden by clients to provide the mechanism for fetching the remote state from the server.
ResourceVariantTree is discussed in more detail in the next example.

CachedResourceVariant

A_CachedResourceVariant is a partial implementation of IResourceVariant that caches any fetched contents
for a period of time (currently 1 hour). This is helpful since the contents may be accessed several times in a
short period of time (for example, to determine the synchronization state and display the contents in a
compare editor). Subclasses must still provide the unique content identifier along with the byte array that cal
be persisted in order to recreate the resource variant handle.

Building on Top of Existing Workspace Synchronization

Many repository providers may already have a mechanism for managing their synchronization state (e.g. if
they have existing plugins). The ResourceVariantTreeSubscriber and its related classes provide the ability t
build on top of an existing synchronization infrastructure. For example, this is the superclass of all of the CV
subscribers.

ThreeWaySynchronizer 68

Welcome to Eclipse

ResourceVariantTreeSubscriber

As was mentioned in the previous example, the ThreeWaySubscriber is a subclass of
ResourceVariantTreeSubscriber that provides local workspace synchronization using a
ThreeWaySynchronizer. Subclasses of ResourceVariantTreeSubscriber must provide:

» Subclasses of ResourceVariantTree (or AbstractResourceVariantTree) that provide the behavior for
traversing and refreshing the remote resource variants and, for subscribers that support three—way
comparisons, the base resource variants.

« An implementation of IResourceVariantComparator that performs the two—-way or three-way
comparison for a local resource and its base and remote resource variants.It is common to also
provide a subclass of Syncinfo in order to customize the synchronization state determination
algorithm.

« An implementation of the roots method for providing the roots of the subscriber and an
implementation of the isSupervised method for determining what resources are supervised by the
subscriber.

The other capabilities of the subscriber are implemented using these facilities.
ResourceVariantTree
ResourceVariantTree is a concrete implementation of IResourceVariantTree that provides the following:

* traversal of the resource variant tree
« logic to merge the previous resource variant tree state with the current fetched state.
« caching of the resource variant tree using a ResourceVariantByteStore.

The following must be implemented by subclasses:

« creation of resource variant handles from the cached bytes that represent a resource variant
« fetching of the current remote state from the server
« creation of the byte store instance used to cache the bytes that uniquely identify a resource variant

Concrete implementations_of ResourceVariantByteStore are provided that persist bytes across workbench
invocations (PersistantResourceVariantByteStore) or cached the bytes only for the current session
(SessionResourceVariantByteStore). However, building a subscriber on top of an existing workspace
synchronization infrastructure will typically require the implementation of ResourceVariantByteStore
subclasses that interface with the underlying synchronizer. For example the ThreeWayRemoteTree makes
of a byte store implementation that stores the remote bytes in the ThreeWaySynchronizer.

The creation of resource variant handles for this example does not differ from the previous example except
that the handles are requested from a resource variant tree instance instead of the subscriber.

© Copyright IBM Corporation and others 2000, 2004.

Building on Top of Existing Workspace Synchronization 69

Program debug and launch support

The resource plug-ins in the Eclipse platform allow you to manage a set a source files for a program and
compile them using an incremental project builder. Plug—ins can define new builders that handle special
resource types, such as source files for a particular programming language. Once an executable program i
built with your plug—-in's builder, how can you make sure that it gets invoked correctly?

The org.eclipse.debug.core plug-in provides the API that allows a program to define a configuration for
launching a program. The program can be launched for regular execution or in debug mode, depending on
capabilities of your plug—in. The Eclipse Java development tooling (JDT) uses the platform debug support t
launch Java VM's and the Java debugger.

The org.eclipse.debug.ui plug—in includes support for user configuration of launch parameters and utility
classes that ease the implementation of powerful debuggers.

There are some shared concepts in launching and debugging programs that are implemented in the platforr
debug support. However, the best way to understand how to use the platform debug support is to study a
robust concrete implementation of launching and debugging, such as the JDT launching and debug tools.
We'll review the major concepts of the platform debug support in order to provide a roadmap for studying a
concrete implementation.

For a detailed explanation of how to define and develop custom launch configurations, see We Have Lift-of
The Launching Framework in Eclipse.

© Copyright IBM Corporation and others 2000, 2004.

Program debug and launch support 70

http://www.eclipse.org/articles/Article-Launch-Framework/launch.html
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html

Plugging in help

The Eclipse platform's help facilities provide you with the raw building blocks to structure and contribute
documentation to the platform. It does not dictate structure or granularity of documentation. You can choose
the tools and structure for your documentation that suits your needs. The help plug-in allows you to descrik
your documentation structure to the platform using a table of contents (toc) file.

Your plug-in's online help is contributed using_the org.eclipse.help.toc extension point. You can either
contribute the online help as part of your code plug-in or provide it separately in its own documentation

plug-in.

Separating the documentation into a separate plug—in is beneficial in those situations where the code and
documentation teams are different groups or where you want to reduce the coupling between the
documentation and code.

Advanced features of the help system include context—sensitive help with reference links (known as
infopops) and the ability to invoke platform code from the documentation. A help browser lets you view,
print, and search your documentation.

The best way to demonstrate the contribution of help is to create a documentation plug-in.

© Copyright IBM Corporation and others 2000, 2004.

Plugging in help 71

Table of Contents (TOC)

Identifier:

org.eclipse.help.toc

Description:
For registering an online help contribution for an individual plug-in.
Each plug-in that contributes help files should in general do the following:
¢ author the html files, zip html files into doc.zip, and store the zip file in the plug—in directory.
¢ create TOC files that describe Table of Contents for the help and the necessary topic
interleaving. See the syntax below.
¢ the plugin.xml file should extend the org.eclipse.help.toc extension point and
specify TOC file(s).

Configuration Markup:

<IELEMENT extension_(toc*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT toc EMPTY>
<IATTLIST toc

fle CDATA #REQUIRED
primary (true | false) "false"
extradir CDATA #IMPLIED>

« file — the name of the TOC file which contains the table of contents or section for this plug—in's online
help.

Configuration Markup for toc file:
<IELEMENT toc (topic | anchor | link)* >
<IATTLIST toc link_to CDATA #IMPLIED >
<IATTLIST toc label CDATA #REQUIRED >
<IATTLIST toc topic CDATA #IMPLIED >

Table of Contents (TOC) 72

Welcome to Eclipse

<IELEMENT topic (topic | anchor | link)* >
<IATTLIST topic label CDATA #REQUIRED >
<IATTLIST topic href CDATA #IMPLIED >

<IELEMENT anchor EMPTY >
<IATTLIST anchor id ID #REQUIRED >

<IELEMENT link EMPTY >
<IATTLIST link toc CDATA #REQUIRED >

In general, a plug—in that needs to provide online help will define its own TOC files. In the end, the
help system is configured to be launched as some actions, and the path of the TOC file can be used
do so.

The topic element

All help topic element are contributed as part of the toc container element. They can have a
hierarchical structure, or can be listed as a flat list.

The topic element is the workhorse of structure of Table of Contents. There are two typical uses for
the topic element:

1. To provide a link to a documentation file — usually an HTML file.
2. To act as a container for other toc, either in the same manifest or another.

1. Topics as links
The simplest use of a topic is as a link to a documentation file.

<topic label="Some concept file" href="concepts/some_file.html" />

The href attribute is relative to the plug-in that the manifest file belongs to. If you need to access a
file in another plug-in, you can use the syntax

<topic label="topic in another plug-in"
href="../other.plugin.id/concepts/some_other_file.html" />

2. Topics as containers
The next most common use of a topic is to use it as a container for other toc. The container topic
itself can always refer to a particular file as well.
<topic label="Integrated Development Environment"
href="concepts/ciover.htm" >
<topic label="Starting the IDE" href="concepts/blah.htm" />
</topic>
The link element
The link element allows to link Table of Contents defined in another toc file. All the topics from the
toc file specified in the toc attribute will appear in the table of contents as if they were defined directly

in place of the link element. To include toc from api.xml file you could write

Table of Contents (TOC) 73

Welcome to Eclipse

<topic label="References" >
;iink toc="api.xml" />

<):[;)pic>

The anchor element

The anchor element defines a point that will allow linking other toc files to this navigation, and
extending it, without using the link element and referencing other toc files from here. To allow
inserting Table of Contents with more topics after the "ZZZ" document you would define an anchor
as follows:

<topic label="zzz" href="zzz.html" />
<anchor id="moreapi" />

The toc element

The toc element is a Table of Contents that groups topics and other elements defined in this file. Th
label identifies the table of contents to the user, when it is displayed to the user. The optional topic
attribute is the path to a topic file describing the TOC. The optional link_to attribute allows for
linking toc from this file into another toc file being higher in the navigation hierarchy. The value of
the link_to attribute must specify an anchor in another toc file. To link toc from myapi.xml to api.xml
file, specified in another plugin you would use the syntax

<toc link_to="../anotherPlugin/api.xml#moreapi" label="My Tool
API"/>

<toc />
where # character separates toc file name from the anchor identifier.

« primary — specifies whether the TOC file is a primary table of contents and is meant to be the mastel
table of contents, or not primary and intended to be integrated into another table of contents.

« extradir — specifies relative directory name of containing additional documents that are associated
with the table of contents. All help documents in this directory, and all subdirectories, will be indexed

and accessible through the documentation search, even if topic elements in the TOC file do not
refer to these documents.

Examples:
The following is an example of using the toc extension point.

(in file plugin.xml)

Table of Contents (TOC) 74

Welcome to Eclipse
<extension point=
"org.eclipse.help.toc"
>
<toc file=
"maindocs.html”
primary=
"true"
/>
<toc file=
"task.xml"
/>
<toc file=
"sample.xml"
extradir=
"samples”
/>
</extension>
(in file maindocs.xml)
<toc label="Help System Example">
<topic label="Introduction" href="intro.html"/>
<topic label="Tasks">
<topic label="Creating a Project" href="tasks/taskl.html">
<topic label="Creating a Web Project"
href="tasks/task11.html"/>
<topic label="Creating a Java Project"
href="tasks/task12.html"/>
</topic>
<link toc="task.xml" />
<topic label="Testing a Project" href="tasks/taskn.html"/>
</topic>
<topic label="Samples">
<topic label="Creating Java Project"

href="samples/samplel.htm|">

Table of Contents (TOC)

75

Welcome to Eclipse

<topic label="Launch a Wizard"
href="samples/samplell.html"/>
<topic label="Set Options" href="samples/sample12.html"/>
<topic label="Finish Creating Project"
href="samples/samplel13.html"/>
</topic>
<anchor id="samples" />
</topic>
</toc>

(in file tasks.xml)

<toc label="Building a Project">
<topic label="Building a Project" href="build/building.htm|">
<topic label="Building a Web Project"
href="build/web.html"/>
<topic label="Building a Java Project"
href="build/java.html"/>
</topic>
</toc>

(in file samples.xml)

<toc link_to="maindocs.xml#samples" label="Using The Compile
Tool">

<topic label="The Compile Tool Sample"
href="compilesample/example.html|">

<topic label="Step 1" href="compilesample/stepl.html"/>

<topic label="Step 2" href="compilesample/step2.html"/>

<topic label="Step 3" href="compilesample/step3.html"/>

<topic label="Step 4" href="compilesample/step4.html"/>
</topic>
</toc>

Assuming more documents exists with the path starting with "samples”, they will not be displayed in the
navigation tree, but be accessible using search. Itis due to the presence of "extradir" attribute in the elemel
<toc file="sample.xml" extradir="samples" /> inside plugin.xml file. For example

searching for "Creating Java Project" could return a document "Other Ways of Creating Java Project”, whick
path is samples/sample2.html.

Internationalization The TOC XML files can be translated and the resulting copy (with translated labels)
should be placed in nl/<language>/<country> or nl/<language> directory. The <language> and <country>
stand for two letter language and country codes as used in locale codes. For example, Traditional Chinese
translations should be placed in the nl/zh/TW directory. The nl/<language>/<country> directory has a highe
priority than nl/<language>. Only if no file is found in the nl/<language>/<country>, the file residing in
nl/<language> will be used. The the root directory of a plugin will be searched last.

The documentation contained in doc.zip can be localized by creating a doc.zip file with translated version of
documents, and placing doc.zip in

Table of Contents (TOC) 76

Welcome to Eclipse

nl/<language>/<country> or nl/<language> directory. The help system will look for the files under this
directories before defaulting to plugin directory.

API Information:

No code is required to use this extension point. All that is needed is to supply the appropriate manifest files
mentioned in the plugin.xml file.

Supplied Implementation:

The default implementation of the help system Ul supplied with the Eclipse platform fully supports the toc
extension point.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Table of Contents (TOC) 77

http://www.eclipse.org/legal/cpl-v10.html

Plug it in: Hello World meets the workbench

The Eclipse platform is structured as a core runtime engine and a set of additional features that are installec
platform plug—ins. Plug-ins contribute functionality to the platform by contributing to pre—defined extension
points. The workbench Ul is contributed by one such plug—in. When you start up the workbench, you are no
starting up a single Java program. You are activating a platform runtime which can dynamically discover
registered plug—ins and start them as needed.

When you want to provide code that extends the platform, you do this by defining system extensions in your
plug-in. The platform has a well-defined set of extension points — places where you can hook into the
platform and contribute system behavior. From the platform's perspective, your plug—in is no different than
basic plug-ins like the resource management system or the workbench itself.

So how does your code become a plug-in?

» Decide how your plug-in will be integrated with the platform.

« Identify the extension points that you need to contribute in order to integrate your plug-in.

» Implement these extensions according to the specification for the extension points.

» Provide a manifest file (plugin.xml) that describes the extensions you are providing and the packagin
of your code.

The process for creating a plug—-in is best demonstrated by implementing an old classic, "Hello World," as a
plug-in. The intention of this example is to give you a flavor of how plug-in development is different from
Java application development. We'll gloss over a lot of details in order to get the plug—in built and running.
Then we'll look at extension points in more detail, see where they are defined, and learn how plug-ins
describe their implementation of an extension.

© Copyright IBM Corporation and others 2000, 2004.
A minimal plug-in

We all know what "Hello World" looks like in plain old Java without using any user interface frameworks or
other specialized libraries.

public class HellowWorld {
public static void main(String[] args) {
System.out.printin("Hello World");

}
}

What happens to this old standard in the context of the Eclipse platform? Instead of thinking of Hello World
as a self-contained program, we recast it as an extension of the platform. Since we want to say hello to the
world, we need to figure out how to extend the workbench to include our greeting.

When we get deeper into the platform user interface components, we'll do an exhaustive review of the ways
that you can extend and customize the workbench Ul. For now, let's start with one of the simplest workbenc
extensions — a view.

You can think of the workbench window as a frame that presents various visual parts. These parts fall into t
major categories: views and editors. We will look at editors later. Views provide information about some

Plug it in: Hello World meets the workbench 78

Welcome to Eclipse

object that the user is working with in the workbench. Views often change their content as the user selects
different objects in the workbench.

Hello world view
For our hello world plug-in, we will implement our own view to greet the user with "Hello World."

The plug-in org.eclipse.ui.workbench defines most of the public interfaces that make up the workbench
API. These interfaces can be found in the package org.eclipse.ui and its sub packages. Many of these
interfaces have default implementation classes that you can extend to provide simple modifications to the
system. In our hello world example, we will extend a workbench view to provide a label that says hello.

The interface of interest_is IViewPart, which defines the methods that must be implemented to contribute a
view to the workbench. The class ViewPart provides a default implementation of this interface. In a nutshell,
a view part is responsible for creating the widgets needed to show the view.

The standard views in the workbench often display some information about an object that the user has
selected or is navigating. Views update their contents based on actions that occur in the workbench. In our
case, we are just saying hello, so our view implementation will be quite simple.

Before jumping into the code, we need to make sure our environment is set up for plug-in development...

© Copyright IBM Corporation and others 2000, 2004.

Creating the plug—-in project

You can use any Java IDE you wish to build Eclipse plug-ins, but we'll walk through the steps for building
our plug—-in with the Eclipse Java IDE, since this is the typical case. If you are not already familiar with the
Eclipse workbench and the Java IDE, consult the Java Development User Guide for further explanations of
the steps we are taking. For now we are focusing on the code, not the tool. However, there are some IDE
logistics for getting started.

Creating your plug-in project

You will need to create a project that contains your work. We'll take advantage of some of the
code—generation facilities of the Plug—in Development Environment (PDE) to give us a template to start fron
This will set up the project for writing Java code and generate a default plug—in manifest file (explained in a
moment) and class to hold our view.

1. Open the New Project... wizard (File > New > Project...) and choose Plug-in Project from the
Plug—in Development category and click Next.

2.0n the Plug-in Project page, use com.example.helloworld as the name for your project and check
the box for Create a Java project (this should be the default). Click Next to accept the default Java
project structure.

3.0n the Plug-in Content page, look at the default settings. The wizard sets com.example.helloworld
as the id of the plug-in. The wizard will also generate a plug—in class for your plug—in and allow you
supply additional information about contributing to the Ul. These defaults are acceptable, so click
Next.

4.0n the Templates page, check the box for Create a plug—in using one of the templates. Then select
the Plug—in with a view template. Click Next.

Hello world view 79

Welcome to Eclipse

5. We want to create a minimal plug—in, so at this point we need to change the default settings to keep
things as simple as possible. On the Main View Settings page, change the suggested defaults as

follows:

> & & & o

14
14

& New plug-in project with a sample view

Main Yiew Settings P
Choose the way the new view will be added to the plug-in. =*J:]

Java Package Name: I com.example. helloworld

Yiew Class Name: l Helloworldview
View Name: I Hello View
View Category Id: | com.example. helloworld

View Category Name: I Hello Category

Select the viewer type that should be hosted in the view:

{* Table viewer {can also be used For lists)
" Tree viewer

[” Add the view to the resource perspective

< Back Mext = | | Finish | Cancel |

Change the Java Package Name from com.example.helloworld.views to
com.example.helloworld (we don't need a separate package for our view).

Change the View Class Name to HelloWorldView.

Change the View Name to Hello View.

Leave the default View Category Id as com.example.helloworld.

Change the View Category Name to Hello Category.

Leave the default viewer type as Table viewer (we will change this in the code to make it
even simpler).

Uncheck the box for Add the view to the resource perspective.

Click Next to proceed to the next page.

6. On the View Features page, uncheck all of the boxes so that no extra features are generated for the
plug-in. Click Finish to create the project and the plug-in skeleton.

7.When asked if you would like to switch to the Plug—in Development perspective, answer Yes.

8. Navigate to your new project and examine its contents.

The skeleton project structure includes several files and a Java package. The important files at this stage ar
the plugin.xml (manifest) file and the Java source code for your plug-in. We'll start by looking at the
implementation for a view and then examine the manifest file.

@ Copyright IBM Corporation and others 2000, 2004.

Hello world view 80

Welcome to Eclipse
The Hello World view

Now that we've created a project, package, and view class for our plug-in, we're ready to study some code.
Here is everything you need in your HelloWorldView. Copy the contents below into the class you created,
replacing the auto—generated content.

package com.example.helloworld;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.SWT;

import org.eclipse.ui.part.ViewPart;

public class HelloWorldView extends ViewPart {

Label label;

public HelloWorldView() {

}

public void createPartControl(Composite parent) {
label = new Label(parent, SWT.WRAP);
label.setText("Hello World");

}

public void setFocus() {
/I set focus to my widget. For a label, this doesn't
/l make much sense, but for more complex sets of widgets
/I you would decide which one gets the focus.

}
}

The view part creates the widgets that will represent it in the createPartControl method. In this example, we
create an SWT label and set the "Hello World" text into it. This is about the simplest view that can be create

© Copyright IBM Corporation and others 2000, 2004.

The Hello World manifest

Before we run the new view, let's take a look at the manifest file that was generated for us:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin
id="com.example.helloworld"
name="Helloworld Plug—in"
version="1.0.0"
provider-name="EXAMPLE"
class="com.example.helloworld.HelloworldPlugin">

<runtime>
<library name="helloworld.jar">
<export name="*"/>
</library>
</runtime>

<requires>

<import plugin="org.eclipse.ui"/>

<import plugin="org.eclipse.core.runtime"/>

<import plugin="org.eclipse.core.runtime.compatibility"/>
</requires>

The Hello World view 81

Welcome to Eclipse

<extension
point="org.eclipse.ui.views">

<category
name="Hello Category"
id="com.example.helloworld">

</category>

<view
name="Hello View"
icon="icons/sample.gif"
category="com.example.helloworld"
class="com.example.helloworld.HelloWorldView"
id="com.example.helloworld.HelloWorldView">

</view>

</extension>

</plugin>

The information about the view that we provided when we created the plug—in project was used to generate
manifest file with the appropriate mark—up for defining our view extension. In the extension definition, we
define a category for the view, including its name and id. We then define the view itself, including its name
and id, and we associate it with the category using the id we defined for our category. We also specify the
class that implements our view, HelloWorldView.

As you can see, the manifest file wraps up all the information about our extension and how to run it into a
nice, neat package.

© Copyright IBM Corporation and others 2000, 2004.

Running the plug-in

We have all the pieces needed to run our new plug-in. Now we need to build the plug-in. If your Eclipse
workbench is set up to build automatically, then your new view class should have compiled as soon as you
saved the new content. If not, then select your new project and choose Project>Build Project. The class
should compile without error.

There are two ways to run a plug-in once it has been built.
1. The plug-in's manifest file and jar file can be installed in the eclipse/plugins directory. When the
workbench is restarted, it will find the new plug—in.
2.The PDE tool can be used to run another workbench from within your current workbench. This
runtime workbench is handy for testing new plug—ins immediately as you develop them from your
workbench. (For more information about how a runtime workbench works, check the PDE guide.)

For simplicity, we'll run the new plug—in from within the Eclipse workbench.

Launching the workbench

To launch a runtime workbench, choose Run>Run.... This dialog will show you all the different kinds of
ways you can launch a program. Choose Runtime workbench and accept all of the default settings. This will
cause another instance of the Eclipse workbench, the runtime workbench, to start.

Running the plug—-in 82

Welcome to Eclipse

Running Hello World

So where is our new view? We can see all of the views that have been contributed by plug-ins using the
Window >Show View menu.

GG Help

a Mew Window evel...
>

Open Perspective
@] Error Log |

Customize Perspective... &5. Navigator
save Perspective As... | B= Outline Alb+3hift+Q, O

Reset Perspective .
Close Perspective [# package Explorer Alt+Shift+Q, P

Close all Perspectives 2 Plugrins
5)
Navigation R [_ Problems Alt+Shift+Q, X
2| Tasks
Readme File Editor 4

= | r—‘

This menu shows us what views are available for the current perspective. You can see all of the views that
contributed to the platform (regardless of perspective) by selecting Other.... This will display a list of view
categories and the views available under each category.

The workbench creates the full list of views by using the extension registry to find all the plug-ins that have
provided extensions for the org.eclipse.ui.views extension point.

Running Hello World 83

Welcome to Eclipse

(= ant

(= Basic

(= Browser Example

(= Cheat Sheets

= CYs

(= Debug

(= Hello Category
2

(= Java

(= Java Browsing

(= PDE

(= PDE Runtime

(= Readme

(= SWT Examples

(= Team

E R S S S S

I e O = S

| QK | Cancel

There we are! The view called "Hello View" has been added to the Show View window underneath our
category "Hello Category.” The labels for our category and view were obtained from the extension point
configuration markup in the plugin.xml.

Up to this point, we still have not run our plug-in code! The declarations we made in the plugin.xml

(which can be seen by other plug-ins using the extension registry) are enough for the workbench to find out
that there is a view called "Hello View" available in the "Hello" category. It even knows what class
implements the view. But none of our code will be run until we decide to show the view.

If we choose the "Hello View" view from the Show View list, the workbench will activate our plug-in,

instantiate and initialize our view class, and show the new view in the workbench along with all of the other
views. Now our code is running.

Running Hello World 84

Welcome to Eclipse

£ Resource - index. html - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

‘ 9~ , Q - ‘ & ‘ A :;': A Y [Resource
\;‘ = N
%5 Navigator 52 = | @ index.html 52 8
2| B v:h/ Y - khlﬂlelcome to my web</hil>
[+ ID‘J‘ MyServlet
= =3 MyWeb
(= images
5| .project
& index.html
EE S £ Hello View X =8
» ' Hello World
0= Outline 52 =0

An outline is not available,

There it is, our first plug-in! We'll cover more specifics about Ul classes and extension points later on.

@ Copyright IBM Corporation and others 2000, 2004.

Running Hello World 85

Views

Identifier:

org.eclipse.ui.views

Description:

This extension point is used to define additional views for the workbench. A view is a visual component
within a workbench page. It is typically used to navigate a hierarchy of information (like the workspace), ope
an editor, or display properties for the active editor. The user can make a view visible from the View menu o
close it from the view local title bar.

In order to reduce the visual clutter in the Show View Dialog, views should be grouped using categories.

Configuration Markup:

<IELEMENT extension_(category | view | stickyView)*>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
« name — an optional name of the extension instance

<IELEMENT category EMPTY>
<IATTLIST category
id CDATA #REQUIRED
name CDATA #REQUIRED
parentCategory CDATA #IMPLIED>
« id — a unique name that will be used to identify this category
* name - a translatable name that will be used in the Ul for this category

« parentCategory — an optional path composed of category IDs separated by '/'. This attribute provides
for creating category hierarchy.

<IELEMENT view (description?)>

Views 86

Welcome to Eclipse

<IATTLIST view

id CDATA #REQUIRED
name CDATA #REQUIRED
category CDATA #IMPLIED
class CDATA #REQUIRED
icon CDATA #IMPLIED

fastViewWidthRatio CDATA #IMPLIED
allowMultiple (true | false) >

* id — a unique name that will be used to identify this view

* name - a translatable name that will be used in the Ul for this view

« category — an optional attribute that is composed of the category IDs separated by '/'. Each referenc
category must exist prior to being referenced in this attribute.

« class - a fully qualified name of the class that implements org.eclipse.ui.lViewPart. A
common practice is to subclass org.eclipse.ui.part.ViewPart in order to inherit the
default functionality.

* icon — a relative name of the icon that will be associated with the view.

« fastViewWidthRatio — the percentage of the width of the workbench that the view will take up as an
active fast view. This must be defined as a floating point value and lie between 0.05 and 0.95. If no
value is supplied, a default ratio will be used.

« allowMultiple — flag indicating whether this view allows multiple instances to be created using
IWorkbenchPage.showView(String id, String secondaryld). The default is false.

<IELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the view.

<IELEMENT stickyView EMPTY>
<IATTLIST stickyView

id CDATA #REQUIRED

location (RIGHT|LEFT|TOP|BOTTOM)
closeable (true | false)

moveable (true | false) >

Views 87

Welcome to Eclipse

A sticky view is a view that will appear by default across all perspectives in a window once it is opened. Its
initial placement is governemed by the location attribute, but nothing prevents it from being moved or closed
by the user. Use of this element will only cause a placeholder for the view to be created, it will not show the
view. Please note that usage of this element should be done with great care and should only be applied to
views that truely have a need to live across perspectives. Since 3.0

id — the id of the view to be made sticky.

location — optional attribute that specifies the location of the sticky view relative to the editor area. If
absent, the view will be docked to the right of the editor area.

closeable — optional attribute that specifies wether the view should be closeable. If absent it will be
closeable.

moveable — optional attribute that specifies wether the view should be moveable. If absent it will be
moveable.

Examples:

The following is an example of the extension point:

<extension point=
"org.eclipse.ui.views"

>

<category id=
"com.xyz.views.XYZviews"
name=

"XYZz"

>

</category>

<view id=
"com.xyz.views.XYZView"
name=

"XYZ View"

category=

Views 88

Welcome to Eclipse

"com.xyz.views.XYZviews"
class=
"com.xyz.views.XYZView"
icon=

"icons/XYZ.gif"

>

</view>

</extension>

The following is an example of a sticky view declaration:

<extension point=

"org.eclipse.ui.views"

>

<stickyView id=

"com.xyz.views.XYZView"

/>

</extension>

AP Information:

The value of the class attribute must be a fully qualified name of the class that implements

org.eclipse.ui.lViewPart. It is common practice to subclass
org.eclipse.ui.part.ViewPart when developing a new view.

Supplied Implementation:

The workbench provides a number of standard views including Navigator, Properties, Outline and Tasks.
From the user point of view, these views are no different from any other view provided by the plug-ins. All
the views can be shown from the "Show View" submenu of the "Window" menu. The position of a view is
persistent: it is saved when the view is closed and restored when the view is reopened in a single session. T
position is also persisted between workbench sessions.

Copyright (c) 2002, 2004 IBM Corporation and others.

Views 89

Welcome to Eclipse

All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Beyond the basics

Hopefully you've gotten a flavor of how you can contribute code in the form of an extension, and package th
functionality into a plug—in. From here, you can start diving into more detail:

« Basic workbench extension points
* Workbench menu contributions

» Advanced workbench concepts
» Workbench wizard extension points

A complete list of extension points can be found in the Platform Extension Point Reference.

© Copyright IBM Corporation and others 2000, 2004.

Basic workbench extension points

The workbench defines extension points that allow plug—ins to contribute behaviors to existing views and
editors or to provide implementations for new views and editors. We are going to take a look at the
contributions to these extension points from one of the workbench sample applications, the readme tool.

The readme tool is a plug—in that provides custom editing and navigation for a specific resource , a .readme
file. The example shows many typical (but simplified) ways that extensions can be used to provide specializ
tools.

The readme tool contributes to the menus of the navigator view, adds editor related actions to the workbenc

menus and tool bar, defines a custom view and content outliner, and defines markers and marker resolution
The figure below shows some of the customized features added to the workbench by the readme tool.

Beyond the basics 90

http://www.eclipse.org/legal/cpl-v10.html

Welcome to Eclipse

Editor toolbar
actions

Action set

actions Custom editor

View action

& Resource - sample.readme - Eclipse Platform
File Edit Navigatearch Project Readme

Run Window Help

£ [Resource

T5-Mavigator &3

122

+ b‘J MyServiet
SAMPLE README FILE

- 1= MyWeb
=~ images
=] .project 1. SECTION 1
& index.html This text is a placeholder for the sectic
Wsamplel.readme 1.1 Subhsection

This text is a placeholder for the suk
2. SECTION 2

=5 This text is a placeholder for the sectic
m a bit longer in order to sSpan two lines. ¥

1. SECTION 1 < \ >
1.1 Subsection = =
2. SECTION 2 Tasks |[w¥Readme Sections 52 =

2.1 Subsection
2.2 Subsection

\

\
Content outliner Custom view

The readme tool also contributes preference and properties pages to the workbench. Later we'll also look at
some wizard contributions_in Dialogs and wizards.

The readme tool is located in the org.eclipse.ui.examples.readmetool package. The readmetool.jar and
plugin.xml can be found in the org.eclipse.ui.examples.readmetool directory underneath the plugins
directory. To follow along, you will need to make sure that you have installed the platform examples. (See
the Examples Guide for more information.)

The_readme tool implements many different workbench extensions. We will start with one of the simplest
workbench extension points, a view. We'll continue by looking at additional readme tool extensions.

© Copyright IBM Corporation and others 2000, 2004.

Beyond the basics 91

Installing the examples

Installing examples via the Update Manager

The Eclipse SDK examples are found on the Eclipse project update site at http://update.eclipse.org/updates
To locate and install them into a product:

1. Open the main update manager by clicking Help > Software Updates > Find and Install. This opens
the Install Wizard.

2. Select "Search for new features" and click Next.

3. In the sites to search page, add an update site by clicking on Add Update Site button: In the Add
Update Site dialog that opens, give the site the name "Eclipse.org" and URL
"http://update.eclipse.org/updates”. Note: this step is not needed if the site is already there.

4. Click Next and wait for the search results to return all the features found on that site.

5. Select the SDK Examples feature and click Next.

6. Accept the license and click Next.

7. Select the directory into which the example feature is to be installed and hit Next.

8. Click Install to allow the downloading and installing to proceed.

9. Click Yes when asked to exit and restart the workbench for the changes to take effect. The example:
are now installed in the workbench. Note: you can also click on Apply Now to dynamically install the
examples into the current configuration.

Installing examples manually

To install the examples without the Update Manager, download the appropriate Eclipse SDK Example zip fil
from the Eclipse project web site at http://www.eclipse.org/downloads.

The workbench should not be running while the examples are being installed. Extract the contents of the zi
file to the root directory of your Eclipse installation.

For example, if you installed the Eclipse Project SDK on d:\eclipse—sdk\ then extract the contents of the
examples zip file to d:\eclipse—sdk\ (the subdirectories named eclipse should line up).

Start the workbench. The workbench will report that updates have been detected; accept them. The exampl
are now installed in the workbench.

You can verify that examples have been installed by looking for File > New > Example... in the workbench
menu bar.

© Copyright IBM Corporation and others 2000, 2004.

Example — Readme Tool

Introduction

The Readme editor shows how to define your own extension points for use by other plugins. It also shows
how to create extensions for resource popup menu entries, new resource wizards, file editors on an extensi

Installing the examples 92

http://update.eclipse.org/updates
http://update.eclipse.org/updates
http://www.eclipse.org/downloads

Welcome to Eclipse

(.readme), a custom view and property pages.

Running the example

To start using this example create a file with the .readme extension using the file creation wizard or create o
using the example creation wizard. The additional view provided by this example can be seen by selecting
Window > Show View > Other and expanding the Readme section. The view action can be seen by clicking
on the readme icon on the Navigator View.

Creating a new readme file

Create a new file with file extension .readme. From the File menu, select New and then select Other... from
the sub menu. Click on Simple in the wizard, then select File in the list on the left. Click on Next to supply
the file name (make sure the extension is .readme) and the folder in which the file should be contained.
Example creation wizards

From the File menu, select New and from the sub menu select Example... Now select Example Creation
Wizards. Select Readme File. Click Next. Select the folder in which you want the file to be created. Type the
name of the file with a .readme extension. Click Finish.

Readme view extension action

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension.
On the local toolbar of the Navigator View, you will see a button whose hover help says Run Readme View
Extension. Click on this button. A dialog will popup saying View Action executed.

Popup menus

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension
Select the file to bring up the popup menu. Notice there is a menu item that says Show Readme Action in tt
popup menu. Choose this menu item to open a dialog that says Popup Menu Action Executed.

Preference page

From the Window menu, select Preferences. Click on the page called Readme Example. This shows an
example of a preference page.

Property page

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension
Select the file to bring up the popup menu, then select the Properties menu item. Click on the page called
Readme Tool to see an example of a property page.

Readme file editor

The Readme File Editor is the default editor for files of type *.readme. Create a file with extension .readme
and open the file by double clicking on it, or by bringing up the popup menu, selecting Open With, then

selecting Readme File Editor from the sub menu. Notice the editor has an icon with a pencil. This is the
editor that the readme tool uses by default for files of type *.readme.

Running the example 93

Welcome to Eclipse

Readme Editor Actions

This demonstrates an example of actions that are applicable only to a particular editor. When a readme file
editor has focus, notice 4 additional tool bar buttons — Run Readme Editor Extension, Readme Editor Actior
1, Readme Editor Action 2, Readme Editor Action 3.

A pull down menu named Readme appears when a readme file editor has focus. It contains the actions
previously described: Readme Editor Action 1, Readme Editor Action 2, Readme Editor Action 3.

Readme sections view

To see this Readme Sections view, from the Window menu select Show View, then select Other... from the
sub menu. Expand the Readme item and then select Readme Sections. This will show a list of the section:
the current *.readme file when a .readme file is selected in the Navigator View. You can also see the structt
of a *.readme file in the Outline view.

A file with extension .readme can be broken down into sections when each section begins with a number. F
example, if the following text were entered into the readme file editor, the readme tool would detect 2
sections. To see how sections are detected in the readme tool, type some text in the readme file editor, sav
the file by either typing CTRL-S or selecting File->Save. Open the Readme Sections view and select the
.readme file in the Navigator View.

Example text:

99.1 This is my first section
This is some text in my first section.

99.1.1 This is a sub section
This is some text in my sub-section.

Drag and Drop

The Drag and Drop functionality can be seen by selecting a section in the Outline View and dragging the
selection over top of a text file. The contents of the selection will be appended to the file.

Help contribution

The readme tool example also demonstrates how to use and implement context help on all of the extension:
supplies — a view, various actions and a wizard page. To get context help on an action, hover over the men
item, but do no select it, then hit the F1 key. You can also get context sensitive (F1) help on the Readme
Sections view and the Example Creation Wizards page (in the New wizard).

Detalls

The Readme Tool example declares one extension point and supplies a number of extensions. The extensi
supplied are quite comprehensive in understanding how the Workbench functions, as it utilizes a number of
the more interesting extension points declared by the workbench. Supplied extensions included in this
example are views and view actions, preference pages, property pages, wizards, editors and editor actions,
popup menus, action sets, help contributions, help contexts, and drop actions.

Running the example 94

Welcome to Eclipse

This example also supplies an extension point declared in the plug-in.. The class IReadmeFileParser is
required for any plug—in that uses the org.eclipse.ui.examples.readmetool.sectionParser extension that this
example defines. The class DefaultSectionParser is an example implementation of IReadmeFileParser.

The class ReadmeEditor implements IEditorPart and is defined as an editor on files with the extension
.readme in the plugin.xml using the org.eclipse.ui.editors extension point. The class ReadmeSectionsView
implements IViewPart and is defined as a view using the org.eclipse.ui.views extension point. This extensiol
point also defines a category for the view for use in view selection.

Two types of preference settings are defined in this example, workbench preferences and resource properti
The workbench preference is defined in class ReadmePreferencePage which implements
IWorkbenchPreferencePage so that it will be added to the Window—>Preferences dialog. The class is define
in the extension point org.eclipse.ui.preferencePages in the plugin.xml. The two resource properties pages ¢
ReadmeFilePropertyPage and ReadmeFilePropertyPage2 both of which implement IWorkbenchPropertyPa
They are both defined to be invoked on the IFile type by the objectClass tag in the plugin.xml in the
org.eclipse.ui.propertyPages extension point.

The class ReadmeCreationWizard implements INewWizard and is defined in the org.eclipse.ui.newWizards
extension point in the plugin.xml. This extension point also defines the category that the wizard that is show
when the user selects File—>New->Example....

Several action stubs are added to this example. The action set declares a menu labeled Readme File Editor
be included in the workbench window menu bar using the extension point org.eclipse.ui.actionSets. It also
defines an action for the workbench toolbar and menu bar using the tags toolbarPath and menubarPath. It u
the class WindowActionDelegate which implements IWorkbenchWindowActionDelegate to implement the
action. The action for the popup menu is defined as an objectContribution by the class
PopupMenuActionDelegate in the extension point org.eclipse.ui.popupMenus. PopupMenuActionDelegate
implements I0bjectActionDelegate and uses the IWorkbenchPart provided to open a message dialog. The
view action ViewActionDelegate is defined in the extension point org.eclipse.ui.viewActions and implements
IViewActionDelegate. The View it appears in is defined by the tag targetlD which in this example is
org.eclipse.ui.views.ResourceNavigator. The editor action is defined by the class EditorActionDelegate whic
implements IEditorActionDelegate and is added using the org.eclipse.ui.editorActions extension point. The
editor that it is applied to is defined by the tag targetlD which in this example is defined on
org.eclipse.ui.examples.readmetool.ReadmeEditor.

The class ReadmeDropActionDelegate implements IDropDelegate. IDropDelegates are informed every time

there is a drop action performed in the workbench . The extension point for this action is
org.eclipse.ui.dropActions.

(C) Copyright IBM Corp. 2000, 2001.

Notices

(c) Copyright IBM Corp. 2000, 2001. All Rights Reserved.

Workbench menu contributions

We've seen several different extension points that contribute to various menus and toolbars in the workbenc
How do you know which one to use? The following table summarizes the various menu contributions and
their use.

Notices 95

Welcome to Eclipse

Extension point name

Datallc
T wAINnS

viewActions

Actions appear in a specific
view's local toolbar and local
pulldown menu.

Contribute an action class that implement
[ViewActionDelegate. Specify the id of the
contribution and the id of the target view t
should show the action. The label and ima
dictate the appearance of the action in the
The path specifies the location relative to
view's menu and toolbar items.

[72)

nat
ge
2 U,
the

editorActions

Actions are associated with an
editor and appear in the

workbench menu and/or tool bgaction in the Ul. Separate menu and toolb

Contribute an action class that implement
IEditorActionDelegate. Specify the id of

the contribution and the id of the target eq
that causes the action to be shown. The I
and image specify the appearance of the

paths specify the existence and location @
the contribution in the workbench menu a
toolbar.

5

itor
hbel

ar
f
nd

popupMenus

Actions appear in the popup men

of an editor or view. Actions
associated with an object type
show up in all popups of views
and editors that show the objec
type. Actions associated with a

specific popup menu appear ong{

in that popup menu.

Object contributions specify the type of
object for which the action should appear
a popup menu. The action will be shown i

all view and editor popups that contain the

object type. Provide an action class that
implements_10bjectActionDelegate.
iewer contributions specify the id of the

target popup menu in which the menu iter

| hould appear. Provide an action class th

implements _|EditorActionDelegate or
|ViewActionDelegate.

in

=

=

at

actionSets

Actions appear in the workbenc
main menus and toolbar. Action
are grouped into action sets. Al
actions in an action set will sho
up in the workbench menus andg
toolbars according to the user's
selection of action sets and the
current perspective shown in th
workbench. May be influenced
by actionSetPartAssociations
(below).

h
€ontribute an action class that implement

IWorkbenchWindowActionDelegate or

WVorkbenchWindowPulldownDelegate.
ISpecify the name and id of the action set.

Enumerate all of the actions that are defin
for that action set. For each action, separg
gnenu and toolbar paths specify the existeg
and location of the contribution in the
workbench menu and toolbar.

[72]

ed
nte
nce

actionSetPartAssociations

Actions sets are shown only wh
the specified views or editors ar

active. This is ignored if the user

has customized the current
perspective.

P§1pecify an action set by id and followed b
5ne or more parts (by id) that must be act
lin the current perspective in order to show
the action set.

ve

© Copyright IBM Corporation and others 2000, 2004.

Notices

96

Advanced workbench concepts

Plugging into the workbench looks at the basic workbench extension points in the context of the readme too
example. However, there are many more extension points available for contributing to the workbench.

The next topics cover additional workbench extensions and concepts that you will likely encounter once
you've implemented your plug-in and have begun to refine its function. In order to understand the next few
topics, you should already be familiar with

« Plugging into the Workbench
* JFace Ul framework

* SWT
» Resources overview

Since the readme tool does not contribute to all of these extension points, we will look at example extension
that are implemented by the platform workbench, the platform help system, and Java tooling (JDT).

© Copyright IBM Corporation and others 2000, 2004.

Advanced workbench concepts 97

Plugging into the workbench

By now, you should be quite familiar with the operation of the workbench and how it uses views and editors
to display information. If not, read the quick tour of the workbench below.

The sections following the quick tour will look at the workbench user interface from an API perspective. We
will show how a plug—-in can contribute to the workbench UI.

Quick tour of the workbench

The workbench is the cockpit for navigating all of the function provided by plug—-ins. By using the
workbench, we can navigate resources and we can view and edit the content and properties of these resout

When you open your workbench on a set of projects, it looks something like this.

& Resource - index. html - Eclipse Platform

File Edit Mavigate Search Project Run Window Help
£~ Q- |9 FY [5Resource
&5 Mavigator &2 = O @ index.html &2 8
=R -, <hl>Welcome to my web</hl>
+ IEJ MyServlet
=1 1== MyWeb
(= images
|=| .project
& index.html
- — 21,
A Tasks X =) 5 v T O
0 items
8% outline 52 =0 | | Description Resource | In Folder
An outline is not available.
< ?

The workbench is just a frame that can present various visual parts. These parts fall into two major categorit
views and editors.

« Editors allow the user to edit something in the workbench. Editors are "document-centric," much
like a file system editor. Like file system editors, they follow an open—save—-close lifecycle. Unlike
file system editors, they are tightly integrated into the workbench.

Plugging into the workbench 98

Welcome to Eclipse

* Views provide information about some object that the user is working with in the workbench. Views
often change their content as the user selects different objects in the workbench. Views often suppo
editors by providing information about the content in the active editor.

Views

The workbench provides several standard views that allow the user to navigate or view something of interes
For example, the resource navigator lets the user navigate the workspace and select resources.

‘o Mavigator &3 =08

I

v

+ IEJ MyServlet
- 1=% MyWeb
[~ images
| .project
& index.html

Editors

Editors allow the user to open, edit, and save objects. The workbench provides a standard editor for text
resources.

& index.html 22 5
<hl>Welcome to my webh</hl>

Additional editors, such as Java code editors or HTML editors, can be supplied by plug-ins

© Copyright IBM Corporation and others 2000, 2004.

Views 99

JFace: Ul framework for plug-ins

We've seen that the workbench defines extension points for plug-ins to contribute Ul function to the platforn
Many of these extension points, particularly wizard extensions, are implemented using classes in the
org.eclipse.jface.* packages. What's the distinction?

JFace is a Ul toolkit that provides helper classes for developing Ul features that can be tedious to implemen
JFace operates above the level of a raw widget system. It provides classes for handling common Ul
programming tasks:

« Viewers handle the drudgery of populating, sorting, filtering, and updating widgets.

« Actions and contributions introduce semantics for defining user actions and specifying where to
make them available.

« Image and font registries provide common patterns for handling Ul resources.

« Dialogs and wizards define a framewaork for building complex interactions with the user.

JFace frees you up to focus on the implementation of your specific plug—in's function, rather than focusing o
the underlying widget system or solving problems that are common in almost any Ul application.

JFace and the workbench

Where does JFace end and the workbench begin? Sometimes the lines aren't so obvious. In general, the JF
APIs (from the packages org.eclipse.jface.*) are independent of the workbench extension points and APIs.
Conceivably, a JFace program could be written without using any workbench code at all.

The workbench makes use of JFace but attempts to reduce dependencies where possible. For example, the
workbench part model (IWorkbenchPart) is designed to be independent of JFace. We saw earlier that views
and editors can be implemented using SWT widgets directly without using any JFace classes. The workben
attempts to remain "JFace neutral" wherever possible, allowing programmers to use the parts of JFace they
find useful. In practice, the workbench uses JFace for much of its implementation and there are references t
JFace types in API definitions. (For example, the JFace interfaces for IMenuManager, IToolBarManager,
and IStatusLineManager show up as types in the workbench IActionBar methods.)

JFace and SWT

The lines between SWT and JFace are much cleaner. SWT does not depend on any JFace or platform code
all. Many of the SWT examples show how you can build a standalone application.

JFace is designed to provide common application Ul function on top of the SWT library. JFace does not try 1
"hide" SWT or replace its function. It provides classes and interfaces that handle many of the common tasks
associated with programming a dynamic Ul using SWT.

The relationship between JFace and SWT is most clearly demonstrated by looking at viewers and their
relationship to SWT widgets.

© Copyright IBM Corporation and others 2000, 2004.

JFace: Ul framework for plug—ins 100

Standard Widget Toolkit

The Standard Widget Toolkit (SWT) is a widget toolkit for Java developers that provides a portable API and
tight integration with the underlying native OS GUI platform.

Many low level Ul programming tasks are handled in higher layers of the Eclipse platform. For example, the
plugin.xml markup for Ul contributions specifies menu and toolbar content without requiring any SWT
programming. Additionally, JFace viewers and actions provide implementations for the common interactions
between applications and widgets. However, knowledge of the underlying SWT architecture and design
philosophy is important for understanding how the rest of the platform works.

Portability and platform integration

A common issue in widget toolkit design is the tension between portable toolkits and platform integration.
The Java AWT (Abstract Window Toolkit) provides platform integrated widgets for lower level widgets such
as lists, texts, and buttons, but does not provide access to higher level platform components such as trees ¢
rich text. This forces application developers into a "least common denominator" situation in which they can
only use widgets that are available on all platforms.

The Swing toolkit attempts to address this problem by providing non—native implementations of high level
widgets like trees, tables, and text. This provides a great deal of functionality, but makes applications
developed in Swing stand out as being different. Platform look and feel emulation layers help the applicatior
look more like the platform, but the user interaction is different enough to be noticed. This makes it difficult
to use emulated toolkits to build applications that compete with shrink—wrapped applications developed
specifically for a particular OS platform.

SWT addresses this problem by defining a common portable API that is provided on all supported platforms
and implementing the API on each platform using native widgets wherever possible. This allows the toolkit t
immediately reflect any changes in the underlying OS GUI look and feel while maintaining a consistent
programming model on all platforms.

The "least common denominator" problem is solved by SWT in several ways:

 Features that are not available on all platforms but are generally useful for the workbench and toolin
plug-ins can be emulated on platforms that provide no native support. For example, the OSF/Motif
2.1 widget toolkit does not contain a tree widget, so SWT provides an emulated tree widget on Motif
2.1 that is APl compatible with the Windows native implementation.

 Features that are not available on all platforms but are not widely used can be omitted from SWT. Fc
example, Windows provides a widget that implements a calendar, but this is not provided in SWT.

 Features that are specific to a platform, such as ActiveX integration, are only provided on the relevar
platform. Platform specific features are separated into separate packages that clearly denote the
platform name in the package.

Consistency with the platform

Platform integration is not strictly a matter of look and feel. Tight integration includes the ability to interact
with native desktop features such as drag and drop, to integrate with OS desktop applications, and to use
components developed with OS component models like Win32 ActiveX.

Standard Widget Toolkit 101

Welcome to Eclipse

SN sWT ActiveX support is discussed in the article ActiveX Support in SWT.

Consistency is also achieved in the code itself by providing an implementation that looks familiar to the nativ
OS developer. Rather than hide OS differences in native C code or attempt to build portable and non—portal
layers in the Java implementation, SWT provides separate and distinct implementations in Java for each
platform.

One important implementation rule is that natives in C map one—to—one with calls to the OS. A Windows
programmer will immediately recognize the implementation of the SWT toolkit on Windows, because it uses
natives that directly map to the system calls used in C. None of the "platform magic" is hidden in C code. A
platform developer can eyeball the code and know exactly which platform calls are executed by the toolkit.
This greatly simplifies debugging. If a failure occurs when calling a native method, calling the platform API
with the same parameters from C code will exhibit the same failure. (A complete discussion of this issue ca

be found in SWT Implementation Strategy for Java Natives.)

© Copyright IBM Corporation and others 2000, 2004.

Standard Widget Toolkit 102

http://www.eclipse.org/articles/Article-ActiveX%20Support%20in%20SWT/ActiveX%20Support%20in%20SWT.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

Resources overview

An essential plug—in for Eclipse IDE applications is the resources plug-in (named
org.eclipse.core.resources). The resources plug-in provides services for accessing the projects, folders, an
files that a user is working with.

© Copyright IBM Corporation and others 2000, 2004.

Workbench wizard extension points

The workbench defines extension points for wizards that create new resources, import resources, or export
resources.

When you make selections in the new, import, or export menu, the workbench uses various wizard selectior
dialogs to display all the wizards that have been contributed for that particular extension point. The import
wizard dialog is shown below.

Select

Import resources from the local file system N \d

Select an import source:

¥ Checkout Projects from CYS

% Existing Ant BuildFile

[Existing Project into Workspace
LgkExternal Features

%, External Plug-ins and Fragments
%,Team Project Set

[, zip file

I MNext = | Cancel

Your wizard takes control once it is selected in the list and the Next button is pressed. This is when your firs
page becomes visible.

Resources overview 103

Welcome to Eclipse

© Copyright IBM Corporation and others 2000, 2004.

Resources overview 104

Platform Extension Points

The following extension points can be used to extend the capabilities of the platform infrastructure:
Platform runtime

« org.eclipse.core.runtime.adapters

« org.eclipse.core.runtime.applications
« org.eclipse.core.runtime.contentTypes
« org.eclipse.core.runtime.preferences

« org.eclipse.core.runtime.products

Workspace

« org.eclipse.core.resources.builders

« org.eclipse.core.resources.fileModificationValidator
« org.eclipse.core.resources.markers

« org.eclipse.core.resources.moveDeleteHook

« org.eclipse.core.resources.natures

« org.eclipse.core.resources.refreshProviders

« org.eclipse.core.resources.teamHook

Platform text

« org.eclipse.core.filebuffers.annotationModelCreation

« org.eclipse.core. filebuffers.documentCreation

« org.eclipse.core.filebuffers.documentSetup

« org.eclipse.ui.editors.annotationTypes

« org.eclipse.ui.editors.documentProviders

« org.eclipse.ui.editors.markerAnnotationSpecification

« org.eclipse.ui.editors.markerUpdaters

« org.eclipse.ui.editors.templates

« org.eclipse.ui.workbench.texteditor.quickDiffReferenceProvider

Workbench

« org.eclipse.ui.acceleratorConfigurations

« org.eclipse.ui.acceleratorScopes

« org.eclipse.ui.acceleratorSets

« org.eclipse.ui.actionDefinitions

« org.eclipse.ui.actionSetPartAssociations

« org.eclipse.ui.actionSets

« org.eclipse.ui.activities

« org.eclipse.ui.cheatsheets.cheatSheetContent
« org.eclipse.ui.cheatsheets.cheatSheetltemExtension
* org.eclipse.ui.commands

* org.eclipse.ui.contexts

« org.eclipse.ui.decorators

« org.eclipse.ui.dropActions

Platform Extension Points 105

Welcome to Eclipse

« org.eclipse.ui.editorActions

« org.eclipse.ui.editors

« org.eclipse.ui.elementFactories

« org.eclipse.ui.exportWizards

« org.eclipse.ui.fontDefinitions

« org.eclipse.ui.helpSupport

« org.eclipse.ui.ide.markerHelp

« org.eclipse.ui.ide.markerlmageProviders
« org.eclipse.ui.ide.markerResolution

« org.eclipse.ui.ide.projectNaturelmages
« org.eclipse.ui.ide.resourceFilters

« org.eclipse.ui.importWizards

* org.eclipse.ui.intro

« org.eclipse.ui.intro.config

« org.eclipse.ui.intro.configExtension

« org.eclipse.ui.newWizards

« org.eclipse.ui.perspectiveExtensions

« org.eclipse.ui.perspectives

* org.eclipse.ui.popupMenus

« org.eclipse.ui.preferencePages

« org.eclipse.ui.presentationFactories

« org.eclipse.ui.propertyPages

« org.eclipse.ui.startup

« org.eclipse.ui.systemSummarySections
« org.eclipse.ui.themes

« org.eclipse.ui.viewActions

« org.eclipse.ui.views

« org.eclipse.ui.workingSets

Team

« org.eclipse.team.core. fileTypes

« org.eclipse.team.core.ignore

« org.eclipse.team.core.projectSets

« org.eclipse.team.core.repository

« org.eclipse.team.ui.configurationWizards

« org.eclipse.team.ui.synchronizePatrticipants
« org.eclipse.team.ui.synchronizeWizards

Debug

« org.eclipse.debug.core.breakpoints

« org.eclipse.debug.core.launchConfigurationComparators
« org.eclipse.debug.core.launchConfigurationTypes

« org.eclipse.debug.core.launchDelegates

« org.eclipse.debug.core.launchers

« org.eclipse.debug.core.launchMaodes

« org.eclipse.debug.core.logicalStructureTypes

« org.eclipse.debug.core.processFactories

« org.eclipse.debug.core.sourceContainerTypes

Team 106

Welcome to Eclipse

« org.eclipse.debug.core.sourcel.ocators

« org.eclipse.debug.core.sourcePathComputers

« org.eclipse.debug.core.statusHandlers

« org.eclipse.debug.core.watchExpressionDelegates
« org.eclipse.debug.ui.consoleColorProviders

« org.eclipse.debug.ui.consoleLineTrackers

« org.eclipse.debug.ui.contextViewBindings

« org.eclipse.debug.ui.debugModelContextBindings

« org.eclipse.debug.ui.debugModelPresentations

« org.eclipse.debug.ui.launchConfigurationTabGroups
« org.eclipse.debug.ui.launchConfigurationTypelmages
« org.eclipse.debug.ui.launchGroups

« org.eclipse.debug.ui.launchShortcuts

« org.eclipse.debug.ui.sourceContainerPresentations
« org.eclipse.debug.ui.stringVariablePresentations

Help

« org.eclipse.help.contentProducer

« org.eclipse.help.contexts

« org.eclipse.help.toc

« org.eclipse.help.base.browser

« org.eclipse.help.base.luceneAnalyzer

Other

« org.eclipse.ant.core.antProperties

« org.eclipse.ant.core.antTasks

« org.eclipse.ant.core.antTypes

« org.eclipse.ant.core.extraClasspathEntries

« org.eclipse.compare.contentMergeViewers
« org.eclipse.compare.contentViewers

« org.eclipse.compare.streamMergers

« org.eclipse.compare.structureCreators

« org.eclipse.compare.structureMergeViewers
« org.eclipse.core.expressions.propertyTesters
« org.eclipse.core.variables.dynamicVariables
« org.eclipse.core.variables.valueVariables

« org.eclipse.search.searchPages

« org.eclipse.search.searchResultSorters

« org.eclipse.search.searchResultViewPages

« org.eclipse.ui.externaltools.configurationDuplicationMaps

« org.eclipse.update.core.featureTypes
» org.eclipse.update.core.installHandlers
« org.eclipse.update.core.siteTypes

© Copyright IBM Corporation and others 2000, 2004.

Help

107

Adapters

Identifier:

org.eclipse.core.runtime.adapters

Since:

3.0

Description:
The adapters extension point allows plug—ins to declaratively register adapter factories. This information is
used to by the runtime XML expression language to determine existence of adapters without causing plug-i

to be loaded. Registration of adapter factories via extension point eliminates the need to manually register
adapter factories when a plug-in starts up.

Configuration Markup:

<IELEMENT extension_(factory+)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT factory (adapter+)>
<IATTLIST factory
adaptableType CDATA #REQUIRED
class CDATA #REQUIRED>
 adaptableType — The fully qualified name of a class (typically implementing |IAdaptable) that this
factory provides adapters for.

« class — The fully qualified hame of the adapter factory class. Must implement
org.eclipse.core.runtime.lAdapterFactory.

<IELEMENT adapter EMPTY>
<IATTLIST adapter

type CDATA #REQUIRED>

Adapters 108

Welcome to Eclipse

« type — The fully qualified name of a Java class or interface that this factory can adapt to.

Examples:

Following is an example of an adapter declaration. This example declares that this plug—in will provide an
adapter factory that will adapt objects of type IFile to objects of type MyFile.

<extension point=
"org.eclipse.core.runtime.adapters"
>

<factory class=
"com.xyz.MyFileAdapterFactory"
adaptableType=
"org.eclipse.core.resources.|File"
>

<adapter type=

"com.xyz.MyFile"

/>

</factory>

</extension>

API Information:

Adapter factories registered using this extension point can be queried using the method
IAdapterManager.hasAdapter, or retrieved using one of the getAdapter methods on

IAdapterFactory. An adapter factory registered with this extension point does not need to be registered
at runtime using IAdapterFactory.registerAdapters.

Supplied Implementation:

Several plug-ins in the platform provide adapters for a number of different IAdaptable objects.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th

Adapters 109

Welcome to Eclipse

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl-v10.html

Adapters 110

http://www.eclipse.org/legal/cpl-v10.html

Applications

Identifier:

org.eclipse.core.runtime.applications

Description:

Platform runtime supports plug-ins which would like to declare main entry points. That is, programs which
would like to run using the platform runtime but yet control all aspects of execution can declare themselves
an application. Declared applications can be run directly from the main platform launcher by specifying the
—application argument where the parameter is the id of an extension supplied to the applications extension

point described here. This application is instantiated and run by the platform. Platform clients can also use tl
platform to lookup and run multiple applications.

Configuration Markup:

<IELEMENT extension_(application)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #REQUIRED

name CDATA #IMPLIED>

<IELEMENT application (run?)>

<IELEMENT run (parameter*)>
<IATTLIST run
class CDATA #REQUIRED>

« class - the fully—qualified name of a class which implements
org.eclipse.core.runtime.lPlatformRunnable.

<IELEMENT parameter EMPTY>
<IATTLIST parameter

name CDATA #REQUIRED

Applications 111

Welcome to Eclipse

value CDATA #REQUIRED>

* name - the name of this parameter made available to instances of the specified application class
« value - the value of this parameter made available to instances of the specified application class

Examples:

Following is an example of an application declaration:

<extension id=
"coolApplication”

point=
"org.eclipse.core.runtime.applications"
>

<application>

<run class=
"com.xyz.applications.Cool"
>

<parameter name=
"optimize"

value=

"true”

/>

</run>

</application>

</extension>
API Information:
The value of the class attribute must represent an implementor of

org.eclipse.core.runtime.lPlatformRunnable.

Applications 112

Welcome to Eclipse

Supplied Implementation:

The platform supplies a number of applications including the platform workbench itself.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Applications 113

http://www.eclipse.org/legal/cpl-v10.html

Content Types

Identifier:

org.eclipse.core.runtime.contentTypes

Since:

3.0

Description:

The content types extension point allows plug—-ins to contribute to the platform content type catalog. There ¢
two forms of contributions: content types and file associations.

« a content type represents a file format and its naming conventions. Content types can be defined fro
scratch, or can inherit from existing ones, specializing them

« a file association extends an existing content type by associating new file names and/or extensions t
it

Configuration Markup:

<IELEMENT extension_(content-type* , file—association*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT content-type_(describer?)>
<IATTLIST content-type

id CDATA #REQUIRED
base-type CDATA #IMPLIED

name CDATA #REQUIRED
file—extensions CDATA #IMPLIED

file—names CDATA #IMPLIED

Content Types 114

Welcome to Eclipse

priority (low|normal|high) "normal"
default-charset CDATA #IMPLIED>

« id - the identifier for this content type (simple id token, unique for content types within the extension
namespace). The token cannot contain dot (.) or whitespace

» base-type - the fully qualified identifier of this content type's base type. This content type will
inherit its base type's file associations, content describer and default charset, unless they are redefin

* name - the human-readable name of this content type

« file—extensions — a comma-separated list of file extensions to be associated with this content type

« file—-names — a comma-separated list of file names to be associated with this content type

« priority — the priority for this content type. Priorities are used to solve conflicts (when two content
types are associated to the same file name/extension)

« default-charset - the default charset for this content type, or an empty string, if this content type
should not have a default charset even if the parent has one

<IELEMENT describer (parameter*)>
<IATTLIST describer
class CDATA #REQUIRED>
« class - the fully qualified name of a class that implements
org.eclipse.core.runtime.content.IContentDescriber or

org.eclipse.core.runtime.content.I TextContentDescriber, or an empty string,
if this content type should not have a describer even if the parent has one

<IELEMENT file-association EMPTY>
<IATTLIST file—association
content-type CDATA #REQUIRED
fle-names CDATA #IMPLIED
file—extensions CDATA #IMPLIED>
« content-type - the fully qualified identifier for the content type this file association contributes to

« file—-names — a comma-separated list of file names to be associated with the target content type
« file—extensions — a comma-separated list of file extensions to be associated with the target content

type

<IELEMENT parameter EMPTY>
<IATTLIST parameter

Content Types 115

Welcome to Eclipse

name CDATA #REQUIRED
value CDATA #REQUIRED>

* name - the name of this parameter made available to instances of the specified application class
« value - the value of this parameter made available to instances of the specified application class

Examples:

Following is an example of a XML-based content type declaration using the
XMLRootElementContentDescriber (a built—in describer):

<extension point=
"org.eclipse.core.runtime.contentTypes"
>

<content-type id=

"ABC"

base-type=

"org.eclipse.core.runtime.xml

file—extensions=

a,b,c
>
<describer class=

"org.eclipse.core.runtime.content. XMLRootElementContentDescriber"
>

<param name=

"element”

value=

abc

/>

Content Types 116

Welcome to Eclipse

</describer>
</content-type>
</extension>

Here is an example of a simple text-based content type that has a specific file extension:

<extension point=
"org.eclipse.core.runtime.contentTypes"
>

<content-type id=

"MyText"

base-type=
"org.eclipse.core.runtime.text"
file—extensions=

"mytxt"

/>

</extension>

In a case like the example above, when we are just trying to associate new file names/extensions to an exis
content type, to contribute a file association is usually the best thing to do:

<extension point=
"org.eclipse.core.runtime.contentTypes"
>

<file—association content-type=
"org.eclipse.core.runtime.text"
file—extensions=

"mtht"

Content Types 117

Welcome to Eclipse

/>
</extension>
API Information:

The value of the class attribute in the describer element must represent an implementor of
org.eclipse.core.runtime.content.IContentDescriber or
org.eclipse.core.runtime.content.ITextContentDescriber.

Supplied Implementation:
The org.eclipse.core.runtime plug-in provides the following content types:

« org.eclipse.core.runtime.text
« org.eclipse.core.runtime.xml

Other plug-ins in the platform contribute other content types.
Also, the org.eclipse.core.runtime plug—in provides ready—to—use implementations of content describers:

« org.eclipse.core.runtime.content. XMLRootElementContentDescriber
« org.eclipse.core.runtime.content.BinarySignatureDescriber

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Content Types 118

http://www.eclipse.org/legal/cpl-v10.html

Preferences

Identifier:
org.eclipse.core.runtime.preferences
Since:

3.0

Description:

The preferences extension point allows plug-ins to add new preference scopes to the Eclipse preference
mechanism as well as specify the class to run to initialize default preference values at runtime.

Configuration Markup:

<IELEMENT extension_(scope?* , initializer*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT scope EMPTY>
<IATTLIST scope

name CDATA #REQUIRED
class CDATA #REQUIRED>

Element describing a client's definiton of a new preference scope.

* name - The name of the scope.
« class — The name of the class.

<IELEMENT initializer EMPTY>
<IATTLIST initializer

class CDATA #REQUIRED>

Preferences 119

Welcome to Eclipse

Element which defines the class to use for runtime preference initialization.

 class — The name of the class.

Examples:
Following is an example of a preference scope declaration. This example declares that this plug-in will
provide a preference implementation for the scope "foo". It also declares that when the default values are

loaded for this plug-in, the class "MyPreferencelnitializer" contains code to be run to initialize preference
default values at runtime.

<extension point=
"org.eclipse.core.runtime.preferences”

>

<scope name=
"foo"

class=

"com.example.FooPrefs"

/>

<initializer class=
"com.example.MyPreferencelnitializer"

/>

</extension>

API Information:

The preference service (obtained by calling

org.eclipse.core.runtime.Platform.getPreferencesService()) is the hook into the
Eclipse preference mechanism.

Supplied Implementation:

The org.eclipse.core.runtime plug-in provides preference implementations for the "configuration”, "instance'
and "default" scopes. The org.eclipse.core.resources plug—in provides an implementation for "project"

preferences.

Preferences 120

Welcome to Eclipse

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Preferences 121

http://www.eclipse.org/legal/cpl-v10.html

Products

Identifier:

org.eclipse.core.runtime.products

Since:

3.0

Description:

Products are the Eclipse unit of branding. Product extensions are supplied by plug-ins wishing to define one
or more products. There must be one product per extension as the extension id is used in processing and
identifying the product.

There are two possible forms of product extension, static and dynamic. Static product extensions directly

contain all relevant information about the product. Dynamic product extensions identify a class (an
IProductProvider) which is capable of defining one or more products when queried.

Configuration Markup:

<IELEMENT extension ((product | provider))>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT product (property*)>
<IATTLIST product
application CDATA #REQUIRED
name CDATA #REQUIRED
description CDATA #IMPLIED>
« application - the default application to run when running this product

* name - the human-readable name of this product
« description — the human-readable description of this product

<IELEMENT property EMPTY>

Products 122

Welcome to Eclipse

<IATTLIST property
name CDATA #REQUIRED
value CDATA #REQUIRED>

« name - the key under which this property is stored
« value — the value of this property

<IELEMENT provider (run)>

details of a product provider

<IELEMENT run EMPTY>
<IATTLIST run
class CDATA #REQUIRED>

« class - the fully—qualified name of a class which implements
org.eclipse.core.runtime.lProductProvider.

Examples:

Following is an example of static product declaration:

<extension id=

"coolProduct”

point=
"org.eclipse.core.runtime.products”
>

<product name=

"%coolName"

application=

Products

123

Welcome to Eclipse

"coolApplication”
description=
"%coolDescription"
>

<property name=
"windowlmage"
value=
"window.gif"

/>

<property name=
"aboutimage"
value=
"image.gif"

/>

<property name=
"aboutText"
value=
"%aboutText"

/>

<property name=
"appName"
value=
"CoolApp"

/>

<property name=
"welcomePage"

Products 124

Welcome to Eclipse

value=
"ni/welcome.xml"

/>

<property name=
"preferenceCustomization”
value=
"plugin_customization.ini"
/>

</product>

</extension>

The following is an example of a dynamic product (product provider) declaration: Following is an example of
an application declaration:

<extension id=

"coolProvider"

point=
"org.eclipse.core.runtime.products”
>

<provider>

<run class=
"com.example.productProvider"

/>

</provider>

</extension>

API Information:

Static product extensions provided here are represented at runtime by instances of IProduct. Dynamic
product extensions must identify an implementor of IProductProvider. See

Products 125

Welcome to Eclipse

org.eclipse.ui.branding.IProductConstants for details of the branding related product
properties defined by the Eclipse Ul.

Supplied Implementation:

No implementations of IProductProvider are supplied.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Products 126

http://www.eclipse.org/legal/cpl-v10.html

Incremental Project Builders

Identifier:
org.eclipse.core.resources.builders
Description:

The workspace supports the notion of an incremental project builder (or "builder" for short"). The job of a
builder is to process a set of resource changes (supplied as a resource delta). For example, a Java builder
would recompile changed Java files and produce new class files.

Builders are confgured on a per—project basis and run automatically when resources within their project are
changed. As such, builders should be fast and scale with respect to the amount of change rather than the
number of resources in the project. This typically implies that builders are able to incrementally update their
"built state”.

The builders extension—point allows builder writers to register their builder implementation under a symbolic
name that is then used from within the workspace to find and run builders. The symbolic name is the id of th

builder extension. When defining a builder extension, users are encouraged to include a human-readable
value for the "name" attribute which identifies their builder and potentially may be presented to users.

Configuration Markup:

<IELEMENT extension_(builder)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT builder (run?)>
<IATTLIST builder
hasNature (true | false) >
« hasNature — "true" or "false" indicating whether the builder is owned by a project nature. If

"true" and no corresponding nature is found, this builder will not run but will remain in the project's
build spec. If the attribute is not specified, it is assumed to be "false".

Incremental Project Builders 127

Welcome to Eclipse

<IELEMENT run (parameter*)>
<IATTLIST run
class CDATA #REQUIRED>

« class - the fully—qualified name of a subclass of
org.eclipse.core.resources.IncrementalProjectBuilder.

<IELEMENT parameter EMPTY>
<IATTLIST parameter
name CDATA #REQUIRED
value CDATA #REQUIRED>
* name - the name of this parameter made available to instances of the specified builder class

« value — an arbitrary value associated with the given name and made available to instances of the
specified builder class

Examples:

Following is an example of a builder configuration:

<extension id=

"coolbuilder"

name=

"Cool Builder"

point=
"org.eclipse.core.resources.builders"
>

<builder hasNature=

"false"

>

Incremental Project Builders 128

Welcome to Eclipse

<run class=
"com.xyz.builders.Cool"
>

<parameter name=
"optimize"

value=

"true"

/>

<parameter name=
"comment"

value=

"Produced by the Cool Builder"
/>

</run>

</builder>
</extension>

If this extension was defined in a plug—in with id "com.xyz.coolplugin", the fully qualified name of this
builder would be "com.xyz.coolplugin.coolbuilder".

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.core.resources.IncrementalProjectBuilder.

Supplied Implementation:

The platform itself does not have any predefined builders. Particular product installs may include builders as
required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Incremental Project Builders 129

http://www.eclipse.org/legal/cpl-v10.html

File Modification Validator

Identifier:

org.eclipse.core.resources.fileModificationValidator

Description:

For providing an implementation of an IFileModificationValidator to be used in the validate—edit and

validate—save mechanism. This extension point tolerates at most one extension.

Configuration Markup:

<IELEMENT extension_(fileMaodificationValidator?)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT fileModificationValidator EMPTY>
<IATTLIST fileModificationValidator
class CDATA #REQUIRED>

« class - a fully qualified name of a class which implements
org.eclipse.core.resources.|FileMaodificationValidator.

Examples:

The following is an example of using the fileModificationValidator extension point:

<extension point=
"org.eclipse.core.resources.fileModificationValidator"

>

File Modification Validator

130

Welcome to Eclipse
<fileModificationValidator class=
"org.eclipse.vcm.internal.VCMFileModificationValidator"

/>
</extension>
AP Information:

The value of the class attribute must represent an implementation of
org.eclipse.core.resources.|FileMaodificationValidator.

Supplied Implementation:

The Team component will generally provide the implementation of the file modification validator. The
extension point should be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

File Modification Validator 131

http://www.eclipse.org/legal/cpl-v10.html

Resource Markers

Identifier:

org.eclipse.core.resources.markers

Description:

The workspace supports the notion of markers on arbitrary resources. A marker is a kind of metadata (similc
to properties) which can be used to tag resources with user information. Markers are optionally persisted by
the workspace whenever a workspace save or snapshot is done.

Users can define and query for markers of a given type. Marker types are defined in a hierarchy which supp
multiple—inheritance. Marker type definitions also specify a number attributes which must or may be present
on a marker of that type as well as whether or not markers of that type should be persisted.

The markers extension—point allows marker writers to register their marker types under a symbolic hame th:
is then used from within the workspace to create and query markers. The symbolic name is the id of the
marker extension. When defining a marker extension, users are encouraged to include a human-readable
value for the "name" attribute which indentifies their marker and potentially may be presented to users.

Configuration Markup:

<IELEMENT extension_(super* , persistent? , attribute*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT super EMPTY>
<IATTLIST super
type CDATA #REQUIRED>

« type - the fully—qualified id of a marker super type (i.e., a marker type defined by another marker
extension)

<IELEMENT persistent EMPTY>

Resource Markers 132

Welcome to Eclipse

<IATTLIST persistent
value (true | false) >

« value — "true" or "false" indicating whether or not markers of this type should be persisted by the
workspace. If the persistent characteristic is not specified, the marker type is not persisted.

<IELEMENT attribute EMPTY>
<IATTLIST attribute
name CDATA #REQUIRED>

* name - the name of an attribute which may be present on markers of this type

Examples:

Following is an example of a marker configuration:

<extension id=

"com.xyz.coolMarker"

point=
"org.eclipse.core.resources.markers"
name=

"Cool Marker"

>

<persistent value=

"true"

/>

<super type=
"org.eclipse.core.resources.problemmarker"

/>

Resource Markers 133

Welcome to Eclipse
<super type=
"org.eclipse.core.resources.textmarker"
/>
<attribute name=
"owner"
/>
</extension>
API Information:

All markers, regardless of their type, are instances of org.eclipse.core.resources.IMarker.

Supplied Implementation:

The platform itself has a number of pre—defined marker types. Particular product installs may include
additional markers as required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Resource Markers 134

http://www.eclipse.org/legal/cpl-v10.html

Auto-refresh providers

Identifier:

org.eclipse.core.resources.refreshProviders

Since:

3.0

Description:
The workspace supports a mode where changes that occur in the file system are automatically detected anc
reconciled with the workspace in memory. By default, this is accomplished by creating a monitor that polls

the file system and periodically searching for changes. The monitor factories extension point allows clients t
create more efficient monitors, typically by hooking into some native file system facility for change callbacks

Configuration Markup:

<IELEMENT extension _(refreshProviders)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT refreshProvider EMPTY>
<IATTLIST refreshProvider
name CDATA #REQUIRED
class CDATA #REQUIRED>
* name — A human-readable name for the monitor factory

« class — The fully qualified hame of a class implementing
org.eclipse.core.resources.refresh.RefreshProvider.

Examples:

Following is an example of an adapter declaration. This example declares that this plug—in will provide an
adapter factory that will adapt objects of type IFile to objects of type MyFile.

Auto-refresh providers 135

Welcome to Eclipse

<extension id=

"coolProvider"

point=
"org.eclipse.core.resources.refreshProviders"
>

<refreshProvider name=

"Cool Refresh Provider"

class=
"com.xyz.CoolRefreshProvider"
>

</refreshProvider>

</extension>

API Information:

Refresh provider implementations must subclass the abstract type RefreshProvider in the
org.eclipse.core.resources.refresh package. Refresh requests and failures should be forward
to the provide IRefreshResult. Clients must also provide an implementation of IRefreshMonitor
through which the workspace can request that refresh monitors be uninstalled.

Supplied Implementation:

The org.eclipse.core.resources.win32 fragment provides a native refresh monitor that uses
win32 file system notification callbacks. The workspace also supplies a default naive polling—based monitor
that can be used for file systems that do not have native refresh callbacks available.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Auto-refresh providers 136

http://www.eclipse.org/legal/cpl-v10.html

Annotation Model Creation

Identifier:

org.eclipse.core.filebuffers.annotationModelCreation

Since:

3.0

Description:
This extension point is used to customize the annotation model creation behavior of this plug-in's default te:
file buffer manager. It allows to specify which annotation model factory should be used in order to create the

annotation model instance of a text file buffer created for a certain file content type, file extension, or file
name.

Configuration Markup:

<IELEMENT extension_(factory)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT factory EMPTY>

<IATTLIST factory

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fleNames CDATA #IMPLIED

contentTypeld CDATA #IMPLIED>

The specification of a annotation model factory. In order to find a factory for a given file the attributes of eacl
factory specification are consulted in the following sequence: contentTypeld, fileNames, extensions. If

multiple, equally specific factory specifications are found for a given file it is not specified which factory is
used.

Annotation Model Creation 137

Welcome to Eclipse

« class — The fully qualified hame of the factory implementation class. This class must implement the
org.eclipse.core.filebuffers.lAnnotationModelFactory interface.

 extensions — A comma separated list of file extensions for which this factory should be used.

« fileNames — A comma separated list of file names for which this factory should be used.

« contentTypeld — The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this factory should be used.

Examples:

<extension point=
"org.eclipse.core.filebuffers.annotationModelCreation”

>

<factory extensions=

Xzy
class=
"org.eclipse.ui.texteditor.ResourceMarkerAnnotationModelFactory"
>

</factory>

</extension>

API Information:

Annotation model factories have to implement org.eclipse.core.filebuffers.|AnnotationModelFactory.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Annotation Model Creation 138

http://www.eclipse.org/legal/cpl-v10.html

Document Creation

Identifier:

org.eclipse.core.filebuffers.documentCreation

Since:

3.0

Description:
This extension point is used to customize the document creation behavior of this plug—in's default text file

buffer manager. It allows to specify which document factory should be used in order to create the document
instance of a text file buffer created for a certain file content type, file extension, or file name.

Configuration Markup:

<IELEMENT extension_(factory)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT factory EMPTY>

<IATTLIST factory

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fleNames CDATA #IMPLIED

contentTypeld CDATA #IMPLIED>

The specification of a document factory. In order to find a factory for a given file the attributes of each factor

specification are consulted in the following sequence: contentTypeld, fleNames, extensions. If multiple,
equally specific factory specifications are found for a given file it is not specified which factory is used.

« class — The fully qualified hame of the factory implementation class. This class must implement the
org.eclipse.core.filebuffers.IDocumentFactory interface.
 extensions — A comma separated list of file extensions for which this factory should be used.

Document Creation 139

Welcome to Eclipse

« fileNames — A comma separated list of file names for which this factory should be used.
« contentTypeld — The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this factory should be used.

Examples:

<extension id=
"org.eclipse.jdt.debug.ui.SnippetDocumentFactory"
name=

"%snippetDocumentFactory.name”

point=
"org.eclipse.core.filebuffers.documentCreation"

>

<factory extensions=

"jpage”

class=
"org.eclipse.jdt.internal.debug.ui.snippeteditor.SnippetDocumentFactory"
>

</factory>

</extension>

API Information:

Document factories have to implement org.eclipse.core.filebuffers.IDocumentFactory.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Document Creation 140

http://www.eclipse.org/legal/cpl-v10.html

Document Setup

Identifier:

org.eclipse.core.filebuffers.documentSetup

Since:

3.0

Description:
This extension point is used to customize the initialization process of a document for a text file buffer
manager by this plug-in's default text file buffer manager. It allows to specify which document setup

participant should be involved in the initialization process for a text file buffer created for a certain file
content type, file extension, or file name.

Configuration Markup:

<IELEMENT extension_(participant)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT participant EMPTY>

<IATTLIST participant

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fleNames CDATA #IMPLIED

contentTypeld CDATA #IMPLIED>

The specification of a document setup participant. In order find all participants for a given file the attributes ¢

each participant specification are consulted in the following sequence: contentTypeld, fileNames, extension:
If multiple participants are found, the sequence in which they are called is not specified.

« class — The fully qualified hame of the participant implementation class. This class must implement
the org.eclipse.core.filebuffers.IDocumentSetupParticipant interface.

Document Setup 141

Welcome to Eclipse

 extensions — A comma separated list of file extensions for which this participant should be used.

« fileNames — A comma separated list of file names for which this participant should be used.

« contentTypeld — The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this participant should be used.

Examples:

<extension id=
"JavaDocumentSetupParticipant"

name=

"%javaDocumentSetupParticipant”

point=
"org.eclipse.core.filebuffers.documentSetup”
>

<participant extensions=

"java"

class=
"org.eclipse.jdt.internal.ui.javaeditor.JavaDocumentSetupParticipant"
>

</participant>

</extension>

API Information:

Document setup participants have to implement org.eclipse.core.filebuffers.IDocumentSetupParticipant.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Document Setup 142

http://www.eclipse.org/legal/cpl-v10.html

Annotation Types

Identifier:

org.eclipse.ui.editors.annotationTypes

Since:

3.0

Description:

An Annotation is a piece of information attached to a certain region of a text document. New kinds of
annotations may be defined using this extension point. Annotations are attached to documents via their
annotation model and may be displayed in text editors and views. Annotation types form a hierarchy: an
annotation type may refine another type by specifying it in its super attribute. Some annotations serve as the
Ul counterpart of markers (see org.eclipse.core.resources.IMarker), while others exist on their

own without having a persistable form. The mapping between markers and annotation types is defined by th
optional markerType attribute.

Configuration Markup:

<IELEMENT extension_(type)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT type EMPTY>
<IATTLIST type

name CDATA #REQUIRED
markerType CDATA #IMPLIED
super CDATA #IMPLIED
markerSeverity (0|1]2) >

A marker type definition.

« name — The unigue name of this annotation type.

Annotation Types 143

Welcome to Eclipse

» markerType — The marker type that this annotation type corresponds to, if any.
 super — The name of the parent type, if this type is a descendant of another annotation type.
» markerSeverity — The severity of this annotation type, used for ordering. Any out of 1, 2, 3.

Examples:

This is an excerpt from the plugin.xml for JDT Ul, which adds the java compiler error and warning
annotations:

<extension point=
"org.eclipse.ui.editors.annotationTypes"

>

<type name=

"org.eclipse.jdt.ui.error"

super=
"org.eclipse.ui.workbench.texteditor.error"
markerType=
"org.eclipse.jdt.core.problem"”
markerSeverity=

no

>

</type>

<type name=

"org.eclipse.jdt.ui.warning"

super=
"org.eclipse.ui.workbench.texteditor.warning"

markerType=

"org.eclipse.jdt.core.problem"

Annotation Types 144

Welcome to Eclipse

markerSeverity=

np

>

</type>

<type name=
"org.eclipse.jdt.ui.info"
super=
"org.eclipse.ui.workbench.texteditor.info"
markerType=
"org.eclipse.jdt.core.problem"
markerSeverity=

"o

>

</type>

</extension>

API Information:

See the org.eclipse.jface.text.source.Annotation class and the
org.eclipse.ui.editors.markerAnnotationSpecification extension point.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Annotation Types 145

http://www.eclipse.org/legal/cpl-v10.html

Document Providers

Identifier:

org.eclipse.ui.editors.documentProviders

Since:

3.0 (originally named org.eclipse.ui.documentProviders)

Description:
This extension point is used to define mappings between file types and document providers or between type
of editor inputs and document providers that can be used by editors. Document providers must implement tt

interface org.eclipse.ui.texteditor.IDocumentProvider. Editor inputs must be instance of
org.eclipse.ui.lEditorinput.

Configuration Markup:

<IELEMENT extension _(provider*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT provider EMPTY>
<IATTLIST provider
extensions CDATA #IMPLIED
inputTypes CDATA #IMPLIED
class CDATA #REQUIRED
id CDATA #REQUIRED>
 extensions — a comma separated list of file extensions
* inputTypes — a comma separated list of qualified editor input class names

« class - the qualified name of the document provider class
* id - the unique id of this provider

Document Providers 146

Welcome to Eclipse

Examples:

<extension point=

"org.eclipse.ui.editors.documentProviders

>

<provider extensions=

Jjav
class=

"org.eclipse.ui.examples.javaeditor.JavaDocumentProvider"

id=

"org.eclipse.ui.examples.javaeditor.JavaDocumentProvider"

>

</provider>

</extension>

This example registers org.eclipse.ui.examples.javaeditor.JavaDocumentProvider as
the default provider for files with the extension ".jav".

<extension point=

"org.eclipse.ui.editors.documentProviders"

>

<provider inputTypes=

"org.eclipse.ui.IStorageEditorinput”

class=

"org.eclipse.ui.editors.text.FileDocumentProvider"

id=

"org.eclipse.ui.editors.text.FileDocumentProvider"

Document Providers

147

Welcome to Eclipse

>
</provider>
</extension>

This example registers org.eclipse.ui.editors.text.FileDocumentProvider as the default
provider for all editor inputs that are instance of org.eclipse.ui.IStorageEditorinput.

API Information:

Document providers registered for a file extension have precedence over those registered for input types.
Document providers must implement the interface

org.eclipse.ui.texteditor.IDocumentProvider. Editor inputs must be instance of

org.eclipse.ui.lEditorinput.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Document Providers 148

http://www.eclipse.org/legal/cpl-v10.html

Marker Annotation Specification

Identifier:

org.eclipse.ui.editors.markerAnnotationSpecification

Since:

3.0 (originally named org.eclipse.ui.workbench.texteditor.markerAnnotationSpecification)

Description:
This extension point is used to define presentation properties of markers. Extensions provided for this
extension point can be accessed using
org.eclipse.ui.texteditor.MarkerAnnotationPreferences. Use
org.eclipse.ui.texteditor.AnnotationPreferencelLookup to get the annotation preference
for a given annotation.
Note that an extension will only be returned from
MarkerAnnotationPreferences.getAnnotationPreferences (and thus included in the
preference pages) if it contains the following four attributes in addition to the required annotationType:
« colorPreferenceKey
* colorPreferenceValue
« overviewRulerPreferenceKey
« textPreferenceKey

Annotation preference types that extend another annotation preference are allowed to overwrite attributes
already defined in a parent preference specification, but these will not be accessible from the preference pa

Configuration Markup:

<IELEMENT extension_(specification)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT specification EMPTY>
<IATTLIST specification
annotationType CDATA #REQUIRED

colorPreferenceKey CDATA #IMPLIED

Marker Annotation Specification 149

Welcome to Eclipse

overviewRulerPreferenceKey CDATA #IMPLIED
verticalRulerPreferenceKey CDATA #IMPLIED
textPreferenceKey CDATA #IMPLIED
label CDATA #IMPLIED
highlightPreferenceKey CDATA #IMPLIED
colorPreferenceValue CDATA #IMPLIED
presentationLayer CDATA #IMPLIED
overviewRulerPreferenceValue (true | false)
verticalRulerPreferenceValue (true | false)
textPreferenceValue (true | false)
highlightPreferenceValue (true | false)
contributesToHeader (true | false)

showInNextPrevDropdownToolbarActionKey CDATA #IMPLIED
showInNextPrevDropdownToolbarAction (true | false)
isGoToNextNavigationTargetKey CDATA #IMPLIED
isGoToNextNavigationTarget (true | false)

isGoToPreviousNavigationTargetkey =~ CDATA #IMPLIED

isGoToPreviousNavigationTarget (true | false)

icon CDATA #IMPLIED

symboliclcon (error|warning|info|task|bookmark)
annotationimageProvider CDATA #IMPLIED

textStylePreferenceKey CDATA #IMPLIED

textStylePreferenceValue (SQUIGGLIES|BOX|UNDERLINE|IBEAM|NONE)
includeOnPreferencePage (true | false) "true">

 annotationType — The annotation type.
« colorPreferenceKey — The color preference key must be provided, otherwise this annotation type
will not be included in the List returned from

Marker Annotation Specification 150

Welcome to Eclipse

MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.

« overviewRulerPreferenceKey — The overview ruler preference key must be provided, otherwise this
annotation type will not be included in the List returned from
MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.

« verticalRulerPreferenceKey — The preference key for the show in vertical ruler preference. since:

3.0

« textPreferenceKey — The text preference key must be provided, otherwise this annotation type will
not be included in the List returned from MarkerAnnotationPreferences.getAnnotationPreferences()
and thus not show in the preferences.

* label -

« highlightPreferenceKey — The preference key for highlighting in text. since: 3.0

« colorPreferenceValue — The color preference value must be provided, otherwise this annotation type
will not be included in the List returned from
MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.

* presentationLayer —

* overviewRulerPreferenceValue -

« verticalRulerPreferenceValue — The default value for showing in vertical ruler. since: 3.0

* textPreferenceValue -

« highlightPreferenceValue — The default value for highlighting in text. since: 3.0

* contributesToHeader -

» showInNextPrevDropdownToolbarActionKey — The preference key for the visibility in the
next/previous drop down toolbar action. since: 3.0

« showInNextPrevDropdownToolbarAction — The default value for the visibility in the next/previous
drop down toolbar action. since: 3.0

 isGoToNextNavigationTargetKey — The preference key for go to next navigation enablement.
since: 3.0

 isGoToNextNavigationTarget — The default value for go to next navigation enablement. since: 3.0

« isGoToPreviousNavigationTargetKey — The preference key for go to previous navigation
enablement. since: 3.0

« isGoToPreviousNavigationTarget — The default value for go to previous navigation enablement.
since: 3.0

« icon — The path to the icon to be drawn for annotations of this annotation type.

« symboliclcon — The symbolic name of the image that should be drawn to represent annotation of this
annotation type. The image is only used when there is no vertical ruler icon specified for this
annotation type. Possible values are: "error", "

 annotationlmageProvider -

« textStylePreferenceKey — The preference key for the text decoration property. since: 3.0

« textStylePreferenceValue — The default value for the "show in text" decoration style. since: 3.0

« includeOnPreferencePage — Defines whether this annotation type should be configurable via the
standard annotation preference page. Default is true.

[IITH non non

warning", "info", "task", "bookmark".

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Marker Annotation Specification 151

http://www.eclipse.org/legal/cpl-v10.html

Marker Updaters

Identifier:

org.eclipse.ui.editors.markerUpdaters

Since:

3.0 (originally named org.eclipse.ui.markerUpdaters)

Description:

This extension point is used for registering marker update strategies with marker annotation models. A
resource that is opened in a text editor is associated with a marker annotation model. For each marker attac
to the resource this model manages a position that is updated with each change applied to the text in the
editor. If the resource is saved, the text in the editor and the position managed for a marker are passed ovel
the registered marker update strategies. These strategies can then update the marker's attributes based on
text and the position. Marker update strategies are requested to implement the interface

org.eclipse.ui.texteditor.IMarkerUpdater. The update strategies can be registered either for
a particular marker type or all marker types. The latter by omitting any marker type in the extension.

Configuration Markup:

<IELEMENT extension_(updater*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT updater EMPTY>
<IATTLIST updater

id CDATA #REQUIRED
markerType CDATA #IMPLIED
class CDATA #REQUIRED>

* id - the unique id of this provider
» markerType — the name of the marker type

Marker Updaters 152

Welcome to Eclipse

« class - the qualified name of the marker updater class

Examples:

<extension point=

"org.eclipse.ui.editors.markerUpdaters"

>

<updater id=
"org.eclipse.jdt.ui.markerUpdaters.JavaSearchMarkerUpdater"
class=
"org.eclipse.jdt.internal.ui.search.JavaSearchMarkerUpdater"
markerType=

"org.eclipse.search.searchmarker"

>

</updater>

</extension>

This example registers org.eclipse.jdt.internal.ui.search.JavaSearchMarkerUpdater
as a marker updater for all markers of the type org.eclipse.search.searchmarker including all its
derived types.

<extension point=

"org.eclipse.ui.editors.markerUpdaters"

>

<updater id=

"org.eclipse.ui.texteditor.BasicMarkerUpdater"

class=

"org.eclipse.ui.texteditor.BasicMarkerUpdater"

>

Marker Updaters 153

Welcome to Eclipse

</updater>
</extension>

This example registers org.eclipse.ui.texteditor.BasicMarkerUpdater as a marker updater
independent from the type of the marker.

API Information:

Registered marker updaters have to implement the interface
org.eclipse.ui.texteditor.IMarkerUpdater.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Marker Updaters 154

http://www.eclipse.org/legal/cpl-v10.html

Editor Template

Identifier:
org.eclipse.ui.editors.templates
Since:

3.0

Description:

Templates are snippets of text or code which help the user enter reoccurring patterns into a text editor.
Templates may contain variables which are resolved in the context where the template is inserted.

Configuration Markup:

<IELEMENT extension_(template* , resolver* , contextType* . include*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT contextType EMPTY>
<IATTLIST contextType

id CDATA #REQUIRED

class CDATA #REQUIRED

name CDATA #IMPLIED>

A context type defines a context within which templates are evaluated. A context type uses its resolvers to
resolve a template.

« id — Unambiguously identifies this context type. Use of a qualified hame is recommended.
« class — A subclass of org.eclipse.jface.text.templates. TemplateContextType.
* name — The display name of this context.

<IELEMENT resolver EMPTY>

Editor Template 155

Welcome to Eclipse

<IATTLIST resolver

contextTypeld CDATA #REQUIRED
type CDATA #REQUIRED
class CDATA #REQUIRED
description CDATA #IMPLIED
name CDATA #IMPLIED

icon CDATA #IMPLIED>

A template variable resolver can resolve a template variable in a certain context.

« contextTypeld — References the context type that this resolver is contributed to.

« type — The type of this variable resolver. This property will be set on the resolver once it gets createc

* class — A subclass of
org.eclipse.jface.text.templates. TemplateVariableResolver.

« description — The description of this variable resolver. This property will be set on the resolver once
it gets created.

« name — The display name of this resolver.

« icon — An icon that may be displayed in the user interface.

<IELEMENT template (pattern)>
<IATTLIST template

id CDATA #REQUIRED
contextTypeld CDATA #REQUIRED
name CDATA #REQUIRED
description CDATA #IMPLIED
icon CDATA #IMPLIED>

A template is a snippet of code or text that will be evaluated in a given context. Variables which will be
resolved in that context can be specified using the ${variable_type} notation.

« id — Unambiguously identifies this template. Use of a qualified name is recommended.
« contextTypeld — References the context type that this template is contributed to.

Editor Template 156

Welcome to Eclipse

* name — The internationalizable name of the template which will show up in the Ul, such as in
template proposals.

« description — The description of this template.

« icon — An icon that may be displayed in the Ul for this template, for example in content assist
proposals.

<IELEMENT pattern (#CDATA)>

The template pattern.

<IELEMENT include EMPTY>
<IATTLIST include

file CDATA #REQUIRED
translations CDATA #IMPLIED>

A collection of templates encoded as XML can be included as a whole via this element.

« file — The XML file to import templates from.
« translations — An optional properties file with resources for the templates specified in file.

Examples:

<extension point=
"org.eclipse.ui.examples.templateeditor.template”
>

<template hame=

"javac"

context=

ant"”

editorld=

Editor Template 157

Welcome to Eclipse

"org.eclipse.ui.examples.templateeditor.editors. TemplateEditor"
description=
"%ant.tasks.javac.description"
>

<pattern>

<javac srcdir=

"${src}"

destdir=

"${dst}"

classpath=

"${classpath}"

debug=

"${debug}"

/>

</pattern>

</template>

<resolver context=

ant

type=

src
editorld=
"org.eclipse.ui.examples.templateeditor.editors. TemplateEditor"
class=
"org.eclipse.ui.examples.templateeditor.editors.AntVariableResolver"
>

</resolver>

Editor Template 158

Welcome to Eclipse
<resolver context=

ant
type=

"dst"

editorld=
"org.eclipse.ui.examples.templateeditor.editors. TemplateEditor"
class=
"org.eclipse.ui.examples.templateeditor.editors.AntVariableResolver"
>

</resolver>

</extension>

API Information:

See the org.eclipse.jface.text.templates package in the org.eclipse.text plug—in for
the relevant API.

Supplied Implementation:

See the org.eclipse.jface.text.templates package in the org.eclipse.text plug-in for
the relevant classes.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Editor Template 159

http://www.eclipse.org/legal/cpl-v10.html

Reference Provider

Identifier:

org.eclipse.ui.workbench.texteditor.quickdiffReferenceProvider

Since:

3.0

Description:

Allows contributors to add reference providers for the quick diff display.

Configuration Markup:

<IELEMENT extension _(referenceprovider+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — The fully qualified name of the extension point.

« id — The optional id of this extension.
« name — The optional name of this extension.

<IELEMENT referenceprovider EMPTY>
<IATTLIST referenceprovider

class CDATA #REQUIRED

label CDATA #IMPLIED

id CDATA #REQUIRED

default (true | false) >

The definition of a reference provider for the quick diff display.

« class — The class of the reference provider, which must implement
org.eclipse.ui.editors.quickdiff.IQuickDiffReferenceProvider.

Reference Provider

160

Welcome to Eclipse

« label — The display label for the provider, which will show up in the menu that allows the user to set
the quick diff reference to this provider.

« id — A string uniquely identifying this reference provider.

« default - If this flag is set to true, this reference provider will be installed per default the first time
quick diff is enabled for a document. If multiple providers are installed with the flag set are
encountered, the first one is taken.

Examples:

The following is an example of a reference provider definition. It contributes a provider that uses the version
of a document saved on disk as a reference.

<extension point=
"quickdiff.referenceprovider"

>

<referenceprovider id=

"default”

name=
"%LastSavedProvider.name"

label=
"%quickdiff.referenceprovider.label"
class=
"org.eclipse.ui.internal.editors.quickdiff.providers.LastSaveReferenceProvider"
>

</referenceprovider>

</extension>

API Information:

There is no additional API for managing reference providers.

Reference Provider 161

Welcome to Eclipse

Supplied Implementation:

The org.eclipse.ui.editors plugin contributes LastSaveReferenceProvider. See its
implementation as an example.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Reference Provider 162

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Configurations

Identifier:

org.eclipse.ui.acceleratorConfigurations

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the

extension point org.eclipse.ui.commands

This extension point is used to register accelerator configuration extensions. Accelerator configurations are
configurations to which accelerator sets may be registered. The workbench allows the user to select an
accelerator configuration from the Workbench preference page. Only one accelerator configuration may be
active at a time.

An accelerator configuration represents a general style or theme of accelerators for Workbench actions. For
example, the Workbench provides the "Emacs" accelerator configuration. When the "Emacs" accelerator
configuration is active, accelerators belonging to accelerator sets registered to the "Emacs" configuration ar
active. These accelerators are defined to mimic the accelerators in Emacs (a popular text editor amongst
developers).

An accelerator set registers with an accelerator configuration by listing the configuration's id as the value of
its "configurationld" attribute (see the Accelerator Sets extension point). Many accelerator sets can be
registered to the same accelerator configuration.

Note the accelerator configuration name presented to the user is the same as the value of the attribute "nan
of the extension element of org.eclipse.ui.acceleratorConfigurations extension point.

Configuration Markup:

<IELEMENT extension_(acceleratorConfiguration*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

Accelerator Configurations 163

Welcome to Eclipse

<IELEMENT acceleratorConfiguration EMPTY>
<IATTLIST acceleratorConfiguration

id CDATA #REQUIRED

name CDATA #REQUIRED

description CDATA #REQUIRED>

« id — a unigue name that can be used to identify this accelerator configuration.

* name - a translatable name of the accelerator configuration to be presented to the user.

« description — a short description of the accelerator configuration.

Examples:

Following is an example of an accelerator configuration extension:

<extension point=
"org.eclipse.ui.acceleratorConfigurations"
>

<acceleratorConfiguration id=
"org.eclipse.ui.viAcceleratorConfiguration”
name=

"

description=

"VI style accelerator configuration”

>

</acceleratorConfiguration>
<acceleratorConfiguration id=
"org.eclipse.ui.jonDoeAcceleratorConfiguration”
name=

"Jon Doe"

Accelerator Configurations

164

Welcome to Eclipse

description=

"Personal accelerator configuration for Jon Doe"
>

</acceleratorConfiguration>

</extension>

Supplied Implementation:

The workbench provides the Default and Emacs accelerator configurations.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Accelerator Configurations 165

http://www.eclipse.org/legal/cpl-v10.html

Commands

Identifier:

org.eclipse.ui.commands

Since:

2.1

Description:

The org.eclipse.ui.commands extension point is used to declare commands and command categories,
using the command and category elements. Through this extension point, one can also assign key
sequences to commands using the keyBinding element. Key sequences are bound to commands based on

key configurations and contexts which are declared here as well, using the keyConfiguration and
context elements.

Configuration Markup:

<IELEMENT extension_(activeKeyConfiguration , category , command . keyBinding . keyConfiguration ,
context)>

<IATTLIST extension
id CDATA #IMPLIED
name CDATA #IMPLIED
point CDATA #REQUIRED>
« id — An optional identifier of the extension instance.

* name — An optional name of the extension instance.
« point — A fully qualified identifier of the target extension point.

<IELEMENT activeKeyConfiguration EMPTY>
<IATTLIST activeKeyConfiguration

value CDATA #IMPLIED
keyConfigurationld CDATA #IMPLIED>

This element is used to define the initial active key configuration for Eclipse. If more than one of these
elements exist, only the last declared element (in order of reading the plugin registry) is considered valid.

« value — The unique id (idattribute) of the keyConfiguration element one wishes to be initially active.

Commands 166

Welcome to Eclipse

 keyConfigurationld — The unique id (idattribute) of the keyConfiguration element one wishes to be
initially active.

<IELEMENT category EMPTY>

<IATTLIST category

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED>

In the Ul, commands are often organized by category to make them more manageable. This element is use
define these categories. Commands can add themselves to at most one category. If more than one of these

elements exist with the same id attribute, only the last declared element (in order of reading the plugin
registry) is considered valid.

« description — A translatable short description of this category for display in the UI.
« id — The unique identifier of this category.
« name — The translatable name of this category for display in the Ul.

<IELEMENT command EMPTY>

<IATTLIST command

category CDATA #IMPLIED

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

categoryld CDATA #IMPLIED>

This element is used to define commands. A command represents an request from the user that can be har
by an action, and should be semantically unique among other commands. Do not define a command if there
already one defined with the same meaning. If more than one of these elements exist with the same id
attribute, only the last declared element (in order of reading the plugin registry) is considered valid. See the

extension points org.eclipse.ui.actionSets and org.eclipse.ui.editorActions to understand how actions are
connected to commands.

Commands 167

Welcome to Eclipse

« category — The unique id of the category for this command. If this command does not specify a
category, it will still appear in all Ul, alongside other specifically categorized commands.
@deprecated Please use "categoryld" instead.

« description — A translatable short description of this command for display in the Ul.

* id — The unique identifier of this command.

« name — The translatable name of this command for display in the Ul. Command are typically named

in the form of an imperative verb.

« categoryld — The unique id of the category for this command. If this command does not specify a
category, it will still appear in all Ul, alongside other specifically categorized commands.

<!IELEMENT keyBinding EMPTY>
<IATTLIST keyBinding

configuration = CDATA #IMPLIED

command CDATA #IMPLIED
locale CDATA #IMPLIED
platform CDATA #IMPLIED
contextld CDATA #IMPLIED
string CDATA #IMPLIED
scope CDATA #IMPLIED

keyConfigurationld CDATA #IMPLIED
commandid CDATA #IMPLIED

keySequence CDATA #IMPLIED>

This element allows one to assign key sequences to commands.

« configuration — The unique id of the key configuration of this key binding. @deprecated Please use

keyConfigurationld instead.

e command - The unique identifier of the command to which the key sequence specified by this key
binding is assigned. If the value of this attribute is an empty string, the key sequence is assigned to ¢
internal 'no operation' command. This is useful for 'undefining' key bindings in specific key
configurations and contexts which may have been borrowed from their parents. @deprecate Please

use "commandld" instead.

« locale — An optional attribute indicating that this key binding is only defined for the specified locale.
Locales are specified according to the format declared in java.util.Locale.

« platform — An optional attribute indicating that this key binding is only defined for the specified
platform. The possible values of the platform attribute are the set of the possible values returned

Commands

168

Welcome to Eclipse

by org.eclipse.swt.SWT.getPlatform().

« contextld — The unique id of the context of this key binding.

« string — The key sequence to assign to the command. Key sequences consist of one or more key
strokes, where a key stroke consists of a key on the keyboard, optionally pressed in combination wit|
one or more of the following modifiers: Ctrl, Alt, Shift, and Command. Key strokes are separated by
spaces, and modifiers are separated by '+' characters. @deprecate Please user "keySequence" inst

 scope — The unique id of the context of this key binding. @deprecated Please use "contextld" instea

« keyConfigurationld — The unigue id of the key configuration of this key binding.

« commandld — The unique identifier of the command to which the key sequence specified by this key
binding is assigned. If the value of this attribute is an empty string, the key sequence is assigned to ¢
internal 'no operation' command. This is useful for 'undefining' key bindings in specific key
configurations and contexts which may have been borrowed from their parents.

» keySequence — The key sequence to assign to the command. Key sequences consist of one or mor
key strokes, where a key stroke consists of a key on the keyboard, optionally pressed in combinatior
with one or more of the following madifiers: Ctrl, Alt, Shift, and Command. Key strokes are
separated by spaces, and modifiers are separated by '+' characters.

<IELEMENT keyConfiguration EMPTY>
<IATTLIST keyConfiguration
description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

parent CDATA #IMPLIED

parentld CDATA #IMPLIED>

This element is used to define key configurations. If more than one of these elements exist with the same id
attribute, only the last declared element (in order of reading the plugin registry) is considered valid.

« description — A translatable short description of this key configuration for display in the Ul.

« id — The unique identifier of this key configuration.

* name — The translatable name of this key configuration for display in the Ul. If this key configuration
has a parent, it is not necessary to add "(extends ...)" to the name. This will be automatically added |
the Ul where necessary.

« parent — The unique id of the parent key configuration. If this key configuration has a parent, it will
borrow all key bindings from its parent, in addition to the key bindings defined in its own key
configuration.

« parentld — The unique id of the parent key configuration. If this key configuration has a parent, it
will borrow all key bindings from its parent, in addition to the key bindings defined in its own key
configuration.

Commands 169

Welcome to Eclipse

<IELEMENT context EMPTY>
<IATTLIST context

description CDATA #IMPLIED
id CDATA #REQUIRED
name CDATA #REQUIRED
parent CDATA #IMPLIED
parentld CDATA #IMPLIED>

This element is used to define contexts. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the plugin registry) is considered valid.

« description — A translatable short description of this context for display in the Ul.

« id — The unique identifier of this context.

« name — The translatable name of this context for display in the Ul. If this context has a parent, it is
not necessary to add "(extends parent)" to the name. This will be automatically added by the Ul whe
necessary.

 parent — The unique id of the parent context. If this context has a parent, it will borrow all key
bindings from its parent, in addition to the key bindings defined in its own context. @deprecated
Please use "parentld" instead.

« parentld — The unique id of the parent context. If this context has a parent, it will borrow all key
bindings from its parent, in addition to the key bindings defined in its own context.

<IELEMENT handlerSubmission EMPTY>

<IATTLIST handlerSubmission

commandld CDATA #REQUIRED

handler CDATA #REQUIRED>

This element declares a handler for a command. This handler is then associated with the command with the
given restrictions. This association is done at start—-up. Associating a handler does not mean that this handle
will always be the one chosen by the workbench; the actual choice is done by examining the workbench sta

and comparing with the various handler submissions.

This particular API should still be considered experimental. While you may use it, you must be willing to
accept that this APl may change radically or be removed entirely at some point in the future. We appreciate

feedback on this API to platform-ui—dev@eclipse.org.

Commands 170

mailto:platform-ui-dev@eclipse.org

Welcome to Eclipse

« commandld - The identifier of the command to which this handler should be associated.

« handler — The name of the class of the handler. If the class is an implementation of
IExecutableExtension, then it is possible to pass data into the object. This handler will be proxied
until the handler is queried for information —— at which point the class will be loaded, and an instance
created.

<IELEMENT scope EMPTY>
<IATTLIST scope

description CDATA #IMPLIED
id CDATA #REQUIRED
name CDATA #REQUIRED
parent CDATA #MPLIED>

This element is used to define scopes. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the plugin registry) is considered valid. @deprecated Ple:
use the "org.eclipse.ui.contexts" extension point instead.

« description — A translatable short description of this scope for display in the Ul. @deprecated Please
use the "org.eclipse.ui.contexts" extension point instead.

« id — The unique identifier of this scope. @deprecated Please use the "org.eclipse.ui.contexts"
extension point instead.

« name — The translatable name of this scope for display in the UL. If this scope has a parent, it is not
necessary to add "(extends parent)" to the name. This will be automatically added by the Ul where
necessary. @deprecated Please use the "org.eclipse.ui.contexts" extension point instead.

« parent — The unique id of the parent scope. If this scope has a parent, it will borrow all key bindings
from its parent, in addition to the key bindings defined in its own scope. @deprecated Please use the
"org.eclipse.ui.contexts" extension point instead.

Examples:

The plugin.xml file in the org.eclipse.ui plugin makes extensive use of the
org.eclipse.ui.commands extension point.

API Information:
This is no public API for declaring commands, categories, key bindings, key configurations, or contexts othe

than this extension point. Public API for querying and setting contexts, as well as registering actions to hand
specific commands can be found in org.eclipse.ui.lKeyBindingService.

Commands 171

Welcome to Eclipse

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Commands 172

http://www.eclipse.org/legal/cpl-v10.html

Action Sets

Identifier:

org.eclipse.ui.actionSets

Description:

This extension point is used to add menus, menu items and toolbar buttons to the common areas in the
Workbench window. These contributions are collectively known as an action set and appear within the
Workbench window by the user customizing a perspective.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enableme
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub—element. In the simplest case, this will be an objectClass, objectState,

pluginState, or systemProperty element. In the more complex case, the and, or, and not elements

can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub—element
The not element must contain only 1 sub—element.

Configuration Markup:

<IELEMENT extension_(actionSet+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT actionSet_ (menu* , action*)>

<IATTLIST actionSet

id CDATA #REQUIRED
label CDATA #REQUIRED
visible (true | false)
description CDATA #IMPLIED>

Action Sets 173

Welcome to Eclipse

This element is used to define a group of actions and/or menus.

« id — a unique identifier for this action set.

« label — a translatable name used by the Workbench to represent this action set to the user.

« visible — an optional attribute indicating whether the action set is initially visible when a perspective
is open. This option is only honoured when the user opens a perspective which has not been
customized. The user can override this option from the "Customize Perspective Dialog". This attribut
should be used with great care so as not to overwhelm the user with too many actions.

« description — a translatable description used by the Workbench to represent this action set to the use

<IELEMENT action (selection* | enablement?)>
<IATTLIST action

id CDATA #REQUIRED
label CDATA #REQUIRED
accelerator CDATA #IMPLIED
definitionld CDATA #IMPLIED
menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED
icon CDATA #IMPLIED
disabledicon CDATA #IMPLIED
hovericon CDATA #IMPLIED
tooltip CDATA #IMPLIED

helpContextld CDATA #IMPLIED

style (push|radio|toggle|pulldown) "push”
state (true | false)

pulldown (true | false)

class CDATA #IMPLIED

retarget (true | false)

allowLabelUpdate (true | false)

Action Sets 174

Welcome to Eclipse

enablesFor CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

« id — a unique identifier used as a reference for this action.

* label - a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.

« accelerator — Deprecated: Use the definitionld attribute instead.

« definitionld — Specifies the command that this action will handle. By specifying and action, the key
binding service can assign a key sequence to this action. See the extension point
org.eclipse.ui.commands for more information.

« menubarPath — a slash—delimited path (/") used to specify the location of this action in the menu bar
Each token in the path, except the last one, must represent a valid identifier of an existing menu in tt
hierarchy. The last token represents the named group into which this action will be added. If the patt
is omitted, this action will not appear in the menu bar.

« toolbarPath - a slash—delimited path (/') that is used to specify the location of this action in the
toolbar. The first token represents the toolbar identifier (with "Normal" being the default toolbar),
while the second token is the named group within the toolbar that this action will be added to. If the
group does not exist in the toolbar, it will be created. If toolbarPath is omitted, the action will not
appear in the toolbar.

« icon — a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug—in. The icon will appear in toolbars but not in
menus. Enabled actions will be represented in menus by the hoverlcon.

« disabledlcon - a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug—in. The disabled icon will appear in
toolbars but not in menus. Icons for disabled actions in menus will be supplied by the OS.

« hoverlcon - a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug-in.

« tooltip — a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

« helpContextld — a unigue identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

« style — an attribute to define the user interface style type for the action. If omitted, then it is push by
default. The attribute value will be one of the following:

push — as a regular menu item or tool item.

radio — as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio
set. The initial value is specified by the state attribute.
toggle - as a checked style menu item or as a toggle tool item. The
initial value is specified by the state attribute.
pulldown — as a cascading style menu item or as a drop down menu beside
the tool item.
* state — an optional attribute indicating the initial state (either true or false). Used only when the
style attribute has the value radio or toggle.
* pulldown — Deprecated: Use the style attribute with the value pulldown.

Action Sets 175

Welcome to Eclipse

« class - a fully qualified name of a class which implements
org.eclipse.ui.lWorkbenchWindowActionDelegate or
org.eclipse.ui.lWorkbenchWindowPulldownDelegate. The latter should be
implemented in cases where the style attribute has the value pulldown. This class is the handler
responsible for performing the action. If the retarget attribute is true, this attribute is ignored and
should not be supplied.

* retarget — an optional attribute to retarget this action. When true, view and editor parts may supply a
handler for this action using the standard mechanism for setting a global action handler on their site
using this action's identifier. If this attribute is true, the class attribute should not be supplied.

« allowLabelUpdate — optional attribute indicating whether the retarget action allows the handler to
override it's label and tooltip. Only applies if retarget attribute is true.

 enablesFor — a value indicating the selection count which must be met to enable the action. If
specified and the condition is not met, the action is disabled. If omitted, the action enablement state |
not affected. The following attribute formats are supported:

I - 0 items selected

? - 0 or 1 items selected

+ - 1 or more items selected

multiple, 2+ — 2 or more items selected

n - a precise number of items selected.a precise number of

items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* — any number of items selected

<IELEMENT menu (separator+ . groupMarker*)>
<IATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

* id — a unique identifier that can be used to reference this menu.

* label - a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

* path - the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

Action Sets 176

Welcome to Eclipse

<IELEMENT separator EMPTY>
<IATTLIST separator
name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

« name - the name of the menu separator. This name can later be referenced as the last token inam
path. Therefore, a separator also serve as hamed group into which actions and menus can be addec

<IELEMENT groupMarker EMPTY>
<IATTLIST groupMarker
name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

* name - the name of the group marker. This name can later be referenced as the last token in the me
path. It serves as named group into which actions and menus can be added.

<IELEMENT selection EMPTY>
<IATTLIST selection

class CDATA #REQUIRED
name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

« class - a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

« name — an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

Action Sets 177

Welcome to Eclipse
<IELEMENT enablement_(and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<IELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<IELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub—element expressiol

<IELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub—element expression:

<IELEMENT not (and_| or_| not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub—element expressions.

<IELEMENT objectClass EMPTY>
<IATTLIST objectClass
name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object
the selection implements the specified class or interface, the expression is evaluated as true.

« name - a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

Action Sets 178

Welcome to Eclipse
<IELEMENT objectState EMPTY>
<IATTLIST objectState
name CDATA #REQUIRED
value CDATA #REQUIRED>
This element is used to evaluate the attribute state of each object in the current selection. If each object in tt
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of

expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.lActionFilter interface.

* name - the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug-in where the object type is declared.

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

<IELEMENT pluginState EMPTY>
<IATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug—in. The state of the plug—in may be one of the following
installed or activated.

« id - the identifier of a plug—in which may or may not exist in the plug—in registry.
« value - the required state of the plug-in. The state of the plug—in may be one of the following:
installed or activated.

<IELEMENT systemProperty EMPTY>
<IATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

Action Sets 179

Welcome to Eclipse

* name - the name of the system property.
« value - the required value of the system property.

Examples:

The following is an example of an action set (note the sub—elements and the way attributes are used):

<extension point =
"org.eclipse.ui.actionSets"
>

<actionSet id=
"com.xyz.actionSet"
label=

"My Actions"

>

<menu id=
"com.xyz.xyzMenu"
label=

"XYZ Menu"

path=

"additions"

>

<separator name=
"groupl”

/>

<separator name=

Action Sets 180

Welcome to Eclipse

"optionl"

/>

</menu>

<action id=
"com.xyz.runXyZz"

label=

"&Run XYZ Tool"
style=

"toggle”

state=

"false”

menubarPath=
"com.xyz.xyzMenu/groupl1"
icon=

"icons/runXYZ.gif"

tooltip=

"Run XYZ Tool"
helpContextld=
"com.xyz.run_action_context"
class=
"com.xyz.actions.Runxyz"
enablesFor=

L

>

<selection class=
"org.eclipse.core.resources.|File"

Action Sets 181

name=
"* java"

/>

</action>

<action id=
"com.xyz.runABC"

label=

"&Run ABC Tool"
style=

"push"

menubarPath=
"com.xyz.xyzMenu/groupl1"
toolbarPath=
"Normal/XYZ"

icon=

"icons/runABC.gif"

tooltip=

"Run ABC Tool"
helpContextld=
"com.xyz.run_abc_action_context"
retarget=

"true”

allowLabelUpdate=

"true”

>

<enablement>

Action Sets

Welcome to Eclipse

182

Welcome to Eclipse

<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<not>

<objectState name=
"extension”

value=

"java"

/>

</not>

</and>
</enablement>
</action>

<action id=
"com.xyz.runDEF"
label=

"&Run DEF Tool"
style=

"radio”

state=

"true"

menubarPath=
"com.xyz.xyzMenu/option1"
icon=
"icons/runDEF.gif"

Action Sets 183

tooltip=

"Run DEF Tool"

class=
"com.xyz.actions.RunDEF"
helpContextld=
"com.xyz.run_def_action_context"
>

</action>

<action id=
"com.xyz.runGHI"

label=

"&Run GHI Tool"
style=

"radio”

state=

"false”

menubarPath=
"com.xyz.xyzMenu/option1"
icon=

"icons/runGHI.gif"

tooltip=

"Run GHI Tool"

class=
"com.xyz.actions.RunGHI"
helpContextld=
"com.xyz.run_ghi_action_context"

Action Sets

Welcome to Eclipse

184

Welcome to Eclipse

>
</action>

<action id=

"com.xyz.runJKL"

label=

"&Run JKL Tool"

style=

"radio”

state=

"false"

menubarPath=
"com.xyz.xyzMenu/option1"
icon=

"icons/runJKL.gif"

tooltip=

"Run JKL Tool"

class=
"com.xyz.actions.RunJKL"
helpContextld=
"com.xyz.run_jkl_action_context"
>

</action>

</actionSet>

</extension>

In the example above, the specified action set, named "My Actions", is not initially visible within each

perspective because the visible attribute is not specified.

Action Sets 185

Welcome to Eclipse

The XYZ action will appear as a check box menu item, initially not checked. It is enabled only if the selectior
count is 1 and if the selection contains a Java file resource.

The ABC action will appear both in the menu and on the toolbar. It is enabled only if the selection does not
contain any Java file resources. Note also this is a label retarget action therefore it does not supply a class
attribute.

The actions DEF, GHI, and JKL appear as radio button menu items. They are enabled all the time,
independent of the current selection state.

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
org.eclipse.ui.lWorkbenchWindowActionDelegate or
org.eclipse.ui.lWorkbenchWindowPulldownDelegate. The latter should be implemented in

cases where the style attribute has the value pulldown. This class is the handler responsible for
performing the action. If the retarget attribute is true, this attribute is ignored and should not be supplied.
This class is loaded as late as possible to avoid loading the entire plug—in before it is really needed.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the
action enable state directly within its selectionChanged method.

It is important to note that the workbench does not generate menus on a plug-in's behalf. Menu paths must
reference menus that already exist.

Action and menu labels may contain special characters that encode mnemonics using the following rules:

1. Mnemonics are specified using the ampersand ('&") character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in tf
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug-in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can

replace the selection element using the sub—elements objectClass and objectState. For example,
the following:

<selection class=
"org.eclipse.core.resources.|File"
name=

"* java"

>

Action Sets 186

Welcome to Eclipse

</selection>

can be expressed using:

<enablement>
<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<objectState name=
"extension"

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

Plug-ins may use this extension point to add new top level menus. Plug-ins can also define named groups
which allow other plug-ins to contribute their actions into them.

Top level menus are created by using the following values for the path attribute:
« additions - represents a group immediately to the left of the Window menu.
Omitting the path attribute will result in adding the new menu into the additions menu bar group.
The default groups in a workbench window are defined in the IWorkbenchActionConstants interface.
These constants can be used in code for dynamic contribution. The values can also be copied into an XML
for fine grained integration with the existing workbench menus and toolbar.
Various menu and toolbar items within the workbench window are defined algorithmically. In these cases a
separate mechanism must be used to extend the window. For example, adding a new workbench view resu

in a new menu item appearing in the Perspective menu. Import, Export, and New Wizards extensions are al
added automatically to the window.

Action Sets 187

Welcome to Eclipse

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Action Sets 188

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Scopes

Identifier:
org.eclipse.ui.acceleratorScopes
Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the

extension point org.eclipse.ui.commands

This extension point is used to register accelerator scope extensions. Accelerator scopes are scopes for wh
accelerator sets may be applicable. For example, if an accelerator set is applicable for the scope entitled "T«
Editor Scope", the accelerators of that accelerator set will only operate if the "Text Editor Scope" or one of it
children is active (in other words, if the active part is a participating text editor).

An accelerator set declares what scope it is applicable for by listing the scope's id as the value of its "scopel

attribute (see the Accelerator Sets extension point). Many accelerator sets can be applicable for the same
accelerator scope.

Configuration Markup:

<IELEMENT extension_(acceleratorScope*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT acceleratorScope EMPTY>
<IATTLIST acceleratorScope
id CDATA #REQUIRED

name CDATA #REQUIRED

Accelerator Scopes 189

Welcome to Eclipse

description CDATA #REQUIRED

parentScope CDATA #IMPLIED>
« id — a unigue name that can be used to identify this accelerator scope.
* name - a translatable name of the accelerator scope.
« description — a short description of the accelerator scope.

 parentScope - an optional attribute which represents a scope which is active whenever this scope is
active. For most scopes, org.eclipse.ui.globalScope will be the parent scope

Examples:

Following is an example of an accelerator scope extension:

<extension point=
"org.eclipse.ui.acceleratorScopes"
>

<acceleratorScope id=
"org.eclipse.ui.globalScope"
name=

"Global"

description=

"Action accelerator key applicable to all views and editors unless explicitly overridden."
>

</acceleratorScope>
<acceleratorScope id=
"org.eclipse.ui.javaEditorScope"
name=

"Java Editor"

description=

"Action accelerator key applicable only when java editor active."

Accelerator Scopes 190

Welcome to Eclipse

parentScope=

"org.eclipse.ui.globalScope
>

</acceleratorScope>
</extension>

API Information:

The method public IKeyBindingService getKeyBindingService() was added to |EditorSite.

Supplied Implementation:

The workbench provides the Global accelerator scope and the Text Editor accelerator scope.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Accelerator Scopes 191

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Sets

Identifier:

org.eclipse.ui.acceleratorSets

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the

extension point org.eclipse.ui.commands

This extension point is used to register accelerator set extensions. Accelerator sets are just what the name
implies, sets of accelerators. An accelerator is an association between one or more sequences of acceleratc
keys and a workbench action. An accelerator key sequence may be of length one or greater.

An accelerator set is registered with an accelerator configuration (see the Accelerator Configuration extensi
point) and is applicable for an accelerator scope (see the Accelerator Scope extension point).

Configuration Markup:

<IELEMENT extension_(acceleratorSet*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT acceleratorSet (accelerator+)>
<IATTLIST acceleratorSet

configurationld CDATA #REQUIRED
scopeld CDATA #REQUIRED>

« configurationld — a unique name that identifies the accelerator configuration to which this
accelerator set is registered.

Accelerator Sets 192

Welcome to Eclipse

 scopeld — a unique name that identifies the accelerator scope for which this accelerator set is
applicable.

<IELEMENT accelerator EMPTY>
<IATTLIST accelerator
id CDATA #IMPLIED
key CDATA #REQUIRED
locale CDATA #IMPLIED
platform CDATA #IMPLIED>
« id - the unique identifier of the action definition of the action associated with this accelerator. If the
id is not specified this accelerator deletes any mappings with the same key. This is used to delete a
key binding for a specific Locale.
 key — an attribute representing the sequence(s) of accelerator keys used to perform the action
associated with this accelerator. Sequences are separated by '||', and individual keys in a sequence
separated by a space. A key may be modified by the CTRL, ALT, or SHIFT keys. Depending on
keyboard layout, some keys ('?' for example) may need the SHIFT to be accessed but the acceleratc
should be specified without the SHIFT so it will be independent of keyboard layout. E.g. if CTRL+?
is specified as an accelerator, the user may have to press CTRL+SHIFT+? depending on the keybo:e
layout.
« locale — an optional attribute which specifies a locale for which the accelerator is applicable. If this
attribute is not specified, the accelerator is applicable for all locales.

« platform — an optional attribute which specifies a platform on which the accelerator is applicable. If
this attribute is not specified, the accelerator is applicable on all platforms.

Examples:

Following is an example of an accelerator set extension:

<extension point=
"org.eclipse.ui.acceleratorSets"

>

<acceleratorSet configurationld=
"org.eclipse.ui.exampleAcceleratorConfiguration”

scopeld=

Accelerator Sets 193

Welcome to Eclipse

"org.eclipse.ui.globalScope"

>

<accelerator id=
"org.eclipse.ui.ExampleActionA"
key=

"CTRL+R CTRL+A"

>

</accelerator>

<accelerator id=
"org.eclipse.ui.ExampleActionB"
key=

"CTRL+R CTRL+B"

>

</accelerator>

<accelerator id=
"org.eclipse.ui.ExampleActionC"
key=

"CTRL+R CTRL+C || CTRL+SHIFT+DELETE"
>

</accelerator>
</acceleratorSet>

</extension>

API Information:

More than one accelerator may be specified for the same action in the accelerator set but only one will be
used.

If the locale and/or the platform is specified, the accelerator that better matches the current locale and platfc
will be used. The current locale is determined by the API Locale.getDefault() and the platform by the API

Accelerator Sets 194

Welcome to Eclipse

SWT.getPlatform(). If the platform and/or the locale is specified and it does not match the current locale
and/or platform, the accelerator is discarded. If accelerator A defines only the locale and B defines only the
platform, B is used. If accelerator A defines "ja" as its locale and B defines "ja_JP", B is used in case the
current locale is "ja_JP".

If two accelerators are defined in accelerators sets in different plugins, the chosen accelerator will depend o
the plugins. If plugin A depends on B, the accelerators defined in B is used. If A and B don't depend on eact
other, they will be alphabetically sorted by the plugin id.

If two accelerators are defined in different scopes, the accelerator defined in the current scope will be used.
an accelerator is not defined in the current scope or one of its parents it is discarded. If an accelerator is
defined in a parent and child scope, the one in the child is used.

Supplied Implementation:

The workbench provides accelerator sets for the Default and Emacs accelerator configurations.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Accelerator Sets 195

http://www.eclipse.org/legal/cpl-v10.html

Action Definitions

Identifier:

org.eclipse.ui.actionDefinitions

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the

extension point org.eclipse.ui.commands

This extension point is used to register action definitions. Accelerators (see the Accelerator Sets extension
point) use action definitions to reference actions. An action associates itself with a given accelerator by
registering with that accelerator's associated action definition. An action registers itself with an action
definition by calling the setActionDefinitionld(String id) method and supplying the action definition's id as an
argument.

Configuration Markup:

<IELEMENT extension_(actionDefinition*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT actionDefinition EMPTY>
<IATTLIST actionDefinition

id CDATA #REQUIRED

name CDATA #IMPLIED
description CDATA #IMPLIED>

« id — a unigue name that can be used to identify this action.

Action Definitions 196

* name - the name of the action as displayed to the user.
« description — a short description of the action to display to the user.

Examples:

Welcome to Eclipse

Following is an example of an action definition extension:

<extension point=

"org.eclipse.ui.actionDefinitions"

>
<actionDefinition id=
"org.eclipse.ui.file.save"

>

</actionDefinition>
<actionDefinition id=
"org.eclipse.ui.file.saveAll"
>

</actionDefinition>
<actionDefinition id=
"org.eclipse.ui.file.close"
>

</actionDefinition>
<actionDefinition id=
"org.eclipse.ui.file.closeAll"
>

</actionDefinition>

<actionDefinition id=

Action Definitions

197

Welcome to Eclipse

"

"org.eclipse.ui.file.print
>

</actionDefinition>
</extension>

API Information:

The methods public void setActionDefinitionld(String id) and public String getActionDefinitionld() have
been added to IAction.

NOTE - other attributes may be added in the future, as needed.
Supplied Implementation:

The workbench provides many action definitions.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Action Definitions 198

http://www.eclipse.org/legal/cpl-v10.html

Action Set Part Associations

Identifier:

org.eclipse.ui.actionSetPartAssociations

Description:
This extension point is used to define an action set which should be added to a perspective when a part (vie

or editor) is opened in the perspective. In the case of an editor, the action set will remain visible while the
editor is the current editor. In the case of a view, the action set will be visible when the view is the active par

Configuration Markup:

<IELEMENT extension_(actionSetPartAssociation*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT actionSetPartAssociation (part*)>
<IATTLIST actionSetPartAssociation
targetID CDATA #REQUIRED>

« targetlD - the unique identifier of the action set (as specified in the registry) which is to be
associated with particular workbench views and/or editors.

<IELEMENT part EMPTY>
<IATTLIST part
id CDATA #REQUIRED>

« id - the unique identifier of the part (view or editor) to be associated with the action set.

Action Set Part Associations 199

Welcome to Eclipse

Examples:

The following is an example of an action set part association (note the subelement and the way attributes ar
used):

<extension point=
"org.eclipse.ui.actionSetPartAssociations"
>

<actionSetPartAssociation targetID=
"org.eclipse.jdt.ui.refactoring.actionSet"
>

<part id=
"org.eclipse.jdt.ui.PackageExplorer"

/>

<part id=
"org.eclipse.jdt.ui.CompilationUnitError"
/>

</actionSetPartAssociation>
</extension>

In the example above, a view or editor are associated with the refactoring action set.

API Information:

The user may override these associations using the customize perspective dialog. Regardless of these
associations, action sets which the user turns off will never appear and action sets which the user turns on v
always be visible.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Action Set Part Associations 200

http://www.eclipse.org/legal/cpl-v10.html

Activities
Identifier:
org.eclipse.ui.activities
Since:

3.0

Description:

The org.eclipse.ui.activities extension point is used to declare activities and associated

elements. Activities are used by the platform to filter certain plugin contributions from the users view until
such a time that they express interest in them. This allows Eclipse to grow dynamically based on the usage
pattern of a user.

Configuration Markup:

<IELEMENT extension_(activity , activityRequirementBinding . activityPatternBinding ., category ,
categoryActivityBinding . defaultEnablement)*>

<IATTLIST extension
id CDATA #IMPLIED
name CDATA #IMPLIED
point CDATA #REQUIRED>
« id — an optional identifier of the extension instance

* name — an optional name of the extension instance
« point — a fully qualified identifier of the target extension point

<IELEMENT activity EMPTY>
<IATTLIST activity

description CDATA #IMPLIED

id CDATA #REQUIRED
name CDATA #REQUIRED>

This element is used to define activities. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the registry) is considered valid.

Activities 201

Welcome to Eclipse

« description — a translatable short description of this activity for display in the Ul
« id — the unique identifier of this activity
* name - the translatable name of this activity for display in the Ul

<IELEMENT activityRequirementBinding EMPTY >
<IATTLIST activityRequirementBinding
requiredActivityld CDATA #REQUIRED

activityld CDATA #REQUIRED>

This element allows one to bind activities to activities. The relationship is such that if the activityld is ever
enabled then the requiredActivityld is enabled as well.

« requiredActivityld — the unique identifier of required activity to bind
« activityld — the unique identifier of the activity to bind

<IELEMENT activityPatternBinding EMPTY>
<IATTLIST activityPatternBinding

activityld CDATA #REQUIRED

pattern CDATA #REQUIRED>

This element allows one to bind activities to patterns.

« activityld — the unique identifier of the activity to bind
* pattern — the pattern to be bound. Patterns are regular expressions which match unique identifiers.
Please see the Java documentation for java.util.regex.Pattern for further details.

<IELEMENT category EMPTY>
<IATTLIST category

description CDATA #IMPLIED

id CDATA #REQUIRED
name CDATA #REQUIRED>

Activities 202

Welcome to Eclipse

This element is used to define categories. If more than one of these elements exist with the same id attribut
only the last declared element (in order of reading the registry) is considered valid.

« description — a translatable short description of this category for display in the Ul
« id - the unique identifier of this category
* name - the translatable name of this category for display in the Ul

<IELEMENT categoryActivityBinding EMPTY>
<IATTLIST categoryActivityBinding

activityld CDATA #REQUIRED

categoryld CDATA #REQUIRED>

This element allows one to bind categories to activities.

« activityld — the unique identifier of the activity to bind
« categoryld - the unique identifier of the category to bind

<IELEMENT defaultEnablement EMPTY>
<IATTLIST defaultEnablement
id CDATA #REQUIRED>

This element allows one to specify that a given activity should be enabled by default.

« id — the unique identifier of the activity

Examples:

The following is an example of several activity and category definitions as well as associated bindings.

<extension point=

"org.eclipse.ui.activities"

Activities 203

Welcome to Eclipse

>
<activity id=

"com.xyz.Activity"

description=

"Filters contributions from com.xyz"
name=

"My Activity"

/>

<activity id=

"com.xyz.OtherActivity"

description=

"Filters other contributions from com.xyz"
name=

"My Other Activity"

/>

<!-— other activity requires activity ——>
<activityRequirementBinding activityld=
"com.xyz.OtherActivity"
requiredActivityld=

"com.xyz.Activity"

/>

<category id=

"com.xyz.Category"

description=

"com.xyz Activities"

name=

Activities

204

Welcome to Eclipse
"My Category”
/>
<!-— put the activity in the category ——>
<categoryActivityBinding activityld=
"com.xyz.Activity"
categoryld=
"com.xyz.Category"
/>
<!-- bind all contributions from plugin com.xyz ——>
<activityPatternBinding id=
"com.xyz.Activity"
pattern=
"com\.xyz/.*"
/>
<!-— bind my.contribution from plugin com.xyz.other ——>
<activityPatternBinding id=
"com.xyz.OtherActivity"
pattern=
"com\.xyz\.other/my.contribution"
/>
<!—— our activity should be enabled by default ——>
<defaultEnablement id=
"com.xyz.Activity"
/>

</extension>

Activities

205

Welcome to Eclipse

API Information:

There is currently no public API for declaring activities or associated elements other than this extension poir
The state of activities in the workbench is accessible via

org.eclipse.ui.lWorkbench.getActivitySupport(). From here you may query and update

the set of currently enabled activities.

Supplied Implementation:

There are no "default activities" provided by the workbench. Activities are intended to be defined at the
product level, such as the Eclipse SDK, so as to tightly integrate all of the (known) components that product
contains.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Activities 206

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Content

Identifier:

org.eclipse.ui.cheatsheets.cheatSheetContent

Since:

3.0

Description:

This extension point is used to register cheat sheet content contributions. Cheat sheets appear as choices f
the "Help" menu or from within the cheat sheet view, and are typically used to aid a user through a series of
comlex tasks to accomplish an overall goal.

The cheat sheets are organized into categories which usually reflect a particular problem domain. For
instance, a Java oriented plug—in may define a category called "Java" which is appropriate for cheat sheets
that would aid a user with any of the Java tools. The categories defined by one plug-in can be referenced b
other plug—-ins using the category attribute of a cheatsheet element. Uncategorized cheat sheets, as well as
cheat sheets with invalid category paths, will end up in an "Other" category.

Cheat sheets may optionally specify a description subelement whose body should contain short text about t
cheat sheet.

Configuration Markup:

<IELEMENT extension_(category | cheatsheet)*>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT category EMPTY>
<IATTLIST category
id CDATA #REQUIRED

name CDATA #REQUIRED

Cheat Sheet Content 207

Welcome to Eclipse

parentCategory CDATA #IMPLIED>

A category element in the cheatsheetContent extension point creates a new category in the cheat sheet me
The cheat sheet menu is available from the help menu in the workbench. If a new category is specified, che
sheets may be targeted to that category and will appear under it in the cheat sheet selection dialog.

« id — a unigue name that can be used to identify this category
* name - a translatable name of the category that will be used in the dialog box
« parentCategory — a path to another category if this category should be added as a child

<IELEMENT cheatsheet (description?)>
<IATTLIST cheatsheet

id CDATA #REQUIRED

name CDATA #REQUIRED
category CDATA #IMPLIED
contentFile CDATA #IMPLIED

listener CDATA #IMPLIED>

A cheatsheet element is put into the cheatsheetContent extension point if there is a cheat sheet to be

contributed to the workbench. A cheat sheet element must specify an id, a translatable name to appear in th
selection options, a category id to specify which category this cheat sheet will be included in, and a content
file. The cheat sheet content file is an XML file that describes the steps and actions that the cheat sheet has

« id — a unigue name that can be used to identify this cheat sheet

* name - a translatable name of the cheat sheet that will be used in the help menu and the selection
dialog box

« category — a slash—delimited path (/') of category IDs. Each token in the path must represent a valid
category ID previously defined by this or some other plug-in. If omitted, the wizard will be added to
the "Other" category.

« contentFile — the path of a cheat sheet content file. The content file is an XML file that contains the
specifics of the cheat sheet (cheat sheet content file format specification). The content file is parsed
run time by the cheat sheet framework. Based on the settings in this file, a certain number of steps,
actions, descriptions, and help links are shown to the user when the cheat sheet is opened. The patt
interpreted as relative to the plug-in that declares the extension; the path may include special
variables. In particular, use "nl" as the first segment of the path to indicate that there are
locale—specific translations of the content file in subdirectories below "nl/". For more detail about the
special variables, you can read the Java API document for Platform.find.

« listener — listener is a fully qualified name of a Java class which must subclass
org.eclipse.ui.cheatsheets.CheatSheetListener.

Cheat Sheet Content 208

Welcome to Eclipse

<IELEMENT description (#CDATA)>

a short description of the cheat sheet

Examples:

Here is a sample usage of the cheatSheetContent extension point:

<extension point=
"org.eclipse.ui.cheatsheets.cheatSheetContent"
>

<category name=
"Example category"

id=
"com.example.category"”

>

</category>

<cheatsheet name=
"Example cheat sheet"
category=
"com.example.category"”
id=
"com.example.cheatSheet"
contentFile=
"ExampleCheatSheet.xml"
>

<description>

Cheat Sheet Content

209

Welcome to Eclipse

This is a descriptive bit of text for my cheat sheet description.
</description>
</cheatsheet>

</extension>
API Information:
For further details see the spec for the org.eclipse.ui.cheatsheets API package.

Supplied Implementation:

There are no built—=in cheat sheets.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Cheat Sheet Content 210

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Content File XML Format

Version 3.0

This document describes the cheat sheet content file structure as a series of DTD fragments (machine read
XML schema).

cheatsheet

<IELEMENT cheatsheet (intro, item+)>
<IATTLIST cheatsheet

title CDATA #REQUIRED
>

The <cheatsheet> element defines the body of the cheat sheet content file. <cheatsheet> attributes are as
follows:

« title — the title of the cheat sheet

intro

<IELEMENT intro (description)>
<IATTLIST intro
contextld CDATA #IMPLIED
href CDATA #IMPLIED
>

The <intro> element is used to describe the cheat sheet introduction to be displayed. The <description>
subelement contains the body of the introduction. <intro> attributes are as follows:

« contextld — The optional help context id of the documentation for this cheat sheet. If supplied,
context help for the given fully—qualified context id is shown to the user (typically in a small pop—up
window) when they clicks the introduction's help link. If this attribute is supplied, the href attribute
should not be supplied (href will be ignored if both are present).

« href — The optional help document describing this cheat sheet. If supplied, this help document is
shown to the user (typically in a help browser shown in a separate window) when they clicks the
introduction's help link. If this attribute is supplied, the contextld attribute should not be supplied
(href will be ignored if both are present).

description

<IELEMENT description EMPTY>
<IATTLIST description
>

The <description> element holds the description of a cheat sheet or of a cheat sheet item. The description

consists of text interspersed with simple formatting tags. The cheat sheet automatically formats and lays out
the text to make it show up reasonably in the Ul. Within the text, balanced ... tags cause the enclos
text to be rendered in a bold font, and the
 element can be used to force a line break. These are the or
formatting tags supported at this time (however, others may be added in the future). Certain characters in th

Cheat Sheet Content File XML Format 211

Welcome to Eclipse

text have special significance for XML parsers; in particular, to write "<", ">", "&", "™, and """ (quotation
mark) instead write "&It;", ">", "&", "'", and """ respectively. Whitespace (spaces and

line breaks) is treated as a word separator; adjacent spaces and line breaks are treated as single unit and
rendered as a single space or a line break. Whitespace immediately after the <description> and
 tags i

ignored, as is whitespace immediately before the </description> tag.
item

<IELEMENT item (description ([action|perform—when] | (subitem|repeated-subitem|conditional-subitem)*))>
<IATTLIST item

title CDATA #REQUIRED
skip ("true" | "false") "false"
contextld CDATA #IMPLIED
href CDATA #IMPLIED

>

Each <item> element describes one top-level step in a cheat sheet. The <item> is either simple or composi
<item> attributes are as follows:

« title — The title of the cheat sheet item.

« skip — skip="true" means that the whole step can be skipped; the Ul generally shows a button that th
user can press to indicate that they are skipping this step

« contextld — The optional help context id of the documentation for this cheat sheet step. If supplied,
context help for the given fully—qualified context id is shown to the user (typically in a small pop-up
window) when they clicks the step's help link. If this attribute is supplied, the href attribute should not
be supplied (href will be ignored if both are present).

« href — The optional help document describing this cheat sheet step. If supplied, this help document i
shown to the user (typically in a help browser shown in a separate window) when they clicks the
step's help link. If this attribute is supplied, the contextld attribute should not be supplied (href will
be ignored if both are present).

The org.eclipse.ui.cheatsheets.cheatSheetltemExtension allows additional custom controls for the item to b
displayed in the Ul. Contributions to this extension point declare the names of additional, string—valued
attributes that may appear on <item> elements.

Simple items have a description and an optional action. In the typical presentation, the titles of cheat sheet
items are shown to the user most of the time. An item's description is only shown while the step is in the
process of being executed. The presence of an <action> (or <perform—-when>) element is typically associate
with a button that the user can press to perform the step's action. If no action is present, the step is one that
user must carry out manually and then overtly indicate that they have successfully completed the step.

Composite steps are broken down into sub—steps as specified by the <subitem> subelements. Unlike items,
which the user must follow in strict sequence, the sub-items of a given item can be performed in any order.
All sub-items within an item have to be attempted (or skipped) before progressing to the next item. (Which
means actions that must be performed in a required sequence cannot be represented as sub-items.)

A <conditional-subitem> subelement allow a step to tailor the presentation of a sub—step based on cheat st
variables whose values are acquired in earlier steps. A <repeated-subitem> subelement allows a step to
include a set of similar sub—steps. Again, the exact set of sub—steps may be based on cheat sheet variables
whose value are acquired in earlier steps.

item 212

Welcome to Eclipse

subitem

<IELEMENT subitem ([action|perform-when])>
<IATTLIST subitem

label CDATA #REQUIRED
Sk|p ("true" | "fa|Se") nfalseu
when CDATA #IMPLIED

>

Each <subitem> element describes a sub-step in a cheat sheet. A <subitem> carries a simple text label, bu
has neither a lengthy description nor further sub-items. <subitem> attributes are as follows:

« label — The title of the cheat sheet sub-item. If the string contains substring occurrences of the form
"${var}", they are considered references to cheat sheet variables. All such occurrences in the string
value will be replaced by the value of the corresponding variable in the context of the execution of th
cheat sheet, or the empty string for variables that are unbound. The values of the variables are as of
the beginning of the execution of the main step (when the <item> element is elaborated), rather than
when the individual sub—step are run.

« skip — skip="true" means that the sub—step can be skipped. The Ul generally shows a button that the
user can press to indicate that they are skipping this sub-step.

« when — Indicates this subitem is to be used if and only if the value of the condition attribute of the
containing <conditional-subitem> element matches this string value. This attribute is ignored if the
<subitem> element is not a child of a <conditional-subitem> element.

Sub-items have an optional action. The presence of an <action> (or <perform-when>) element is typically
associated with a button that the user can press to perform the sub—step's action. If no action is present, the
sub-step is one that the user must carry out manually and then overtly indicate that they have successfully
completed the step.

Unlike items, which must be followed in strict sequence, the sub-items of a given item can be performed in
any order. All sub-items within an item have to be attempted (or skipped) before progressing to the next iter
(Which means actions that must be performed in a required sequence should not be represented as sub-ite

conditional—-subitem

<IELEMENT conditional-subitem (subitem+)>
<IATTLIST conditional-subitem

condition CDATA #REQUIRED
>

Each <conditional-subitem> element describes a single sub—step whose form can differ based on a conditic
known at the time the item is expanded. <conditional-subitem> attributes are as follows:

« condition — Arbitrary string value used to select which child <subitem> will be used. If the attribute
string has the form "${var}", it is considered a reference to a cheat sheet variable var, and value of tr
condition will be the value of the variable for the cheat sheet at the start of execution of the containin
<item> element (or the empty string if the variable is unbound at that time).

The condition attribute on the <conditional-subitem> element provides a string value (invariably this value

comes from a cheat sheet variable). Each of the <subitem> children must carry a when attribute with a distir
string value. When the item is expanded, the <conditional-subitem> element is replaced by the <subitem>

subitem 213

Welcome to Eclipse

element with the matching value. It is considered an error if there is no <subitem> element with a matching
value.

For example, if the cheat sheet variable named "v1" has the value "b" when the following item is expanded

<item ...>
<conditional-subitem condition="${v1}">
<subitem when="a" label="Step for A." />
<subitem when="b" label="Step for B." />
</conditional-subitem>
</item>

then the second sub-item is selected and the item expands to something equivalent to

<item ...>
<subitem label="Step for B."/>
</item>

repeated—subitem

<IELEMENT repeated-subitem (subitem)>
<IATTLIST repeated-subitem

values CDATA #REQUIRED
>

Each <repeated-subitem> element describes a sub-item that expands into 0, 1, or more similar sub—steps.
<repeated-subitem> attributes are as follows:

« values — A string containing a comma-separated list of values. If the attribute string has the form
"${var}", it is considered a reference to a cheat sheet variable var, and value of the condition will be
the value of the variable for the cheat sheet at the start of execution of the containing <item> elemen
(or the empty string if the variable is unbound at that time).

The values attribute provides a list of comma-separated strings; the <subitem> child provide the template.
When the item is expanded, the <repeated-subitem> element is replaced by copies of the <subitem> eleme
with occurrences of the variable "this" replaced by the corresponding string value.

For example, if the cheat sheet variable named "v1" has the value "1,b,three" when the following item is
expanded

<item ...>
<repeated-subitem values="${v1}">
<subitem label="Step ${this}.">
<action class="com.xyz.myaction" pluginld="com.xyz" param1="${this}"/>
</subitem>
</repeated-subitem>
</item>

then the item expands to something equivalent to:

<item ...>
<subitem label="Step 1.">
<action class="com.xyz.myaction" pluginld="com.xyz" param1="1"/>
</subitem>
<subitem label="Step b.">

repeated—-subitem 214

<actio
</subite

Welcome to Eclipse

n class="com.xyz.myaction" pluginld="com.xyz" param1="b"/>
m>

<subitem label="Step three.">

<actio
</subite
</item>

actio

n class="com.xyz.myaction" pluginld="com.xyz" parami1="three"/>
m>

n

<IELEMENT action EMPTY>
<IATTLIST action

class
pluginid
paraml

param9
confirm
when

>

CDATA #REQUIRED
CDATA #REQUIRED
CDATA #IMPLIED

CDATA #IMPLIED
("true" | "false") "false"
CDATA #IMPLIED

Each <action> element describes an action in a cheat sheet. <action> attributes are as follows:

class — The fully—qualified name of the Java class implementing

org.eclipse.jface.action.lAction. If this action also implements
org.eclipse.ui.cheatsheets.ICheatSheetAction it will be invoked via its
run(String[],ICheatSheetManager) method and be passed the cheat sheet manager and action
parameters. The pluginld attribute must be present whenever this attribute is present. It is strongly
recommended that actions intended to be invoked from cheat sheets should report success/fail
outcome if running the action might fail (perhaps because the user cancels the action from its dialog]
(See org.eclipse.jface.action.Action.notifyResult(boolean) for details.)

pluginld — The id of the plug—in which contains the Java class of the action class. This attribute must
be present whenever the class attribute is present.

paramN - For action classes that also implement

org.eclipse.ui.cheatsheets.ICheatSheetAction, the string values of these attributes

are passed to the action when it is invoked. You can pass up to 9 parameters to a cheat sheet actior
(paraml, paramz2, etc.). The parameters supplied must start with parameter 1 and be contiguous; th:
is, it is illegal to specify param2 without paraml also being present. If the attribute string has the
form "${var}", it is considered a reference to a cheat sheet variable var, and value of the condition
will be the value of the variable for the cheat sheet at the start of execution of the containing <item>
element (or the empty string if the variable is unbound at that time).

confirm — "true" indicates this step (or sub-step) requires the user to manually confirm that the actior
has been completed.

when - Indicates this action is to be used if and only if the value of the condition attribute of the
containing <perform—-when> element matches this string value. This attribute is ignored if the
<action> element is not a child of a <perform-when> element.

perform—-when

<IELEMENT perform-when (action+)>
<IATTLIST perform-when
condition CDATA #REQUIRED

>

action

215

Welcome to Eclipse

Each <perform—-when> element describes an action in a cheat sheet. <perform-when> attributes are as
follows:

« condition — Arbitrary string value used to select which child <action> will be performed. If the
attribute string has the form "${var}", it is considered a reference to a cheat sheet variable var, and
value of the condition will be the value of the variable for the cheat sheet at the start of execution of
the containing <item> element (or the empty string if the variable is unbound at that time).

The condition attribute on the <conditional-subitem> element provides a string value (invariably this value
comes from a cheat sheet variable). Each of the <subitem> children must carry a when attribute with a distir
string value. When the item is expanded, the <conditional-subitem> element is replaced by the <subitem>
element with the matching value. It is considered an error if there is no <subitem> element with a matching
value.

For example, if the cheat sheet variable named "v1" has the value "b" when the following item is expanded

<item ...>
<subitem label="Main step">
<perform—-when condition="${v1}">
<action when="a" class="com.xyz.action1" pluginld="com.xyz" />
<action when="b" class="com.xyz.action2" pluginld="com.xyz" />
</conditional-subitem>
</subitem>
</item>

then the second action is selected and the item expands to something equivalent to

<item ...>
<subitem label="Main step">
<action class="com.xyz.action2" pluginld="com.xyz" />
</subitem>
</item>

Example

The following is an example of a very simple cheat sheet content file:

<?xml version="1.0" encoding="UTF-8"?>
<cheatsheet title="Example">
<intro>
<description>Example cheat sheet with two steps.</description>
<fintro>
<item title="Step 1">
<description>This is a step with an action.</description>
<action class="com.xyz.myaction" pluginld="com.xyz"/>
</item>
<item title="Step 2">
<description>This is a fully manual step.</description>
</item>
</cheatsheet>

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th

Example 216

Welcome to Eclipse

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl-v10.html

Example 217

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Item Extension

Identifier:

org.eclipse.ui.cheatsheets.cheatSheetltemExtension

Since:

3.0

Description:

This extension point should be used when an extra button needs to be added to a step in the cheat sheet. Y
can put a new attribute into the "item" tag in the cheat sheet content file, and when that value is read by the
cheat sheet framework, it will check to see if there is a class registered through this extension point that will
handle this attribute. The attribute name found in the cheat sheet content file is matched against all of the
values found in the "itemAttribute" attribute of all of the registered cheatsheetltemExtension point
implementations. If there is a match, the class specified to handle this item attribute is loaded by the cheat
sheet framework and is called to handle the attribute specified in the cheat sheet content file. After having
parsed the value of the item attribute, the class remains available to the cheat sheets framework. When the
item is rendered for the cheat sheets view, the class is once again called to handle the addition of compone
to a Composite. The items that are added to this composite are displayed in the cheat sheet step (currently,
beside the help icon). It is displayed only for the step that is described by the "item" tag that the attribute
appeared in the cheat sheet content file. The suggested use of this extension point is adding a small (16x16
button with a graphic that opens a dialog box when pressed.

Configuration Markup:

<IELEMENT extension_(itemExtension)*>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT itemExtension EMPTY>
<IATTLIST itemExtension
itemAttribute CDATA #REQUIRED

class CDATA #REQUIRED>

Cheat Sheet Item Extension 218

Welcome to Eclipse

Use this item extension to add elements to cheat sheet steps. You can use this extension point to add icons
buttons (currently, beside the help icon) for a step in the cheat sheet. You specify the name of an attribute tt
you will put into the cheat sheet item tag. You also specify a class that will handle the parsing of the attribute
value from the cheat sheet content file when the cheat sheet is loaded. The attribute valuemust be a string.
specified class must subclass

org.eclipse.ui.cheatsheets.AbstractitemExtensionElement. After the cheat sheet

content file is parsed and loaded, the class specified in the extension point is called again through the interf:
to add graphics or buttons to the step in the cheat sheet (currently, next to the help button).

« itemAttribute — This attribute value must be the string value of an attribute name that is put into an
item tag in the cheat sheet content file. If this attribute string matches an attribute parsed from the
item tag in the cheat sheet content file, the class specified will be loaded and will be called to parse
the full value of the attribute using the w3 DOM specification. It will later be called to add controls to
a Composite, and the added components (usually graphics or buttons) will appear in the step of the
cheat sheet for the item specified (currently, beside the help icon for that step).

« class — The fully qualified class name of the class that subclasses
org.eclipse.ui.cheatsheet.AbstractitemExtensionElement to handle unknown
attributes in the cheat sheet content file and extend the steps in the cheat sheet. The class must be
public, and have a public 1-argument constructor that accepts the attribute name (a String).

Examples:

Here is an example implementation of this extension point:

<extension point=
"org.eclipse.ui.cheatsheets.cheatSheetltemExtension”
>

<itemExtension itemAttribute=

"XyzButton"

class=

"com.example.HandleParsingAndAddButton"

>

</itemExtension>

</extension>

And here is the item attribute for that extension:

Cheat Sheet Item Extension 219

Welcome to Eclipse

<item title=
"XYZ Title"
XyzButton=
"flicon/button.gif"

>

Note that the value of the attribute in the item tag can be ANYTHING. It can be anything because the class
that parses that attribute is the class HandleParsingAndAddButton, which in this example parses a string
ficon/button.gif from the attribute. It later will use that info to load the gif and use it as the icon for a new
button.

API Information:
See the Javadoc information for org.eclipse.ui.cheatsheets.AbstractitemExtensionElement for API details.

Supplied Implementation:

There is no supplied implementation at this time.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Cheat Sheet Item Extension 220

http://www.eclipse.org/legal/cpl-v10.html

Contexts

Identifier:

org.eclipse.ui.contexts

Since:

3.0

Description:

The org.eclipse.ui.contexts extension point is used to declare contexts and associated elements.

Configuration Markup:

<IELEMENT extension_(context , contextContextBinding)>

<IATTLIST extension
id CDATA #IMPLIED
name CDATA #IMPLIED
point CDATA #REQUIRED>
« id — An optional identifier of the extension instance.

* name — An optional name of the extension instance.
« point — A fully qualified identifier of the target extension point.

<IELEMENT context EMPTY>
<IATTLIST context

description CDATA #IMPLIED
id CDATA #REQUIRED
name CDATA #REQUIRED
parentld CDATA #IMPLIED>

This element is used to define contexts. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the registry) is considered valid.

« description — A translatable short description of this context for display in the Ul.
« id — The unique identifier of this context.

Contexts 221

Welcome to Eclipse

« name — The translatable name of this context for display in the UI.
« parentld — The unique identifier of the parent of this context.

Examples:

The plugin.xml file in the org.eclipse.ui plugin makes use of the
org.eclipse.ui.contexts extension point.

API Information:

There is currently no public API for declaring contexts or associated elements other than this extension poin

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Contexts 222

http://www.eclipse.org/legal/cpl-v10.html

Decorators

Identifier:

org.eclipse.ui.decorators
Since:
Release 2.0

Description:

This extension point is used to add decorators to views that subscribe to a decorator manager. As of 2.1 the
is the concept of a lightweight decorator that will handle the image management for the decorator. It is also
possible to declare a lightweight decorator that simply overlays an icon when enabled that requires no
implementation from the plug-in.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enableme
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub—element. In the simplest case, this will be an objectClass, objectState,

pluginState, or systemProperty element. In the more complex case, the and, or, and not elements

can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub—element
The not element must contain only 1 sub—element.

Configuration Markup:

<IELEMENT extension_(decorator*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT decorator (description? , enablement?)>

<IATTLIST decorator

id CDATA #REQUIRED

Decorators 223

label CDATA #REQUIRED
class CDATA #IMPLIED
objectClass CDATA #IMPLIED
adaptable (true | false)

state (true | false)
lightweight (truel|false)

icon CDATA #IMPLIED

Welcome to Eclipse

location (TOP_LEFT|TOP_RIGHT|BOTTOM_LEFT|BOTTOM_RIGHT|UNDERLAY) >

« id — a unigue name that will be used to identify this decorator.
« label — a translatable name that will be used in the workbench window menu to represent this

decorator.

« class - a fully qualified name of a class which implements
org.eclipse.jface.viewers.ILabelDecorator if lightweight is false or
org.eclipse.jface.viewers.ILightweightLabelDecorator if lightweight is true.

The default value is false. If there is no class element it is assumed to be true.

« objectClass — a fully qualified name of a class which this decorator will be applied to. Deprecated in
2.1. Make this value part of the enablement.

 adaptable - a flag that indicates if types that adapt to IResource should use this object contribution.
This flag is used only if objectClass adapts to IResource. Default value is false.

« state — a flag that indicates if the decorator is on by default. Default value is false.

« lightweight — The lightweight flag indicates that the decorator is either declarative or implements
org.eclipse.jface.viewers.ILightweightLabelDecorator.

« icon — if the decorator is lightweight and the class is not specified this is the path to the overlay imag

to apply

« location - if the decorator is lightweight this is the location to apply the decorator to. Defaults to

BOTTOM_RIGHT.

<IELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the decorator. This
will be shown in the Decorators preference page so it is recommended that this is included. Default value is

empty String.

<IELEMENT enablement_(and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

Decorators

224

Welcome to Eclipse

<IELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<IELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub—element expressiol

<IELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub—element expression:

<IELEMENT not (and_| or_| not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub—element expressions.

<IELEMENT objectClass EMPTY>
<IATTLIST objectClass
name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object
the selection implements the specified class or interface, the expression is evaluated as true.

« name - a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

<IELEMENT objectState EMPTY>

<IATTLIST objectState

Decorators 225

Welcome to Eclipse

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in tt
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of

expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.lActionFilter interface.

* name - the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug-in where the object type is declared.

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

<IELEMENT pluginState EMPTY>
<IATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug—in. The state of the plug—in may be one of the following
installed or activated.

« id - the identifier of a plug—in which may or may not exist in the plug—-in registry.
« value - the required state of the plug—in. The state of the plug—in may be one of the following:
installed or activated.

<IELEMENT systemProperty EMPTY>
<IATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

* name - the name of the system property.

Decorators 226

Welcome to Eclipse

« value - the required value of the system property.

Examples:

The following are example of decorators:

A full decorator. The plug—in developer must handle their own image support.

<extension point=
"org.eclipse.ui.decorators"

>

<decorator id=
"com.xyz.decorator"

label=

"XYZ Decorator"

state=

"true"

class=
"com.xyz.DecoratorContributor"
>

<enablement>

<objectClass name=
"org.eclipse.core.resources.IResource"
/>

</enablement>

</decorator>

</extension>

Decorators

227

Welcome to Eclipse

A lightweight decorator. There is a concrete class but as it is an ILightweightLabelDecorator it only needs to
supply text and an ImageDescriptor and therefore needs no resource handling.

<extension point=
"org.eclipse.ui.decorators"

>

<decorator id=
"com.xyz.lightweight.decorator"
label=

"XYZ Lightweight Decorator"
state=

"false"

class=
"com.xyz.LightweightDecoratorContributor"
lightweight=

"true"

>

<enablement>

<objectClass name=
"org.eclipse.core.resources.IResource”
/>

</enablement>

</decorator>

</extension>

A declarative lightweight decorator. There is no concrete class so it supplies an icon and a quadrant to appl
that icon.

Decorators 228

Welcome to Eclipse

<extension point=
"org.eclipse.ui.decorators"

>

<decorator id=
"com.xyz.lightweight.declarative.decorator"
label=

"XYZ Lightweight Declarative Decorator"
state=

"false"

lightweight=

"true"

icon=

"icons/full/declarative.gif"

location=

"TOP_LEFT"

>

<enablement>

<objectClass name=
"org.eclipse.core.resources.IResource"
/>

</enablement>

</decorator>

</extension>

API Information:
The value of the class attribute must be the fully qualified name of a class that implements

org.eclipse.jface.viewers.ILabelDecorator (if lightweight is false) or
org.eclipse.jface.viewers.ILightweightLabelDecorator. This class is loaded as late as

Decorators 229

Welcome to Eclipse

possible to avoid loading the entire plug—in before it is really needed. Declarative decorators do not entail ar
plug-in activation and should be used whenever possible. Non-lightweight decorators will eventually be
deprecated.

Supplied Implementation:

Plug-ins may use this extension point to add new decorators to be applied to views that use the decorator
manager as their label decorator. To use the decorator manager, use the result of
IViewPart.getDecoratorManager() as the decorator for an instance of DecoratingLabelProvider. This is
currently in use by the Resource Navigator.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Decorators 230

http://www.eclipse.org/legal/cpl-v10.html

Drop Actions

Identifier:
org.eclipse.ui.dropActions

Description:

This extension point is used to add drop behaviour to views defined by other plugins.

Due to the Ul layering imposed by the plugin mechanism, views are often not aware of the content and natu
of other views. This can make drag and drop operations between plugins difficult. For example, one may wi:
to provide Java refactoring support whereby the user drags a method from the Java editor's content outliner
into another java file in the resource navigator. Since the resource navigator doesn't know anything about Je
content, it doesn't know how to behave when java methods are dropped onto it. Similarly, an ISV may want
drop some of their content into one of the Java viewers.

The org.eclipse.ui.dropActions extension point is provided by the Platform to address these

situations. This mechanism delegates the drop behaviour back to the originator of the drag operation. This
behaviour is contained in an action that must implement

org.eclipse.ui.part.IDropActionDelegate. The viewer that is the source of the drag operation

must support the org.eclipse.ui.part.PluginTransfer transfer type, and place a

PluginTransferData object in the drag event. See
org.eclipse.jface.viewers.StructuredViewer#addDragSupport to learn how to add drag support to a viewer.

Configuration Markup:

<IELEMENT extension_(action*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT action EMPTY>
<IATTLIST action
id CDATA #REQUIRED

class CDATA #REQUIRED>

Drop Actions 231

Welcome to Eclipse

« id — a unique identifier that can be used to reference this action
« class - the name of the fully qualified class that implements
org.eclipse.ui.part.IDropActionDelegate.

Examples:

The following is an example of a drop action extension:

<extension point=
"org.eclipse.ui.dropActions”

>
<action id=
"my_drop_action"
class=

"com.xyz.eclipse.TestDropAction"

>
</action>
</extension>

Here is an example of a drag listener that makes use of the drop action defined above.

class MyDragListener extends DragSourceAdapter {
public void dragSetData(DragSourceEvent event) {
if (PluginTransfer.getinstance().isSupportedType(event.dataType)) {
byte[] dataToSend = ...//enter the data to be sent.
event.data = new PluginTransferData(
my_drop_action, dataToSend);

}
}
}

For a more complete example, see the Platform readme example. In that example, a drop action is defined |
ReadmeDropActionDelegate, and it is used by ReadmeContentOutlineDragListener.

API Information:
The value of the class attribute must be a fully qualified name of a Java class that implements

org.eclipse.ui.part.IDropActionDelegate. This class is loaded as late as possible to avoid
loading the entire plug-in before it is really needed

Drop Actions 232

Welcome to Eclipse

Supplied Implementation:

The workbench does not provide an implementation for this extension point. Plug—ins can contribute to this
extension point to add drop behavior to views defined by other plugins.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Drop Actions 233

http://www.eclipse.org/legal/cpl-v10.html

Editor Menus, Toolbars and Actions

Identifier:

org.eclipse.ui.editorActions

Description:
This extension point is used to add actions to the menu and toolbar for editors registered by other plug-ins.

The initial contribution set for an editor is defined by another extension point (org.eclipse.ui.editors). One se
of actions is created and shared by all instances of the same editor type. When invoked, these action act up
the active editor. This extension point follows the same pattern. Each action extension is created and sharec
by all instances of the same editor type. The action class is required to implement
org.eclipse.ui.lEditorActionDelegate. The active editor is passed to the delegate by invoking
IEditorActionDelegate.setActiveEditor.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enableme
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub—element. In the simplest case, this will be an objectClass, objectState,

pluginState, or systemProperty element. In the more complex case, the and, or, and not elements

can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub—element
The not element must contain only 1 sub—element.

Configuration Markup:

<IELEMENT extension_(editorContribution+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT editorContribution (menu* , action*)>

<IATTLIST editorContribution

id CDATA #REQUIRED

Editor Menus, Toolbars and Actions 234

Welcome to Eclipse

targetID CDATA #REQUIRED>

This element is used to define a group of editor actions and/or menus.

« id — a unique identifier used to reference this contribution.
« targetID — a unique identifier of a registered editor that is the target of this contribution.

<IELEMENT action (selection* | enablement?)>
<IATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED
accelerator CDATA #IMPLIED
definitionld CDATA #IMPLIED
menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED
icon CDATA #IMPLIED
disabledicon CDATA #IMPLIED
hovericon CDATA #IMPLIED
tooltip CDATA #IMPLIED
helpContextld CDATA #IMPLIED
style (push|radio|toggle) "push”
state (true | false)

class CDATA #REQUIRED
enablesFor CDATA #IMPLIED
actionlD CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

Editor Menus, Toolbars and Actions 235

Welcome to Eclipse

id — a unique identifier used as a reference for this action.
* label - a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.
accelerator — Deprecated: Use the definitionld attribute instead.
definitionld — Specifies the command that this action will handle. By specifying and action, the key
binding service can assign a key sequence to this action. See the extension point
org.eclipse.ui.commands for more information.
« menubarPath — a slash—delimited path (/") used to specify the location of this action in the menu bar
Each token in the path, except the last one, must represent a valid identifier of an existing menu in tt
hierarchy. The last token represents the named group into which this action will be added. If the patt
is omitted, this action will not appear in the menu bar.
toolbarPath — a slash—delimited path (/) that is used to specify the location of this action in the
toolbar. The first token represents the toolbar identifier (with "Normal" being the default toolbar),
while the second token is the named group within the toolbar that this action will be added to. If the
group does not exist in the toolbar, it will be created. If toolbarPath is omitted, the action will not
appear in the toolbar.
« icon — a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug—in. The icon will appear in toolbars but not in
menus. Enabled actions will be represented in menus by the hoverlcon.
disabledlcon — a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug—in. The disabled icon will appear in
toolbars but not in menus. Icons for disabled actions in menus will be supplied by the OS.
hoverlcon — a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug-in.
tooltip — a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.
helpContextld — a unigue identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.
style — an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push - as aregular menu item or tool item.

radio - as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio set.
The initial value is specified by the state attribute.

toggle — as a checked style menu item or as a toggle tool item. The initial
value is specified by the state attribute.
« state — an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.

« class - the name of the fully qualified class that implements
org.eclipse.ui.lEditorActionDelegate
enablesFor — a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:

! - 0 items selected

? — 0 or 1 items selected

Editor Menus, Toolbars and Actions 236

Welcome to Eclipse

+ - 1 or more items selected
multiple, 2+ — 2 or more items selected
n - a precise number of items selected.a precise number of

items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* — any number of items selected
* actionID - Internal tag for use by the text editors. Should not be used by plug—in developers.

<IELEMENT menu (separator+ . groupMarker*)>
<IATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

* id — a unique identifier that can be used to reference this menu.

* label - a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

« path - the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

<IELEMENT separator EMPTY>
<IATTLIST separator
name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

* name - the name of the menu separator. This name can later be referenced as the last token in a m
path. Therefore, a separator also serve as hamed group into which actions and menus can be addec

<IELEMENT groupMarker EMPTY>

Editor Menus, Toolbars and Actions 237

Welcome to Eclipse

<IATTLIST groupMarker
name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

* name - the name of the group marker. This name can later be referenced as the last token in the me
path. It serves as named group into which actions and menus can be added.

<IELEMENT selection EMPTY>
<IATTLIST selection

class CDATA #REQUIRED
name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

« class - a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

* name — an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

<IELEMENT enablement_(and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<IELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<IELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub—element expressiol

Editor Menus, Toolbars and Actions 238

Welcome to Eclipse

<IELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub—element expression:

<IELEMENT not (and_| or_| not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub—element expressions.

<IELEMENT objectClass EMPTY>
<IATTLIST objectClass
name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object
the selection implements the specified class or interface, the expression is evaluated as true.

« name - a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

<IELEMENT objectState EMPTY>

<IATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in tt
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of

expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.lActionFilter interface.

* name - the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug-in where the object type is declared.

Editor Menus, Toolbars and Actions 239

Welcome to Eclipse

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

<!IELEMENT pluginState EMPTY>
<IATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug—in. The state of the plug—in may be one of the following
installed or activated.

« id - the identifier of a plug—in which may or may not exist in the plug—-in registry.
« value - the required state of the plug—in. The state of the plug—in may be one of the following:
installed or activated.

<IELEMENT systemProperty EMPTY>
<IATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

* name - the name of the system property.
« value - the required value of the system property.

Examples:

The following is an example of an editor action extension:

<extension point=

"org.eclipse.ui.editorActions"

Editor Menus, Toolbars and Actions 240

>
<editorContribution id=
"com.xyz.xyzContribution"
targetiD=
"com.ibm.XMLEditor"
>

<menu id=

"Xyz"

label=

"&XYZ Menu"

>

<separator name=
"groupl”

/>

</menu>

<action id=
"com.xyz.runXyZz"
label=

"&Run XYZ Tool"
menubarPath=
"XYZ/groupl"
toolbarPath=
"Normal/additions”
style=

"toggle”

state=

Editor Menus, Toolbars and Actions

Welcome to Eclipse

241

Welcome to Eclipse

"true"

icon=

"icons/runXYZ.gif"

tooltip=

"Run XYZ Tool"
helpContextld=
"com.xyz.run_action_context"

class=

"com.xyz.actions.Runxyz"

>

<selection class=

"org.eclipse.core.resources.|File"

name=

"* java"

/>

</action>

</editorContribution>

</extension>

In the example above, the specified action will appear as a check box item in the new top-level menu name
"XYZ Menu", and as a toggle button in the toolbar. The action is enabled if the selection contains only Java

file resources.

The following is an other example of an editor action extension:

<extension point=
"org.eclipse.ui.editorActions"

>

<editorContribution id=

Editor Menus, Toolbars and Actions 242

"com.xyz.xyz2Contribution"
targetiD=
"com.ibm.XMLEditor"
>

<menu id=

"XYyz2"

label=

"&XYZ2 Menu"
path=
"edit/additions"

>

<separator name=
"groupl”

/>

</menu>

<action id=
"com.xyz.runxyz2"
label=

"&Run XYZ2 Tool"
menubarPath=
"edit/XYZ2/groupl"
style=

"push"

icon=
"icons/runXYZz2.gif"
tooltip=

Editor Menus, Toolbars and Actions

Welcome to Eclipse

243

Welcome to Eclipse

"Run XYZ2 Tool"
helpContextld=
"com.xyz.run_action_context2"
class=
"com.xyz.actions.RunXyz2"
>

<enablement>

<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<not>

<objectState name=
"extension”

value=

"java"

/>

</not>

</and>

</enablement>

</action>
</editorContribution>
</extension>

In the example above, the specified action will appear as a menu item in the sub—menu named "XYZ2 Ment
in the top level "Edit" menu. The action is enabled if the selection contains no Java file resources.

Editor Menus, Toolbars and Actions 244

Welcome to Eclipse
API Information:
The value of the class attribute must be a fully qualified name of a Java class that implements
org.eclipse.ui.lEditorActionDelegate. This class is loaded as late as possible to avoid loading
the entire plug—in before it is really needed. The method setActiveEditor will be called each time an

editor of the specified type is activated. Only one set of actions and menus will be created for all instances ©
the specified editor type, regardless of the number of editor instances currently opened in the Workbench.

This extension point can be used to contribute actions into menus previously created by the target editor. In
addition, menus and actions can be contributed to the Workbench window. The identifiers for actions and
major groups within the Workbench window are defined in
org.eclipse.ui.lWorkbenchActionConstants. These should be used as a reference point for the
addition of new actions. Top level menus are created by using the following values for the path attribute:

« additions - represents a named group immediately to the left of the Window menu.

Omitting the path attribute will result in adding the new menu into the additions menu bar group.

Actions and menus added into these paths will only be shown while the associated editor is active. When th
editor is closed, menus and actions will be removed.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the
action enable state directly within its selectionChanged method.

Action and menu labels may contain special characters that encode mnemonics using the following rules:

1. Mnemonics are specified using the ampersand ('&") character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in tf
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug-in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can

replace the selection element using the sub—elements objectClass and objectState. For example,
the following:

<selection class=
"org.eclipse.core.resources.|File"
name=

"* java"

>

Editor Menus, Toolbars and Actions 245

Welcome to Eclipse

</selection>

can be expressed using:

<enablement>
<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<objectState name=
"extension"

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

The Workbench provides a built-in "Default Text Editor". Plug-ins can contribute into this default editor or
editors provided by other plug-ins.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Editor Menus, Toolbars and Actions 246

http://www.eclipse.org/legal/cpl-v10.html

Internal and External Editors

Identifier:

org.eclipse.ui.editors

Description:

This extension point is used to add new editors to the workbench. A editor is a visual component within a
workbench page. It is typically used to edit or browse a document or input object. To open an editor, the use
will typically invoke "Open" on an IFile. When this action is performed the workbench registry is

consulted to determine an appropriate editor for the file type and then a new instance of the editor type is
created. The actual result depends on the type of the editor. The workbench provides support for the creatic
of internal editors, which are tightly integrated into the workbench, and external editors, which are launched
in a separate frame window. There are also various level of integration between these extremes.

In the case of an internal editor tight integration can be achieved between the workbench window and the
editor part. The workbench menu and toolbar are pre-loaded with a number of common actions, such as cu
copy, and paste. The active part, view or editor, is expected to provide the implementation for these actions.
An internal editor may also define new actions which appear in the workbench window. These actions only
appear when the editor is active.

The integration between the workbench and external editors is more tenuous. In this case the workbench m

launch an editor but after has no way of determining the state of the external editor or collaborating with it by
any means except through the file system.

Configuration Markup:

<IELEMENT extension _(editor*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT editor EMPTY>
<IATTLIST editor

id CDATA #REQUIRED
name CDATA #REQUIRED

Internal and External Editors 247

icon

Welcome to Eclipse

CDATA #IMPLIED

extensions CDATA #IMPLIED

class

CDATA #IMPLIED

command CDATA #IMPLIED

launcher CDATA #IMPLIED

contributorClass CDATA #IMPLIED

default

(true | false) "false"

filenames CDATA #IMPLIED

symbolicFontName CDATA #IMPLIED>

id — a unigue name that will be used to identify this editor

name — a translatable name that will be used in the Ul for this editor

icon — a relative name of the icon that will be used for all resources that match the specified
extensions. An icon is not required if you specify a command rather than a class. In that case, the
workbench will use the icon provided by the operating system.

extensions — an optional field containing the list of file types understood by the editor. This is a string
containing comma separate file extensions. For instance, an editor which understands hypertext
documents may register for "htm, html".

class — the name of a class that implements org.eclipse.ui.lEditorPart. The attributes

class, command, and launcher are mutually exclusive. If this attribute is defined then
contributorClass should also be defined.

command — a command to run in order to launch an external editor. The executable command must
be located on the system path or in the plug—in's directory. The attributes class, command, and
launcher are mutually exclusive.

launcher - the name of a class which that implements org.eclipse.ui.lEditorLauncher.

A launcher will open an external editor. The attributes class, command, and launcher are

mutually exclusive.

contributorClass - the name of a class that implements

org.eclipse.ui.lEditorActionBarContributor. This attribute should only be defined

if the class attribute is defined. This class is used to add new actions to the workbench menu and
tool bar which reflect the features of the editor type.

default - if true, this editor will be used as the default editor for the type. This is only relevant in a
case where more than one editor is registered for the same type. If an editor is not the default for the
type, it can still be launched using "Open with..." submenu for the selected resource.

filenames — an optional field containing the list of file names understood by the editor. This is a string
containing comma separate file names. For instance, an editor which understands specific hypertext
documents may register for "ejb.htm, ejb.html".

symbolicFontName — the symbolic name of a font. The symbolic font name must be the id of a
defined font (see org.eclipse.ui.fontDefinitions). If this attribute is missing or invalid then the font
name is the value of "org.eclipse.jface.textfont" in the editor's preferences store. If there is no
preference store or the key is not defined then the JFace text font will be used. The editor
implementation decides if it uses this symbolic font name to set the font.

Internal and External Editors 248

Welcome to Eclipse

Examples:

The following is an example of an internal editor extension definition:

<extension point=
"org.eclipse.ui.editors"

>

<editor id=
"com.xyz.XMLEditor"
name=

"Fancy XYZ XML editor"
icon=

" flicons/XMLEditor.gif"

extensions=

1] n

xml
class=

"com.xyz.XMLEditor"
contributorClass=
"com.xyz.XMLEditorContributor"
symbolicFontName=
"org.eclipse.jface.textfont"
default=

"false”

>

</editor>

</extension>

Internal and External Editors 249

Welcome to Eclipse

API Information:

If the command attribute is used, it will be treated as an external program command line that will be execute
in a platform—-dependent manner.

If the launcher attribute is used the editor will also be treated as an external program. In this case the specif
class must implement org.eclipse.ui.lEditorLauncher. The launcher will be instantiated and then
open(IFile file) will be invoked to launch the editor.

If the class attribute is used, the workbench will assume that it is an internal editor and the specified class
must implement org.eclipse.ui.lEditorPart. It is common practice to subclass

org.eclipse.ui.EditorPart when defining a new editor type. It is also necessary to define a
contributorClass attribute. The specified class must implement

org.eclipse.ui.lEditorActionBarContributor, and is used to add new actions to the

workbench menu and tool bar which reflect the features of the editor type.

Within the workbench there may be more than one open editor of a particular type. For instance, there may
one or more open Java Editors. To avoid the creation of duplicate actions and action images the editor conc
has been split into two. An IEditorActionBarContributor is responsible for the creation of actions.

The editor is responsible for action implementation. Furthermore, the contributor is shared by each open
editor. As a result of this design there is only one set of actions for one or more open editors.

The contributor will add new actions to the workbench menu and toolbar which reflect the editor type. These
actions are shared and, when invoked, act upon the active editor. The active editor is passed to the contribu
by invoking IEditorActionBarContributor.setActiveEditor. The identifiers for actions and

major groups within the workbench window are defined in

org.eclipse.ui.lWorkbenchActionConstants. These should be used as a reference point for the

addition of new actions. Top level menus are created by using the following values for the path attribute:

« additions - represents a group to the left of the Window menu.

Actions and menus added into these paths will only be shown while the associated editor is active. When th
editor is closed, menus and actions will be removed.

Supplied Implementation:

The workbench provides a "Default Text Editor". The end user product may contain other editors as part of
the shipping bundle. In that case, editors will be registered as extensions using the syntax described above.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Internal and External Editors 250

http://www.eclipse.org/legal/cpl-v10.html

Element Factories

Identifier:

org.eclipse.ui.elementFactories

Description:

This extension point is used to add element factories to the workbench. An element factory is used to recree
IAdaptable objects which are persisted during workbench shutdown.

As an example, the element factory is used to persist editor input. The input for an editor must implement
org.eclipse.ui.Editorinput. The life cycle of an IEditorlnput within an editor has a number
of phases.

1. The initial input for an editor is passed in during editor creation.

2.0n shutdown the workbench state is captured. In this process the workbench will create a memento
for each open editor and its input. The input is saved as a two part memento containing a factory 1D
and any primitive data required to recreate the element on startup. For more information see the
documentation on org.eclipse.ui.lPersistableElement.

3. On startup the workbench state is read and the editors from the previous session are recreated. In tt
process the workbench will recreate the input element for each open editor. To do this it will map the
original factory ID for the input element to a concrete factory class defined in the registry. If a
mapping exists, and the factory class is valid, an instance of the factory class is created. Then the
workbench asks the factory to recreate the original element from the remaining primitive data within
the memento. The resulting IAdaptable is cast to an IEditorinput and passed to the new
editor.

Configuration Markup:

<IELEMENT extension_(factory*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT factory EMPTY>
<IATTLIST factory
id CDATA #REQUIRED

Element Factories 251

Welcome to Eclipse

class CDATA #REQUIRED>

« id — a unique name that will be used to identify this factory.
« class - a fully qualified name of a class that implements org.eclipse.ui.lElementFactory

Examples:

The following is an example of an element factory extension:

<extension point =
"org.eclipse.ui.elementFactories"
>

<factory id =

"com.xyz.ElementFactory

class=

"com.xyz.ElementFactory

>
</factory>

</extension>

API Information:

The value of the class attribute must be a fully qualified name of a class that implements
org.eclipse.ui.lElementFactory. An instance of this class must create an |IAdaptable object
from a workbench memento.

Supplied Implementation:

The workbench provides an IResource factory. Additional factories should be added to recreate other
IAdaptable types commonly found in other object models, such as the Java Model.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Element Factories 252

http://www.eclipse.org/legal/cpl-v10.html

Export Wizards

Identifier:

org.eclipse.ui.exportWizards

Description:

This extension point is used to register export wizard extensions. Export wizards appear as choices within tt
"Export Dialog", and are used to export resources from the workbench.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:

<IELEMENT extension_(wizard*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT wizard (description?_, selection*)>
<IATTLIST wizard

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED>

an element that will be used to create export wizard

* id — a unique name that will be used to identify this wizard
* name - a translatable name that will be used in the dialog box to represent this wizard

Export Wizards 253

Welcome to Eclipse

« class - a fully qualified name of the class that implements org.eclipse.ui.lExportWizard
interface

* icon — a relative name of the icon that will be used alongside the wizard name in the export engine
listing.

<IELEMENT description (#CDATA)>

an optional subelement whose body should represent a short description of the export engine functionality.

<IELEMENT selection EMPTY>
<IATTLIST selection

name CDATA #IMPLIED

class CDATA #REQUIRED>

an optional element that restricts the types and names of objects that can be selected when the wizard is
invoked.

* name — an optional name filter. Each object in the workbench selection must match the name filter tc
be passed to the wizard.

« class — a fully qualified class hame. If each object in the workbench selection implements this
interface the selection will be passed to the wizard. Otherwise, an empty selection is passed.

Examples:

The following is an example of an export extension definition:

<extension point=
"org.eclipse.ui.exportWizards"
>

<wizard id=
"com.xyz.ExportWizardl"

name=

Export Wizards 254

Welcome to Eclipse

"XYZ Web Exporter"

class=
"com.xyz.exports.ExportWizard1"
icon=

" ficons/importl.gif"

>

<description>

A simple engine that exports Web project
</description>

<selection class=
"org.eclipse.core.resources.|Project"
/>

</wizard>

</extension>

API Information:

The value of the class attribute must be a hame of the class that implements
org.eclipse.ui.l[ExportWizard.

Supplied Implementation:

The workbench comes preloaded with basic export engines for files and directories.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Export Wizards 255

http://www.eclipse.org/legal/cpl-v10.html

Font Definitions

Identifier:

org.eclipse.ui.fontDefinitions

Since:

Release 2.1

Description:
This extension point is used to register fonts with the JFace FontRegistry and with the workbench preferenc

store for use by the Fonts preference page. This extension point has been deprecated in 3.0. You should nc
add fontDefinition elements to org.eclipse.ui.themes.

Configuration Markup:

<IELEMENT extension _(fontDefinition*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT fontDefinition (description?)>
<IATTLIST fontDefinition

id CDATA #REQUIRED

label CDATA #REQUIRED

value CDATA #IMPLIED

categoryld CDATA #IMPLIED

defaultsTo CDATA #IMPLIED>

« id — a unique name that can be used to identify this font definition.
« label — a translatable name of the font to be presented to the user.

Font Definitions 256

Welcome to Eclipse

« value - the font value. This is in the form: fonthame-style—height where fontname is the

non

name of a font, style is a font style (one of "regular”, "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman-bold-36.
Only one (or neither) of value or defaultsTo may be used.

« categoryld - the optional id of the presentation category this font belongs to.

« defaultsTo - the id of another font definition that is the default setting for the receiver. When there is
no preference for this font the font registry will have the value of defaultsTo set for it in the registry.

Only one or neither of value or defaultsTo may be used.

<IELEMENT description EMPTY>

a short description of the fonts usage

Examples:

Following is an example of an a font definition extension:

<extension point=
"org.eclipse.ui.fontDefinition"
>

<fontDefinition id=
"org.eclipse.examples.textFont"
label=

"Text"

>

<description>

The text font

</description>

</fontDefinition>

Font Definitions 257

Welcome to Eclipse

<fontDefinition id=
"org.eclipse.examples.userFont"
label=

"User"

defaultsTo=
"org.eclipse.jface.textFont"
>

<description>

The user font
</description>
</fontDefinition>

</extension>

API Information:

The defaultsTo tag is used as a directive by the Workbench to set the value of the font definition to the value
of defaultsTo whenever the defaultsTo fontDefinition is updated. This only occurs if the fontDefinition is at
its default value — once it is set by the user this updates will not occur. The workbench provides 4 fonts:

org.eclipse.jface.bannerfont. The banner font is used in wizard banners.
org.eclipse.jface.dialogfont. The dialog font is the font for widgets in dialogs.
org.eclipse.jface.headerfont. The header font is used for section headers in composite text pages.
org.eclipse.jface.textfont. The text font is used by text editors.

Supplied Implementation:

The workbench provides the font definitions for the text, dialog, banner and header fonts.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Font Definitions 258

http://www.eclipse.org/legal/cpl-v10.html

HelpSupport

Identifier:

org.eclipse.ui.helpSupport

Since:

3.0 (originally named org.eclipse.help.support)

Description:

This extension point is for contributing the help system Ul. The platform should be configured with no more
than one help system UI.

Configuration Markup:

<IELEMENT extension_(config?)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT config EMPTY>
<IATTLIST config
class CDATA #REQUIRED>

« class - the implementation class for displaying online and context—sensitive help. This class must
implement the org.eclipse.ui.help.AbstractHelpUl interface.

Examples:

The following is a sample usage of the help support extension point:

<extension point=
"org.eclipse.ui.helpSupport"

>

HelpSupport 259

Welcome to Eclipse
<config class=
"com.example.XYZHelpUI"
/>
</extension>

API Information:

The supplied class must implement a subclass of org.eclipse.ui.help.AbstractHelpUI.

Implementation of the abstract methods in that class determine what happens when a user asks for online h
or context—sensitive help. The implementation should access contributed help information using
org.eclipse.help.HelpSystem.

Supplied Implementation:

The org.eclipse.help.ui plug-in contains an implementation of the help system UlI.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

HelpSupport 260

http://www.eclipse.org/legal/cpl-v10.html

Marker Help

Identifier:

org.eclipse.ui.ide.markerHelp

Since:

3.0 (originally added in release 2.0 as org.eclipse.ui.markerHelp)

Description:

This extension point is used to associate a help context id with a specific "kind" of marker (a marker of a
certain type or having certain attribute values).

Configuration Markup:

<IELEMENT extension_(markerHelp*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT markerHelp (attribute*)>
<IATTLIST markerHelp

markerType CDATA #IMPLIED
helpContextld CDATA #REQUIRED>

» markerType - the unigue type of the marker for which the help context applies.
« helpContextld - the unique id of the help context.

<IELEMENT attribute EMPTY>
<IATTLIST attribute

name CDATA #REQUIRED

Marker Help 261

Welcome to Eclipse

value CDATA #REQUIRED>

* name - the name of the attribute whose value is being specified.
« value - the specified value of the attribute.

Examples:

The following is an example of a marker help extension (note the sub—element and the way attributes are
used):

<extension point=

"org.eclipse.ui.ide.markerHelp"

>

<markerHelp markerType=
"org.eclipse.ui.examples.readmetool.readmemarker"
helpContextld=
"org.eclipse.ui.examples.readmetool.marker_examplel_context"
>

<attribute name=

"org.eclipse.ui.examples.readmetool.id"

value=

"1234"

/>

</markerHelp>

</extension>

In the example above, a help context id is associated with markers of type

org.eclipse.ui.examples.readmetool.readmemarker whose org.eclipse.ui.examples.readmetool.id attribute h
a value of 1234.

Marker Help 262

Welcome to Eclipse

API Information:

It is up to the developer to ensure that only a single help context id is supplied for a given marker. If two or
more help context ids are supplied for a given kind of marker, the workbench does not define which will be
returned. However the workbench does define that the "most specific" context id will always be returned for
given marker. That is, a context id associated with three matching attribute values will be returned before a
context id associated with only two.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Marker Help 263

http://www.eclipse.org/legal/cpl-v10.html

Marker Image Providers

Identifier:

org.eclipse.ui.ide.markerlmageProviders

Since:

3.0 (originally added in release 2.1 as org.eclipse.ui.markerlmageProviders)

Description:

The markerlmageProvider extension point is the point for specifying the images for marker types in the
defining plug-in.

Configuration Markup:
<IELEMENT extension_(imageprovider*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<I[ELEMENT imageprovider EMPTY>
<IATTLIST imageprovider
id CDATA #REQUIRED
markertype CDATA #REQUIRED
icon CDATA #IMPLIED
class CDATA #IMPLIED>
« id — a unique name that can be used to identify this markerlmageProvider.
» markertype — The markertype is the id of the type defined in
org.eclipse.core.resources.IMarker that this definition is applied to.
« icon — If there is no class defined the icon attribute is used to define the icon that will be applied to
this type of marker.

« class — The class is the fully qualifed name of the class that will be used to look up an image. This
class must implement IMarkerlmageProvider.

Marker Image Providers 264

Welcome to Eclipse
Examples:
The following an example of the two forms of marker image providers. The first one is one where the image

does not change and is declared directly. For the second one the image must be determined by an instance
IMarkerlmageProvider.

<extension point=
"org.eclipse.ui.ide.markerlmageProviders"
>

<imageprovider markertype=
"org.eclipse.core.resources.taskmarker"
icon=

"taskicon.gif"

id=

"myPlugin.declarativeMarkerProvider"

>

</imageprovider>

<imageprovider markertype=
"org.eclipse.core.resources.problemmarker"
class=
"myPlugin.MylMarkerlmageProvider"

id=
"myPlugin.implementedMarkerProvider"

>

</imageprovider>

</extension>

Marker Image Providers 265

Welcome to Eclipse

API Information:

[Enter API information here.]

Supplied Implementation:

[Enter information about supplied implementation of this extension point.]

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Marker Image Providers 266

http://www.eclipse.org/legal/cpl-v10.html

Marker Resolutions

Identifier:

org.eclipse.ui.ide.markerResolution

Since:

3.0 (originally added in release 2.0 as org.eclipse.ui.markerResolution)

Description:

This extension point is used to associate a marker resolution generator with a specific "kind" of marker. (a
marker of a certain type or having certain attribute values).

Configuration Markup:

<IELEMENT extension_(markerResolutionGenerator*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT markerResolutionGeneratar (attribute*)>
<IATTLIST markerResolutionGenerator

class CDATA #REQUIRED

markerType CDATA #IMPLIED>

« class — the name of the class implementing IMarkerResolutionGenerator
» markerType - the type of marker for which the help context applies.

<IELEMENT attribute EMPTY>
<IATTLIST attribute

name CDATA #REQUIRED

Marker Resolutions 267

Welcome to Eclipse

value CDATA #REQUIRED>

* name - the name of the attribute whose value is being specified.
« value - the specified value of the attribute.

Examples:

The following is an example of a marker resolution generator extension (note the sub-element and the way
attributes are used):

<extension point=

"org.eclipse.ui.ide.markerResolution”

>

<markerResolutionGenerator class=
"org.eclipse.ui.examples.readmetool.ReadmeMarkerResolutionGenerator"
markerType=

"org.eclipse.ui.examples.readmetool.readmemarker"

>

<attribute name=

"org.eclipse.ui.examples.readmetool.id"

value=

"1234"

/>

</markerResolutionGenerator>

</extension>

In the example above, a marker resolution generator is associated with markers of type

org.eclipse.ui.examples.readmetool.readmemarker whose org.eclipse.ui.examples.redmetool.id attribute ha
value of 1234.

Marker Resolutions 268

Welcome to Eclipse

API Information:

More than one marker help generator may be supplied for a given marker.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Marker Resolutions 269

http://www.eclipse.org/legal/cpl-v10.html

Project Nature Images

Identifier:

org.eclipse.ui.ide.projectNaturelmages

Since:

3.0 (originally added in release 1.0 as org.eclipse.ui.projectNaturelmages)

Description:
This extension point is used to associate an image with a project nature. The supplied image is used to form

composite image consisting of the standard project image combined with the image of its nature. The suppli
image is drawn over the top right corner of the base image.

Configuration Markup:

<IELEMENT extension_(image*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT image (description?)>
<IATTLIST image
id CDATA #REQUIRED
natureld CDATA #REQUIRED
icon CDATA #REQUIRED>
* id — a unigue name that will be used to identify this nature image.

« natureld - the unigue name of the nature for which the image is being supplied.
* icon — a relative name of the image that will be associated with this perspective.

<IELEMENT description (#CDATA)>

Project Nature Images 270

Welcome to Eclipse

a short description of what this image represents.

Examples:

The following is an example of a nature image extension:

<extension point=
"org.eclipse.ui.ide.projectNaturelmages"
>

<image id=
"org.eclipse.ui.javaNaturelImage"
natureld=

"Resource"

icon=

"icons/javaNature.gif"

>

</image>

</extension>

API Information:

The value of the natureld attribute is the nature id as defined by the plugin creating the project.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Project Nature Images 271

http://www.eclipse.org/legal/cpl-v10.html

Resource Filters

Identifier:

org.eclipse.ui.ide.resourceFilters

Since:

3.0 (originally added in release 1.0 as org.eclipse.ui.resourceFilters)

Description:

This extension point is used to add predefined filters to views which show resources, such as the Navigator
view. These filters can be selected to hide resources whose names match the filter's pattern.

Configuration Markup:

<IELEMENT extension (filter*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT filter (description?)>
<IATTLIST filter

pattern CDATA #REQUIRED
selected (true | false) "false">

* pattern — the pattern to match. May contain * and ? wildcards.
« selected - "true" if the pattern should be selected by default, "false" or undefined if not.

<IELEMENT description (#CDATA)>

the description of the purpose of this filter.

Resource Filters 272

Welcome to Eclipse

Examples:

The following is an example of a resource filter extension, which filters out class files, and is selected by
default:

<extension point=
"org.eclipse.ui.ide.resourceFilters"
>

<filter pattern=

"* class"

selected=

"true"

/>

</extension>

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Resource Filters 273

http://www.eclipse.org/legal/cpl-v10.html

Import Wizards

Identifier:

org.eclipse.ui.importWizards

Description:

This extension point is used to register import wizard extensions. Import wizards appear as choices within tt
"Import Dialog" and are used to import resources into the workbench.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:

<IELEMENT extension_(wizard*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT wizard (description?_, selection*)>
<IATTLIST wizard

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED>

an element that will be used to create import wizard

* id — a unique name that will be used to identify this wizard
* name - a translatable name that will be used in the dialog box to represent this wizard

Import Wizards 274

Welcome to Eclipse

« class - a fully qualified name of the class that implements org.eclipse.ui.llmportWizard
interface

* icon — a relative name of the icon that will be used alongside the wizard name in the import engine
listing.

<IELEMENT description (#CDATA)>

an optional subelement whose body should represent a short description of the import engine functionality.

<IELEMENT selection EMPTY>
<IATTLIST selection

name CDATA #IMPLIED

class CDATA #REQUIRED>

an optional element that restricts the types and names of objects that can be selected when the wizard is
invoked.

* name — an optional name filter. Each object in the workbench selection must match the name filter tc
be passed to the wizard.

« class - fully qualified class name. If each object in the workbench selection implements this interface
the selection will be passed to the wizard. Otherwise, an empty selection is passed.

Examples:

The following is an example of an import extension definition:

<extension point=
"org.eclipse.ui.importWizards"
>

<wizard id=
"com.xyz.ImportWizard1"

name=

Import Wizards 275

Welcome to Eclipse

"XYZ Web Scraper"

class=
"com.xyz.imports.ImportWizard1"
icon=

" ficons/importl.gif"

>

<description>

A simple engine that searches the Web and imports files
</description>

<selection class=
"org.eclipse.core.resources.IResource"
/>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a name of the class that implements
org.eclipse.ui.llmportWizard.

Supplied Implementation:

The workbench comes preloaded with the basic import engines for files and directories.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Import Wizards 276

http://www.eclipse.org/legal/cpl-v10.html

Intro Part

Identifier:

org.eclipse.ui.intro

Since:

3.0

Description:

This extension point is used to register implementations of special workbench parts, called intro parts, that &
responsible for introducing a product to new users. An intro part is typically shown the first time a product is
started up. Rules for associating an intro part implementation with particular products are also contributed vi
this extension point.

The life cycle is as follows:

» The intro area is created on workbench start up. As with editor and view areas, this area is managec
by an intro site (implementing org.eclipse.ui.intro.lintroSite).

» The id of the current product (Platform.getProduct()) is used to choose the relevant intro part
implementation.

» The intro part class (implementing org.eclipse.ui.intro.lintroPart) is created and
initialized with the intro site.

« While the intro part is showing to the user, it can transition back and forth between full and standby
mode (either programmatically or explicitly by the user).

» Eventually the intro part is closed (either programmatically or explicitly by the user). The current
perspective takes over the entire workbench window area.

Configuration Markup:

<IELEMENT extension_(intro*_, introProductBinding*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT intro EMPTY>

<IATTLIST intro

Intro Part 277

Welcome to Eclipse

id CDATA #REQUIRED
icon CDATA #IMPLIED
class CDATA #REQUIRED>

Specifies an introduction. An introduction is a product—specific presentation shown to first-time users on
product start up.

« id — a unique identifier for this introduction
« icon — a plug-in-relative file name of the icon that will be associated with this introduction
« class - a fully qualified name of the class implementing the
org.eclipse.ui.intro.lintroPart interface. A common practice is to subclass
org.eclipse.ui.part.intro.IntroPart in order to inherit the default functionality. This
class implements the introduction.

<!IELEMENT introProductBinding EMPTY>

<IATTLIST introProductBinding

productld CDATA #REQUIRED

introld CDATA #REQUIRED>

Specifies a binding between a product and an introduction. These bindings determine which introduction is

appropriate for the current product (as defined by
org.eclipse.core.runtime.Platform.getProduct()).

e productld — unique id of a product
« introld — unique id of an introduction

Examples:

The following is an example of an intro part extension that contributes an particular introduction and
associates it with a particular product:

<extension point=
"org.eclipse.ui.intro"

>

Intro Part 278

Welcome to Eclipse
<intro id=
"com.example.xyz.intro.custom"
class=
"com.example.xyz.intro.IntroPart"
/>
<introProductBinding productld=
"com.example.xyz.Product"
introld=
"com.example.xyz.intro.custom"
/>
</extension>
API Information:
The value of the class attribute must be the fully qualified name of a class that implements

theorg.eclipse.ui.intro.lintroPart interface by subclassing
org.eclipse.ui.part.intro.IntroPart.

Supplied Implementation:

There are no default implementations of the initial user experience. Each Eclipse—based product is responsi
for providing one that is closely matched to its branding and function.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Intro Part 279

http://www.eclipse.org/legal/cpl-v10.html

Intro Part Configuration

Identifier:

org.eclipse.ui.intro.config

Since:

3.0

Description:

This extension point is used to register an intro configuration. This configuration provides presentation
implementations and content for a given intro contribution. An intro appears when the workbench is first
launched and as a choice from the "Help" menu. The intro is typically used to introduce a user to a product
built on Eclipse.

The intros are organized into pages which usually reflect a particular category of introductory material. For

instance, a What's New page may introduce new concepts or functionality since previous versions. The
content defined by one intro configuration can be referenced and extended from other plug-ins using the

org.eclipse.ui.intro.configExtension extension point.

Configuration Markup:

<IELEMENT extension_(config+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT config (presentation)>
<IATTLIST config

introld CDATA #REQUIRED

id CDATA #REQUIRED

content CDATA #REQUIRED>

Intro Part Configuration 280

Welcome to Eclipse

A config element can be used to configure a customizable Intro Part. A config element must specify an id, a
introld, and a content file. The intro content file is an XML file that describes the pages, groups and links tha
the intro has.

« introld — the id of an intro part contribution that this configuration will be associated with.

« id — a unigue name that can be used to identify this intro configuration

 content — an intro content file. The content file is an XML file that contains the specifics of the intro
(intro_content file format specification). The content file is parsed at run time by the intro framework.
Based on the settings in this file, a certain number of pages, groups, and links are shown to the user
when the intro is opened.

<IELEMENT presentation_(implementation+)>

<IATTLIST presentation

home-page-id CDATA #REQUIRED

standby—-page-id CDATA #IMPLIED>

Presentation element that defines all the possible implementations of an intro part's presentation. It can hav

one or more implementation defined in it. Only one implementation will be chosen at startup, based the os/w
attributes of the implementations. Otherwise, the first one with no os/ws attributes defined will be chosen.

« home-page-id - the id of the home (root) page, which is the first page of the introduction. This page
can be used as an entry point to the other main pages that make up the intro.

« standby—page-id — an optional attribute to define the id of the standby page. The standby page will
be shown to the user when the Intro is set to standby.

<IELEMENT implementation_(head?)>

<IATTLIST implementation

kind (swt|html)

style CDATA #IMPLIED

os CDATA #IMPLIED

ws CDATA #IMPLIED>

The presentation of the Platform's out of the box experience has two implementations. One of them is SWT
Browser based, while the other is Ul Forms based. The customizable intro part can be configured to pick on

of those two presentations based on the current OS and WS. The type of the implementation can be swt or

Intro Part Configuration 281

Welcome to Eclipse

html.

« kind — Specifies the type of this implementation. The swt kind indicates a Ul Forms based
implementation, and the html kind indicates an SWT Browser based implementation

« style — The shared style that will be applied to all pages presented by this intro presentation
implementation.

« 0s — The optional operating system specification used when choosing the presentation's
implementation. It can be any of the os designators defined by Eclipse, e.g., win32, linux, etc (see
Javadoc for org.eclipse.core.runtime.Platform).

* ws — The optional windowing system specification used when choosing the presentation's
implementation. It can be any of the ws designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform).

<IELEMENT introContent (page+ ., group* , extensionContent*)>

The introContent element defines the body of the intro content file. The content file is made up of pages,
shared groups that can be included in multiple pages, and extensions to anchor points defined in other
configurations.

<IELEMENT page (group* | link* | text* | head* | img* | include* | html* | title? | anchor* |

contentProvider*)>

<IATTLIST page

url CDATA #IMPLIED

id CDATA #REQUIRED

style CDATA #IMPLIED

alt-style CDATA #IMPLIED

filteredFrom (swt|html)

content CDATA #IMPLIED

style-id CDATA #IMPLIED>

This element is used to describe a page to be displayed. The intro can display both dynamic and static page
Content for dynamic pages is generated from the subelements of the page, described below. The style or
alt-style will be applied depending on the presentation. The styles can be further enhanced by referencing t
id or class—id.

Static pages allow for the reuse of existing HTML documents within one's introduction, and can be linked to

from any static or dynamic page. Static pages are not defined in a page element, they are simply html files t

Intro Part Configuration 282

Welcome to Eclipse

can be linked to by other pages.

The home page, whose id is specified in the presentation element of the intro config extension point, can ha
a url indicating that it is a static page. If no url is specified then the home page is assumed to be dynamic. A
other pages described using the page element are dynamic.

Also note that when the SWT presentation is used and a static page is to be displayed, an external brower i
launched and the current page remains visible.

The subelements used in a dynamic page are as follows: A group subelement is used to group related conte
and apply style across the grouped content. A link subelement defines a link which can be used to link to a
static or dynamic page and run an intro action/command. A link is normally defined at the page level to
navigate between main pages versus links within a page. A text subelement defines textual content at the p
level. A head subelement is only applicable for the Web based presentation and allows for additional html to
be added to the HTML head section. This is useful for adding java scripts or extra style sheets. An img
subelement defines image content for the page level. An include subelement allows for reuse of any elemer
other than a page. An html subelement is only applicable for the Web based presentation and allows for the
embedding or inclusion of html into the page's content. Embedding allows for a fully defined html file to be
embeded within an HTML object by referencing the html file. Inclusion allows for including an html snippet
directly from an html file. A title subelement defines the title of the page. An anchor subelement defines a
point where external contributions can be made by an <extensionContent> element.

« url = The optional relative path to an HTML file. When using the Web based presentation, this
HTML file will be displayed instead of any content defined for this page. This attribute is only
applicable to the home page, which is identified in the presentation element of the intro config
extension point. It is ignored for all other pages.

« id — A unigue name that can be used to identify this page.

« style — A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

« alt-style — A relative path to a SWT presentation properies file which is applied to the page only
when using the SWT based presentation.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

« content — an optional attribute which can define the location of an introContent.xml file that
represents the content of this page. When this attribute is defined, all children and attributes in this
page element, except id, are ignored. This is because the content of this page is now assumed to re
in the xml file pointed to by the content file attribute. When resolving to the content of this file, the
page with an id that matches the id defined in this page element is chosen. This seperation of pages
can be used when performance is an issue, as the content of a page is how loaded more lazily.

« style—id — A means to classifiy the page into a given category so that a common style may be applie

<IELEMENT group (group* | link* | text* | img* | include* | html* | anchor* | contentProvider*)>
<IATTLIST group
id CDATA #REQUIRED

label CDATA #IMPLIED

Intro Part Configuration 283

Welcome to Eclipse

style-id CDATA #IMPLIED
filteredFrom (swt|html) >

Used to group related content, content that should have similar style applied, or content that will be included
together in other pages.

« id — unique identifier of the group

« label — a label or heading for this group

« style—id — A means to classifiy this group into a given category so that a common style may be
applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

<IELEMENT head EMPTY>

<IATTLIST head

src CDATA #REQUIRED

encoding CDATA #IMPLIED>

Direct HTML to include in a page's HEAD content area. It allows for additional html to be added to the
HTML HEAD section. This is useful for adding java srcipts or extra styles sheets. This markup is only to be
used with an HTML based intro part implementation. It is simply ignored in the case of a Ul Forms

implementation. A page can have more than one head element. An implementation can have one and only «
head element (since it is a shared across all pages).

« src — relative or absolute URL to a file containing HTML to include directly into the HTML head
section.

« encoding — an optional attribute to specify the encoding of the inlined file containing the head
shippet. Default is UTF-8. Since 3.0.1

<IELEMENT title EMPTY>
<IATTLIST title

id CDATA #IMPLIED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

Intro Part Configuration 284

Welcome to Eclipse

a snippet of text that can optionally contain escaped HTML tags. It is only used as a Page Title, and so a giv
page can have a maximum of one title element.

* id — unique identifier of this title.

« style—id — A means to classifiy this element into a given category so that a common style may be
applied

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

<IELEMENT link (text? . img?)>
<IATTLIST link

id CDATA #IMPLIED
label CDATA #IMPLIED

url CDATA #REQUIRED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

Can link to a static HTML file, an external web site, or can run an Intro URL action.

« id — A unigue id that can be used to identify this link

* label — The text name of this link

 url = A valid URL to an external web site, a static html file, or an Intro URL that represents an Intro
action. All intro URLs have the following form: http://org.eclipse.ui.intro/<action
name>?paraml=valuel¶m2=value2 and will be processed by the intro framework.
The predefined actions will be described using this format:

action name — descripton of action

action parameterl — description of parameter

action parameter2 (optional) — description of parameter

action parameter3 (optional) = ("true" | "false") "false" — description of parameter, choice of either
true or false and "false" is the default

The following predefined actions are included in the intro framework:
close - closes the intro part

no parameters required

Intro Part Configuration 285

Welcome to Eclipse

navigate — navigate through the intro pages in a given direction or return to the home page
direction = ("backward" | "forward" | "home") — specifies the direction to navigate

openBrowser — open the url in an external browser

url — a valid URL to an external web site or a static HTML file

pluginid (optional) — only required if a static HTML file is specified. This is the id of the plug—in
containing the file.

runAction - runs the specified action

class - the fully qualified class name of the class that implements one of
org.eclipse.ui.intro.config.lIntroAction,

org.eclipse.jface.actino.lAction, or org.eclipse.ui.lActionDelegate

pluginld — The id of the plug-in which contains the class.

standby (optional) = ("true" | "false") "false" — indicate whether to set the intro into standby mode
after executing the action

additional parameters — any additional parameters are passed to actions that implement
org.eclipse.ui.intro.config.lIntroAction

setStandbyMode - sets the state of the intro part
standby = ("true" | "false") - true to put the intro part in its partially visible standy mode, and false to
make it fully visible

showHelp — Open the help system.
no parameters required

showHelpTopic — Open a help topic.
id — the URL of the help resource. (See Javadoc for
org.eclipse.ui.help.WorkbenchHelp.displayHelpResource

showMessage — Displays a message to the user using a standard information dialog.
message — the message to show the user

showStandby - Sets the intro part to standby mode and shows the standbyContentPart with the give
input

partld — the id of the standbyContentPart to show

input — the input to set on the standbyContentPart

showPage — show the intro page with the given id

id — the id of the intro page to show

standby (optional) = ("true" | "false") "false" — indicate whether to set the intro into standby mode
after showing the page

« style—id — A means to classifiy this link into a given category so that a common style may be applied

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

<I[ELEMENT text EMPTY>

Intro Part Configuration 286

Welcome to Eclipse

<IATTLIST text

id CDATA #IMPLIED

style-id CDATA #IMPLIED

filteredFrom (swt|html) >

a snippet of text that can optionally contain escaped HTML tags. It can include b and li tags. It can also

contain anchors for urls. If multiple paragraphs are needed, then the text can be divided into multiple sectior
each begining and ending with the p tag.

* id — unique identifier of this text.

« style—id — A means to classifiy this element into a given category so that a common style may be
applied

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

<IELEMENT img EMPTY>
<IATTLIST img

id CDATA #REQUIRED
src CDATA #REQUIRED
alt CDATA #IMPLIED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

An image that represents intro content and not presentation (as opposed to decoration images defined in
styles).

« id — unique identifier of this image

« src — the file to load the image from

« alt — the alternative text to use when the image can not be loaded and as tooltip text for the image.

« style—id — A means to classifiy this image into a given category so that a common style may be
applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

Intro Part Configuration 287

Welcome to Eclipse

<IELEMENT html (img | text)>

<IATTLIST html

id CDATA #REQUIRED

src CDATA #REQUIRED

type (inline|lembed)

style-id CDATA #IMPLIED

filteredFrom (swt|html)

encoding CDATA #IMPLIED>

direct HTML to include in the page either by embedding the entire document, or inlining a snippet of HTML
in—place. A fallback image or text must be defined for alternative swt presentation rendering.

Embedding allows for a fully defined html file to be embedded within the dynamic page's content. An HTML

object element is created that references the html file.
Inclusion allows for including an html snippet directly from a file into the dynamic html page.

* id — unique identifier of this HTML element

* src — relative or absolute URL to a file containing HTML

* type - if 'embed’, a valid (full) HTML document will be embedded using HTML 'OBJECT' tag. If
'inline’, value of 'src' will be treated as a snippet of HTML to emit 'in—place’'. (if type is not specified,
this html object is ignored by the intro configuration).

« style—id — A means to classifiy this HTML element into a given category so that a common style may
be applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

« encoding — an optional attribute to specify the encoding of the inlined file (in the case where
type=inline is specified). If not specified, the default is UTF-8. Since 3.0.1

<IELEMENT include EMPTY>
<IATTLIST include

configld CDATA #IMPLIED
path CDATA #REQUIRED

merge-style (true | false) >

Intro Part Configuration 288

Welcome to Eclipse

expands an element targeted by the given path and optional configld attributes. Path should uniquely addre:
an element within the specified configuration. It could point to a shared group defined at the configuration
level, or any element in a page.

« configld — identifier of a configuration where the included element is defined. If specified, it is
assumed that the element to be included is specified in another configuration, and not the enclosing
configuration. In this case, that external config is loaded and the element is resolved from that new
config. If not specified, enclosing (parent) configuration of this include is assumed.

« path — the path that uniquely represents the target element within the configuration (e.g.
page/groupl/group2). It may be a group element, or any element that may be contained in a group.
You can not include a page.

* merge-style - if true, style belonging to the page that owns the included element will be added to
list of styles of the including page. If false (the default), the including page is responsible for
controlling properties of the included element.

<IELEMENT anchor EMPTY>
<IATTLIST anchor
id CDATA #REQUIRED>

an anchor is the element used to declare extensibility. It is a location in the configurtaion that allows for
external contributions. Only anchors are valid target values for the path attribute in an extensionContent

« id — unique id to identify this anchor.

<IELEMENT extensionContent (text | group | link | html | include)>

<IATTLIST extensionContent

style CDATA #IMPLIED

alt-style CDATA #IMPLIED

path CDATA #REQUIRED>

The content to be added to the target anchor. Only one extensionContent is allowed in a given

configextension because if this extension could not be resolved (if the config could not be found, or the targ
anchor element could not be found) then the pages and/or groups in the extension need to be ingnored.

Intro Part Configuration 289

Welcome to Eclipse

« style — A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

- alt-style — A relative path to a SWT presentation properies file which is applied to the page only
when using the SWT based presentation.

« path — the path that uniquely represents the path to an anchor. (e.g. page/groupl/group2/anchorld)
within the target configuration to be extended. It can only be an anchor which can be in any page or
group, including shared groups at configuration level

<IELEMENT contentProvider_(text?)>

<IATTLIST contentProvider

id CDATA #REQUIRED

pluginid CDATA #IMPLIED

class CDATA #REQUIRED>

A proxy for an intro content provider, which allows an intro page to dynamically pull data from various
sources (e.g., the web, eclipse, etc) and provide content at runtime based on this dynamic data. If the
lIntroContentProvider class that is specified in the class attribute can not be loaded, then the contents of the
text element will be rendered instead. This is a dynamic version of the html intro tag. While the html tag
allows for embedding or inlining a static html content into the generated html intro page, the contentProvider
tag allows for dynamic creation of that content at runtime. Another difference between the tags is that the ht

tag is only supported for the HTML presentation, while this contentProvider tag is supported for both the
HTML and SWT presentations. Since 3.0.1

« id — unique identifier of this content provider element.

« pluginld — The id of the plugin that contains the IContentProvider class specified by the class
attribute. This is an optional attribute that should be used if the class doesn't come from the same
plugin that defined the markup.

« class — A class that implements the IContentProvider interface

Examples:

Here is a sample usage of the config extension point.

<extension id=
"intro"
point=

"org.eclipse.ui.intro.config"

Intro Part Configuration 290

Welcome to Eclipse

>
<config introld=
"com.org.xyz.intro"

id=
"com.org.xyz.introConfig"
content=

"introContent.xml"

>

<presentation home—page-id=
"root"

title=

"%intro.title"

>

<implementation ws=
"win32"

style=

"css/shared.css”

kind=

"html"

0s=

"win32"

>

</implementation>
<implementation style=
"css/shared_swt.properties"
kind=

Intro Part Configuration 291

Welcome to Eclipse

swt
>
</implementation>
</presentation>
</config>

</extension>
API Information:
For further details see the spec for the org.eclipse.ui.intro.config API package.

Supplied Implementation:

The intro contributed by the org.eclipse.platform plugin is the only implementation within Eclipse.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-v10.html.

Intro Part Configuration 292

http://www.eclipse.org/legal/cpl-v10.html

Intro Content File XML Format

Version 3.0.1

This document describes the intro content file structure as a series of DTD fragments (machine readable XN
schema).

introContent

<IELEMENT introContent (page+ ., group* , extensionContent*)>

The introContent element defines the body of the intro content file. The content file is made up of pages,
shared groups that can be included in multiple pages, and extensions to anchor points defined in other
configurations.

page

<IELEMENT page (group* | link* | text* | head* | img* | include* | html* | title? | anchor* |

contentProvider*)>

<IATTLIST page

url CDATA #IMPLIED

id CDATA #REQUIRED

style CDATA #IMPLIED

alt-style CDATA #IMPLIED

filteredFrom (swt|html)

content CDATA #IMPLIED

style-id CDATA #IMPLIED>

This element is used to describe a page to be displayed. The intro can display both dynamic and static page
Content for dynamic pages is generated from the sub elements of the page, described below. The style or

alt-style will be applied depending on the presentation. The styles can be further enhanced by referencing t
id or class—-id.

Intro Content File XML Format 293

Welcome to Eclipse

Static pages allow for the reuse of existing HTML documents within one's introduction, and can be linked to
from any static or dynamic page. Static pages are not defined in a page element, they are simply html files t
can be linked to by other pages.

The home page, whose id is specified in the presentation element of the intro config extension point, can ha
a url indicating that it is a static page. If no url is specified then the home page is assumed to be dynamic. A
other pages described using the page element are dynamic.

Also note that when the SWT presentation is used and a static page is to be displayed, an external browser
launched and the current page remains visible.

The subelements used in a dynamic page are as follows: A group subelement is used to group related conte
and apply style across the grouped content. A link subelement defines a link which can be used to link to a
static or dynamic page and run an intro action/command. A link is normally defined at the page level to
navigate between main pages versus links within a page. A text subelement defines textual content at the p
level. A head subelement is only applicable for the Web based presentation and allows for additional html to
be added to the HTML head section. This is useful for adding java scripts or extra style sheets. An img
subelement defines image content for the page level. An include subelement allows for reuse of any elemer
other than a page. An html subelement is only applicable for the Web based presentation and allows for the
embedding or inclusion of html into the page's content. Embedding allows for a fully defined html file to be
embeded within an HTML object by referencing the html file. Inclusion allows for including an html snippet
directly from an html file. A title subelement defines the title of the page. An anchor subelement defines a
point where external contributions can be made by an <extensionContent> element.

« url = The optional relative path to an HTML file. When using the Web based presentation, this
HTML file will be displayed instead of any content defined for this page. This attribute is only
applicable to the home page, which is identified in the presentation element of the intro config
extension point. It is ignored for all other pages.

« id — A unigue name that can be used to identify this page.

« style — A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

« alt-style — A relative path to a SWT presentation properties file which is applied to the page only
when using the SWT based presentation.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

« content — an optional attribute which can define the location of an introContent.xml file that
represents the content of this page. When this attribute is defined, all children and attributes in this
page element, except id, are ignored. This is because the content of this page is now assumed to re
in the xml file pointed to by the content file attribute. When resolving to the content of this file, the
page with an id that matches the id defined in this page element is chosen. This separation of pages
can be used when performance is an issue, as the content of a page is how loaded more lazily.

« style—id — A means to classify the page into a given category so that a common style may be appliec

group

<IELEMENT group (group* | link* | text* | img* | include* | html* | anchor*)>

group 294

Welcome to Eclipse

<IATTLIST group

id CDATA #REQUIRED
label CDATA #IMPLIED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

Used to group related content, content that should have similar style applied, or content that will be included
together in other pages.

« id — unique identifier of the group

« label — a label or heading for this group

« style—id — A means to classify this group into a given category so that a common style may be
applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

link

<IELEMENT link (text? . img?)>
<IATTLIST link

id CDATA #IMPLIED
label CDATA #IMPLIED

url CDATA #REQUIRED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

Can link to a static HTML file, an external web site, or can run an Intro URL action.

« id — A unigue id that can be used to identify this link

* label - The text name of this link

 url = A valid URL to an external web site, a static html file, or an Intro URL that represents an Intro
action. All intro URLs have the following form: http://org.eclipse.ui.intro/<action
name>?paraml=valuel¶m2=value2 and will be processed by the intro framework.

link 295

Welcome to Eclipse

The predefined actions will be described using this format:

action name — description of action

action parameterl — description of parameter

action parameter2 (optional) — description of parameter

action parameter3 (optional) = ("true" | "false") "false" — description of parameter, choice of either true or
false and "false" is the default

The following predefined actions are included in the intro framework:

close - closes the intro part
no parameters required

navigate — navigate through the intro pages in a given direction or return to the home page
direction = ("backward" | "forward" | "home") — specifies the direction to navigate

openBrowser — open the url in an external browser

url — a valid URL to an external web site or a static HTML file

pluginid (optional) — only required if a static HTML file is specified. This is the id of the plug—in containing
the file.

runAction - runs the specified action

class - the fully qualified class name of the class that implements one of
org.eclipse.ui.intro.config.lintroAction, org.eclipse.jface.action.lAction,

or org.eclipse.ui.lActionDelegate

pluginld — The id of the plug-in which contains the class.

standby (optional) = ("true" | "false") "false" — indicate whether to set the intro into standby mode after
executing the action

additional parameters — any additional parameters are passed to actions that implement
org.eclipse.ui.intro.config.lintroAction

setStandbyMode - sets the state of the intro part
standby = ("true" | "false") — true to put the intro part in its partially visible standby mode, and false to make
it fully visible

showHelp — Open the help system.
no parameters required

showHelpTopic — Open a help topic.
id — the URL of the help resource. (See Javadoc for
org.eclipse.ui.help.WorkbenchHelp.displayHelpResource

showMessage — Displays a message to the user using a standard information dialog.
message — the message to show the user

showStandby - Sets the intro part to standby mode and shows the standbyContentPart with the given input
partld — the id of the standbyContentPart to show
input — the input to set on the standbyContentPart

link 296

Welcome to Eclipse

showPage — show the intro page with the given id

id — the id of the intro page to show

standby (optional) = ("true" | "false") "false" — indicate whether to set the intro into standby mode after
showing the page

« style—id — A means to classify this link into a given category so that a common style may be applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not appear as
content in the swt implementation.

html

<IELEMENT html (img | text)>
<IATTLIST html

id CDATA #REQUIRED
src CDATA #REQUIRED
type (inline|lembed)
style-id CDATA #IMPLIED
filteredFrom (swt|html) >
encoding CDATA #IMPLIED

direct HTML to include in the page either by embedding the entire document, or inlining a snippet of HTML
in—place. A fallback image or text must be defined for alternative swt presentation rendering.

Embedding allows for a fully defined html file to be embedded within the dynamic page's content. An HTML
object element is created that references the html file.

Inclusion allows for including an html snippet directly from a file into the dynamic html page.

* id — unique identifier of this HTML element

* src — relative or absolute URL to a file containing HTML

* type - if 'embed’, a valid (full) HTML document will be embedded using HTML 'OBJECT' tag. If
'inline’, value of 'src' will be treated as a snippet of HTML to emit 'in—place'. (if type is not specified,
this html object is ignored by the intro configuration).

« style—id — A means to classify this HTML element into a given category so that a common style may
be applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

html 297

Welcome to Eclipse

« encoding — an optional attribute to specify the encoding of the inlined file (in the case where
type=inline is specified). If not specified, the default is UTF-8. Since 3.0.1

title

<IELEMENT title EMPTY>
<IATTLIST title

id CDATA #IMPLIED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

a snippet of text that can optionally contain escaped HTML tags. It is only used as a Page Title, and so a giv
page can have a maximum of one title element.

« id — unique identifier of this title.

« style—id — A means to classifiy this element into a given category so that a common style may be
applied

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

text

<IELEMENT text EMPTY>

<IATTLIST text

id CDATA #IMPLIED

style-id CDATA #IMPLIED

filteredFrom (swt|html) >

a snippet of text that can optionally contain escaped HTML tags. It can include b and li tags. It can also

contain anchors for urls. If multiple paragraphs are needed, then the text can be divided into multiple sectior
each beginning and ending with the p tag.

* id — unique identifier of this text.

title 298

Welcome to Eclipse

« style—id — A means to classify this element into a given category so that a common style may be
applied

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

include

<IELEMENT include EMPTY>

<IATTLIST include

configld CDATA #IMPLIED

path CDATA #REQUIRED

merge-style (true | false) >

expands an element targeted by the given path and optional configld attributes. Path should uniquely addre:

an element within the specified configuration. It could point to a shared group defined at the configuration
level, or any element in a page.

« configld — identifier of a configuration where the included element is defined. If specified, it is
assumed that the element to be included is specified in another configuration, and not the enclosing
configuration. In this case, that external config is loaded and the element is resolved from that new
config. If not specified, enclosing (parent) configuration of this include is assumed.

« path — the path that uniquely represents the target element within the configuration (e.g.
page/groupl/group?2). It may be a group element, or any element that may be contained in a group.
You can not include a page.

* merge-style - if true, style belonging to the page that owns the included element will be added to
list of styles of the including page. If false (the default), the including page is responsible for
controlling properties of the included element.

head

<I[ELEMENT head EMPTY>
<IATTLIST head
src CDATA #REQUIRED>

encoding CDATA #IMPLIED

include 299

Welcome to Eclipse

Direct HTML to include in a page's HEAD content area. It allows for additional html to be added to the
HTML HEAD section. This is useful for adding java scripts or extra styles sheets. This markup is only to be
used with an HTML based intro part implementation. It is simply ignored in the case of a Ul Forms
implementation. A page can have more than one head element. An implementation can have one and only «
head element (since it is a shared across all pages).

* src — relative or absolute URL to a file containing HTML to include directly into the HTML head

section.
» encoding — an optional attribute to specify the encoding of the inlined file containing the head
shippet. Default is UTF-8. Since 3.0.1

img

<IELEMENT img EMPTY>
<IATTLIST img

id CDATA #REQUIRED
src CDATA #REQUIRED
alt CDATA #IMPLIED
style-id CDATA #IMPLIED
filteredFrom (swt|html) >

An image that represents intro content and not presentation (as opposed to decoration images defined in
styles).

« id — unique identifier of this image

« src — the file to load the image from

« alt — the alternative text to use when the image can not be loaded and as tooltip text for the image.

« style—id — A means to classify this image into a given category so that a common style may be
applied.

« filteredFrom — an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

extensionContent

<IELEMENT extensionContent (text | group | link | html | include)>

img 300

Welcome to Eclipse

<IATTLIST extensionContent

style CDATA #IMPLIED

alt-style CDATA #IMPLIED

path CDATA #REQUIRED>

The content to be added to the target anchor. Only one extensionContent is allowed in a given

configextension because if this extension could not be resolved (if the config could not be found, or the targ
anchor element could not be found) then the pages and/or groups in the extension need to be ignored.

« style — A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

- alt-style — A relative path to a SWT presentation properties file which is applied to the page only
when using the SWT based presentation.

« path — the path that uniquely represents the path to an anchor. (e.g. page/groupl/group2/anchorld)
within the target configuration to be extended. It can only be an anchor which can be in any page or
group, including shared groups at configuration level

anchor

<IELEMENT anchor EMPTY>
<IATTLIST anchor
id CDATA #REQUIRED>

an anchor is the element used to declare extensibility. It is a location in the configuration that allows for
external contributions. Only anchors are valid target values for the path attribute in an extensionContent

* id — unique id to identify this anchor.

contentProvider

<IELEMENT contentProvider_(text)>
<IATTLIST contentProvider
id CDATA #REQUIRED

anchor 301

Welcome to Eclipse

pluginld CDATA #IMPLIED

class CDATA #REQUIRED>

A proxy for an intro content provider, which allows an intro page to dynamically pull data from various
sources (e.g., the web, eclipse, etc) and provide content at runtime based on this dynamic data. If the
lIntroContentProvider class that is specified in the class attribute can not be loaded, then the contents of the
text element will be rendered instead. This is a dynamic version of the html intro tag. While the html tag
allows for embedding or inlining a static html content into the generated html intro page, the contentProvider
tag allows for dynamic creation of that content at runtime. Another difference between the tags is that the ht
tag is only supported for the HTML presentation, while this contentProvider tag is supported for both the
HTML and SWT presentations. Since 3.0.1

« id — unique identifier of this content provider element.

« pluginld — The id of the plug—in that contains the IContentProvider class specified by the class
attribute. This is an optional attribute that should be used if the class doesn't come from the same
plug-in that defined the markup.

« class — A class that implements the IContentProvider interface

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

anchor 302

http://www.eclipse.org/legal/cpl-v10.html

Intro Part Configuration Extension

Identifier:
org.eclipse.ui.intro.configExtension
Since:

3.0

Description:

This extension point is used to extend an existing intro configuration by providing more content, additional
StandbyContentParts or additional IntroUrl actions.

Configuration Markup:

<IELEMENT extension_(configExtensionz+ , standbyContentPart* , action*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT configExtension EMPTY>
<IATTLIST configExtension

configld CDATA #REQUIRED

content CDATA #REQUIRED>

Defines an extension to an intro configuration. Any page or group in an intro part configuration can be
extended, if it has declared extensability by defining anchors.

« configld — the id of an intro contribution that will be extended

 content — an intro content file. The content file is an XML file that contains the specifics of the intro
(intro_content file format specification). The content file is parsed at run time by the intro framework.
Based on the settings in this file, a certain number of pages, groups, and links are shown to the user
when the intro is opened.

Intro Part Configuration Extension 303

Welcome to Eclipse

<IELEMENT standbyContentPart EMPTY>
<IATTLIST standbyContentPart

id CDATA #REQUIRED

pluginld CDATA #REQUIRED

class CDATA #REQUIRED>

standbyContentPart registration. Once registered, standby parts can be launched through an introURL actio
of the following format:

http://org.eclipse.ui.intro/showStandby?partid=

<id of standbyContentPart>

« id — a unique id that identifies this standbyContentPart.
« pluginld — the name of the plugin that holds the class defined in the "class" attribute.
« class - the fully qualified class hame of the class that implements
org.eclipse.ui.intro.config.IStandbyContentPart to handle displaying
alternative standby content, such as a cheat sheet.

<IELEMENT action EMPTY>
<IATTLIST action

name CDATA #REQUIRED
replaces CDATA #REQUIRED>

custom Intro URL action registration. This can be used to create new Intro URL actions or a shortCut to
predefined actions.

e name — a unique name that identifies this action.
« replaces — the macro which replaces the action name in the Intro URL.

Examples:

Here is an example implementation of this extension point:

Intro Part Configuration Extension 304

Welcome to Eclipse

<extension point=
"org.eclipse.ui.intro.configExtension”

>

<configExtension configld=
"com.org.xyz.introConfig"

content=

"extensionContent.xml"

/>

<standbyPart id=
"com.org.xyz.myStandbyPart"

class=
"com.org.xyz.internal.MyStandbyContent"
pluginid=

"com.org.xyz"

/>

<action name=

"shortcutAction”

replaces=
"http://org.eclipse.ui.intro/showStandby?partid=com.org.xyz.myStandbyPart"
/>

<action name=

"customAction”

replaces=
"runAction?pluginld=com.org.xyz&class=com.org.xyz.CustomAction&paraml=valuel"
/>

</extension>

Intro Part Configuration Extension 305

Welcome to Eclipse

API Information:
For further details see the spec for the org.eclipse.ui.intro.config API package.
Supplied Implementation:

There are three supplied implementations:

« org.eclipse.jdt, makes use of configExtension
« org.eclipse.pde, makes use of configExtension
« org.eclipse.platform, makes use of standbyPoint

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-v10.html.

Intro Part Configuration Extension 306

http://www.eclipse.org/legal/cpl-v10.html

Creation Wizards

Identifier:

org.eclipse.ui.newWizards

Description:

This extension point is used to register resource creation wizard extensions. Creation wizards appear as
choices within the "New Dialog", and are typically used to create folders and files.

In the "New Dialog", wizards are organized into categories which usually reflect a particular problem domain
For instance, a Java oriented plugin may define a category called "Java" which is appropriate for "Class" or
"Package" creation wizards. The categories defined by one plug—in can be referenced by other plug-ins usi
the category attribute. Uncategorized wizards, as well as wizards with invalid category paths, will end up in
"Other" category.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:
<IELEMENT extension_(category | wizard | primaryWizard)*>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT category EMPTY>
<IATTLIST category
id CDATA #REQUIRED
name CDATA #REQUIRED
parentCategory CDATA #IMPLIED>
« id — a unigue name that can be used to identify this category
* name - a translatable name of the category that will be used in the dialog box

 parentCategory — a path to another category if this category should be added as a child

Creation Wizards 307

Welcome to Eclipse

<IELEMENT wizard (description?_, selection*)>

<IATTLIST wizard

id CDATA #REQUIRED
name CDATA #REQUIRED
icon CDATA #IMPLIED
category CDATA #IMPLIED
class CDATA #REQUIRED
project (true | false)

finalPerspective = CDATA #IMPLIED
preferredPerspectives CDATA #IMPLIED
helpHref CDATA #IMPLIED
descriptionimage = CDATA #IMPLIED>

* id — a unigue name that can be used to identify this wizard

* name - a translatable name of the wizard that will be used in the dialog box

« icon — a relative path of an icon that will be used together with the name to represent the wizard as
one of the choices in the creation dialog box.

« category — a slash—delimited path (/') of category IDs. Each token in the path must represent a valid
category ID previously defined by this or some other plug-in. If omitted, the wizard will be added to
the "Other" category.

« class - a fully qualified name of the Java class implementing org.eclipse.ui.INewWizard.

* project — an optional attribute indicating the wizard will create an IProject resource. Also causes the
wizard to appear as a choice within the "New Project Dialog".

« finalPerspective — an optional attribute which identifies a perspective to activate when IProject
resource creation is finished.

« preferredPerspectives — an optional attribute specifying a comma-separated list of perspective IDs.
If the current perspective is in this list, then no perspective activation occurs when IProject resource
creation is finished.

« helpHref — a help url that can describe this wizard in detail.

Since 3.0
« descriptionlmage - a larger image that can help describe this wizard.

Since 3.0

<IELEMENT description (#CDATA)>

Creation Wizards 308

Welcome to Eclipse

an optional subelement whose body contains a short text describing what the wizard will do when started

<IELEMENT selection EMPTY>
<IATTLIST selection
class CDATA #REQUIRED
name CDATA #IMPLIED>
« class - a fully qualified class hame. If each object in the workbench selection implements this
interface the selection will be passed to the wizard. Otherwise, an empty selection is passed

* name — an optional name filter. Each object in the workbench selection must match the name filter tc
be passed to the wizard

<IELEMENT primaryWizard EMPTY>

<IATTLIST primaryWizard

id CDATA #REQUIRED>

a means of declaring that a wizard is "primary" in the Ul. A primary wizard is emphasized in the new wizard

dialog. Please note that this element is not intended to be used by plug in developers! This element exists s
that product managers may emphasize a set of wizards for their products.

* id - the id of a wizard that should be made primary.

Examples:

Following is an example of creation wizard configuration:

<extension point=
"org.eclipse.ui.newWizards"
>

<category id=

"com.xyz.XYZ"

Creation Wizards 309

Welcome to Eclipse

name=
"XYZ Wizards"

>

</category>

<category id=
"com.xyz.XYZ.Web"

name=

"Web Wizards"

parentCategory=

"com.xyz.XYZ"

>

</category>

<wizard id=

"com.xyz.wizardl1"

name=

"XYZ artifact”

category=
"com.xyz.XYZ/com.xyz.XYZ.Web"
icon=

" licons/XYZwizardl.gif"

class=

"com.xyz.XYZWizard1"

>

<description>

Create a simple XYZ artifact and set initial content
</description>

Creation Wizards

310

Welcome to Eclipse

<selection class=
"org.eclipse.core.resources.IResource”
/>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements org.eclipse.ui.INewWizard.

If the wizard is created from within the New Wizard it will be inserted into the existing wizard. If the wizard

is launched as a shortcut (from the File New menu or a toolbar button) it will appear standalone as a separa
dialog box.

Supplied Implementation:

The workbench comes with wizards for creating empty resources of the following types: project, folder and
file. These wizards are registered using the same mechanism as described above. Additional wizards may &
appear, subject to particular platform installation.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Creation Wizards 311

http://www.eclipse.org/legal/cpl-v10.html

Perspective Extensions

Identifier:

org.eclipse.ui.perspectiveExtensions

Description:
This extension point is used to extend perspectives registered by other plug-ins. A perspective defines the
initial contents of the window action bars (menu and toolbar) and the initial set of views and their layout

within a workbench page. Other plug—ins may contribute actions or views to the perspective which appear
when the perspective is selected. Optional additions by other plug-ins are appended to the initial definition.

Configuration Markup:

<IELEMENT extension_(perspectiveExtension*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT perspectiveExtension (actionSet | viewShortcut | perspectiveShortcut | newWizardShortcut |
view | showlnPart)*>

<IATTLIST perspectiveExtension
targetID CDATA #REQUIRED>

« targetlD - the unique identifier of the perspective (as specified in the registry) into which the
contribution is made.

<IELEMENT actionSet EMPTY>
<IATTLIST actionSet
id CDATA #REQUIRED>

« id - the unique identifier of the action set which will be added to the perspective.

Perspective Extensions 312

Welcome to Eclipse

<IELEMENT viewShortcut EMPTY>
<IATTLIST viewShortcut
id CDATA #REQUIRED>

« id - the unique identifier of the view which will be added to the perspective's "Show View" submenu
of the "Window" menu.

<IELEMENT perspectiveShortcut EMPTY>
<IATTLIST perspectiveShortcut
id CDATA #REQUIRED>

« id - the unique identifier of the perspective which will be added to the perspective's "Open
Perspective" submenu of the "Window" menu.

<IELEMENT newW,izardShortcut EMPTY>
<IATTLIST newWizardShortcut
id CDATA #REQUIRED>

« id - the unique identifier of the new wizard which will be added to the perspective's "New" submenu
of the "File" menu.

<IELEMENT showInPart EMPTY>
<IATTLIST showlInPart
id CDATA #IMPLIED>

« id - the unique identifier of the view which will be added to the perspective's "Show In..." prompter
in the Navigate menu.

<IELEMENT view EMPTY>
<IATTLIST view
id CDATA #REQUIRED

Perspective Extensions 313

relative

Welcome to Eclipse

CDATA #REQUIRED

relationship (stack|left|right|top|bottom|fast)

ratio

visible

CDATA #IMPLIED

(true | false)

closeable (true | false)

moveable (true | false)

standalone (true | false)

showTitle (true | false) >

id — the unique identifier of the view which will be added to the perspective layout.

relative — the unique identifier of a view which already exists in the perspective. This will be used as
a reference point for placement of the view. The relationship between these two views is defined by
relationship.

relationship — specifies the relationship between id and relative. The following values are

supported:

fast — the view extension will be created as a fast view.

stack — the view extension will be stacked with the relative view in a folder.

left, right, top, bottom - the view extension will be placed beside the relative view. In this case a
ratio must also be defined.

ratio — the percentage of area within the relative view which will be donated to the view extension. If
the view extension is a fast view, the ratio is the percentage of the workbench the fast view will covel
when active. This must be defined as a floating point value and lie between 0.05 and 0.95.

visible — whether the view is initially visible when the perspective is opened. This attribute should
have a value of "true" or "false" if used. If this attribute is not used, the view will be initially visible

by default.

closeable — whether the view is closeable in the target perspective. This attribute should have a valu
of "true" or "false" if used. If this attribute is not used, the view will be closeable, unless the
perspective itself is marked as fixed.

moveable — whether the view is moveable. A non—moveable view cannot be moved either within the
same folder, or moved between folders in the perspective. This attribute should have a value of "true
or "false" if used. If this attribute is not used, the view will be moveable, unless the perspective itself
is marked as fixed.

standalone — whether the view is a standalone view. A standalone view cannot be docked together
with others in the same folder. This attribute should have a value of "true" or "false" if used. This
attribute is ignored if the relationship attribute is "fast" or "stacked". If this attribute is not used, the
view will be a regular view, not a standalone view (default is "false").

showTitle — whether the view's title is shown. This attribute should have a value of “true" or “false" if
used. This attribute only applies to standalone views. If this attribute is not used, the view's title will
be shown (default is "true").

Perspective Extensions 314

Welcome to Eclipse

Examples:

The following is an example of a perspective extension (note the subelements and the way attributes are
used):

<extension point=
"org.eclipse.ui.perspectiveExtensions"
>

<perspectiveExtension targetID=
"org.eclipse.ui.resourcePerspective"
>

<actionSet id=
"org.eclipse.jdt.ui.JavaActionSet"

/>

<viewShortcut id=
"org.eclipse.jdt.ui.PackageExplorer"
/>

<newWizardShortcut id=
"org.eclipse.jdt.ui.wizards.NewProjectCreationWizard"
/>

<perspectiveShortcut id=
"org.eclipse.jdt.ui.JavaPerspective"
/>

<view id=
"org.eclipse.jdt.ui.PackageExplorer"
relative=

"org.eclipse.ui.views.ResourceNavigator"

Perspective Extensions 315

Welcome to Eclipse

relationship=

"stack”

/>

<view id=
"org.eclipse.jdt.ui.TypeHierarchy"
relative=
"org.eclipse.ui.views.ResourceNavigator"
relationship=

"left"

ratio=

"0.50"

/>

</perspectiveExtension>

</extension>

In the example above, an action set, view shortcut, new wizard shortcut, and perspective shortcut are

contributed to the initial contents of the Resource Perspective. In addition, the Package Explorer view is
stacked on the Resource Navigator and the Type Hierarchy View is added beside the Resource Navigator.

API Information:

The items defined within the perspective extension are contributed to the initial contents of the target
perspective. Following this, the user may remove any contribution or add others to a perspective from within
the workbench user interface.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Perspective Extensions 316

http://www.eclipse.org/legal/cpl-v10.html

Perspectives

Identifier:

org.eclipse.ui.perspective

Description:
This extension point is used to add perspective factories to the workbench. A perspective factory is used to

define the initial layout and visible action sets for a perspective. The user can select a perspective by invokit
the "Open Perspective" submenu of the "Window" menu.

Configuration Markup:

<IELEMENT extension_(perspective*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT perspective_(description?)>

<IATTLIST perspective

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED

fixed (true | false) >
« id — a unigue name that will be used to identify this perspective.
e name - a translatable name that will be used in the workbench window menu bar to represent this

perspective.

« class - a fully qualified name of the class that implements

org.eclipse.ui.lPerspectiveFactory interface.
* icon — a relative name of the icon that will be associated with this perspective.

Perspectives 317

Welcome to Eclipse

« fixed — indicates whether the layout of the perspective is fixed. If true, then views created by the
perspective factory are not closeable, and cannot be moved. The default is false.

<IELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the perspective.

Examples:

The following is an example of a perspective extension:

<extension point=
"org.eclipse.ui.perspectives"

>

<perspective id=
"org.eclipse.ui.resourcePerspective"
name=

"Resource"

class=
"org.eclipse.ui.internal.ResourcePerspective"
icon=

"icons/Mylcon.gif"

>

</perspective>

</extension>

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
org.eclipse.ui.lPerspectiveFactory. The class must supply the initial layout for a perspective
when asked by the workbench.

Perspectives 318

Welcome to Eclipse

The plugin_customization.ini file is used to define the default perspective. The default perspective

is the first perspective which appears when the product is launched after install. It is also used when the use
opens a page or window with no specified perspective. The default perspective is defined as a property with
the plugin_customization.ini, as shown below. The user may also override this perspective from the
workbench perspectives preference page.

defaultPerspectiveld = org.eclipse.ui.resourcePerspective

The perspectives which appear in the "Open Perspective" menu are shortcuts for perspective selection. Thit
set is defined by the active perspective itself, and extensions made through the perspectiveExtensions
extension point.

Supplied Implementation:

The workbench provides a "Resource Perspective". Additional perspectives may be added by plug-ins. The
are selected using the "Open Perspective" submenu of the "Window" menu.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Perspectives 319

http://www.eclipse.org/legal/cpl-v10.html

Pop—-up Menus

Identifier:

org.eclipse.ui.popupMenus

Description:

This extension point is used to add new actions to context menus owned by other plug-ins. Action
contribution may be made against a specific object type (objectContribution) or against a specific

context menu of a view or editor part (viewerContribution). When using objectContribution,

the contribution will appear in all view or editor part context menus where objects of the specified type are
selected. In contrast, using viewerContribution, the contribution will only appear in the specified view

or editor part context menu, regardless of the selection.

When selection is heterogeneous, contribution will be applied if registered against a common type of the
selection, if possible. If a direct match is not possible, matching against superclasses and superinterfaces w
be attempted.

Selection can be further constrained through the use of a name filter. If used, all the objects in the selection
must match the filter in order to apply the contribution.

Individual actions in an object contribution can use attribute enablesFor to specify if it should only apply for
single, multiple, or any other selection type.

If these filtering mechanisms are inadequate an action contribution may use the filter mechanism. In this
case the attributes of the target object are described in a series of name value pairs. The attributes which af
to the selection are type specific and beyond the domain of the workbench itself, so the workbench will
delegate filtering at this level to the actual selection.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enableme
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub—element. In the simplest case, this will be an objectClass, objectState,

pluginState, or systemProperty element. In the more complex case, the and, or, and not elements

can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub—element
The not element must contain only 1 sub—element.

Configuration Markup:

<IELEMENT extension_(objectContribution , viewerContribution)>

<IATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

Pop-up Menus 320

Welcome to Eclipse

« point — a fully qualified identifier of the target extension point
« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT objectContribution_(filter*_, visibility?_, enablement? , menu* , action*)>

<IATTLIST objectContribution

id CDATA #REQUIRED
objectClass CDATA #REQUIRED
nameFilter CDATA #IMPLIED
adaptable (true | false) "false">

This element is used to define a group of actions and/or menus for any viewer context menus for which the
objects of the specified type are selected.

« id — a unique identifier used to reference this contribution

« objectClass - a fully qualified name of the class or interface that all objects in the selection must
subclass or implement.

« nameFilter — an optional wild card filter for the name that can be applied to all objects in the
selection. No contribution will take place if there is no match.

 adaptable - a flag that indicates if types that adapt to IResource should use this object contribution.
This flag is used only if objectClass adapts to IResource. Default value is false.

<IELEMENT viewerContribution (visibility? , menu* , action*)>

<IATTLIST viewerContribution
id CDATA #REQUIRED
targetID CDATA #REQUIRED>

This element is used to define a group of actions and/or menus for a specific view or editor part context mer

« id — a unique identifier used to reference this contribution
« targetID - the unique identifier of a context menu inside a view or editor part.

<IELEMENT action (selection* , enablement?)>

Pop-up Menus 321

Welcome to Eclipse

<IATTLIST action

id CDATA #REQUIRED
label CDATA #REQUIRED
definitionld CDATA #IMPLIED
menubarPath ~ CDATA #IMPLIED
icon CDATA #IMPLIED

helpContextld CDATA #IMPLIED

style (push|radio|toggle|pulldown)
state (true | false)
class CDATA #REQUIRED

enablesFor CDATA #IMPLIED

overrideActionld CDATA #IMPLIED

tooltip CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

« id — a unique identifier used as a reference for this action.

* label - a translatable name used as the menu item text. The name can include mnenomic informatio

« definitionld — This specifies the command that this action is handling. This is used to decide which
key binding to display in the pop—up menu.

» menubarPath — a slash—delimited path (/") used to specify the location of this action in the context
menu. Each token in the path, except the last one, must represent a valid identifier of an existing me
in the hierarchy. The last token represents the named group into which this action will be added. If th
path is omitted, this action will be added to the standard additions group defined by
IWorkbenchActionConstants.MB_ADDITIONS.

« icon — a relative path of an icon used to visually represent the action in its context. The path is relativ
to the location of the plugin.xml file of the contributing plug-in.

« helpContextld — a unigue identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

« style — an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push — as a regular menu item or tool item.

radio — as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio
set. The initial value is specified by the state attribute.

toggle

Pop-up Menus 322

Welcome to Eclipse

— as a checked style menu item or as a toggle tool item. The
initial value is specified by the state attribute.

pulldown — as a cascading style menu item.
« state — an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.
« class — a name of the fully qualified class that implements
org.eclipse.ui.lObjectActionDelegate (for object contributions),
org.eclipse.ui.lViewActionDelegate (for viewer contributions to a view part), or
org.eclipse.ui.lEditorActionDelegate (for viewer contributions to an editor part). For
backwards compatibility, org.eclipse.ui.lActionDelegate may be implemented for
object contributions.
 enablesFor — a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:
! - 0 items selected

? - 0 or 1 items selected

+ - 1 or more items selected

multiple, 2+ — 2 or more items selected

n - a precise number of items selected.a precise number of

items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected
* — any number of items selected
The enablement criteria for an action extension are initially defined by enablesFor, selection
and enablement. However, once the action delegate has been instantiated it may control the action
enable state directly within its selectionChanged method.

« overrideActionld — an optional attribute that specifies the identifier of an action which this action
overrides. The action represented by this identifier will not be contributed to the context menu. The
action identifier must be from a prerequisite plug—in only. This attribute is only applicable to action
elements of an object contribution.

* tooltip — a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

<!IELEMENT filter EMPTY>

<IATTLIST filter

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. A match only if ec

object in the selection has the specified attribute state. Each object in the selection must implement, or aday
to, org.eclipse.ui.lActionFilter.

Pop-up Menus 323

Welcome to Eclipse

* name - the name of an object's attribute. Acceptable nhames reflect the object type, and should be
publicly declared by the plug-in where the object type is declared.

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

<IELEMENT menu (separator+ , groupMarker*)>
<IATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

« id — a unique identifier that can be used to reference this menu.

« label — a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

« path - the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

<IELEMENT separator EMPTY>
<IATTLIST separator
name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

« name - the name of the menu separator. This name can later be referenced as the last token inam
path. Therefore, a separator also serve as hamed group into which actions and menus can be addec

<IELEMENT groupMarker EMPTY>
<IATTLIST groupMarker
name CDATA #REQUIRED>

Pop-up Menus 324

Welcome to Eclipse

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

* name - the name of the group marker. This name can later be referenced as the last token in the me
path. It serves as named group into which actions and menus can be added.

<IELEMENT selection EMPTY>
<IATTLIST selection

class CDATA #REQUIRED
name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

« class - a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

* name — an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

<IELEMENT enablement_(and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<IELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<IELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub—element expressiol

Pop-up Menus 325

Welcome to Eclipse
<IELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub—element expression:

<IELEMENT not (and_| or_| not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub—element expressions.

<IELEMENT objectClass EMPTY>
<IATTLIST objectClass
name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object
the selection implements the specified class or interface, the expression is evaluated as true.

« name - a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

<IELEMENT objectState EMPTY>

<IATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in tt
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of

expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.lActionFilter interface.

* name - the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug-in where the object type is declared.

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

Pop-up Menus 326

Welcome to Eclipse

<IELEMENT pluginState EMPTY>
<IATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug—in. The state of the plug—in may be one of the following
installed or activated.

« id - the identifier of a plug—in which may or may not exist in the plug—-in registry.
« value - the required state of the plug-in. The state of the plug—in may be one of the following:
installed or activated.

<IELEMENT systemProperty EMPTY>
<IATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

* name - the name of the system property.
« value - the required value of the system property.

<IELEMENT enablement_ (not ., and , or_, instanceof , test , systemTest , equals ., count , with , resolve , adaj
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<IELEMENT not (not] and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate

This element represent a NOT operation on the result of evaluating it's sub—element expression.

Pop-up Menus 327

Welcome to Eclipse

<IELEMENT and (not_ and ., or . instanceof . test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub—elements expressions.

<IELEMENT or (not ., and_, or, instanceof , test , systemTest , equals , count_, with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub—element expressions.

<I[ELEMENT instanceof EMPTY>

<IATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns

EvaluationResult. TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwi:
EvaluationResult.FALSE is returned.

« value — a fully qualified name of a class or interface.

<IELEMENT test EMPTY>

<IATTLIST test

property CDATA #REQUIRED

args CDATA #IMPLIED

value CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can

extended using the propery tester extension point. The test expression returns
EvaluationResult. NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

Pop-up Menus 328

Welcome to Eclipse

* property — the name of an object's property to test.

« args — additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defin
for the value attribute of the test expression.

« value - the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult. TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

¢ the string "true" is converted into Boolean. TRUE

¢ the string "false" is converted into Boolean.FALSE

¢ if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

¢ if the string only consists of numbers then the interpreter converts the value in an Integer
object.

¢ in all other cases the string is treated as a java.lang.String

¢ the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value=""true™ is
converted into the string "true"

<IELEMENT systemTest EMPTY>
<IATTLIST systemTest

property CDATA #REQUIRED
value CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

* property — the name of an system property to test.
« value - the expected value of the property. The value is interpreted as a string value.

<IELEMENT equals EMPTY>

<IATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns

EvaluationResult. TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

Pop-up Menus 329

Welcome to Eclipse

« value - the operatand of the equals tests. The value provided as a string is converted into a Java ba
type using the same rules as for the value attribute of the test expression.

<IELEMENT count EMPTY>
<IATTLIST count
value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

« value — an expression to specify the number of elements in a list. Following wildcard characters can
be used:

*
any number of elements
no elements or one element
one or more elements
no elements

integer value
the list must contain the exact number of elements

<IELEMENT with (not , and_, or_, instanceof , test , systemTest , equals , count_ with . resolve , adapt
iterate)*>

<IATTLIST with
variable CDATA #REQUIRED>
This element changes the object to be inspected for all its child element to the object referneced by the give

variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

« variable — the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

<IELEMENT resolve (not_ and . or , instanceof , test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

Pop-up Menus 330

Welcome to Eclipse

<IATTLIST resolve
variable CDATA #REQUIRED
args CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the give
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

« variable — the name of the variable to be resolved. This variable is then used as the object in focus f
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expressit
element when evaluating the expression.

« args — additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defin
for the value attribute of the test expression.

<IELEMENT adapt (not_ and , or . instanceof , test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

<IATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionExcepiti

during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined usi
the and operator.

* type - the type to which the object in focus is to be adapted.

<IELEMENT iterate (not_ and , or , instanceof . test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

<IATTLIST iterate
operator (orland) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not ¢
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

Pop-up Menus 331

Welcome to Eclipse

« operator — either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

Examples:

The following is an example of a pop—up menu extension point:

<extension point=
"org.eclipse.ui.popupMenus"

>

<objectContribution id=
"com.xyz.C1"

objectClass=
"org.eclipse.core.resources.|File"
namekFilter=

"* java"

>

<menu id=
"com.xyz.xyzMenu"
path=

"additions"

label=

"&XYZ Java Tools"
>

<separator name=
"groupl”

/>

Pop-up Menus 332

Welcome to Eclipse

</menu>

<action id=
"com.xyz.runXyZz"

label=

"&Run XYZ Tool"

style=

"push"

menubarPath=
"com.xyz.xyzMenu/groupl1"
icon=

"icons/runXYZ.gif"
helpContextld=
"com.xyz.run_action_context"
class=
"com.xyz.actions.XYZToolActionDelegate"
enablesFor=

np

>

</action>
</objectContribution>
<viewerContribution id=
"com.xyz.C2"

targetiD=
"org.eclipse.ui.views.TaskList"
>

<action id=

Pop-up Menus

333

Welcome to Eclipse

"com.xyz.showXYZz"
label=
"&Show XYZ"
style=

"toggle”

state=

"true"
menubarPath=
"additions"

icon=
"icons/showXYZ.gif"

helpContextld=

"com.xyz.show_action_context"

class=

"com.xyz.actions.XYZShowActionDelegate"

>

</action>

</viewerContribution>

</extension>

In the example above, the specified object contribution action will only enable for a single selection
(enablesFor attribute). In addition, each object in the selection must implement the specified interface
(IFile) and must be a Java file. This action will be added into a submenu previously created. This

contribution will be effective in any view that has the required selection.

In contrast, the viewer contribution above will only appear in the Tasks view context menu, and will not be
affected by the selection in the view.

The following is an example of the filter mechanism. In this case the action will only appear for IMarkers
which are completed and have high priority.

Pop-up Menus 334

Welcome to Eclipse

<extension point=
"org.eclipse.ui.popupMenus"

>

<objectContribution id=
"com.xyz.C3"

objectClass=
"org.eclipse.core.resources.IMarker"
>

<filter name=

"done"

value=

"true"

/>

<filter name=

"priority"

value=

no

/>

<action id=

"com.xyz.runXyZz"

label=

"High Priority Completed Action Tool"
icon=

"icons/runXYZ.gif"

class=
"com.xyz.actions.MarkerActionDelegate"

Pop-up Menus 335

Welcome to Eclipse

>
</action>
</objectContribution>
</extension>

The following is an other example of using the visibility element:

<extension point=
"org.eclipse.ui.popupMenus"
>

<viewerContribution id=
"com.xyz.C4"

targetiD=
"org.eclipse.ui.views.TaskList"
>

<visibility>

<and>

<pluginState id=

"com.xyz"

value=

"activated"

/>

<systemProperty name=
"ADVANCED_MODE"
value=

"true”

/>

Pop-up Menus 336

Welcome to Eclipse

</and>

</visibility>

<action id=
"com.xyz.showXYZz"

label=

"&Show XYZ"

style=

"push"

menubarPath=

"additions”

icon=

"icons/showXYZ.gif"
helpContextld=
"com.xyz.show_action_context"
class=
"com.xyz.actions.XYZShowActionDelegate"
>

</action>
</viewerContribution>
</extension>

In the example above, the specified action will appear as a menu item in the Task view context menu, but ol
if the "com.xyz" plug—in is active and the specified system property is set to true.

API Information:

The value of the action attribute class must be a fully qualified class name of a Java class that implements
org.eclipse.ui.lObjectActionDelegate in the case of object contributions,

org.eclipse.ui.lViewActionDelegate for contributions to context menus that belong to views, or
org.eclipse.ui.lEditorActionDelegate for contributions to context menus that belong to

editors. In all cases, the implementing class is loaded as late as possible to avoid loading the entire plug—in
before it is really needed.

Pop-up Menus 337

Welcome to Eclipse

Note: For backwards compatibility, org.eclipse.ui.lActionDelegate may be implemented for
object contributions.

Conext menu extension within a part is only possible when the target part publishes a menu for extension.
This is strongly encouraged, as it improves the extensibility of the product. To accomplish this each part
should publish any context menus which are defined by calling

IWorkbenchPartSite.registerContextMenu. Once this has been done the workbench will

automatically insert any action extensions which exist.

A menu id must be provided for each registered menu. For consistency across parts the following strategy
should be adopted by all part implementors.

« If the target part has only one context menu it should be registered with id == part id. This can be
done easily by calling registerContextMenu(MenuManager, I1SelectionProvider).
Extenders may use the part id itself as the targetID for the action extension.

« If the target part has more than one context menu a unique id should be defined for each. Prefix eac
id with the part id and publish these id's within the javadoc for the target part. Register each menu at
runtime by calling registerContextMenu(String, MenuManager,

ISelectionProvider). Extenders will use the unique menu id as the targetlD for the action
extension.

Any context menu which is registered with the workbench also should contain a standard insertion point wit
id IWorkbenchActionConstants.MB_ADDITIONS. Other plug-ins will use this value as a reference

point for insertion. The insertion point may be defined by adding a GroupMarker to the menu at an
appropriate location for insertion.

An object in the workbench which is the selection in a context menu may define an
org.eclipse.ui.lActionFilter. This is a filtering strategy which can perform type specific

filtering. The workbench will retrieve the filter for the selection by testing to see if it implements
IActionFilter. If that fails, the workbench will ask for a filter through the 1Adaptable mechanism.

Action and menu labels may contain special characters that encode mnemonics which are specified using tt
ampersand (‘'&") character in front of a selected character in the translated text. Since ampersand is not allo
in XML strings, use & character entity.

If two or more actions are contributed to a menu by a single extension the actions will appear in the reverse
order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it was
discovered after the Eclipse Platform APl was frozen. Changing the behavior now would break every plug-il
which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can

replace the selection element using the sub—elements objectClass and objectState. For example,
the following:

<selection class=
"org.eclipse.core.resources.|File"

name=

Pop-up Menus 338

Welcome to Eclipse

II*.javall
>
</selection>

can be expressed using:

<enablement>
<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<objectState name=
"extension”

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

The workbench views have built-in context menus that already come loaded with a number of actions.
Plug-ins can contribute to these menus. If a viewer has reserved slots for these contributions and they are
made public, slot names can be used as paths. Otherwise, actions and submenus will be added at the end ¢
pop-up menu.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Pop-up Menus 339

http://www.eclipse.org/legal/cpl-v10.html

Preference Pages

Identifier:

org.eclipse.ui.preferencePages

Description:

The workbench provides one common dialog box for preferences. The purpose of this extension point is to
allow plug-ins to add pages to the preference dialog box. When preference dialog box is opened (initiated
from the menu bar), pages contributed in this way will be added to the dialog box.

The preference dialog box provides for hierarchical grouping of the pages. For this reason, a page can
optionally specify a category attribute. This attribute represents a path composed of parent page IDs

separated by '/'. If this attribute is omitted or if any of the parent nodes in the path cannot be found, the page
will be added at the root level.

Configuration Markup:

<IELEMENT extension_(page*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT page EMPTY>

<IATTLIST page

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

category CDATA #IMPLIED>
« id — a unigue name that will be used to identify this page.
e name - a translatable name that will be used in the Ul for this page.
« class — a name of the fully qualified class that implements

org.eclipse.ui.lWorkbenchPreferencePage.

Preference Pages 340

Welcome to Eclipse

« category — a path indicating the location of the page in the preference tree. The path may either be &
parent node ID or a sequence of IDs separated by '/, representing the full path from the root node.

Examples:

The following is an example for the preference extension point:

<extension point=
"org.eclipse.ui.preferencePages"
>

<page id=

"com.xyz.prefpagel”

name=

"Xyz"

class=
"com.xyz.prefpages.PrefPagel”
>

</page>

<page id=
"com.xyz.prefpage2"

name=

"Keyboard Settings"

class=
"com.xyz.prefpages.PrefPage2”
category=

"com.xyz.prefpagel”

>

Preference Pages 341

Welcome to Eclipse
</page>
</extension>

API Information:

The value of the attribute class must represent a fully qualified name of the class that implements
org.eclipse.ui.lWorkbenchPreferencePage.

Supplied Implementation:

The workbench adds several pages for setting the preferences of the platform. Pages registered through thi
extension will be added after them according to their category information.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Preference Pages 342

http://www.eclipse.org/legal/cpl-v10.html

Presentation Factories

Identifier:

org.eclipse.ui.workbench.presentationFactories

Since:

3.0

Description:

This extension point is used to add presentation factories to the workbench. A presentation factory defines t
overall look and feel of the workbench, including how views and editors are presented.

Configuration Markup:

<IELEMENT extension_(factory*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<I[ELEMENT factory EMPTY>
<IATTLIST factory
class CDATA #REQUIRED
id CDATA #REQUIRED
name CDATA #REQUIRED>
« class — Specify the fully qualified class to be used for the presentation factory. The specified value
must be a subclass of
org.eclipse.ui.presentations.AbstractPresentationFactory.

« id — a unigue name that will be used to identify this presentation factory
e name - a translatable name that can be used to show this presentation factory in the Ul

Examples:

The following is an example of a presentationFactory extension:

Presentation Factories 343

Welcome to Eclipse

<extension point=

"org.eclipse.ui.presentationFactories"

>

<factory class=
"org.eclipse.ui.workbench.ExampleWorkbenchPresentationFactory"
/>

</extension>

API Information:

The class specified in the factory element must be a concrete subclass of
org.eclipse.ui.presentations.AbstractPresentationFactory.

Supplied Implementation:

If a presentation factory is not specified or is missing then the implementation in
org.eclipse.ui.presentations.WorkbenchPresentationFactory will be used.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Presentation Factories 344

http://www.eclipse.org/legal/cpl-v10.html

Property Pages
Identifier:
org.eclipse.ui.propertyPages
Description:

This extension point is used to add additional property page for objects of a given type. Once defined, these
property pages will appear in the Properties Dialog for objects of that type.

A property page is a user friendly way to interact with the properties of an object. Unlike the Properties view
which restricts the space available for editing an object property, a property page may benefit from the
freedom to define larger, more complex controls with labels, icons, etc. Properties which logically go togethe
may also be clustered in a page, rather than scattered in the property sheet. However, in most applications |
will be appropriate to expose some properties of an object via the property sheet and some via the property
pages.

Property pages are shown in a dialog box that is normally visible when the "Properties" menu item is selecte
on a pop-up menu for an object. In addition to the object class, the name filter can optionally be supplied to
register property pages only for specific object types.

If these filtering mechanisms are inadequate a property page may use the filter mechanism. In this case the
attributes of the target object are described in a series of key value pairs. The attributes which apply to the

selection are type specific and beyond the domain of the workbench itself, so the workbench will delegate
filtering at this level to the actual selection.

Configuration Markup:

<IELEMENT extension_(page*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT page (filter*)>
<IATTLIST page

id CDATA #REQUIRED

Property Pages 345

Welcome to Eclipse

name CDATA #REQUIRED
icon CDATA #IMPLIED
objectClass CDATA #REQUIRED
class CDATA #REQUIRED
namekFilter CDATA #IMPLIED
adaptable (true | false) >
« id — a unigue name that will be used to identify this page
e name - a translatable name that will be used in the Ul for this page
« icon — a relative path to an icon that will be used in the Ul in addition to the page name
« objectClass — a fully qualified name of the class for which the page is registered.
« class - a fully qualified name of the class that implements
org.eclipse.ui.lWorkbenchPropertyPage.
« nameFilter — an optional attribute that allows registration conditional on wild card match applied to
the target object name.

 adaptable - a flag that indicates if types that adapt to IResource should use this property page. This
flag is used if objectClass adapts to IResource. Default value is false.

<IELEMENT filter EMPTY>

<IATTLIST filter

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. A match only if ez

object in the selection has the specified attribute state. Each object in the selection must implement, or aday
to, org.eclipse.ui.lActionFilter.

« name - the name of an object attribute.
« value - the value of an object attribute. In combination with the name attribute, the name value pair i
used to define the target object for a property page.

Examples:

The following is an example of the property page definition:

Property Pages 346

Welcome to Eclipse

<extension point=
"org.eclipse.ui.propertyPages"
>

<page id=
"com.xyz.projectPage"

name=

"XYZ Java Properties"
objectClass=
"org.eclipse.core.resources.|File"
class=
"com.xyz.ppages.JavaPropertyPage"
namekFilter=

"* java"

>

<filter name=

"readOnly"

value=

"true"

/>

</page>

</extension>

API Information:

The attribute class must specify a fully qualified name of the class that implements
org.eclipse.ui.lWorkbenchPropertyPage.

Supplied Implementation:

Some objects provided by the workbench may have property pages registered. Plug-ins are allowed to add
more property pages for these objects. Property pages are not limited to workbench resources: all objects

Property Pages 347

Welcome to Eclipse

showing up in the workbench (even domain specific objects created by the plug—-ins) may have property pac
and other plug-ins are allowed to register property pages for them.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Property Pages 348

http://www.eclipse.org/legal/cpl-v10.html

Startup

Identifier:

org.eclipse.ui.startup

Since:

Release 2.0

Description:

This extension point is used to register plugins that want to be activated on startup. The plugin class or the
class given as the attribute on the startup element must implement the interface

org.eclipse.ui.IStartup. Once the workbench is started, the method earlyStartup() will be called

from a separate thread. If the startup element has a class attribute, the method earlyStartup() will be called

this class. Otherwise, this method will be called from the plugin class. These plugins are listed in the
workbench preferences and the user may disable any plugin from early startup.

Configuration Markup:

<IELEMENT extension _(startup*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT startup EMPTY>
<IATTLIST startup
class CDATA #IMPLIED>

« class - a fully qualified name of the class that implements org.eclipse.ui.lStartup. Since
release 3.0.

Startup 349

Welcome to Eclipse

Examples:

Following is an example of a startup extension:

<p>
<extension point=
"org.eclipse.ui.startup”
/>

</p>

API Information:

See interface org.eclipse.ui.lStartup.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Startup 350

http://www.eclipse.org/legal/cpl-v10.html

System Summary Sections

Identifier:

org.eclipse.ui.systemSummarySections

Since:

3.0

Description:
The Eclipse Ul provides an AboutDialog that can be branded and reused by client product plugins. This dial
includes a SystemSummary dialog that contains configuration details. By extending the
org.eclipse.ui.systemSummarySections extension point clients are able to put their own information into the
log.
Configuration Markup:
<IELEMENT extension _(section+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT section EMPTY>
<IATTLIST section
class CDATA #REQUIRED
sectionTitle CDATA #REQUIRED
id CDATA #IMPLIED>
« class — The fully qualified hame of a class the implements
org.eclipse.ui.about.ISystemSummarySection. The class must provide a default
constructor.
« sectionTitle — a translatable name that will be displayed as the title of this section in the system

summary
« id — an optional, uniqgue name that will be used to identify this system summary section

System Summary Sections 351

Welcome to Eclipse

Examples:

Following is an example of a systemSummarySections extension:

<extension point=
"org.eclipse.ui.systemSummarySections"
>

<section sectionTitle=

"Cookie Manager Plugin”

class=
"org.eclipse.ui.examples.rcp.browser.ConfigDetails"
id=

"RCPBrowser.ConfigDetails"

>

</section>

</extension>

API Information:

The class specified in the section element must be a concrete subclass of
org.eclipse.ui.about.ISystemSummarySection.

Supplied Implementation:

The Workbench uses this extension point to provide the following sections in the system summary dialog: -
System properties: The contents of the table returned by java.lang.System.getProperties. — Features: The ic
all features found by eclipse. — Plug—in Registry: The id of all plugins found by eclipse. — User Preferences:
The contents of the Eclipse PreferencesService. — Error Log: The contents of the platform's error log.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

System Summary Sections 352

http://www.eclipse.org/legal/cpl-v10.html

Themes

Identifier:

org.eclipse.ui.themes

Description:

This extension point is used to customize the appearance of the Ul. It allows definition of color and font
entities as well as theme entitities. Themes allow applications to selectivly override default color and font
specifications for particular uses.

Configuration Markup:

<IELEMENT extension_(theme* , colorDefinition* , fontDefinition* , themeElementCategory* , data* ,
categoryPresentationBinding*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT theme (colorOverride* , fontOverride* , description? . data*)>

<IATTLIST theme
id CDATA #REQUIRED
name CDATA #REQUIRED>

A collection of font, color and data overrides. Such a collection may be used to alter the appearance of the
workbench.

« id — a unique name that will be used to identify this theme
* name - a translatable name of the theme to be presented to the user

<IELEMENT themeElementCategory (description)>

Themes 353

Welcome to Eclipse

<IATTLIST themeElementCategory
id CDATA #REQUIRED
parentld CDATA #IMPLIED

class CDATA #IMPLIED

label CDATA #IMPLIED>

A logical grouping of theme element definitions. This category may include colors and fonts.

« id - the id for this category

« parentld - the id of the parent category, if any.

« class — a class that implements org.eclipse.ui.themes.IThemePreview

« label — a translatable name of the theme element category to be presented to the user

<IELEMENT colorDefinition (colorFactory? . colorValue* ., description?)>

<IATTLIST colorDefinition

id CDATA #IMPLIED
label CDATA #REQUIRED
defaultsTo CDATA #IMPLIED
value CDATA #IMPLIED
categoryld CDATA #IMPLIED
colorFactory CDATA #IMPLIED
isEditable (true | false) >

A symbolic color definition.

* id — a unique id that can be used to identify this color definition.

« label — a translatable name of the color to be presented to the user.

« defaultsTo - the id of another color definition that is the default setting for the receiver. When there
is no preference for this color the color registry will have the value of defaultsTo set for it in the
registry. Only one of defaultsTo, value or colorFactory may be defined.

« value — The default value of this color. The value may be specified in the following ways:

¢ a String containing comma seperated integers in the form red,green,blue
¢ a String that maps to an SWT color constant (ie: COLOR_RED).

Themes 354

Welcome to Eclipse

Only one of defaultsTo, value or colorFactory may be defined. If value is specified,
additional value definitions may be specified on a per platform/windowing system basis via the
colorValue element.

« categoryld - the optional id of the themeElementCategory this color belongs to.

« colorFactory — a class that implements org.eclipse.ui.themes.|IColorFactory. This
may be used instead of value to specify the default value of the color. Please be advised that this
should be used with caution — usage of this attribute will cause plugin activation.

« isEditable — whether the user should be allowed to edit this color in the preference page. If this is
false then the contribution is not shown to the user.

<IELEMENT fontDefinition (fontValue* , description?)>
<IATTLIST fontDefinition

id CDATA #REQUIRED

label CDATA #REQUIRED

value CDATA #IMPLIED

categoryld CDATA #IMPLIED

defaultsTo CDATA #IMPLIED

isEditable (true | false) >

A symbolic font definition.

« id — a unique name that can be used to identify this font definition.

« label — a translatable name of the font to be presented to the user.

« value - the font value. This is in the form: fonthame-style—height where fontname is the
name of a font, style is a font style (one of "regular”, "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman-bold-36.
Only one (or neither) of value or defaultsTo may be used.

If value is specified, additional value definitions may be specified on a per platform/windowing
system basis via the fontValue element.

« categoryld - the optional id of the themeElementCategory this font belongs to.

« defaultsTo - the id of another font definition that is the default setting for the receiver. When there is
no preference for this font the font registry will have the value of defaultsTo set for it in the registry.

Only one (or neither) of value or defaultsTo may be used.
« isEditable — whether the user should be allowed to edit this color in the preference page. If this is
false then the contribution is not shown to the user.

Themes 355

Welcome to Eclipse

<IELEMENT colorOverride (colorFactory? . colorValue*)>

<IATTLIST colorOverride

id CDATA #REQUIRED
value CDATA #IMPLIED
colorFactory CDATA #IMPLIED>

Allows overriding of colors defined in colorDefinition elements. These colors will be applied when the
theme is in use.

« id — a unique id that can be used to identify this color definition override. This should match an
existing font identifier. Strictly speaking, you may ovverride colors that do not exist in the base theme
although this practice is not recommended. In effect, such overrides will have behaviour similar to
colorDefinitions that have isEditable set to false.

« value - the overriding value of this color. The value may be specified in the following ways:

¢ a String containing comma seperated integers in the form red,green,blue

¢ a String that maps to an SWT color constant (ie: COLOR_RED).
Only one of value or colorFactory may be defined. Unlike a colorDefinition, you may
not supply a defaultsTo for an override.

« colorFactory — a class that implements org.eclipse.ui.themes.|IColorFactory. This
may be used instead of value to specify the default value of the color. Please be advised that this
should be used with caution — usage of this attribute will cause plugin activation.

<IELEMENT fontOverride (fontValue*)>
<IATTLIST fontOverride

id CDATA #REQUIRED

value CDATA #REQUIRED>

Allows overriding of fonts defined in fontsDefinition elements. These fonts will be applied when the
theme is in use.

« id — a unique id that can be used to identify this font definition override. This should match an
existing font identifier. Strictly speaking, you may ovverride fonts that do not exist in the base theme
although this practice is not recommended. In effect, such overrides will have behaviour similar to
fontDefinitions that have isEditable set to false.

« value - the overriding value of this font. This is in the form: fonthname-style—height where

non

fontname is the name of a font, style is a font style (one of "regular", "bold", "italic",

Themes 356

Welcome to Eclipse

or "bold italic") and height is an integer representing the font height.
Example: Times New Roman-bold-36.

value must be defined for a font override. Unlike a fontDefinition, you may not supply a
defaultsTo for a fontOverride.

<IELEMENT description (#CDATA)>

A short description of the elements usage.

<IELEMENT colorFactory (parameter*)>

<IATTLIST colorFactory

class CDATA #REQUIRED

plugin CDATA #IMPLIED>

The element version of the colorFactory attribute. This is used when the colorFactory implements

org.eclipse.core.runtime.lExecutableExtension and there is parameterized data that you
wish used in its initialization.

« class — a class that implements org.eclipse.ui.themes.IColorFactory. It may also
implement org.eclipse.core.runtime.lExecutableExtension.
« plugin — the identifier of the plugin that contains the class

<IELEMENT parameter EMPTY>
<IATTLIST parameter

name CDATA #REQUIRED
value CDATA #REQUIRED>

A parameter element to be used within the colorFactory element. This will be passed as initialization data to
the colorFactory class.

* name - the parameter name
« value — the parameter value

Themes 357

Welcome to Eclipse

<I[ELEMENT data EMPTY>
<IATTLIST data
name CDATA #REQUIRED

value CDATA #REQUIRED>

An element that allows arbitrary data to be associated with a theme or the default theme. This data may be

gradient directions or percentages, labels, author information, etc.

This element has behaviour similar to definitions and overrides. If a key is present in both the default theme
and an identified theme, then the identified themes value will be used when that theme is accessed. If the

identified theme does not supply a value then the default is used.

* name - the data name,
 value - the data value

<IELEMENT colorValue (colorFactory?)>
<IATTLIST colorValue

0s CDATA #IMPLIED

ws CDATA #IMPLIED

value CDATA #IMPLIED

colorFactory CDATA #IMPLIED>

This element allows specification of a color value on a per—platform basis.

* 0s — an optional os string to enable choosing of color based on current OS. eg: win32,linux
* Ws — an optional os string to enable choosing of color based on current WS. eg: win32,gtk

« value — The default value of this color. The value may be specified in the following ways:
¢ a String containing comma seperated integers in the form red,green,blue
¢ a String that maps to an SWT color constant (ie: COLOR_RED).
Only one of value or colorFactory may be defined.
« colorFactory — a class that implements org.eclipse.ui.themes.|IColorFactory. This

may be used instead of value to specify the value of the color. Please be advised that this should be

used with caution — usage of this attribute will cause plugin activation.

Themes

358

Welcome to Eclipse

<IELEMENT fontValue EMPTY>
<IATTLIST fontValue

os CDATA #IMPLIED

ws CDATA #IMPLIED

value CDATA #REQUIRED>

This element allows specification of a font value on a per—platform basis.

* 0s — an optional os string to enable choosing of font based on current OS. eg: win32,linux
* Ws — an optional os string to enable choosing of font based on current WS. eg: win32,gtk
« value - the font value. This is in the form: fonthame-style—height where fontname is the
name of a font, style is a font style (one of "regular”, "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman-bold-36.

<IELEMENT categoryPresentationBinding EMPTY>

<IATTLIST categoryPresentationBinding

categoryld CDATA #REQUIRED

presentationld CDATA #REQUIRED>

This element allows a category to be bound to a specific presentation as described by the
org.eclipse.ui.presentationFactory extension point. If a category has any presentation

bindings then it (and it's children) is only configurable by the user if it is bound to the active presentation. Thi
is useful for removing unused items from user consideration.

« categoryld -
* presentationld -

Examples:

The following is an example of several color and font definitions as well as a theme that overrides them.

<extension point=

Themes 359

Welcome to Eclipse

"org.eclipse.ui.themes"

>
<themeElementCategory id=
"com.xyz.ThemeCategory"
class=
"com.xyz.XYZPreview"
label=

"XYZ Elements"

/>

<colorDefinition id=
"com.xyz.Forground"
categoryld=
"com.xyz.ThemeCategory"
label=

"XYZ Foreground Color"
value=

"COLOR_BLACK"

>

<!-- white should be used on GTK ——>
<colorValue value=
"COLOR_WHITE"

0s=

"linux"

ws=

"tk

/>

Themes

360

Welcome to Eclipse

<description>

This color is used for the forground color of the XYZ plugin editor.
</description>
</colorDefinition>
<colorDefinition id=
"com.xyz.Background"
categoryld=
"com.xyz.ThemeCategory"
label=

"XYZ Background Color"
>

<colorFactory class=

"org.eclipse.ui.themes.RGBBlendColorFactory
plugin=
"org.eclipse.ui”

>

<parameter name=
“colorl"

value=
"COLOR_WHITE"
/>

<parameter name=
"color2"

value=
"COLOR_BLUE"
/>

Themes

361

Welcome to Eclipse

</colorFactory>

<!-- black should be used on GTK —->
<colorValue value=

"COLOR_BLACK"

0s=

"linux"

ws=

"tk

/>

<description>

This color is used for the background color of the XYZ plugin editor.

</description>
</colorDefinition>
<fontDefiniton id=
"com.xyz.TextFont"
categoryld=
"com.xyz.ThemeCategory"
label=

"XYZ Editor Font"
defaultsTo=
"org.eclipse.jface.textfont"
>

<description>

This font is used by the XYY plugin editor.

</description>
</fontDefintion>

Themes

362

<data name=
"com.xyz.EditorMarginWidth"
value=

ng

/>

<theme id=
"com.xyz.HarshTheme"
label=

"Harsh Colors for XYZ"
>

<colorOverride id=
"com.xyz.Forground"
value=
"COLOR_CYAN"

/>

<colorOverride id=
"com.xyz.Background"
value=
"COLOR_MAGENTA"
/>

<data name=
"com.xyz.EditorMarginWidth"
value=

L

/>

</theme>

Themes

Welcome to Eclipse

363

Welcome to Eclipse

</extension>

API Information:

The org.eclipse.ui.lWorkbench.getThemeManager() provides

org.eclipse.ui.themes.IThemeManager. This class may be used to obtain a named theme (by id,

including the default theme which has an id of IThemeManager.DEFAULT_THEME) or the current theme.
From an org.eclipse.ui.themes.ITheme you may obtain a

org.eclipse.jface.resources.ColorRegistry, an

org.eclipse.jface.resources.FontRegistry and the arbitrary data associated with a theme.

Supplied Implementation:

The workbench provides the font definitions for the text, dialog, banner, header and part title fonts. it also
supplies color definitions for the hyperlink, active hyperlink, error, active part (background gradient parts anc
forground) and the inactive part (background gradient parts and forground). The workbench also provides d
constants for the title gradient percentages (active and inactive) and the gradient directions (active and
inactive). The workbench does not provide any named themes.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Themes 364

http://www.eclipse.org/legal/cpl-v10.html

View Menus,Toolbars and Actions

Identifier:

org.eclipse.ui.viewActions

Description:

This extension point is used to add actions to the pulldown menu and toolbar for views registered by other
plug-ins. Each view has a local pulldown menu normally activated by clicking on the top right triangle
button. Other plug-ins can contribute submenus and actions to this menu. Plug-ins may also contribute
actions to a view toolbar. View owners are first given a chance to populate these areas. Optional additions
other plug-ins are appended.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enableme
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub—element. In the simplest case, this will be an objectClass, objectState,

pluginState, or systemProperty element. In the more complex case, the and, or, and not elements

can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub—element
The not element must contain only 1 sub—element.

Configuration Markup:

<IELEMENT extension_(viewContribution+)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT viewContribution (menu*_, action*)>

<IATTLIST viewContribution

id CDATA #REQUIRED

targetID CDATA #REQUIRED>

This element is used to define a group of view actions and/or menus.

View Menus,Toolbars and Actions 365

Welcome to Eclipse

« id — a unique identifier used to reference this contribution.
« targetID - a unique identifier of a registered view that is the target of this contribution.

<IELEMENT action (selection* | enablement?)>
<IATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED
menubarPath CDATA #IMPLIED
toolbarPath CDATA #IMPLIED
icon CDATA #IMPLIED
disabledicon CDATA #IMPLIED
hovericon CDATA #IMPLIED
tooltip CDATA #IMPLIED
helpContextld CDATA #IMPLIED
style (push|radio|toggle) "push”
state (true | false)

class CDATA #REQUIRED
enablesFor CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

« id — a unique identifier used as a reference for this action.

* label - a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.

« menubarPath — a slash—delimited path (/") used to specify the location of this action in the pulldown
menu. Each token in the path, except the last one, must represent a valid identifier of an existing me
in the hierarchy. The last token represents the named group into which this action will be added. If th
path is omitted, this action will not appear in the pulldown menu.

« toolbarPath — a named group within the local toolbar of the target view. If the group does not exist, it
will be created. If omitted, the action will not appear in the local toolbar.

View Menus,Toolbars and Actions 366

Welcome to Eclipse

« icon — a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug—in. The icon will appear in the toolbar but not
in the pulldown menu.

« disabledlcon - a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug—in. The disabled icon will appear in the
toolbar but not in the pulldown menu.

« hoverlcon - a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug-in.

* tooltip — a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

« helpContextld — a unigue identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

« style — an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push - as aregular menu item or tool item.

radio - as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio set.
The initial value is specified by the state attribute.

toggle — as a checked style menu item or as a toggle tool item. The initial
value is specified by the state attribute.
« state — an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.
« class — name of the fully qualified class that implements
org.eclipse.ui.lViewActionDelegate.
 enablesFor — a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:
! - 0 items selected

? - 0 or 1 items selected

+ - 1 or more items selected

multiple, 2+ — 2 or more items selected

n - a precise number of items selected.a precise number of

items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* — any number of items selected

<IELEMENT menu (separator+_, groupMarker*)>
<IATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

View Menus,Toolbars and Actions 367

Welcome to Eclipse

path CDATA #IMPLIED>

This element is used to defined a new menu.

« id — a unique identifier that can be used to reference this menu.

« label — a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

« path - the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

<IELEMENT separator EMPTY>
<IATTLIST separator
name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

« name - the name of the menu separator. This name can later be referenced as the last token inam
path. Therefore, a separator also serve as hamed group into which actions and menus can be addec

<IELEMENT groupMarker EMPTY>
<IATTLIST groupMarker
name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

* name - the name of the group marker. This name can later be referenced as the last token in the me
path. It serves as named group into which actions and menus can be added.

<IELEMENT selection EMPTY>

<IATTLIST selection

View Menus,Toolbars and Actions 368

Welcome to Eclipse

class CDATA #REQUIRED
name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

« class - a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

* name — an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

<IELEMENT enablement_(and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<IELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<IELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub—element expressiol

<IELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub—element expression:

<IELEMENT not (and_| or_| not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub—element expressions.

View Menus,Toolbars and Actions 369

Welcome to Eclipse

<IELEMENT objectClass EMPTY>
<IATTLIST objectClass
name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object
the selection implements the specified class or interface, the expression is evaluated as true.

« name - a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

<IELEMENT objectState EMPTY>

<IATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in tt
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of

expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.lActionFilter interface.

* name - the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug—in where the object type is declared.

« value - the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

<IELEMENT pluginState EMPTY>
<IATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug—in. The state of the plug—in may be one of the following
installed or activated.

View Menus,Toolbars and Actions 370

Welcome to Eclipse

« id - the identifier of a plug—in which may or may not exist in the plug—-in registry.
« value - the required state of the plug—in. The state of the plug—in may be one of the following:
installed or activated.

<IELEMENT systemProperty EMPTY>
<IATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

* name - the name of the system property.
« value - the required value of the system property.

Examples:

The following is an example of a view action extension:

<extension point=

"org.eclipse.ui.viewActions"

>

<viewContribution id=

"com.xyz.xyzViewC1"

targetiD=
"org.eclipse.ui.views.navigator.ResourceNavigator"
>

<menu id=

"com.xyz.xyzMenu"

label=

View Menus,Toolbars and Actions 371

"XYZ Menu"

path=

"additions”

>

<separator name=
"groupl”

/>

</menu>

<action id=
"com.xyz.runXyZz"
label=

"&Run XYZ Tool"
menubarPath=
"com.xyz.xyzMenu/groupl1"
toolbarPath=
"Normal/additions”
style=

"toggle”

state=

"true”

icon=
"icons/runXYZ.gif"
tooltip=

"Run XYZ Tool"
helpContextld=
"com.xyz.run_action_context"

View Menus,Toolbars and Actions

Welcome to Eclipse

372

Welcome to Eclipse

class=
"com.xyz.actions.Runxyz"
>

<selection class=
"org.eclipse.core.resources.|File"
name=

"* java"

/>

</action>
</viewContribution>
</extension>

In the example above, the specified action will only enable for a single selection (enablesFor attribute). In
addition, the object in the selection must be a Java file resource.

The following is an other example of a view action extension:

<extension point=

"org.eclipse.ui.viewActions"

>

<viewContribution id=

"com.xyz.xyzViewC1"

targetiD=
"org.eclipse.ui.views.navigator.ResourceNavigator"
>

<menu id=

"com.xyz.xyzMenu"

label=

View Menus,Toolbars and Actions 373

"XYZ Menu"

path=

"additions”

>

<separator name=
"groupl”

/>

</menu>

<action id=
"com.xyz.runxyYz2"

label=

"&Run XYZ2 Tool"
menubarPath=
"com.xyz.xyzMenu/groupl1"
style=

"push"

icon=

"icons/runXYZz2.gif"
tooltip=

"Run XYZ2 Tool"
helpContextld=
"com.xyz.run_action_context2"
class=
"com.xyz.actions.RunXyz2"
>

<enablement>

View Menus,Toolbars and Actions

Welcome to Eclipse

374

Welcome to Eclipse

<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<not>

<objectState name=
"extension”

value=

"java"

/>

</not>

</and>
</enablement>
</action>
</editorContribution>
</extension>

In the example above, the specified action will appear as a menu item. The action is enabled if the selection
contains no Java file resources.

API Information:

The value of the class attribute must be a fully qualified name of a Java class that implements
org.eclipse.ui.lViewActionDelegate. This class is loaded as late as possible to avoid loading
the entire plug—in before it is really needed.

The interface org.eclipse.ui.lViewActionDelegate extends
org.eclipse.ui.lActionDelegate and adds an additional method that allows the delegate to
initialize with the view instance it is contributing into.

This extension point can be used to contribute actions into menus previously created by the target view.
Omitting the menu path attribute will result in adding the new menu or action at the end of the pulldown
menu.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the

View Menus,Toolbars and Actions 375

Welcome to Eclipse

action enable state directly within its selectionChanged method.
Action and menu labels may contain special characters that encode mnemonics using the following rules:

1. Mnemonics are specified using the ampersand ('&") character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in tf
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug-in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can

replace the selection element using the sub—elements objectClass and objectState. For example,
the following:

<selection class=
"org.eclipse.core.resources.|File"
name=

"* java"

>

</selection>

can be expressed using:

<enablement>

<and>

<objectClass name=
"org.eclipse.core.resources.|File"
/>

<objectState name=

"extension”

value=

||java||

View Menus,Toolbars and Actions 376

Welcome to Eclipse

/>
</and>

</enablement>

Supplied Implementation:

Each view normally comes with a number of standard items on the pulldown menu and local toolbar.
Additions from other plug-ins will be appended to the standard complement.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

View Menus,Toolbars and Actions 377

http://www.eclipse.org/legal/cpl-v10.html

Working Sets

Identifier:
org.eclipse.ui.workingSets
Since:

Release 2.0

Description:

This extension point is used to define a working set wizard page. Working sets contain a number of element
of type IAdaptable and can be used to group elements for presentation to the user or for operations on a sef
elements. A working set wizard page is used to create and edit working sets that contain elements of a spec

type.

To select a working set the user is presented with a list of working sets that exist in the workbench. From thz
list a working set can be selected and edited using one of the wizard pages defined using this extension poil
An existing working set is always edited with the wizard page that was used to create it or with the default
resource based working set page if the original page is not available.

A new working set can be defined by the user from the same working set selection dialog. When a new
working set is defined, the plugin provided wizard page is preceded by a page listing all available working se
types. This list is made up of the name attribute values of each working set extension.

Views provide a user interface to open the working set selection dialog and must store the selected working
set.

The resource navigator uses a working set to filter elements from the navigator view. Only parents and
children of working set elements are shown in the view, in addition to the working set elements themselves.

Configuration Markup:

<IELEMENT extension_(workingSet*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT workingSet EMPTY>

Working Sets 378

Welcome to Eclipse

<IATTLIST workingSet
id CDATA #REQUIRED
name CDATA #REQUIRED
icon CDATA #IMPLIED
pageClass CDATA #REQUIRED>
« id — a unigue name that can be used to identify this working set dialog.
* name - the name of the element type that will be displayed and edited by the working set page. This
should be a descriptive name like "Resource" or "Java Element".
« icon - the relative path of an image that will be displayed in the working set type list on the first page
of the working set creation wizard as well as in the working set selection dialog.

 pageClass - the fully qualified name of a Java class implementing
org.eclipse.ui.dialogs.IWorkingSetPage.

Examples:

Following is an example of how the resource working set dialog extension is defined to display and edit
generic IResource elements:

<extension point=
"org.eclipse.ui.workingSets"
>

<workingSet id=
"org.eclipse.ui.resourceWorkingSetPage"
name=

"Resource"

icon=

"icons/resworkset.gif"

pageClass=
"org.eclipse.ui.internal.dialogs.ResourceWorkingSetPage"

>

Working Sets 379

Welcome to Eclipse
</workingSet>
</extension>

API Information:

The value of the pageClass attribute must represent a class that implements the
org.eclipse.ui.dialogs.IWorkingSetPage interface.

Supplied Implementation:

The workbench provides a working set wizard page for creating and editing resource based working sets.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Working Sets 380

http://www.eclipse.org/legal/cpl-v10.html

Synchronize Participants

Identifier:

org.eclipse.team.ui.synchronizeParticipants

Since:

3.0

Description:

This extension point is used to register a synchronize participant. A synchronize participant is a component
that displays changes between resources and typically allows the user to manipulate the changes. For exan
CVS defines a warkspace synchronize participant that allows showing changes between workspace resourc
and the resources at a remote location that is used to share those resources. Synchronize participants are
typically created via a synchronize participant wizard or they can be created via a plug-in action and then
registered with the ISynchronizeManager. The Synchronize View displays synchronize participants.

A patrticipant is a generic component that provides access to creating a page and is shown to the user and ¢

configuration that defines common configuration parameters for the page. The Synchronize View doesn't
enforce any restrictions on how changes are shown to the user, and instead only manages the participants.

Configuration Markup:

<IELEMENT extension_(participant)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — A fully qualified identifier of the target extension point

« id — An optional identifier of the extension instance.
« name — An optional name for this extension instance.

<IELEMENT participant EMPTY>
<IATTLIST participant

icon CDATA #IMPLIED

id CDATA #IMPLIED

class CDATA #IMPLIED

Synchronize Participants 381

Welcome to Eclipse

name CDATA #IMPLIED
persistent (truelfalse) >
« icon — An icon that will be used when showing this participant in lists and menus.
« id — A unigue name that will be used to identify this type of participant.
« class — A fully qualified name of the class the extends
org.eclipse.team.ui.synchronize.AbstractSynchronizeParticipant.
* name — The name of the participant. This will be shown in the Ul.

« persistent — By default participants will be persisted between sessions. Set this attribute to false if
this participant should not be persisted between sessions.

Examples:

<extension point=
"org.eclipse.team.ui.synchronizeParticipants"

>

<participant name=

"CVS Workspace"

icon=

"icons/full/cviewl6/server.gif"

class=
"org.eclipse.team.internal.ccvs.ui.subscriber.WorkspaceSynchronizeParticipant"
id=
"org.eclipse.team.cvs.ui.cvsworkspace—participant”
>

</participant>

<participant name=

"CVS Merge"

icon=

"icons/full/obj16/prjversions_rep.qgif

Synchronize Participants 382

Welcome to Eclipse
class=

"org.eclipse.team.internal.ccvs.ui.subscriber.MergeSynchronizeParticipant
type=

"dynamic"

id=

"org.eclipse.team.cvs.ui.cvsmerge—participant”

>

</participant>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.team.ui.synchronize.AbstractSynchronizeParticipant.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this

distribution, and is available_at http://www.eclipse.org/legal/cpl-v10.html

Synchronize Participants 383

http://www.eclipse.org/legal/cpl-v10.html

Breakpoints

Identifier:

org.eclipse.debug.core.breakpoints

Description:

This extension point defines a mechanism for defining new types of breakpoints.

Configuration Markup:

<IELEMENT extension_(breakpoint*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT breakpoint EMPTY>
<IATTLIST breakpoint
id CDATA #REQUIRED
markerType CDATA #REQUIRED
class CDATA #REQUIRED>
« id — specifies a unique identifier for this breakpoint type.
» markerType — specifies the fully qualified identifier (id) of the corresponding marker definition for

breakpoints of this type.
« class - specifies the fully qualified name of the java class that implements IBreakpoint.

Examples:

The following is an example of a launch configuration type extension point:

Breakpoints 384

Welcome to Eclipse

<extension point=
"org.eclipse.debug.core.breakpoints"

>

<breakpoint id=
"com.example.ExampleBreakpoint"
markerType=
"com.example.ExampleBreakpointMarker"
class=
"com.example.ExampleBreakpointimpl"

>

</breakpoint>

</extension>

In the example above, the specified type of breakpoint is implemented by the class

"com.example.Breakpointimpl". There is an associated marker definition for
"com.example.ExampleBreakpointMarker", defining the attributes of this breakpoint.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.IBreakpoint.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Breakpoints 385

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Comparators

Identifier:

org.eclipse.debug.core.launchConfigurationComparators

Description:

This extension point provides a configurable mechanism for comparing specific attributes of a launch
configuration. In general, launch configuration attributes can be compared for equality via the default
implementation of java.lang.Object.equals(Object). However, attributes that require special

handling should implement this extension point. For example, when an attribute is stored as XML, it is
possible that two strings representing an equivalent attribute have different whitespace formatting.

Configuration Markup:

<IELEMENT extension_(launchConfigurationComparator*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchConfigurationComparator EMPTY>
<IATTLIST launchConfigurationComparator
id CDATA #REQUIRED
attribute CDATA #REQUIRED
class CDATA #REQUIRED>
« id — specifies a unique identifier for this extension.

« attribute — specifies the launch configuration attribute name that this comparator compares.
« class - specifies a fully—qualified name of a class that implements java.util. Comparator.

Launch Configuration Comparators 386

Welcome to Eclipse

Examples:

The following is an example of a launch configuration comparator extension point:

<extension point=
"org.eclipse.debug.core.launchConfigurationComparators"
>

<launchConfigurationComparator id=
"com.example.Exampleldentifier"
attribute=
"com.example.ExampleAttributeName"
class=
"com.example.Comparatorimplementation”
>

</launchConfigurationComparator>
</extension>

In the example above, the specified type of launch configuration comparator will be consulted when
comparing the equality of attributes keyed with name com.example.ExampleAttributeName.

API Information:

Value of the attribute class must be a fully—qualified name of a Java class that implements the interface
java.util.Comparator.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Launch Configuration Comparators 387

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Types

Identifier:

org.eclipse.debug.core.launchConfigurationTypes

Description:
This extension point provides a configurable mechanism for launching applications. Each launch

configuration type has a hame, supports one or more modes (run and/or debug), and specifies a delegate
responsible for the implementation of launching an application.

Configuration Markup:

<IELEMENT extension_(launchConfigurationType*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchConfigurationType (fileExtension+)>

<IATTLIST launchConfigurationType

id CDATA #REQUIRED
delegate CDATA #REQUIRED
modes CDATA #REQUIRED
name CDATA #REQUIRED
public (true | false)

category CDATA #IMPLIED

sourcePathComputerld CDATA #MPLIED
sourceLocatorld CDATA #IMPLIED>
« id — specifies a unique identifier for this launch configuration type.

Launch Configuration Types 388

Welcome to Eclipse

« delegate - specifies the fully qualified name of the Java class that implements
ILaunchConfigurationDelegate. Launch configuration instances of this type will delegate
to instances of this class to perform launching.

» modes - specifies a comma-separated list of the modes this type of lauch configuration supports —
"run" and/or "debug".

* name - specifies a human-readable name for this type of launch configuration.

* public - specifies whether this launch configuration type is accessible by users. Defaults to true if no
specified.

« category — an optional attribute that specifies this launch configuration type's category. The default
value is unspecified (null). Categories are client defined. This attribute was added in the 2.1 release.

 sourcePathComputerld — The unigue identifier of a sourcePathComputers extension that is used to
compute a default source lookup path for launch configurations of this type

« sourcelLocatorld — The unique identifier of a sourceLocators extension that is used to create the
source locator for sessions launched using launch configurations of this type

<IELEMENT fileExtension EMPTY>
<IATTLIST fileExtension
extension CDATA #REQUIRED
default (true | false) >
« extension - specifies a file extension that this launch configuration type can be used for.

« default — specifies whether this launch configuration type should be the default launch configuration
type for the specified file extension. Defaults to false if not specified.

Examples:

The following is an example of a launch configuration type extension point:

<extension point=
"org.eclipse.debug.core.launchConfigurationTypes"
>

<launchConfigurationType id=
"com.example.Exampleldentifier"

delegate=

"com.example.ExampleLaunchConfigurationDelegate"

Launch Configuration Types 389

Welcome to Eclipse

modes=

"run,debug"

name=

"Example Application"

>

<fileExtension extension=
"txt"

default=

"true"

/>

<fileExtension extension=

"gif"
default=

"false”

/>
</launchConfigurationType>

</extension>

In the example above, the specified type of launch configuration supports both run and debug modes. The
launch configuration is applicable to .txt and .gif files, and is the default launch configuration for .txt files.

API Information:

Value of the attribute delegate must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.lLaunchConfigurationDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Launch Configuration Types 390

http://www.eclipse.org/legal/cpl-v10.html

Launch Delegates

Identifier:

org.eclipse.debug.core.launchDelegates

Since:

3.0

Description:

This extension point provides a mechanism for contributing a launch delegate to an existing launch
configuration type for one or more launch modes. Since launch modes are extensisble, it may be neccessar
contribute additional launch delegates to an existing launch configuration type. Each launch delegate is

contributed for a specific launch configuration type. A launch delegate supports one or more launch modes,
and specifies a delegate responsible for the implementation of launching.

Configuration Markup:

<IELEMENT extension_(launchDelegate*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchDelegate EMPTY>
<IATTLIST launchDelegate
id CDATA #REQUIRED
delegate CDATA #REQUIRED
modes CDATA #REQUIRED
type CDATA #REQUIRED>
« id — specifies a unique identifier for this launch delegate.

« delegate - specifies the fully qualified name of the Java class that implements
ILaunchConfigurationDelegate. Launch configuration instances of this delegate's type will

Launch Delegates 391

Welcome to Eclipse

delegate to instances of this class to perform launching.

» modes - specifies a comma-separated list of the modes this lauch delegate supports.

« type - identifier of an existing launch configuration type that this launch delegate is capable of
launching.

Examples:

The following is an example of a launch delegate extension point:

<extension point=
"org.eclipse.debug.core.launchDelegates”
>

<launchDelegate id=
"com.example.ExampleProfileDelegate"
delegate=

"com.example.ExampleProfileDelegate"

type=
"org.eclipse.jdt.launching.localJavaApplication”
modes=

"profile”

>

</launchDelegate>

</extension>

In the example above, the specified launch delegate is contributed to launch Java applications in profile mo

API Information:

Value of the attribute delegate must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.lLaunchConfigurationDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.

Launch Delegates 392

Welcome to Eclipse

All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Launch Delegates 393

http://www.eclipse.org/legal/cpl-v10.html

Launcher (Obsolete)

Identifier:

org.eclipse.debug.core.launchers

Description:
This extension point has been replaced by the launchConfigurationTypes extension point. Extensions of this
type are obsolete as of release 2.0 and are ignored. This extension point was used to contribute launchers.

launcher was responsible for initiating a debug session or running a program and registering the result with
the launch manager.

Configuration Markup:

<IELEMENT extension_(launcher*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launcher EMPTY>
<IATTLIST launcher

id CDATA #REQUIRED
class CDATA #REQUIRED
modes CDATA #REQUIRED
label CDATA #REQUIRED
wizard CDATA #IMPLIED
public (true | false)
description CDATA #IMPLIED

perspective CDATA #IMPLIED

Launcher (Obsolete) 394

Welcome to Eclipse

icon CDATA #IMPLIED>

« id — a unique identifier that can be used to reference this launcher.

« class - fully qualified name of the class that implements
org.eclipse.debug.core.model.lLauncherDelegate.

* modes — A comma separated list of modes this launcher supports. The two supported modes are "rt
and "debug" - as defined in org.eclipse.debug.core.lLaunchManager. A launcher may
be capable of launching in one or both modes.

« label — a label to use for the launcher. This attribute is used by the debug UI.

« wizard - fully qualified name of the class that implements
org.eclipse.debug.ui.lLaunchWizard. This attribute is used by the debug Ul. A launcher
may contribute a wizard that allows users to configure and launch specific attributes.

* public — whether a launcher is publically visible in the debug UI. If "true", the launcher will be
available from the debug Ul - the launcher will appear as a choice for a default launcher, launches
created by this launcher will appear in the launch history, and the launcher will be available from the
drop—down run/debug toolbar actions.

« description — a description of the launcher. Currently only used if the wizard attribute is specified.

« perspective — the identifier of the perspective that will be switched to on a successful launch. Default
value is the identifier for the debug perspective. This attribute is used by the debug UI.

* icon — a relative path of an icon that will represent the launcher in the Ul if specified.

Examples:

The following is an example of a launcher extension point:

<extension point =
"org.eclipse.debug.core.launchers"

>

<launcher id =
"com.example.ExampleLauncher"

class =
"com.example.launchers.ExampleLauncher"
modes =

"run, debug"

label =

"Example Launcher"

Launcher (Obsolete) 395

Welcome to Eclipse
wizard =
"com.example.launchers.ui.ExampleLaunchWizard"
public =
"true"
description =
"Launches example programs"
perspective=
"com.example.JavaPerspective"
>
</launcher>
</extension>
In the example above, the specified launcher supports both run and debug modes. Following a successful
launch, the debug Ul will change to the Java perspective. When the debug Ul presents the user with a list of
launchers to choose from, "Example Launcher" will appear as one of the choices with the "Launches examp
programs" as the description, and the wizard specified by

com.example.launchers.ui.ExampleLaunchWizard will be used to configure any launch
specific details.

API Information:

Value of the attribute class must be a fully qualified class name of a Java class that implements the
interface org.eclipse.debug.core.lLauncherDelegate. Value of the attribute wizard must be

a fully qualified class name of a Java class that implements

org.eclipse.debug.ui.lLaunchWizard.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Launcher (Obsolete) 396

http://www.eclipse.org/legal/cpl-v10.html

Launch Modes

Identifier:

org.eclipse.debug.core.launchModes

Since:

3.0

Description:

This extension point provides a mechanism for contributing launch modes to the debug platform. The debug

platform defines modes for "run", "debug"”, and "profile".

Configuration Markup:

<IELEMENT extension_(launchMode*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT launchMode EMPTY>
<IATTLIST launchMode

mode CDATA #REQUIRED

label CDATA #REQUIRED>

» mode - specifies a unique identifier for this launch mode. The launch modes contributed by the

debug plaform are "run", "debug", and "profile".

 label — A human-readable label that describes the launch mode

Examples:

The following is an example of a launch delegate extension point:

Launch Modes 397

Welcome to Eclipse

<extension point=
"org.eclipse.debug.core.launchModes"
>

<launchMode mode=

"profile”

label=

"Profile"

>

</launchMode>

</extension>

In the example above, the profile launch mode is contributed.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Launch Modes 398

http://www.eclipse.org/legal/cpl-v10.html

Logical Structure Types

Identifier:

org.eclipse.debug.core.logicalStructureTypes

Since:

3.0

Description:

This extension point allows debuggers to present alternative logical structures of values. Often, complex dat
structures are more convenient to navigate in terms of their logical structure, rather than in terms of their
implementation. For example, no matter how a list is implemented (linked, array, etc.), a user may simply
want to see the elements in the list in terms of an ordered collection. This extension point allows the

contribution of logical structure types, to provide translations from a raw implementation value to a logical
value.

Configuration Markup:

<IELEMENT extension _(logicalStructureType*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT logicalStructureType EMPTY>
<IATTLIST logicalStructureType

id CDATA #REQUIRED

description CDATA #REQUIRED

class CDATA #REQUIRED
modelldentifier CDATA #REQUIRED>

« id — a unique identifier for this logical structure type
« description — a description of this logical structure

Logical Structure Types 399

Welcome to Eclipse

« class - fully qualified name of a Java class that implements
ILogicalStructureTypeDelegate
« modelldentifier — identifier of the debug model this logical structure type is associated with

Examples:

The following is an example of a logical structure type extension point:

<extension point=
"org.eclipse.debug.core.logicalStructureTypes"
>

<logicalStructureType id=
"com.example.ExampleLogicalStructure"
class=
"com.example.ExampleLogicalStructureDelegate"
modelldentifier=

"com.example.debug.model"

description=

"Ordered Collection”

>

</logicalStructureType>

</extension>

In the example above, the specified logical structure type will be consulted for alternative logical values for
values from the com.example.debug.model debug model as they are displayed in the variables view.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.ILogicalStructureTypeDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.

Logical Structure Types 400

Welcome to Eclipse

All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Logical Structure Types 401

http://www.eclipse.org/legal/cpl-v10.html

Process Factories

Identifier:

org.eclipse.debug.core.processFactories

Since:

3.0

Description:
This extension point provides a mechanism for specifying a process factory to be used with a launch
configuration to create the appropriate instance of IProcess. The launch configuration will require the

DebugPlugin. ATTR_PROCESS_ FACTORY_ID attribute set to the appropriate process factory ID that will
be used to create the IProcess

Configuration Markup:

<IELEMENT extension_(processFactory*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT processFactory EMPTY>
<IATTLIST processFactory

id CDATA #REQUIRED

class CDATA #REQUIRED>

« id — specifies a unique identifier for this process factory.
« class — specifies the fully qualified name of the Java class that implements IProcessFactory.

Process Factories 402

Welcome to Eclipse

Examples:

The following is an example of a process factory extension point:

<extension point=
"org.eclipse.debug.core.processFactories"
>

<processFactory id=
"com.example.Exampleldentifier"
class=
"com.example.ExampleProcessFactory"
>

</processFactory>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.lProcessFactory.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Process Factories 403

http://www.eclipse.org/legal/cpl-v10.html

Source Container Types

Identifier:

org.eclipse.debug.core.sourceContainerTypes

Since:

3.0

Description:

This extension point allows for an extensible set of source container types to be contributed by the debug
platform source lookup facilities.

Configuration Markup:

<IELEMENT extension_(sourceContainerType*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT sourceContainerType EMPTY>
<IATTLIST sourceContainerType
id CDATA #REQUIRED
name CDATA #REQUIRED
class CDATA #REQUIRED
description CDATA #IMPLIED>
* id — The unique id used to refer to this type
* name — The name of this source container type use for presentation purposes.

« class — A class that implements ISourceContainerTypeDelegate
« description — A short description of this source container for presentation purposes.

Source Container Types 404

Welcome to Eclipse

Examples:

The following is an example of a source container type definition:

<extension point=
"org.eclipse.debug.core.sourceContainerTypes"
>

<sourceContainerType name=

"Project”

class=
"org.eclipse.debug.internal.core.sourcelookup.containers.ProjectSourceContainerType"
id=
"org.eclipse.debug.core.containerType.project”
description=

"A project in the workspace"

>

</sourceContainerType>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
ISourceContainerType.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Source Container Types 405

http://www.eclipse.org/legal/cpl-v10.html

Source Locators

Identifier:

org.eclipse.debug.core.sourcelLocators

Description:

This extension point provides a mechanism specifying a source locator to be used with a launch configuratic

Configuration Markup:

<IELEMENT extension_(sourcel ocator*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<!IELEMENT sourceLocator EMPTY>
<IATTLIST sourcelLocator
id CDATA #REQUIRED
class CDATA #REQUIRED
name CDATA #REQUIRED>
« id — specifies a unique identifier for this source locator.

« class — specifies the fully qualified name of the Java class that implements IPersistableSourcelLocatt
* name — a human-readable name, describing the type of this source locator.

Examples:

The following is an example of a source locator extension point:

<extension point=

Source Locators 406

Welcome to Eclipse

"org.eclipse.debug.core.sourcelLocators"
>

<sourcelLocator id=
"com.example.Exampleldentifier"

class=
"com.example.ExampleSourcelLocator"
name=

"Example Source Locator"

>

</sourceLocator>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.IPersistableSourcelLocator.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Source Locators 407

http://www.eclipse.org/legal/cpl-v10.html

Source Path Computers

Identifier:

org.eclipse.debug.core.sourcePathComputers

Since:

3.0

Description:
Defines an extension point to register a computer that can describe a default source lookup path for a launc
configuration. Source path computers are associated with launch configuration types via the

launchConfigurationTypes extension point. As well, a source path computer can be associated with a specif
launch configuration via the launch configuration attribute ATTR_SOURCE_PATH_COMPUTER_ID.

Configuration Markup:

<IELEMENT extension_(sourcePathComputer*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT sourcePathComputer EMPTY>
<IATTLIST sourcePathComputer

id CDATA #REQUIRED

class CDATA #REQUIRED>

Defines an extension point to register a computer that can describe a default source lookup path for a launc
configuration.

« id — The unique id used to refer to this computer.
« class — A class that implements ISourcePathComputerDelegate.

Source Path Computers 408

Welcome to Eclipse

Examples:

Following is an example source path computer definition:

<extension point=
"org.eclipse.debug.core.sourcePathComputers"

>

<sourcePathComputer id=
"org.eclipse.example.exampleSourcePathComputer"
class=

"org.eclipse.example.SourcePathComputer"

>

</sourcePathComputer>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
ISourcePathComputer.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Source Path Computers 409

http://www.eclipse.org/legal/cpl-v10.html

Status Handlers

Identifier:

org.eclipse.debug.core.statusHandlers

Description:
This extension point provides a mechanism for separating the generation and resolution of an error. The

interaction between the source of the error and the resolution is client-defined. It is a client responsibility to
look up and delegate to status handlers when an error condition occurs.

Configuration Markup:

<IELEMENT extension_(statusHandler*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT statusHandler EMPTY>
<IATTLIST statusHandler
id CDATA #REQUIRED
class CDATA #REQUIRED
plugin CDATA #REQUIRED
code CDATA #REQUIRED>
« id — specifies a unique identifier for this status handler.
« class - specifies the fully qualified name of the Java class that implements IStatusHandler.
« plugin — Plug-in identifier that corresponds to the plug-in of the status this handler is registered for.

(i.e. IStatus.getPlugin()).
« code - specifies the status code this handler is registered for.

Status Handlers 410

Welcome to Eclipse

Examples:

The following is an example of a status handler extension point:

<extension point=
"org.eclipse.debug.core.statusHandlers"
>

<statusHandler id=
"com.example.Exampleldentifier"
class=
"com.example.ExampleStatusHandler"
plugin=
"com.example.ExamplePluginid"
code=

"123"

>

</statusHandler>

</extension>

In the example above, the specified status handler will be registered for to handle status objects with a plug
identifier of com.example.ExamplePluginld and a status code of 123.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.IStatusHandler.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Status Handlers 411

http://www.eclipse.org/legal/cpl-v10.html

watchExpressionDelegates

Identifier:

org.eclipse.debug.core.watchExpressionDelegates

Since:

3.0

Description:
This extension provides a mechanism for providing delegates to evaluate watch expressions on a per debu

model basis. Watch expression delegates perform evaluations for watch expressions and report the results
asynchronously.

Configuration Markup:

<IELEMENT extension_(watchExpressionDelegate*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT watchExpressionDelegate EMPTY>

<IATTLIST watchExpressionDelegate

debugModel CDATA #REQUIRED

delegateClass CDATA #REQUIRED>
» debugModel - specifies the id of the debug model that this delegate provides evaluations for
« delegateClass - specifies a Java class which implements

org.eclipse.debug.core.model.lWatchExpressionDelegate, which is used to
evaluate the value of an expression.

watchExpressionDelegates 412

Welcome to Eclipse

Examples:

The following is the definition of a watch expression delegate for the com.example.foo plug—-in:

<extension point=
"org.eclipse.debug.core.watchExpressionDelegates"

>

<watchExpressionDelegate debugModel=
"org.eclipse.jdt.debug"

delegateClass=
"org.eclipse.jdt.internal.debug.ui.JavaWatchExpressionDelegate"
/>

</extension>

API Information:

Value of the attribute delegateClass must be a fully qualified name of a Java class that implements the
interface org.eclipse.debug.core.model.lWatchExpressionDelegate.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

watchExpressionDelegates 413

http://www.eclipse.org/legal/cpl-v10.html

Console Color Providers

Identifier:

org.eclipse.debug.ui.consoleColorProviders

Since:

2.1

Description:

This extension point provides a mechanism for contributing a console document coloring scheme for a
process. The color provider will be used to color output in the console.

Configuration Markup:

<IELEMENT extension_(consoleColorProvider*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT consoleColorProvider EMPTY>
<IATTLIST consoleColorProvider
id CDATA #REQUIRED
class CDATA #REQUIRED
processType CDATA #REQUIRED>
« id — specifies a unique identifier for this console color provider.
« class - specifies a fully qualified name of a Java class that implements IConsoleColorProvider

 processType — specifies the type of process this color provider is for. This attribute corresponds to
the process attribute IProcess. ATTR_PROCESS_TYPE.

Console Color Providers 414

Welcome to Eclipse

Examples:

The following is an example of a console color provider extension point:

<extension point=
"org.eclipse.debug.ui.consoleColorProviders"

>

<consoleColorProvider id=

"com.example.ExampleConsoleColorProvider"
class=
"com.example.ExampleConsoleColorProvider"
processType=

"ExampleProcessType"

>
</consoleColorProvider>
</extension>

In the above example, the contributed color provider will be used for processes of type
"ExampleProcessType", which corresponds to the process attribute IProcess. ATTR_PROCESS_TYPE.
Process types are client defined, and are set by clients that create processes.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.console.lConsoleColorProvider.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Console Color Providers 415

http://www.eclipse.org/legal/cpl-v10.html

Console Line Trackers

Identifier:

org.eclipse.debug.ui.consoleLineTrackers

Since:

2.1

Description:

This extension point provides a mechanism to listen to console output for a type of process.

Configuration Markup:

<IELEMENT extension_(consoleLineTracker*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT consoleLineTracker EMPTY>
<IATTLIST consoleLineTracker
id CDATA #REQUIRED
class CDATA #REQUIRED
processType CDATA #REQUIRED>
« id — specifies a unique identifier for this console line tracker.
« class — specifies a fully qualified name of a Java class that implements IConsoleLineTracker

* processType — specifies the type of process this line tracker is for. This attribute corresponds to the
process attribute IProcess.ATTR_PROCESS TYPE.

Console Line Trackers 416

Welcome to Eclipse

Examples:

The following is an example of a console line tracker extension point:

<extension point=

"org.eclipse.debug.ui.consoleLineTrackers"

>

<consoleLineTracker id=

"com.example.ExampleConsoleLineTracker"

class=

"com.example.ExampleConsoleLineTracker"

processType=

"ExampleProcessType"

>

</consoleLineTracker>

</extension>

In the above example, the contributed line tracker will be notified as lines are appended to the console for
processes of type "ExampleProcessType", which corresponds to the process attribute

IProcess.ATTR_PROCESS_TYPE. Process types are client defined, and are set by clients that create
processes.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.console.lConsoleLineTracker.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Console Line Trackers 417

http://www.eclipse.org/legal/cpl-v10.html

Context View Bindings

Identifier:

org.eclipse.debug.ui.contextViewBindings

Since:

3.0

Description:
This extension point provides a mechanism for associating a view with a context identifier. When a context i

activated by the Debug view, views associated with it (and also views associated with any parent contexts) :
opened, closed, or activated. Contributors have the option to override the automatic open and close behavic

Configuration Markup:

<IELEMENT extension_(contextViewBinding*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT contextViewBinding EMPTY>
<IATTLIST contextViewBinding
contextld CDATA #REQUIRED
viewld CDATA #REQUIRED
autoOpen (true | false)
autoClose (true | false) >
« contextld — Specifies the context identifier that this binding is for.
« viewld — Specifies the identifier of the view which should be associated with the specified context.
When the specified context is enabled, this view will be automatically brought to the front. When

elements are selected in the Debug view, contexts associated with those elements (as specified by
extensions of the debugModelContextBindings extension point) are automatically enabled. Note that

Context View Bindings 418

Welcome to Eclipse

this only occurs in perspectives for which the user has requested "automatic view management" via
the preferences (by default, only in the Debug perspective).

» autoOpen - Specifies whether the view should be automatically opened when the given context is
enabled. If unspecified, the value of this attribute is true. If this attribute is specified false, the view
will not be automatically opened, but it will still be brought to the front if it is open when the given
context is enabled. Clients are intended to specify false to avoid cluttering the perspective with views
that are used infrequently.

« autoClose - Clients are not intended to specify this attribute except in rare cases. Specifies whether
the view should be automatically closed when the given context is disabled (this occurs when all
debug targets that contained the specified context have terminated). When unspecified, the value of
this attribute is true. This attribute should only be specified false in the unlikely case that a debugging
view must remain open even when the user is not debugging.

Examples:

The following is an example of a context view binding contribution:

<extension point=
"org.eclipse.debug.ui.contextViewBindings"
>

<contextViewBinding contextld=
"com.example.mydebugger.debugging"”
viewld=

"com.example.view"

autoOpen=

"true"

autoClose=

"false"

>

</contextViewBinding>

</extension>

In the above example, when a context with the specified identifier is activated by the Debug view, the given

view will be automatically opened. When a context which is bound to a different debug model is activated
that isn't associated with the view, the view will not be automatically closed.

Context View Bindings 419

Welcome to Eclipse

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Context View Bindings 420

http://www.eclipse.org/legal/cpl-v10.html

Debug Model Context Bindings

Identifier:

org.eclipse.debug.ui.debugModelContextBindings

Since:

3.0

Description:
This extension point provides a mechanism for specifying a context that should be associated with the giver
debug model. The Debug view uses these bindings to automatically enable contexts. When an element in tt

Debug view which provides an IDebugModelProvider adapter or a stack frame with the specified debug
model identifier is selected, the context with the given identifier will be enabled.

Configuration Markup:

<IELEMENT extension_(modelContextBinding*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT modelContextBinding EMPTY>
<IATTLIST modelContextBinding
debugModelld CDATA #REQUIRED
contextld CDATA #REQUIRED>
» debugModelld - specifies the debug model identifier this binding is for

« contextld — specifies the context identifier of the context that should be associated with the given
debug model

Debug Model Context Bindings 421

Welcome to Eclipse

Examples:

The following is an example of a debug model context binding contribution:

<extension point=
"org.eclipse.debug.ui.debugModelContextBindings"
>

<modelContextBinding contextld=
"com.example.myLanguage.debugging"
debugModelld=
"com.example.myLanguageDebugModel"

>

</modelContextBinding>

</extension>

In the above example, when a stack frame with the debug model identifier of

"com.example.myLanguageDebugModel" is selected, the context with the identifier
"com.example.myLanguage.debugging" will be enabled.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Debug Model Context Bindings 422

http://www.eclipse.org/legal/cpl-v10.html

Debug Model Presentation

Identifier:

org.eclipse.debug.ui.debugModelPresentations

Description:

This extension point allows tools to handle the presentation aspects of a debug model. A debug model
presentation is responsible for providing labels, images, and editors for elements in a specific debug model.

Configuration Markup:

<IELEMENT extension_(debugModelPresentation*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT debugModelPresentation EMPTY>
<IATTLIST debugModelPresentation

class CDATA #REQUIRED

id CDATA #REQUIRED

detailsViewerConfiguration CDATA #IMPLIED>

« class - fully qualifed name of a Java class that implements the

org.eclipse.debug.ui.IDebugModelPresentation interface.

« id - the identifier of the debug model this presentation is responsible for

« detailsViewerConfiguration — the fully qualified name of the Java class that is an instance of
org.eclipse.jface.text.source.SourceViewerConfiguration. When specified, the source viewer
configuration will be used in the "details" area of the variables and expressions view when displaying
the details of an element from the debug model associated with this debug model presentation. Whe

unspecified, a default configuration is used.

Debug Model Presentation

423

Welcome to Eclipse

Examples:

The following is an example of a debug model presentations extension point:

<extension point =
"org.eclipse.debug.ui.debugModelPresentations"
>

<debugModelPresentation class =
"com.example.JavaModelPresentation”

id =

"com.example.JavaDebugModel"

>

</debugModelPresentation>

</extension>

In the example above, the class com.example.JavaModelPresentation will be used to render and

present debug elements originating from the debug model identified by
com.example.JavaDebugModel.

API Information:

Value of the action attribute class must be a fully qualified class hame of a Java class that implements
org.eclipse.debug.ui.IDebugModelPresentation.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Debug Model Presentation 424

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Tab Groups

Identifier:

org.eclipse.debug.ui.launchConfigurationTabGroups

Description:

This extension point provides a mechanism for contributing a group of tabs to the launch configuration dialo
for a type of launch configuration.

Configuration Markup:
<IELEMENT extension_(launchConfigurationTabGroup*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchConfigurationTabGroup_(launchMode*)>
<IATTLIST launchConfigurationTabGroup
id CDATA #REQUIRED
type CDATA #REQUIRED
class CDATA #REQUIRED
helpContextld CDATA #IMPLIED
description CDATA #IMPLIED>
« id — specifies a unique identifier for this launch configuration tab group.
* type - specifies a launch configuration type that this tab group is applicable to (corresponds to the id
of a launch configuration type extension).
« class - specifies a fully qualified name of a Java class that implements
ILaunchConfigurationTabGroup.
« helpContextld — an optional identifier that specifies the help context to associate with this tab group's
launch configuration type

« description — A description of the Launch Configuration Type

Launch Configuration Tab Groups 425

Welcome to Eclipse

<IELEMENT launchMode EMPTY>

<IATTLIST launchMode

mode CDATA #REQUIRED

perspective CDATA #IMPLIED

description CDATA #IMPLIED>

A launch mode element specifies a launch mode this tab group is specific to. A tab group can be associatec
with one or more launch modes. For backwards compatibility (previous to 3.0), a launch mode does not nee
to be specified. When unspecified, a tab group is registered as the default tab group for the associated laun

configration type (i.e. applicable to all supported launch modes for which a specific tab group has not been
contributed).

« mode - identifier for a launch mode this tab group is specific to.

* perspective - the default perspective identifier associated with this launch configuration type and
launch mode. This allows an extension to cause a perspective switch (or open) when a correspondir
launch is registered with the debug plug—in. When unspecified, it indicates that by default, no
perspective switch should occurr.

« description — A description of the Launch Configuration Type specific to this launchMode.

Examples:

The following is an example of a launch configuration tab group extension point:

<extension point=
"org.eclipse.debug.ui.launchConfigurationTabGroups"
>

<launchConfigurationTabGroup id=

"com.example.ExampleTabGroup"

type=

"com.example.ExampleLaunchConfigurationTypeldentifier

class=

Launch Configuration Tab Groups 426

Welcome to Eclipse

"com.example.ExampleLaunchConfigurationTabGroupClass"

>
</launchConfigurationTabGroup>
</extension>

In the above example, the contributed tab group will be shown for the launch configuration type with
identifier com.example.ExampleLaunchConfigurationTypeldentifier.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.lLaunchConfigurationTabGroup.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Launch Configuration Tab Groups 427

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Type Images

Identifier:

org.eclipse.debug.ui.launchConfigurationTypelmages

Description:

This extension point provides a way to associate an image with a launch configuration type.
Configuration Markup:
<IELEMENT extension_(launchConfigurationTypelmage*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchConfigurationTypelmage EMPTY>
<IATTLIST launchConfigurationTypelmage
id CDATA #REQUIRED
configTypelD CDATA #REQUIRED
icon CDATA #REQUIRED>
« id — specifies a unique identifier for this launch configuration type image.
« configTypelD - specifies the fully qualified ID of a launch configuration type.(in 2.1, this attribute
can also be specified using the "type" attribute, to be consistent with the

launchConfigurationTabGroups extension point).
« icon — specifies the plugin-relative path of an image file.

Examples:

The following is an example of a launch configuration type image extension point:

Launch Configuration Type Images 428

Welcome to Eclipse

<extension point=
"org.eclipse.debug.ui.launchConfigurationTypelmages"
>

<launchConfigurationTypelmage id=
"com.example.FirstLaunchConfigurationTypelmage"
configTypelD=
"com.example.FirstLaunchConfigurationType"

icon=

"icons/FirstLaunchConfigurationType.gif"

>

</launchConfigurationTypelmage>

</extension>

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Launch Configuration Type Images 429

http://www.eclipse.org/legal/cpl-v10.html

Launch Groups

Identifier:

org.eclipse.debug.ui.launchGroups

Since:

2.1

Description:

This extension point provides support for defining a group of launch configurations to be viewed together in
the launch configuration dialog, and support a launch history (recent and favorite launches).

Configuration Markup:

<IELEMENT extension_(launchGroup*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT launchGroup EMPTY>
<IATTLIST launchGroup

id CDATA #REQUIRED

mode CDATA #REQUIRED
category CDATA #IMPLIED

label CDATA #REQUIRED
image CDATA #REQUIRED
bannerimage CDATA #REQUIRED

public CDATA #IMPLIED>

Launch Groups 430

Welcome to Eclipse

« id — specifies a unique identifier for this launch group.

» mode - specifies the launch mode associated with this group - i.e. run or debug.

« category - specifies the category of launch configurations in this group. When unspecified, the
category is null.

« label — specifies a translatable label used to render this group.

* image - specifies a plug—in relative path to an image used to render this group in trees, lists, tabs, e

» bannerlmage - specifies a plug—-in relative path to an image used to render this group in a wizard or
dialog banner area.

« public - specifies whether this launch group is public and should be have a visible launch history tab
in the debug preferences. The implied value is true, when not specified.

Examples:

The following is an example of a launch group extension point:

<extension point=
"org.eclipse.debug.ui.launchGroups"

>

<launchGroup id=
"com.example.ExampleLaunchGroupld"

mode=

1] n

run
label=

"Run"

image=
"icons\run.gif"
bannerimage=
"icons\runBanner.gif"
>

</launchGroup>

</extension>

Launch Groups 431

Welcome to Eclipse

In the above example, the launch group will consist of all launch configurations with no category that suppor
run mode.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Launch Groups 432

http://www.eclipse.org/legal/cpl-v10.html

Launch Shortcuts

Identifier:

org.eclipse.debug.ui.launchShortcuts

Description:

This extension point provides support for selection sensitive launching. Extensions register a shortcut which
appears in the run and/or debug cascade menus to launch the workbench selection or active editor.

Configuration Markup:

<IELEMENT extension_(shortcut*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT shortcut (perspective* , contextualLaunch? , enablement?)>

<IATTLIST shortcut

id CDATA #REQUIRED
modes CDATA #REQUIRED
class CDATA #REQUIRED
label CDATA #REQUIRED
icon CDATA #IMPLIED
category CDATA #IMPLIED
helpContextld CDATA #IMPLIED
path CDATA #IMPLIED>

« id — specifies a unique identifier for this launch shortcut.
» modes - specifies a comma-separated list of modes this shortcut supports.

Launch Shortcuts 433

Welcome to Eclipse

« class - specifies the fully qualified name of a class which implements
org.eclipse.debug.ui.lLaunchShortcut.

« label — specifies a label used to render this shortcut.

* icon — specifies a plugin-relative path to an image used to render this shortcut. Icon is optional
because it is up to other plugins (i.e. Views) to render it.

« category - specifies the launch configuration type category this shortcut is applicable for. When
unspecified, the category is null (default).

« helpContextld — an optional identifier that specifies the help context to associate with this launch
shortcut

« path — an optional menu path used to group launch shortcuts in menus. Launch shortcuts are groupe
alphabetically based on the path attribute, and then sorted alphabetically within groups based on the
label attribute. When unspecified, a shortcut appears in the last group. This attribute was added in
the 3.0.1 release.

<IELEMENT perspective EMPTY>
<IATTLIST perspective
id CDATA #REQUIRED>

« id - the unique identifier of a perspective in which a menu shortcut for this launch shortcut will
appear.

<IELEMENT contextualLaunch_(contextLabel* , enablement?)>

Holds all descriptions for adding shortcuts to the Run context menu (pop-up).

<IELEMENT contextLabel EMPTY>
<IATTLIST contextLabel

mode (run|debug]profile)

label CDATA #REQUIRED>

Specify the label for a contextual launch mode.

» mode - specifies a mode from the set {"run","debug","profile"}
« label — specifies the label to appear in the contextual launch menu.

Launch Shortcuts 434

Welcome to Eclipse

<IELEMENT enablement_ (not ., and , or_, instanceof , test , systemTest , equals ., count , with , resolve , adaj
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<IELEMENT not (not] and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate

This element represent a NOT operation on the result of evaluating it's sub—element expression.

<IELEMENT and (not_ and ., or . instanceof . test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub—elements expressions.

<IELEMENT or (not ., and_, or, instanceof , test , systemTest , equals , count_, with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub—element expressions.

<I[ELEMENT instanceof EMPTY>

<IATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns

EvaluationResult. TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwi:
EvaluationResult.FALSE is returned.

« value — a fully qualified name of a class or interface.

<I[ELEMENT test EMPTY>
<IATTLIST test

Launch Shortcuts 435

Welcome to Eclipse

property CDATA #REQUIRED

args CDATA #IMPLIED

value CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can
extended using the propery tester extension point. The test expression returns
EvaluationResult. NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

* property — the name of an object's property to test.

« args — additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defin
for the value attribute of the test expression.

« value — the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult. TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

¢
¢
¢

the string "true" is converted into Boolean. TRUE

the string "false" is converted into Boolean.FALSE

if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

in all other cases the string is treated as a java.lang.String

the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value=""true™ is
converted into the string "true"

m

<IELEMENT systemTest EMPTY>

<IATTLIST systemTest

property CDATA #REQUIRED

value CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

* property — the name of an system property to test.
« value — the expected value of the property. The value is interpreted as a string value.

Launch Shortcuts 436

Welcome to Eclipse
<IELEMENT equals EMPTY>
<IATTLIST equals
value CDATA #REQUIRED>
This element is used to perform an equals check of the object in focus. The expression returns

EvaluationResult. TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

« value - the operatand of the equals tests. The value provided as a string is converted into a Java ba
type using the same rules as for the value attribute of the test expression.

<IELEMENT count EMPTY>
<IATTLIST count
value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

« value — an expression to specify the number of elements in a list. Following wildcard characters can
be used:

*
any number of elements
no elements or one element
one or more elements
no elements

integer value
the list must contain the exact number of elements

<IELEMENT with (not , and_, or_, instanceof , test , systemTest , equals , count_ with . resolve , adapt
iterate)*>

<IATTLIST with
variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the give
variable. If the variable can not be resolved then the expression will throw a ExpressionException when

Launch Shortcuts 437

Welcome to Eclipse

evaluating it. The children of a with expression are combined using the and operator.

« variable — the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

<IELEMENT resolve (not_ and . or , instanceof , test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

<IATTLIST resolve
variable CDATA #REQUIRED
args CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the give
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

« variable — the name of the variable to be resolved. This variable is then used as the object in focus f
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expressit
element when evaluating the expression.

« args — additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defin
for the value attribute of the test expression.

<IELEMENT adapt (not_ and ., or . instanceof , test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

<IATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionExcepiti

during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined usi
the and operator.

« type - the type to which the object in focus is to be adapted.

Launch Shortcuts 438

Welcome to Eclipse

<IELEMENT iterate (not_ and , or , instanceof . test , systemTest , equals ,_count , with , resolve , adapt ,
iterate)*>

<IATTLIST iterate
operator (orland) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not ¢
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

« operator — either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

Examples:

The following is an example of a launch shortcut extension point:

<extension point=
"org.eclipse.debug.ui.launchShortcuts"

>

<shortcut id=
"com.example.ExampleLaunchShortcutld"
modes=

"run,debug"

class=
"com.example.ExampleLaunchShortcutimpl"
label=

"Example Launch Shortcut”

icon=

"icons/examples.gif"

>

Launch Shortcuts 439

Welcome to Eclipse

<perspective id=
"org.eclipse.jdt.ui.JavaPerspective"

/>

<perspective id=
"org.eclipse.debug.ui.DebugPerspective"
/>

</shortcut>

</extension>

In the above example, a launch shortcut will be shown in the run and debug cascade menus with the label
"Example Launch Shortcut”, in the JavaPerspective and the DebugPerspective.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.lLaunchShortcut.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Launch Shortcuts 440

http://www.eclipse.org/legal/cpl-v10.html

Source Container Presentations

Identifier:

org.eclipse.debug.ui.sourceContainerPresentations

Since:

3.0

Description:

Extension point to define a presentation aspects of a source container type.

Configuration Markup:

<IELEMENT extension_(sourceContainerPresentation*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT sourceContainerPresentation EMPTY>
<IATTLIST sourceContainerPresentation

id CDATA #REQUIRED

icon CDATA #IMPLIED

containerTypelD CDATA #REQUIRED
browserClass CDATA #IMPLIED>

An extension point to define presentation aspects of a source container type.

« id — The unique id used to refer to this implementation.

« icon — The icon that should be displayed for the source container type and instances.

Source Container Presentations

441

Welcome to Eclipse

« containerTypelD - The unique identifier of the source container type for which this presentation is
being provided.

 browserClass - A class that can be called to display a browse dialog for the source container type.
Must implement ISourcelLocationBrowser.

Examples:

Following is an example of an source container presentation definition.

<extension point=
"org.eclipse.debug.ui.sourceContainerPresentations"
>

<sourceContainerPresentation browserClass=
"org.eclipse.debug.internal.ui.sourcelookup.browsers.ProjectSourceContainerBrowser"
containerTypelD=
"org.eclipse.debug.core.containerType.project”

icon=

"icons/full/obj16/prj_obj.gif"

id=
"org.eclipse.debug.ui.containerPresentation.project”
>

</sourceContainerPresentation>

</extension>

API Information:

Value of the attribute browserClass must be a fully qualified name of a Java class that implements the
interface ISourceLocationBrowser.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

Source Container Presentations 442

Welcome to Eclipse

http://www.eclipse.org/legal/cpl=v10.html

Source Container Presentations 443

http://www.eclipse.org/legal/cpl-v10.html

String Variable Presentations

Identifier:

org.eclipse.debug.ui.stringVariablePresentations

Since:

2.1

Description:

This extension point provides a mechanism for contributing a user interface/presentation for a string

substitution variable (i.e. a context variable or value variable).

Configuration Markup:

<IELEMENT extension_(variablePresentation*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<I[ELEMENT variablePresentation EMPTY>
<IATTLIST variablePresentation
variableName CDATA #REQUIRED
argumentSelector CDATA #REQUIRED>
« variableName - specifies the variable this presentation is for

« argumentSelector - specifies a fully qualified name of a Java class that implements
IArgumentSelector

Examples:

The following is an example of a variable presentation contribution:

String Variable Presentations

444

Welcome to Eclipse

<extension point=
"org.eclipse.debug.ui.stringVariablePresentations"
>

<variablePresentation variableName=
"example_variable"

argumentSelector=
"com.example.ExampleArgumentChooser"

>

</variablePresentation>

</extension>

In the above example, the contributed presentation will be used for the variable named "example_variable".
An argument selector is specified to configure an argument applicable to the variable.

API Information:

Value of the attribute argumentSelector must be a fully qualified name of a Java class that implements the
interface org.eclipse.debug.ui.stringsubstitution.|IArgumentSelector.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

String Variable Presentations 445

http://www.eclipse.org/legal/cpl-v10.html

Help Content Producer

Identifier:

org.eclipse.help.contentProducer

Since:

3.0

Description:

For providing dynamic, generated at run time, help content.

Configuration Markup:

<IELEMENT extension_(contentProducer?)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT contentProducer (producer)>
<IATTLIST contentProducer
producer CDATA #IMPLIED>
* producer - the implementation class for the help content producer. This class must implement the

org.eclipse.help.IHelpContentProducer interface. This attribute may be omitted, and
the nested producer element may be provided instead.

<IELEMENT producer (parameter*)>
<IATTLIST producer
class CDATA #REQUIRED>

« class - the implementation class for the help content producer. This class must implement the
org.eclipse.help.IHelpContentProducer interface.

Help Content Producer 446

Welcome to Eclipse

<IELEMENT parameter EMPTY>
<IATTLIST parameter

name CDATA #REQUIRED
value CDATA #REQUIRED>

* name — name of a parameter passed to the implementation class
« value — value of a parameter passed to the implementation class

Examples:

The following is a sample usage of the browser extension point:

<extension point=
"org.eclipse.help.contentProducer"”

id=
"org.eclipse.myPlugin.myDynamicHelpProducer"
name=

"My Dynamic Help Content"

>

<contentProducer producer=
"org.eclipse.myPlugin.myPackage.Myproducer"
/>

</extension>

API Information:

The supplied content producer class must implement the

org.eclipse.help.IHelpContentProducer interface. The producer is responsible for providing

content for dynamic help resources from a plug—in. The method of content producer is called by help for
every help resource obtained from the plug-in.

Help Content Producer 447

Welcome to Eclipse

Supplied Implementation:

None. If a documentation plug-in does not provide help content producer or a call to it results in null, help
system searches doc.zip and file system in the plug—in install location for a static document and displays its
content.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Help Content Producer 448

http://www.eclipse.org/legal/cpl-v10.html

Contexts

Identifier:

org.eclipse.help.contexts

Description:

For defining context—sensitive help for an individual plug-in.

Configuration Markup:

<IELEMENT extension_(contexts*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<I[ELEMENT contexts EMPTY>
<IATTLIST contexts

file CDATA #REQUIRED
plugin CDATA #IMPLIED>

« file — the name of the manifest file which contains the context—sensitive help documentation for this
plug-in.

Configuration Markup for what goes into the contexts manifest file:
<IELEMENT contexts (context)*) >

<IELEMENT context (description?,topic*) >
<IATTLIST context id ID #REQUIRED >

<IELEMENT description (#PCDATA)>

<IELEMENT topic EMPTY >

<IATTLIST topic label CDATA #REQUIRED >

<IATTLIST topic href CDATA #IMPLIED >
The contexts manifest files provide all the information needed when context-sensitive help is
requested by the user. The id is passed by the platform to identify the currently active context. The

context definitions with matching IDs are then retrieved. The IContext object is then created by help

Contexts 449

Welcome to Eclipse

system that contains descriptions and topics from all context definitions for a given ID. The
description is to be displayed to the user, and related topics might be useful to the user for
understanding the current context. The related topic are html files packaged in doc.zip, together witt
topics that are part of on line help.

« plugin — Plugin to which its context definitions are extended with extra information.

If a plugin defines some context id's, one can extend the description or related links of a context by
declaring another context with the same id.

Examples:

The following is an example of using the contexts extension point:
(in file plugin.xml)

<extension point=
"org.eclipse.help.contexts"

>
<contexts file=
"xyzContexts.xml"

/>

</extension>

(in file xyzContexts.xml)

<contexts>
<context id="generalContextld">
<description> This is a sample F1 help string.</description>
<topic href="contexts/RelatedContextl.html" label="Help Related
Topic 1"/>
<topic href="contexts/RelatedContext2.html" label="Help Related
Topic 2"/>
</context>
</contexts>

Externalizing Strings The Context XML files can be translated and the resulting copy (with translated
descriptions labels) should be placed in nl/<language>/<country> or nl/<language> directory. The
<language> and <country> stand for two letter language and country codes as used in locale codes. For
example, Traditional Chinese translations should be placed in the nl/zh/TW directory. The
nl/<language>/<country> directory has a higher priority than nl/<language>. Only if no file is found in the
nl/<language>/<country>, the file residing in nl/<language> will be used. The the root directory of a plugin

Contexts 450

Welcome to Eclipse

will be searched last.

The related topics contained in doc.zip can be localized by creating a doc.zip file with translated version of
documents, and placing doc.zip in

nl/<language>/<country> or nl/<language> directory. The help system will look for the files under this
directories before defaulting to plugin directory.

API Information:

No code is required to use this extension point. All that is needed is to supply the appropriate manifest file(s
mentioned in the plugin.xml file.

Supplied Implementation:

The optional default implementation of the help system Ul supplied with the Eclipse platform fully supports
the contexts extension point.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Contexts 451

http://www.eclipse.org/legal/cpl-v10.html

Browser

Identifier:

org.eclipse.help.base.browser

Since:

3.0 (originally added in release 2.0 as org.eclipse.help.ui.browser)

Description:

For providing web browsers capable of displaying html documents at a given URL.

Configuration Markup:

<IELEMENT extension_(browser*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT browser (factoryclass)>
<IATTLIST browser
id CDATA #REQUIRED
factoryclass CDATA #IMPLIED
name CDATA #REQUIRED>
* id — the unique ID of the browser.
« factoryclass — the implementation class for the browser factory. This class must implement the
org.eclipse.help.browser.IBrowserFactory interface. This attribute may be omitted,

and the nested factoryclass element may be provided instead.
* name - the name of the browser (translatable).

<IELEMENT factoryclass_(parameter*)>
<IATTLIST factoryclass

class CDATA #REQUIRED>

Browser 452

Welcome to Eclipse

« class - the implementation class for the browser factory. This class must implement the
org.eclipse.help.browser.IBrowserFactory interface.

<IELEMENT parameter EMPTY>
<IATTLIST parameter

name CDATA #REQUIRED
value CDATA #REQUIRED>

* name — name of a parameter passed to the implementation class
« value — value of a parameter passed to the implementation class

Examples:

The following is a sample usage of the browser extension point:

<extension point=
"org.eclipse.help.base.browser"

>

<browser id=
"org.eclipse.myPlugin.myBrowserID"
factoryClass=
"org.eclipse.myPlugin.myPackage.MyFactoryClass"
name=

"My Browser"

>

</browser>

</extension>

Browser

453

Welcome to Eclipse

API Information:

The supplied factory class must implement the org.eclipse.help.browser.IBrowserFactory
interface. Methods in that interface determine whether the factory is available on the given system, i.e. is
capable of supplying browser instances, and create browser instances that implement IBrowser interface.

Supplied Implementation:

The org.eclipse.help.base and org.eclipse.help.ui plug-ins contain implementation of
browsers on common platforms. Other plug—ins can provide different implementations. In the preferences, tl
user can select the default browser from among available browsers.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Browser 454

http://www.eclipse.org/legal/cpl-v10.html

Lucene Analyzer

Identifier:

org.eclipse.help.base.luceneAnalyzer

Since:

3.0 (originally added in release 2.0 as org.eclipse.help.luceneAnalyzer)

Description:

This extension point is used to register text analyzers for use by help when indexing and searching
documentation.

Help exploits capabilities of the Lucene search engine, that allows indexing of token streams (streams of
words). Analyzers create tokens from the character stream. They examine text content and provide tokens f
use with the index. The text stream can be tokenized in many unique ways. A trivial analyzer can tokenize
streams at white space, a different one can perform filtering of tokens, based on the application needs. Sinc
the documentation is mostly human-readable text, it is desired that analyzers used by the help system perft
language and grammar aware tokenization and normalization of indexed text. For some languages, the qua
of search increases significantly if stop word removal and stemming is performed on the indexed text.

The analyzer contributed to this extension point will override the one provided by the Eclipse help system fo
a given locale.

Configuration Markup:

<IELEMENT extension_(analyzer*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT analyzer EMPTY>
<IATTLIST analyzer

locale CDATA #REQUIRED
class CDATA #REQUIRED>

« locale - a string identifying locale for which the supplied analyzer is to bue sued. If two letters,
language is provided, and the analyzer will be available to all locales of that language.

Lucene Analyzer 455

Welcome to Eclipse

« class - a fully qualified name of the Java class extending
org.apache.lucene.analysis.Analyzer.

Examples:

Following is an example of Lucene Analyzer configuration:

<extension id=

"com.xyx.XYZ"

point=

"org.eclipse.help.base.luceneAnalyzer"

>

<analyzer locale=

"I_cc

class=

"com.xyz.ll_CCAnalyzer"

/>

</extension>

AP Information:

The value of the locale attribute must represent either a five— or two—charcter locale string. If the analyzer
is configured for a language by specifying two—-letter language designation, the analyzer is going to be used
for all locales of this language. If the analyzer is configured that matchs a five—character locale, it is going to
be used instead.

The value of the class attribute must represent a class that extends

org.apache.lucene.analysis.Analyzer. It is recommended that this analyzer performs lowercase
filtering for languages where it is possible to increase number of search hits by making search case-sensiti\

Supplied Implementation:
The Eclipse help system provides analyzers for all languages. For English and German, the analyzers perfo

stop word filtering, lowercase filtering, and stemming. For all the other languages the supplied analyzer only
performs lowercase filtering.

Lucene Analyzer 456

Welcome to Eclipse

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Lucene Analyzer 457

http://www.eclipse.org/legal/cpl-v10.html

Ant Properties

Identifier:

org.eclipse.ant.core.antProperties

Since:

3.0

Description:

Allows plug-ins to define Ant properties for use in Ant build files.

Configuration Markup:

<IELEMENT extension_(antProperty*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT antProperty EMPTY>

<IATTLIST antProperty

name CDATA #REQUIRED
value CDATA #IMPLIED
class CDATA #IMPLIED

headless (true | false)
eclipseRuntime (true | false) >
* name — The name of the property.
« value — The value of the property. If a value is provided here, the "class" attribute is ignored.

« class - If there is no 'value' attribute provided, this class is called to return the dynamic value for the
Ant property. If null is returned, the value is not set.

Ant Properties 458

Welcome to Eclipse

 headless - indicates whether this property is suitable for use in a "headless" Ant environment. If
running headless and the attribute is "false", the property will not be set and any specified
org.eclipse.ant.core.lAntPropertyProvider will not be instantiated. The implied

value is true, when not specified.

eclipseRuntime - indicates whether this property should only be considered when run in the same
VM as Eclipse. The implied value is true, when not specified.

Examples:

The following is an example of an Ant properties extension point:

<extension point=
"org.eclipse.ant.core.antProperties"
>

<antProperty name=
"eclipse.home”

class=
"org.eclipse.ant.internal.core.AntPropertyValueProvider"
/>

<antProperty name=
"eclipse.running"

value=

"true”

/>

</extension>

API Information:

The class named in the class property must implement the
org.eclipse.ant.core.lAntPropertyProvider interface.

Ant Properties 459

Welcome to Eclipse

Supplied Implementation:

The platform uses this mechanism to set the Ant property eclipse.home to the Eclipse installation directory
and to set the eclipse.running property.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Ant Properties 460

http://www.eclipse.org/legal/cpl-v10.html

Ant Tasks

Identifier:

org.eclipse.ant.core.antTasks

Description:

Allows plug-ins to define arbitrary Ant tasks for use by the Ant infrastructure. The standard Ant
infrastructure allows for the addition of arbitrary tasks. Unfortunately, it is unlikely that the Ant Core plug-in
would have the classes required by these tasks on its classpath (or that of any of its prerequisites). To addre

this, clients should define an extension which plugs into this extension—point and maps a task name onto a
class. The Ant plug—in can then request that the declaring plug—in load the specified class.

Configuration Markup:

<IELEMENT extension_(antTask*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT antTask EMPTY>
<IATTLIST antTask
name CDATA #REQUIRED
class CDATA #REQUIRED
library CDATA #REQUIRED
headless (true | false)
eclipseRuntime (true | false) >
* name — name of the task to be defined
« class - the fully qualified name of a Java class implementing the task. Generally this class must be &

subclass of org.apache.tools.ant.Task.
« library — a path relative to the plug-in install location for the library containing the task.

Ant Tasks 461

Welcome to Eclipse

« headless - indicates whether this task is suitable for use in a "headless" Ant environment. If running
headless and the attribute is "false", the task will not be loaded or defined. As well, the plugin class
loader will not be added as a parent classloader to the Ant classloader. The implied value is true, wh
not specified.

« eclipseRuntime - indicates whether this task requires an Eclipse runtime (i.e. must be run in the
same VM as Eclipse). The implied value is true, when not specified.

Examples:

The following is an example of an Ant tasks extension point:

<extension point=
"org.eclipse.ant.core.antTasks"
>

<antTask name=
"coolTask"

class=
"com.example.CoolTask"
library=
"lib/antSupport.jar"

/>

</extension>

Supplied Implementation:

The platform itself supplies a number of tasks including eclipse.incrementalBuild and eclipse.refreshLocal.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Ant Tasks 462

http://www.eclipse.org/legal/cpl-v10.html

Ant Types

Identifier:

org.eclipse.ant.core.antTypes

Description:

Allows plug-ins to define arbitrary Ant datatypes for use by the Ant infrastructure. The standard Ant
infrastructure allows for the addition of arbitrary datatypes. Unfortunately, it is unlikely that the Ant Core
plug-in would have the classes required by these datatypes on its classpath (or that of any of its prerequisit

To address this, clients should define an extension which plugs into this extension—point and maps a dataty
name onto a class. The Ant plug-in can then request that the declaring plug-in load the specified class.

Configuration Markup:

<IELEMENT extension_(antType*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT antType EMPTY>
<IATTLIST antType
name CDATA #REQUIRED
class CDATA #REQUIRED
library CDATA #REQUIRED
headless (true | false)
eclipseRuntime (true | false) >
« name — name of the type to be defined
« class - the fully qualified name of a Java class implementing the datatype. Generally this class must

be a subclass of org.apache.tools.ant.types.DataType.
« library — a path relative to the plug-in install location for the library containing the type.

Ant Types 463

Welcome to Eclipse

 headless - indicates whether this type is suitable for use in a "headless" Ant environment. If running
headless and the attribute is "false", the type will not be loaded or defined. As well, the plugin class
loader will not be added as a parent classloader to the Ant classloader. The implied value is true, wh
not specified.

« eclipseRuntime — indicates whether this type requires an Eclipse runtime (i.e. must be run in the
same VM as Eclipse). The implied value is true, when not specified.

Examples:

The following is an example of an Ant types extension point:

<extension point=
"org.eclipse.ant.core.antTypes"
>

<antType name=
"coolType"

class=
"com.example.CoolType"
library=
"lib/antSupport.jar"

/>

</extension>

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Ant Types 464

http://www.eclipse.org/legal/cpl-v10.html

Extra Ant Classpath Entries

Identifier:

org.eclipse.ant.core.extraClasspathEntries

Description:
Allows plug-ins to define arbitrary JARs for use by the Ant infrastructure. These JARs are put into the Ant

classpath at runtime. Besides the JAR, the plug—in classloader of the plug-in providing the JAR is also adde
to the classpath.

Configuration Markup:

<IELEMENT extension_(extraClasspathEntry*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT extraClasspathEntry EMPTY>
<IATTLIST extraClasspathEntry

library CDATA #REQUIRED

headless (true | false)

eclipseRuntime (true | false) >

« library — a path relative to the plug-in install location for the library.

« headless - indicates whether this extra classpath entry is suitable for use in a "headless" Ant
environment. If running headless and the attribute is "false", this entry will not be added to the Ant
classpath. As well, the plugin class loader will not be added as a parent classloader to the Ant
classloader. The implied value is true, when not specified.

« eclipseRuntime — indicates whether this extra classpath entry should only be considered for builds
run in the same VM as Eclipse. The implied value is true, when not specified.

Extra Ant Classpath Entries 465

Welcome to Eclipse

Examples:

The following is an example of an extra classpath entries extension point:

<extension point=
"org.eclipse.ant.core.extraClasspathEntries"
>

<extraClasspathEntry library=
"myExtraLibrary.jar"

/>

</extension>

Supplied Implementation:

The platform itself supplies an Ant support jar (antsupportlib.jar).

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl=v10.html

Extra Ant Classpath Entries 466

http://www.eclipse.org/legal/cpl-v10.html

ContentMerge Viewers

Identifier:

org.eclipse.compare.contentMergeViewers

Description:
This extension point allows a plug-in to register compare/merge viewers for specific content types. The
viewer is expected to extend org.eclipse.jface.viewers.Viewer. However, since viewers don't

have a default constructor, the extension point must implement the factory interface for viewers
org.eclipse.compare.lViewerCreator.

Configuration Markup:
<IELEMENT extension_(viewer* , contentTypeBinding*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT viewer EMPTY>
<IATTLIST viewer
id CDATA #REQUIRED
class CDATA #REQUIRED
extensions CDATA #IMPLIED>
* id — a unique identifier that can be used to reference the viewer
« class - a fully qualified name of a class that implements a factory for the content merge viewer and

implements org.eclipse.compare.lViewerCreator
 extensions — a comma separated list of file extensions e.g. "java, gif"

<IELEMENT contentTypeBinding EMPTY>
<IATTLIST contentTypeBinding
contentTypeld CDATA #REQUIRED
contentMergeViewerld CDATA #REQUIRED>

ContentMerge Viewers 467

Welcome to Eclipse

« contentTypeld -
 contentMergeViewerld —

Examples:

The following is an example of a compare/merge viewer for text files (extension "txt"):

<extension point =
"org.eclipse.compare.contentMergeViewers"

>

<viewer id=

"org.eclipse.compare.contentmergeviewer. TextMergeViewer"
class=

"org.eclipse.compare.internal. TextMergeViewerCreator"
extensions=

"txt"

/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.lViewerCreator

Supplied Implementation:

The Compare Ul plugin defines content viewers for text, binary contents, and images.

Copyright (c) 2000, 2004 IBM Corporation and others.

All rights reserved. This program and the accompanying materials are made available under the terms of th

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl-v10.html

ContentMerge Viewers

http://www.eclipse.org/legal/cpl-v10.html

Content Viewers

Identifier:

org.eclipse.compare.contentViewers

Description:

This extension point allows a plug—in to register viewers for specific content types. These viewers are used |
the EditionSelectionDialog when presenting an edition of a resource or a subsection thereof. The

viewer is expected to extend org.eclipse.jface.viewers.Viewer. However since viewers don't

have a default constructor the extension point must implement the factory interface for viewers
org.eclipse.compare.lViewerCreator.

Configuration Markup:
<IELEMENT extension_(viewer* , contentTypeBinding*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT viewer EMPTY>
<IATTLIST viewer
id CDATA #REQUIRED
class CDATA #REQUIRED
extensions CDATA #IMPLIED>
* id — a unique identifier that can be used to reference the viewer
« class - a fully qualified name of a class that implements a factory for the content viewer and

implements org.eclipse.compare.lViewerCreator
 extensions — a comma separated list of file extensions e.g. "java, gif"

<IELEMENT contentTypeBinding EMPTY>
<IATTLIST contentTypeBinding

contentTypeld CDATA #REQUIRED

Content Viewers 469

Welcome to Eclipse

contentViewerld CDATA #REQUIRED>

« contentTypeld -
» contentViewerld —

Examples:

The following is an example of a viewer for text files (extension "txt"):

<extension point =
"org.eclipse.compare.contentViewers"

>

<viewer id=

"org.eclipse.compare.internal. TextViewer"

class=

"org.eclipse.compare.internal. TextViewerCreator"
extensions=

"txt"

/>

</extension>

API Information:
The contributed class must implement org.eclipse.compare.lViewerCreator
Supplied Implementation:

The Compare Ul plugin defines content viewers for text and images.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Content Viewers 470

http://www.eclipse.org/legal/cpl-v10.html

Stream Merger

Identifier:

org.eclipse.compare.streamMergers

Since:

3.0

Description:
This extension point allows a plug—in to register a stream merger for specific content types. The stream

merger is expected to perform a three—way merge on three input streams and writes the result to an output
stream. The extension point must implement the interface org.eclipse.compare.lStreamMerger.

Configuration Markup:

<IELEMENT extension_(streamMerger* , contentTypeBinding*)>
<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>
« point — a fully qualified identifier of the target extension point

« id — an optional identifier of the extension instance
* name — an optional name of the extension instance

<IELEMENT streamMerger EMPTY>

<IATTLIST streamMerger

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>
« id — a unique identifier that can be used to reference the stream merger
« class - a fully qualified name of a class that implements

org.eclipse.compare.|StreamMerger
 extensions — a comma separated list of file extensions e.g. "java, properties"

Stream Merger 471

Welcome to Eclipse

<IELEMENT contentTypeBinding EMPTY>
<IATTLIST contentTypeBinding
contentTypeld CDATA #REQUIRED
streamMergerld CDATA #REQUIRED>

« contentTypeld -
 streamMergerld —

Examples:

The following is an example of a stream merger for property files (extension "properties"):

<extension point =
"org.eclipse.compare.streamMergers"

>

<streamMerger id=
"org.eclipse.compare.internal.merge.TextStreamMerger"
class=
"org.eclipse.compare.internal.merge.TextStreamMerger"
extensions=

"properties"

/>

</extension>

API Information:
The contributed class must implement org.eclipse.compare.lStreamMerger
Supplied Implementation:

The Compare Ul plugin defines a stream merger for line oriented text files.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th

Stream Merger 472

Welcome to Eclipse

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl-v10.html

Stream Merger 473

http://www.eclipse.org/legal/cpl-v10.html

Structure Creators

Identifier:

org.eclipse.compare.structureCreators

Description:
This extension point allows a plug—in to register a structure creator for specific content types. The structure
creator is expected to create a tree of IStructureComparators for a given content. This tree is used as

the input for the structural compare. The extension point must implement the interface
org.eclipse.compare.structuremergeviewer.lStructureCreator.

Configuration Markup:

<IELEMENT extension_(structureCreator* , contentTypeBinding*)>

<IATTLIST extension
point CDATA #REQUIRED
id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT structureCreator EMPTY>

<IATTLIST structureCreator

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>
« id — a unique identifier that can be used to reference the structure creator
« class - a fully qualified name of a class that implements

org.eclipse.compare.structuremergeviewer.lStructureCreator
 extensions — a comma separated list of file extensions e.g. "java, properties"

<IELEMENT contentTypeBinding EMPTY>
<IATTLIST contentTypeBinding
contentTypeld CDATA #REQUIRED
structureCreatorld CDATA #REQUIRED>

Structure Creators 474

Welcome to Eclipse

« contentTypeld -
« structureCreatorld -

Examples:

The following is an example of a structure creator for java files (extension "java"):

<extension point =
"org.eclipse.compare.structureCreators"

>

<structureCreator id=

"

"org.eclipse.compare.JavaStructureCreator

class=

"

"org.eclipse.compare.JavaStructureCreator
extensions=

"java"

/>

</extension>

API Information:

The contributed class must implement
org.eclipse.compare.structuremergeviewer.lStructureCreator

Supplied Implementation:

The Compare Ul plugin defines a structure creator for zip archives.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

Structure Creators 475

http://www.eclipse.org/legal/cpl-v10.html

StructureMerge Viewers

Identifier:

org.eclipse.compare.structureMergeViewers

Description:
This extension point allows a plug—in to register compare/merge viewers for structural content types. The
viewer is expected to extend org.eclipse.jface.viewers.Viewer. However, since viewers don't

have a default constructor, the extension point must implement the factory interface for viewers
org.eclipse.compare.lViewerCreator.

Configuration Markup:
<IELEMENT extension_(viewer* , contentTypeBinding*)>
<IATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<IELEMENT viewer EMPTY>
<IATTLIST viewer
id CDATA #REQUIRED
class CDATA #REQUIRED
extensions CDATA #REQUIRED>
* id — a unique identifier that can be used to reference the viewer
« class - a fully qualified name of a class that implements a factory for the structure merge viewer and

implements org.eclipse.compare.lViewerCreator
 extensions — a comma separated list of file extensions e.g. "zip, jar"

<IELEMENT contentTypeBinding EMPTY>
<IATTLIST contentTypeBinding

contentTypeld CDATA #REQUIRED
structureMergeViewerld CDATA #REQUIRED>

StructureMerge Viewers 476

Welcome to Eclipse

« contentTypeld -
« structureMergeViewerld -

Examples:

The following is an example of compare/merge viewer for zip files (extension "zip"):

<extension point =
"org.eclipse.compare.structureMergeViewers"

>

<viewer id=
"org.eclipse.compare.ZipCompareViewer"

class=
"org.eclipse.compare.ZipCompareViewerCreator"

extensions=

zip
/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.lViewerCreator
Supplied Implementation:

The Compare Ul plugin defines a structure compare viewer for zip archives.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of th
Common Public License v1.0 which accompanies this distribution, and is available at

http://www.eclipse.org/legal/cpl-=v10.html

StructureMerge Viewers 477

http://www.eclipse.org/legal/cpl-v10.html

Property Testers

Identifier:

org.eclipse.jdt.ui.propertyTesters

Since:

3.0

Description:

This extension point allows to add properties to an already existing type. Those properties can then be used
inside