
Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Model Transformation with Operational QVTModel Transformation with Operational QVT

QVT Operational - M2M component

Radomil Dvorak
QVT Operational component lead

Borland Software Corporation

http://www.eclipse.org/m2m

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

AgendaAgenda

• Overview of QVT Operational language

• M2M/QVTO + tooling support

• Examples
� Simple illustrative Ecore2Emof
� MDD use-case within GMF project

• Q&A

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Operational QVTOperational QVT
• Final Adopted Specification - ptc/07-07-07

• Why operational?

• Designed for transformations that have to build target models of a
complex structure

• In cases when there is no direct correspondence between individual
elements of the source and target models -> might be difficult to describe
declaratively

• QVTo – imperative (procedural) language specifying explicit steps to
execute in order to produce the result

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Operational TransformationOperational Transformation

• Defines the process of converting {1..*} source models into {1..*} target
models.

• The most typical scenario - Ma conforming to metamodel MMa converted
into a model Mb conforming to metamodel MMb.

• If Ma=Mb -> in-place transformation

• The metamodels involved in the transformation are manifested in
transformation signature.

transformation MMaToMMb(in Ma : MMa, out Mb: MMb);

• Set of typed model parameters indicate the referred metamodels and
provides a mechanism for inspecting actual model instances in runtime.

• in | out | inout direction kind -> restrictions to object creation,
changeability

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Model type declarationModel type declaration
• Model type is the type of transformation model parameters

• Implicit - no model type is declared explicitly; the metamodels can be
resolved by name -> the effect of implicit model type declaration, taking
the name of referred metamodel.

• Explicit - a concrete syntax construct placed before transf. signature

modeltype MMa uses “http://qvtexample/mm/MMa”;

• The used metamodels are referred by uri identifying the metamodel
package or by package name

• Model type identifier can be part of qualified type names to resolve
ambiguities -> MMa::A

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Model type declaration advancedModel type declaration advanced
• Metamodel conformance kind can be specified

� effective - (default) structural match based; indicates a declaration
time metamodel, the actual metamodel involved at runtime, typically
different versions of logically the same metamodel with compatible
changes -> flexibility, high applicability

� strict - model objects must be instance of the exact classes from the
referred metamodels, required for XMI serialization

• Restricting conditions on metamodels accepted by transformations

modeltype MMa uses “http://qvtexample/mm/MMa”
where { self .objectsfOfType(A)->notEmpty() };

• Allows for validation check on input models without executing the
transformation, using self variable of model type instance (a model)

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Model parametersModel parameters
• A MOF extent is associated with every model

parameter, provides model elements container

• Model elements queried or created in the scope
of parameter associated extent

-- all A instances

Ma.objects ()[A];

-- all out B instances
Mb.objects ()[B];

• Transformation is a class; a single instance
instantiated by implicit constructor

� the contents of in | inout parameters extents is
initialized

� out parameters created with empty model extent
� model parameters mapped to attribute slots,

accessible within transformation, this variable
refers to transformation

transformation MMaToMMb
(in Ma : MMa, out Mb: MMb);

Model extents

maFile.MMa mbFile.MMb

Ma MbMb

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Transformation entry pointTransformation entry point
• main() – signature-less imperative operation, sequentially executes list of

expressions - body

• First and last transformation operation executed

• Called automatically after transformation implicit instantiation
• Single mainmain operation per transformation

• abstract transformations, designed for reuse and not direct execution –
no entry operation defined

Typically,
selects elements within
in model parameter
extents -> source
objects to mapping
calls

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operationMapping operation
• Maps {1..*} source model elements into {1..*} target elements
• Source and target types indicated by operation signature

--Mapping operation
mapping A:: AtoB() : B;

--Mapping operation call
a.map AtoB();
--target resolvable now
assert (a.resolve ()->notEmpty ());

RelationsRelations

A

QVT OperationalQVT Operational

source
type

target type C E

B

implicit relation

refines

realizes - creates trace instance
- relation holds after execution

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operation definitionMapping operation definition

<qualifiers >? mapping <param-direction-kind >?
(<contexttype >::)?<identifier >(<parameters >?) (: <result-parameters >)?

<extensions >? <when >? <where >?
{ <mapping-body > }

mapping (<contexttype >::)?<identifier >() : <result-parameters >) ?

{ <mapping-body > }

The most frequent
case -> letlet ’’s start s start

with thatwith that

Is that so complex to write a mapping?

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Contextual mapping operationContextual mapping operation

� logically extends the context type -> model
element as source of mapping calls

� physically owned by the transformation class

transformation MMaToMMb(

in Ma : MMa, out Mb : MMb);

main () {
var a := Ma.rootObjects![A];

a.map AtoB();

}

mapping A::AtoB() : B {

}

Logical extension

AtoB(in a : A) : BAtoB(in a : A) : B

this .map AtoB(a);

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Contextual mapping operation environmentContextual mapping operation environment
mapping (<contexttype >::)?

<identifier >(<parameters >?) : <result-parameters >)?

Mapping parameter – indicates direction kind
�� inin - object passed for read-only access, the default direction
�� inoutinout - passed object for update, retains its value
�� outout - receives new value (not necessarily newly created object)

-- Contextual
mapping A::AtoB() : B {
}

-- Non-contextual
mapping AtoB(in a : A) : B {
}

Operation environment

self : A -> in contextual parameter -
implicit

result : B -> out parameter - implicit

a : A -> in parameter - explicit
result : B -> out parameter - implicit

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operation with when clauseMapping operation with when clause

mapping A::AtoB() : B whenwhen { self .isValid() }
{ }

Execution semantics dependent on invocation mode
standard | strict

� guard – selects model elements for mapping
a.mapmap AtoB(); -- std call semantics

� pre-condition – must be always satisfied
a.xmapxmap AtoB(); -- strict call semantics

• boolean expression
• access to mapping parameters

Body not executed,
returns null

Body not executed,
exception is thrown

when { when { false }}

strict

std

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operation bodyMapping operation body

mappingmapping A::AtoB() : B {

initinit {

var d := self.resolveone (D);

}

endend {

result.refToC.map modifyC(d);

}

propOfB := self.propOfA;

refToC := self.map AtoC();

1) New instances created assigned to
un-initialized out parameters

2) Trace instance created -> relation
holds

- variable assignments; keeps
intermediate results

- uses query, mapping and resolve calls
- explicit out parameter assignment

updating inout , out instances using
object or assignment expressions

termination

population

instantiation

initialization

final computations before exiting,
typically additional mapping
invocations, logging, assert

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operation body Mapping operation body –– object instantiationobject instantiation

-- no init section
mappingmapping A::AtoB() : B {

Implicit instantiation section - creates out parameters instances

name := self .name;
}

result := new B();

mappingmapping A::AtoB() : B {
initinit {

ifif (condition1) thenthen {
resultresult := objectobject SubTypeOfB { };

} endifendif ;
}

name := self .name;
}

if (result = null) then
result := new B();

Init section - may create out objects explicitly

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping operation body Mapping operation body –– object populationobject population

-- implicit population section

mapping A::AtoB() : B {
name := self .name;

}

-- implicit population section

mappingmapping A::AtoB() : B {
name := self .name;

}

-- explicit population section

mappingmapping A::AtoB() : B {

populationpopulation {

objectobject result : B {
name := self .name;

}
}

}

Modifications of instantiated inout | out objects

mappingmapping A::AtoBC() : b: B, c: C {

population {population {

objectobject b: B { name := self .name; }

objectobject c: C { name := self .name; }

}
}

expand as

may reduce

mappingmapping A::AtoBC() : b: B, c: C {

objectobject b: B {

name := self .name;

};

objectobject c: C {
name := self .name;

}

}

Multiple results

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Inline instantiationInline instantiation
• Object expression – refers to the

instantiated class, provides a body to
initialize new instances

• Used for simple tasks where mappings
are not desirable

• Instantiated objects not reachable by
resolve call – no traces created

• Create or update semantics controlled
by use of variable referring to
created/updated objects

• Poor reusability level -> solved by
constructors

-- always new instance

object A {

};

var a := null;

-- (a = null) new instance set to a
object a : A {

name := ‘Rich’;

};

-- (a <> null) -> update

object a : { -- type known already
name := a.name + ‘ ‘ + ‘Gronback’;

};

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Assignment expressionAssignment expression
• Assignment of a right side value to the target property or variable on the left

side

• Assignments semantics for targets of collection type

- null values skipped from assignment
- duplicates eliminated when assigning to Set, OrderedSet target types

� Reset semantics

elements := Sequence {}; -- set empty target collection

� Additive semantics (collections only)

- all left side (non-null) values added to the original contents
elements += object Element {}; -- single element added

-- adds 2 elements -> 3 elements in the target property

elements += Sequence { object Element {}, object Element {} };

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping invocation semanticsMapping invocation semantics

main () {

var a: A := object SubA {};

a.map AtoB();
}

mapping A::AtoB() : B {
}

mapping SubA::AtoB() : B {
}

1. Resolve mapping operation based on
the actual context instance – virtual
call.

2. Check when clause if not satisfied ->
return null

3. Guard succeeded, a check for existing
trace for the given sources, targets is
performed.

4. If the relation holds -> result
parameters fetched from traces and
returned; otherwise body is executed

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Resolving objectsResolving objects

• Direction – source to target or inverse
• Specific mapping – given mapping reference
• Multiplicity – resolve one or many
• Filtering condition – only matching object
• Time – resolve now or at deferred time

� Supported by resolve expression family
� Based on trace inspection -> only

mapping operation source, targets can be
resolved :A :B

Execution semantics modifiers

AND

Typical use-cases:
Updating objects resulting from executed mappings

Checking whether a mapping already executed

Realizing transformed model cross-referencing

a.resolve (B)

traces

outin

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Resolve examplesResolve examples
• Direction

a.resolve (); -- source -> target
b.invresolve (); -- target -> source

• Specific mapping
a.resolveIn (A::AtoB, B);

• Multiplicity of result type
a.resolveone (B); -- single Object
a.resolve (B); --Sequence(Object)

• Time
-- resolve now
a.resolveone (B);
-- resolve at deferred time
a.late resolveone (B);

• Filtering condition & result type

a.resolveone (name=‘Joe’); -- Object

a.resolve (A); -- Sequence(A)
a.resolve (a : A | a.name <> null);

mappingmapping A::AtoB() : B

:A :B

outin

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Late resolveLate resolve

Normal execution time

:A :B

traces

outin

Executes deferred assignments in
sequence as detected by normal
execution

main() {
…

} // end of transformation

object A {
refToB := findSource().late resolveone (B);

}

1. Assignment not executed
2. Evaluates the source object of late resolve call
3. Stores all data required for later execution

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

inoutinout -- Mapping operationMapping operation

<qualifiers>? mapping <param-direction-kind >?
(<contexttype>::)?<identifier>(<parameters>?) (: <re sult-parameters>)?

<extensions>? <when>? <where>?

� param-direction-kind
� direction of the contextual parameter (if available)
� possible values (inin | inoutinout);

�� inin -- the default direction, not notated

mapping inout A::updateA() {

}

mapping inout A::updateA() : A {

}

Operation environment

self : A -> inout contextual
parameter - implicit

self : A -> inout contextual
parameter - implicit

result : A -> out parameter - implicit

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Reuse by compositionReuse by composition

transformation MMaToMMbExt(
in Ma : MMa, out Mb : MMb)
access transformation MMaToMMb(in MMa, out MMb);

main () {
var a2b : AtoB := new MMaToMMb(Ma, Mb);
a2b.transform ();

Mb.objects()[B]->map processB();
}

mapping inout B::processB() {
…

}

MMaToMMb

MMaToMMb(MMa, MMb)

Explicitly
instantiated

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Reuse by extensionReuse by extension

transformation MMaToMMbExt(in ma : MMa, out mb : MMb)
extends transformation MMaToMMb(in MMa, out MMb);

mapping inout B::adjustB () {
-- do it our way

}

Implicitly
instantiatedoverrides

MMaToMMb

MMaToMMb(MMa, MMb)

mapping AtoB() : B

mapping inout B::adjustB()

calls

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping level reuse facility Mapping level reuse facility -- inheritinherit

mapping A::AtoB() : B {

name := self .name;

}

mapping A::AtoSubB() : SubTypeOfB
inherits A::AtoB

{

init {
var nullName := self. name = null;

}calls

hasName := not nullName;

}

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping level reuse facility Mapping level reuse facility -- mergemerge

mapping A::toSuperB1() : SuperB1 {
name := self .name;

}

mapping A::toSuperB2() : SuperB2 {
hasName := self .name <> null;

}

mapping A::AtoB() : B
merges A::toSuperB1, A::toSuperB2

{
end {
}calls

}

2.

1.

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Mapping level reuse facility Mapping level reuse facility -- disjunctdisjunct

mapping A::AtoNamedB() : B
when { self .name <> null }

{
name := self .name;

}

mapping A::AtoNoNameB() : B
when { self .name = null }

{
name := ‘<unknown>’;

}

mapping A::AtoB() : B
disjuncts A::AtoNamedB, A::AtoNoNameB

{}

calls

• Selects the first match by type and satisfied guard
• Returns null if no mapping can be selected

XOR

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Contextual (intermediate) propertyContextual (intermediate) property
• Similar concept as contextual operation

• Owned by transformation class but

logically extends the context type
• Exists only in the scope of defining module

• Manipulated as regular properties – read/
write access

Logical extension

property A::myExtraProp : String;

main () {
object A {

myExtraProp := ‘a String’;
};

}

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Intermediate classesIntermediate classes
• Ordinary classes defined purely for the internal purpose of a

transformation.

• Only in the scope of the defining transformation

• In case it’s referenced in traces, persistence must be ensured

• Typically used for additional structural working data associated with
instances of existing classes, usually from (read-only) metamodels.

intermediate class DataForA {

extraProperty : String;

}

intermediate property A::extraData : DataForA;

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Instantiation in specific model extentsInstantiation in specific model extents

� In simple cases – target model
extents resolved automatically

� Multiple model pameters of inout |
out direction kind of the same
model type can be solved by
explicit instruction

� Option for explicit indication of the
target extent by referring to a
model parameter

� However, model elements may
move between model extents due
to containment reference
assignments

transformation MMaToMMb(
in Ma : MMa, out Mb : MMb,

out mbExt : MMb);

main () {

object B@mbExt {

name := ‘John’;
}

}

mapping A::AtoB() : B@Mb {

}

mapping A::AtoBExt() : B@MbExt {
}

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Imperative OCL constructs Imperative OCL constructs –– OCL extensionOCL extension
• Loop support – while, forEach – (iterates over collection)

• Imperative iterators – powerful, concise
Ma->objects()![A]; -- selects single object of kind A

• Execution control
� return – usual semantics of exiting operation with a result value

� break, continue - loops, iterators

• Variable initialization – scoped within block expressions

• Switch – avoids complex if else if ….

• Exceptions – try {…} catch {…} semantics

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

BlackBlack--boxingboxing
Enables to escape the whole transformation/library or its parts that are difficult

or impossible to implement in pure QVT.

Black-box transformation
contains only transformation signature and no implementation
(entry point, mapping operations)

transformation MMaToMMb(in Ma : MMa, out Mb : MMb);

Black-box operation – signature only operation, no body specified -> external

mapping A::AtoB() : B;

• Compliance points of transformation definition – indicated by the
transformation writer
� QVT-Operational* - uses black-box operation
� QVT-Operational - pure QVT language

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Configuration propertiesConfiguration properties
• configuration qualifier keyword used with module property declaration

• The initialization step - out
of the QVT spec scope ->
any external mechanism
allowed
� Launch configuration

� property file

• The choice of
implementation

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Log expressionLog expression

� Adds log record entry to the execution environment.

� message text

� element optional, model element associated with the log
� level optional, raw integer value – applicable for filtering

� May be conditional

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Assertion Assertion
Asserts a condition and generates error message in case it does not hold.

� severity level - warningwarning | errorerror | fatalfatal
fatal - throws exception and transformation execution terminates

� log record - optionally used with log expression

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

QVTO QVTO –– where we are?where we are?
• Based on MDT OCL

� reuses OCL metamodels

� extends OCL parser
� extends OCL evaluator

• So far, primary focus on concrete syntax, execution and reasonable
tooling support

� AST model with some differences from the spec – legacy reasons
� concrete syntax – not complete, but major concepts supported

• Next steps
� complete concrete syntax – executable (except parallel transf. etc)

� standardize QVT AST -> XMI-Exportable

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Editor support Editor support –– syntax highlight, hovers, hyperlinks syntax highlight, hovers, hyperlinks

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Editor support Editor support -- annotations, problem markers, outlineannotations, problem markers, outline

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Code completionCode completion

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

Debugging supportDebugging support

Model Transformation with Operational QVT | Long Talk, EclipseCon 2008 | © 2008 by Borland Software Corp. | Made available under the EPL v1.0

GMF generator model creationGMF generator model creation

Run QVTo
transformation

