EMF Users’ Guide
Draft 1.0

Last updated on 9/17/02

1.0 Overview

The Eclipse Modeling Framework, EMF, is a Java framework and code generation facility
for building tools and other applications based on a structured model. EMF provides a
mechanism to easily create, save, and restore instances of the classes in your model. This
makes it very easy to share data across different applications.

This document describes the basic steps for using EMF, including how to define your
model, how to generate and customize your application source code, and how to manipu-
late and save instance data.

» Section 2.0, “Concepts,” on pag®utlines some of the key concepts essential to the
understanding of EMF.

» Section 3.0, “Tasks,” on pagegéres examples for how to use EMF to accomplish
some commonly encountered tasks.

» Section 4.0, “Quick Reference,” on pagei$@ short reference guide to the APIs used
by an EMF application.

This document is a work in progress. Some sections have not yet been completed. Areas
where changes and additions are anticipated are identified using a <tbd> tag. For example,
<tbd> This information will be provided in a future draft of the EMF User’s Guide.</tbd>

2.0 Concepts

We first present some of the key concepts upon which EMF is based. This section is
intended to introduce these fundamental concepts at a high level and to give an indication
of how they relate to EMF. The concepts that are covered here are:

e Section 2.1, “Modeling,” on page 2

» Section 2.2, “Code Generation,” on page 2

» Section 2.3, “Serialization and Loading,” on page 3
e Section 2.4, “XMI,” on page 5

e Section 2.5, “Observers and Notifiers,” on page 6

EMF Users’ Guide Draft 1.0 September 17, 2002 1

2.1 Modeling

A model is an abstract representation of the data used by an application. A model may be
expressed simply as an informal description of the data or it may be described precisely
using any of a number of formal mechanisms, for example:

* UML created using a visual modeling tool
» XML that conforms to a schema that expresses all the necessary elements of the model

» Java interfaces that may have additional annotations to capture special information
about the model that is not expressible directly in Java

One of the advantages of using a formal definition of a model is that EMF can then be
used to assist in the automatic generation and maintenance of application code based on
the model. This in turn facilitates the creation of multiple applications that can communi-
cate easily because they share a common view of the underlying data.

A model is constructed from classes that describe objects in an application’s domain. Each
class may have attributes, associations, and operations associated with it. Usually, the
classes in a model are grouped into one or more packages.

2.1.1 The Ecore Model

EMF is itself based on a model called Ecore. The Ecore model is the meta-model for all
application models that are handled by EMF. (A “meta-model” is a model that represents
other models.)

The root of the Ecore Model EObject . All EMF objects implement thEObject
interface.

The classes of the Ecore model inclifeackage , EFactory , EClass , and
EStructuralFeature . “Appendix A - The Ecore Model” on page géses a more
complete description of the Ecore Model.)

If your model consists of a package that contains two classes, the EMF representation of
that model will consist of a single instance eackBackage andEFactory plus two
instances oEClass , along with however many instances&StructuralFeature

are needed to represent the attributes and associations that belong to your classes. When
your application creates instances of your classes, each of those instances will implement
the EObject interface.

2.2 Code Generation

Code generation is the process of converting your model into the Java source code for
your application. In many cases, after you generate your Java classes you will want to add
methods or modify the generated methods. EMF enables you to do this in a such a way
that if you later make a change to your model and regenerate, the code generation process
will preserve your changes.

EMF Users’ Guide Draft 1.0 September 17, 2002 2

EMF provides two separate code generation facilities:

Basic Code Generatiareates Java interfaces and classes that represent the elements
of your model. The generated APIs enable you to create instances of your classes and
access the structural features of each class.

EMF.Edit Code Generatiocreates a simple graphical editor that can be used to create,
update, view, load, and store the Java classes that are generated by basic code genera-
tion.

2.2.1 Basic Code Generation

The result of EMF basic code generation is two or three Java packages for each package in
your model. One of these Java packages consists entirely of Java interfaces that define the
APIs to access instances of the classes in your model. The other Java package consists of
Java classes that implement those interfaces. The third package, which is optional, con-
tains a generated adapter factory and a generated switch class. These classes are useful
when implementing adapters.

The interface package includes one interface for each class in your model. These inter-
faces extend theEObject interface from the Ecore model. Each interface provides meth-

ods that enable you to access an instance of a class and to get and set the values for each of
the features of that class.

The interface package also contains two additional interfaces: one that extends the
EPackage interface and another that extendsHEf@ctory interface. Th&Package
interface provides methods for accessing the meta-data from your model (i.e., the
EClass andEStructuralFeature objects that describe your classes) and the fac-
tory interface provides methods for creating instances of your data (i.EQthect

objects that implement your classes.)

The implementation package has Java classes that implement all the interfaces described
above.

2.2.2 EMF.Edit Code Generation

<tbd>To be done</tbd>

2.3 Serialization and Loading

Serialization is the process of writing your instance data into a standardized, persistent
form, e.g., a file on your file system or a Web resource.

Loading (sometimes referred to as “deserialization”) is the process of reading the persis-
tent form of the data to recreate instanceEB@bject in memory. In EMF, loading can

be accomplished either through an explicit call to a load API or it can happen automati-
cally whenever a reference to B@bject that has not yet been loaded is encountered.

EMF Users’ Guide Draft 1.0 September 17, 2002 3

The APIs that are used in EMF to control the loading and saving of objects are defined on
theResourceandResourceSeanterfaces.

The default implementation of ResourceXidIResourcelmpl , which results in serial-
ization as XMI documents. TH&MIResourceinterface provides additional APIs that

enable you to control some of the behavior of the default serializer and loader. If you wish
to serialize in some format other than the default XMI format, you can provide your own
implementation of Resource.

2.3.1 Resource

A Resource is a collection oEODbject objects that are serialized into a single
Stream .

TheResource interface is defined in the package
org.eclipse.emf.ecore.resource . It provides APIs that enable you to:

» Load aResource from anlnputStream

* Save &Resource to anOutputStream

» Access any messages that were generated during the load or save operation.

» Optionally keep track of whether any objects Resource have been modified. The
default is not to keep track of modifications. Modification tracking can add significant
runtime overhead.

» Register the default factory for creatiRgsource objects. If you choose to provide
your own implementation of tHResource interface, for example, so you can use a
serialization format other than XMl, you will need to define and register a factory for
creating your implementation &esource .

2.3.2 ResourceSet

A ResourceSet is a collection oResource objects that may have cross-references
among them.

The ResourceSet interface defines APIs that enable you to:

* Create a neWResource

» Look up an individual object and, if necessary, loadRsource in which it is con-
tained.

» Set and get theRIConverterused to normalize URIs and resolve relative URIs.

» Set and get Resource.Factory.Registry . (This registry enables you to pro-
vide alternative implementations of Resource and to have the appropriate implementa-
tion selected based on either the extension or the protocol of a given URI.)

» Get the list of registerefldapterFactory instances.

EMF Users’ Guide Draft 1.0 September 17, 2002 4

2.3.3 URIConverter

Uniform Resource ldentifiers or URIs, as specifiethttp://www.ietf.org/rfc/rfc2396.txtare used

to uniquely identify resources and objects within resources. For example, when one object
references another object that is located in a different resource, a URI is used to identify
the referenced object.

Often it is convenient to have a URI that is expressed as a relative location. For example,
if the URI refers to a file on a file system, it may be convenient to describe that file relative
to some known location rather than as an absolute path. This would enable your applica-
tion to run in different environments. Similarly, a URI may refer to a resource within your
Eclipse workbench, or to an object on the Web. Expressing the URI as a relative value
rather than an absolute location provides the flexibility that is needed to be able to share
resources.

A URIConverter is used to resolve a relative URI into an absolute InputStream or Output-
Stream. The URIConverter also provides an API to normalize relative URIs. Normaliza-
tion is used to determine if two different URIs in fact refer to the same underlying object.

EMF provides a default implementation of a URIConverter and also enables you to create
and register your own implementation.

2.4 XMI

The XML Metadata Interchange (XMI) is the default serialization format used by EMF.
This format is based on the XMI 2.0 specification from the OMG. This specification may
be found ahttp://cgi.omg.org/cqgi-bin/doc?ad/01-06-12

The XML specification may be found at http://www.w3.0rg/TR/REC-xml

2.4.1 XMIResource

An XMIResource is an extension to the Resource interf&s= (‘Resource” on page 4.

that handles a resource whose contents are serialized as an XMI document. This is the
default type of resource used by EMF.

The XMIResource interface provides APIs that enable you to:

» Access and modify the XMI IDs will be used when objects are serialized. (Note that
IDs are optional. If an object does not have an ID, references to that object within a
document are based on the relative position of the object. Using IDs can increase the
size of your documents, so their use is not recommended.)

» Control whether the XMI documents are stored in zipped form. The default setting is to
use unzipped files.

» Specify the XML encoding to be used when saving the resource

EMF Users’ Guide Draft 1.0 September 17, 2002 5

» Specify various save options:

» Control whether the type of an element is written uskigi‘type” or
“xsi:type”. The default is to usexsi:type”

» Control whether the encoded attribute style is used to serialize an attribute
whose value is an EObject. When an attribute is serialized under this option, the
value of an attribute is@Name URI pair, where th&Name is optional,
depending on whether the referenced object’s type is identical to the feature.
When the option is not specified, an attribute whose value is an EObject is seri-
alized as an element.

» Determine the line width at which line breaks will be automatically added.

» Determine whether the serialized document will begin with:

<?xml version="1.0" encoding="encoding"?>

» Control whether to skip processing for escape characters. This processing adds
overhead that can be skipped if you know for sure that none of the values of
your attributes contain a character that needs to be escaped. These characters
are ampersand (‘&’), double-quote ("), less-than('<’), LF (\n’), CR (‘\r’), and
tab (‘\t')

» Determine how dangling hrefs will be handled during save. A dangling href is a
cross file reference where the target is not in a valid resource, which means that
the URI for the target cannot be computed. The possible actions are to either
throw an exception, discard them silently, or record them and continue.

» Specify various load options:
» Control whether notifications are to be disabled during loading.

2.5 Observers and Notifiers

EMF provides a mechanism for attaching observers (also known as adaptors) to objects
(sometimes referred to as notifiers.) The observers are informed of any changes to the
notifiers to which they are attached. This allows you to extend the behavior of your EMF
objects by implementing observers that provide the extended behavior and attaching those
observers to your EMF objects.

3.0 Tasks

» Section 3.1, “Defining Your Model,” on page 7
» Section 3.1.1, “Code Generation Using Rational Rose,” on page 9
e Section 3.1.2, “Code Generation Using XMI documents,” on page 21

EMF Users’ Guide Draft 1.0 September 17, 2002 6

» Section 3.1.3, “Code Generation Using Annotated Java Interfaces,” on page 27
» Section 3.2, “Generating your model,” on page 34
» Section 3.3, “Configuring your EMF Runtime Environment,” on page 34

» Section 3.3.1, “Registering/Initializing a Package,” on page 35

Section 3.3.5, “RegisteringResource.Factory ,” on page 39

Section 3.3.4, “CreatinglResourceSet ,” on page 38

Section 3.3.3, “CreatingRResource ,” on page 37

Section 3.3.2, “Accessing the Package and Factory classes,” on page 37
» Section 3.4, “Running your application,” on page 42
» Section 3.4.1, “Creating Instance Data,” on page 42
» Section 3.4.2, “Serializing Your Instance Data,” on page 44
» Section 3.4.3, “Loading Instance Data,” on page 45
» Section 3.5, “Handling notifications,” on page 47
e Section 3.5.1, “Defining Observers,” on page 47
» Section 3.5.2, “Attaching Observers to Your Objects,” on page 47
» Section 3.6, “Using Reflective APIs,” on page 47
» Section 3.6.1, “Examining EObject Instances using Reflection,” on page 48
» Section 3.6.2, “Modifying EObjects using reflection,” on page 53
» Section 3.6.3, “Creating New Dynamic Classes,” on page 53

» Section 3.6.4, “Extending Generated Classes with Dynamic Classes,” on page
53

» Section 3.7, “Customizing EMF,” on page 53

» Section 3.7.1, “Creating Keys to Access the ContentRefsaurce ,
page 53

on

» Section 3.7.3, “Customizing tHResource for non-XMI Serialization,” on
page 54

» Section 3.7.4, “Handling XMI Documents Serialized from a Different Version
of Your Model,” on page 54

3.1 Defining Your Model

The first step in creating an EMF-based application is to define your model. EMF allows
you to express your model in a variety of ways.

Whichever form you choose, your model specification will consist of some number of
packages, classes, attributes, and associations. Each of these has various properties that
you can specify.

EMF Users’ Guide Draft 1.0 September 17, 2002 7

Some properties are mandatory, but most have some default settings, so you only need to
specify them explicitly if you wish to override the defaults. For example, when you spec-
ify an attribute, the attribute name is required but the multiplicity is not. (If you do not
specify a multiplicity, single-valued is assumed.)

A complete list of the properties that are applicable to each model element is provided in
the sectiorfEcore Properties and Codegen Specifications” on page 56

For the examples that appear in the following sections, assume that we wish to create a
model that consists of a single package called “enterprise” with classes that represent
companies, departments, and employees. This details of this model are illustrate below
using UML notation.

FIGURE 1. UML for enterprise model

+parent
0.1 i
+zubsidiary
Company a.* <<Abstracts>
ghame . String Ferson
The employee0fThehMonth G‘{{D..*?} comments String
relationship cannot be a proy. - Bt
i * (Thismeansthat it isnot gname - otring
GOMpany allowed to refarto employesas

0.1 that are in a resource that Zl
. izdifferent from the one th at
cantains the company.)

'
v
il
il
]

+department +emp|n:|3,reefjﬂ'hehr1|:|nth Employee
0.+ gmanager ; boolean = false

0.1 wemail : String

Department | gemploymentType : EmploymentType = FullTime
enumber - int :I:ifpartment 0.7 | gdateOfHire : Date

01 +employes| @yearsUfervice @ int

" gleaveDfAbsenceStart ; Date

The ye aeOfSernvice attribute is ,,-"‘_

transient, wolatile, and not ®initiateLe ave(startDate : Date)

changeable. (The value will be = T

derived from the current date f,’* I-

and the dateOfHire attribute.) ey E
The leavelttbee neeStart attribute is The initiateLeave() method must be implamented after
unsettable. It will be unset for active code generation. The implementation needsto set both
employe es the leave Of4bsenceStat and the employmenType fields

in the generated Jawva class

<<gnumeration== <<datatypes> E;te i T'th';ﬂiﬂmmve
pessupportad by]

EmploymentType Date |- Themfore 3 << datatypes=

wFulllime g=<javaclassz= java util Date il e

sPatTime

SOnLeave

EMF Users’ Guide Draft 1.0 September 17, 2002 8

You have three choices for how you could specify this model to EMF code generation:

* You can use the UML notation directly. (You will need to use some special annotations
in the form of Rose propertiespee “Code Generation Using Rational Rose” on page
9.

* You can write a file that expresses the classes of the model using XMI elerBeats.
“Code Generation Using XMI documents” on page 21.

* You can write Java source files that define a Java interface for each of the classes in the
model. (You will need to use some special annotations in the form of Java comments.)
See “Code Generation Using Annotated Java Interfaces” on page 27.

Note that the comment boxes in Figure 1, “UML for enterprise model,” on page 8 indicate
that there are implementation details for this model that cannot be expressed directly in
UML. These comments have no impact on code generation. The actual mechanism that is
used to specify this information to code generation will depend on which code generation
technique you use. These mechanisms are discussed in the following sections.

3.1.1 Code Generation Using Rational Rose

If you use Rational Rose to define your model, you simply draw a Class Diagram contain-
ing Packages, Classes, Attributes, and Associations. An example of a UML diagram
depicting a package is shown in Figure 1, “UML for enterprise model,” on page 8. In gen-
eral, the UML elements in your diagram map directly to Ecore elements which determine
the precise code generation patterns to be used. Additionally, there are a few special anno-
tations that are used by the EMF basic code generation tool of which you may need to be
aware.

These will be discussed in the following sections:

» Section 3.1.1.1, “Basic UML Model Elements,” on pageshiOws how you specify the
most common properties of classes, attributes, and relationships.

» Section 3.1.1.2, “Specification of Abstract Classes,” on paghd®s how an abstract
class is specified.

» Section 3.1.1.3, “Attribute Specifications in UML,” on pagesh®ws how you specify
operations, datatypes and enumerations.

e Section 3.1.1.4, “The eCore Properties Page,” on pagadss how you set up your
Rose model to include special ecore properties that are not part of standard UML

» Section 3.1.1.5, “Ecore Properties for Attributes,” on pagshbvs how you specify
ecore properties that apply to attributes (i.e. transience, volatility, changeability, setta-
bility, and uniqueness.)

» Section 3.1.1.6, “Ecore Properties for Relationships,” on paghd8s how you spec-
ify ecore properties that apply to relationships (i.e. transience, volatility, changeability,
settability, and resolveability.)

EMF Users’ Guide Draft 1.0 September 17, 2002 9

» Section 3.1.1.7, “Ecore Properties for Packages,” on paghds how you specify
ecore properties that apply to attributes (i.e. prefix, package name, base package,
namespace prefix and namespace URI.)

» Section 3.1.1.8, “Specifying Multiple Inheritance in UML,” on pagesB6ws how you
can specify that a class has multiple superclasses.

3.1.1.1 Basic UML Model Elements

The basic elements in your UML model are Classes, Attributes and Relationships. For
example:

FIGURE 2. Basic Ecore elements in UML diagram

Mon-containment Ahstract class
relationship Class name specification

Rale narme [\;
o 4| tPargnt EAbsiractz
o.r Pemson

bsidia w SE=0. FEREnmmentsSting
gname String T bname : String r-
: - 3 | Attribute type
RelatinnShi Attribute cardinality

cardinality R oompany (multi-valued)
(single-valued)

4

Attribute name

Inheritance
Relationship with
Relationship +department +employe eOfT heMaonth oRE-way
cardinality] 0.7 0. navigability
rrulti-valued D epartme nt
l: j r;\\ Employae
i 0.r
+department +employes

Containment
relationship

In most cases, the code generation utility will create a Java interface and a Java implemen-
tation class for each UML class. Each interface will have accessor methods to get and set
each of the attributes and relationships specified in the model. For exam@etpany

class shown in Figure 2, “Basic Ecore elements in UML diagram,” on page 10 will gener-
ate a Java interface nam@dmpany and a Java class nam@dmpanylmpl .

The accessor methods that are created for each attribute and association will vary depend-
ing on the properties of the corresponding UML elements.

EMF Users’ Guide Draft 1.0 September 17, 2002 10

« Single-valued attributes and navigable relationships will genegg&)a method
that returns a value of the appropriate type apet@ method that accepts a parame-
ter of that type.

» Multi-valued attributes and navigable relationships will generate oyéy(® method
that returns akList . The actual implementation of thtist thatis returned is con-
strained to only accept values of the appropriate type.

» For relationships, the implementation of #e#() method (in the case of single-val-
ued relationships) or tHeList (in the case of multi-valued relationships) will be dif-
ferent depending on whether the relationship uses containment. In particular, the
implementation of a containment relationship will enforce the semantics that an
instance of an object can only have a single container.

» Relationships that are not navigable will not result in the generation of any accessor
methods.

» If you specify an inheritance relationship in your model, the resulting generated inter-
face and implementation class will have the same inheritance structure.

For example, th€ompany class has a single-valued attribute calledrti€’, two single-
valued relationships calle@MmployeeOfTheMonth ” and “parent ”, and two multi-
valued relationships callediépartment " and “subsidiary . Therefore the generated
Company interface will include the following:
public interface Company extends EObject{

String getName();

void setName(String value);

EList getDepartment();

Employee getEmployeeOfTheMonth();

void setEmployeeOfTheMonth(Employee value);

Company getParent();

void setParent(Company);

EList getSubsidiary();
} // Company

Note that the department " relationship on th&Company class is a containment rela-
tionship while the Subsidiary ” relationship is non-containment. Both of these rela-
tionships are multi-valued, which means they generated interface has a get method but no
set method. The difference in the containment property leads to different implementations
for the generatedet() methods. For example, the genera@ampanylmpl class will

include the following methods:

1. For a single-valued attribute of type booleanisé@n method is generated instead @et() method.

EMF Users’ Guide Draft 1.0 September 17, 2002 11

public EList getDepartment() {
if (department == null) {
department =
new EObjectContainmentWithinverseEList(
Department. class |,
this ,
EnterprisePackage. COMPANY__ DEPARTMENT,
EnterprisePackage. DEPARTMENT__ COMPANY);

}
return department;
}
public EList getSubsidiary() {
if (subsidiary == null) {
subsidiary =
new EObjectWithinverseResolvingEList(
Company. class ,
this
EnterprisePackage. COMPANY__ SUBSIDIARY,
EnterprisePackage. COMPANY__ PARENT);
}
return subsidiary;
}

The Employee class inherits from thPerson class. Therefore, the first line of the
interface forEmployee will start with:

public interface Employee extends Person

3.1.1.2 Specification of Abstract Classes

Note that thePerson class is marked with the<Abstract>> stereotype. This stereo-
type is only used in the UML for informational purposes to indicate that the Abstract prop-
erty is set for this class. This property is set vialléil page of the

Specification dialog for the cass. For example:

EMF Users’ Guide Draft 1.0 September 17, 2002 12

FIGURE 3. Specification Dialog for the Person Class

Elass Specification for Person ﬂﬂ

Relations I Components | Mested I Files I DL I

General Deetail | Operstions | Aftributes
Cardinality: I_ﬂ j
Space:

Perzistence ———— —Concurrency

" Persistert {+ Sequertizl

{* Transiert ™ Guarded

" Active
[vw_&hstract " Synchronous

Formal &rguments:

Marme | Type | Defautt Yalue

Ok I Cancel Al Browse = Help

 If you specify theAbstract property in your UML, the resulting generated imple-
mentation class will be abstract.

For example, the declaration Bersonimpl will be:

public abstract class Personimpl extends EObjectimpl implements Person

3.1.1.3 Attribute Specifications in UML

The are some special conventions used by EMF to define the types of certain attributes.
Consider the following segment of teaterprise ~ package:

EMF Users’ Guide Draft 1.0 September 17, 2002 13

FIGURE 4. Enumerations, DataTypes, and Default Values

Default value

Employes P

. Attribute with
C}manager.boulea
Gemail : String 4&_,_’”’## enumerated type
QemplnymentType mploymentType HTime

d ateOfHire : [ate
wedrsdfSenice :int

gpleaveOtibsencesta rt

=

i- A ate : Da

————__ Aftribute with
non-Ecore type

Operation Farameter

=<datatype=r f

[rate

| -Full Time - - -
gpartTime @”'35” Java-utﬂ?_ﬂ?;\\ Datatype

Enumerat_inn gnleave [specification
specification

Z<enumeration =

EmploymentType

Enumeration Implementation class
literals for datatype

If you specify an initial value in your UML, the resulting attribute will be initialized
with the specified value

If you specify an operation, the resulting interface will include the signature for that
operation and the implementation class will have a stub method. (The generated imple-
mentation of the stub method will throwdasupportedOperationException ,

so you will need to modify this method by hand after code generation.)

If you need to refer to a type that is not an EMF class in your model, you can declare
that type using a<datatype>> stereotype. UML classes with this stereotype do not
generate any code. Note that this class must include a single attribute that defines the
underlying type. The attribute should be flagged with a stereotype of

<<javaclass>>

If you wish to define an enumeration, you can do so using a UML class with the
<<enumeration>> stereotype. This results in the generation okeclass that

hasstatic final fields that represent the enumeration values and enumeration literal
instances. The accessor methods for attributes of this enumeration type pass the literal
instances that are defined in this class.

EMF Users’ Guide Draft 1.0 September 17, 2002 14

The Employee class has ddteOfHire " attribute whose type is the datatypRdte ”
and an employmentType " attribute whose type is the enumeration
“EmploymentType . Therefore, th&loyee interface will include the following
methods:

Date getDateOfHire();
void setDateOfHire(Date value);
EmploymentType getEmploymentType();
void setEmploymentType(EmploymentType value);
void initiateLeave(Date startDate);

TheEmploymentType interface is generated as follows:

public final class EmploymentType extends AbstractEnumerator
{

public static final int FULL_TIME = 0;

public static final int PART_TIME = 1;

public static final int ON_LEAVE= 2;

public static final EmploymentType FULL_TIME_LITERAL =

new EmploymentType(FULL_TIME, "FullTime");
public static final EmploymentType PART_TIME_LITERAL =

new EmploymentType(PART_TIME, "PartTime");
public static final EmploymentType ON_LEAVE_LITERAL =

new EmploymentType(ON_LEAVE, "OnlLeave");

public static final List VALUES=
Collections.unmodifiableList(Arrays.asList(VALUES_ARRAY));

public static EmploymentType get(String name)

{-}

public static EmploymentType get(int value)

{-}

private EmploymentType(int value, String name)

{
}

super (value, name);

} //[EmploymentType

3.1.1.4 The eCore Properties Page

In some cases there are properties that are required for code generation that cannot be
expressed in standard UML. For these cases, EMF provides a special Rose properties file
called ecore.pty. These properties are not shown explicitly in the example in Figure 1 on
page 8, although annotations are used in the diagram to indicate that the properties have
been defined.

Before you can use these properties, you must first add the appropriate model properties
file to your Rose model. This file is the ecore.pty file that is shipped in the
org.eclipse.emf.ecore plugin in the src\models directory.

The mechanism for adding these properties to your model is shown in Figure 5, “Adding a
Properties File to Your Model,” on page 16 and Figure 6, “Selecting the eCore.pty file,”
on page 16.

EMF Users’ Guide Draft 1.0 September 17, 2002 15

FIGURE 5. Adding a Properties File to Your Model

|T|:||:||5 Add-Ins Window Help

¢ Layouk Diagram @lﬁlll
Autosize Al

| Create r

| Check Model

Edit. .. F4

Model Properties

Replace...
Export...

Options. ..

Open Scripk. ..
Mew Scripk

FIGURE 6. Selecting the eCore.pty file

Add Model Properties 2=
Look in: |E j s i 0
ecore,pky
File name: I ecare pty Qpen
Files of type: IPrnper‘ties Files (*.prp *.poty) j Cancel

In order to see a particular property, you need to open up the specifications page for the
object to which the property applies. The various properties are illustrated in

» “Ecore Properties for Attributes” on page 16
» “Ecore Properties for Relationships” on page 18
» “Ecore Properties for Packages” on page 19

3.1.1.5 Ecore Properties for Attributes

The following figure illustrates the eCore Properties page for Attributes.:

EMF Users’ Guide Draft 1.0 September 17, 2002 16

FIGURE 7. Properties page for the yearsOfService attribute

EYciass attribute Specification for yeal 2| x|
General | Detail =Core |
Set: Edit Set... |
Model Propeties
* | Mame Walle |Sn:nurn::e |
izTranzient True Ovetrice
iz olatile True Owerride
izChangeable Falze Owerride
izn=ettable False Default
izlnigue True Default
Overridel Defauft | FEvert |
Ok I Cancel | Aealy | ﬂrDWSEvl Help |

» If isTransient is True , the attribute or relationship will not be stored.

» If isVolatile is True , the attribute or relationship will not have any storage associ-
ated with it and the generated implementations of&i@ andset() method for
the attribute or relationship will throw &msupportedOperationException
(In other words, you will need to implement these methods explicitly.)

» If isChangeable is True ,noset() method is generated for the attribute or asso-
ciation.

» If isUnsettable is True ,isSet() andunset() methods are generated for the
attribute or association. (Note that this requires additional runtime storage for each such
attribute or association.)

» If isUnique is True for an attribute that has multi-valued multiplicity, uniqueness
semantics are enforced for the list that holds the attribute values.

In the case of thgearsOfService attribute shown here, the intention is to implement

the attribute to be derived from tbhlateOfHire attribute and from current date when

the application is run. The settings on the ecore properties page instruct code generation to
omit the default implementation of the get method from the implementation class
(isVolatile=True), to omit the set method altogether from the interface
(isChangeable=False), and to mark the attribute as transient so it will not be serial-
ized (sTransient=True)

EMF Users’ Guide Draft 1.0 September 17, 2002 17

3.1.1.6 Ecore Properties for Relationships

The following figure shows the specification dialog for @mployeeOfTheMonth
association. It is opened to tt€ore A page, which displays that Ecore attributes that
apply to theemployeeOfTheMonth role of the association.

FIGURE 8. Properties page for the employeeOfTheMonth association

Assuciatiun spedification for Untitled el
General | Detail
Role & General | Role B General | Role & Detsil | Role B Detai
eCare & | L& | ecorem | LB
st et set..|
Model Propetties
& I flame I alue I Source I
izTranszient False Detault
iz olatile Falze Detault
izChangeabls True Detfault
izlnzettable Falze Detault
izResolveProxies Falze Owverride
Iverride | Detault | Rewert |

ik I Cancel | Apply | ErDWSEvl Help |

For the most part, the properties that apply to attributes also apply to relationships. (See
Figure 7, “Properties page for the yearsOfService attribute,” on page 17 .) The exceptions
are that thesUnique property only applies to attributes and that the

IsResolveProxies property only applies to relationships.

» If isResolveProxies is False for a relationship, the two ends of a relationship
would typically not be stored in separate documents. If they are stored in separate doc-
uments, you will need to resolve the proxies manually.

In the case of themployeeOfTheMonth relationship shown here, the intention is that
the indicated employee must be one of the employees that contained in the company.
Therefore, it will not be necessary to allow for the possibility that the target of this rela-
tionship is in a different XMI document from the source. Setting the

IsResolveProxies property toFalse suppresses the generated code that would

EMF Users’ Guide Draft 1.0 September 17, 2002 18

attempt to resolve proxies when accessing this relationship, which makes the accessor
method more efficient than it would otherwise be.

3.1.1.7 Ecore Properties for Packages
The following figure illustrate the eCore page of the Specification dialog for Packages.

FIGURE 9. Ecore Properties Page for the Package

Package Specification for enterpris ﬂil
Gerersl | Detail | Files eCore |ces |

Set |[detaul | Ecitset.. |

hodel Propetties

5 | Mame W allie | SOLrcE |
prefix Default
packagerlame Detault
hazePackage org eclipse emf samples Override
nzPrefix Default
nzURI Detfault

Ly erride | etault | REvert |

0].4 I cancel | Aealy | ﬂrDWSEvl Helgp |

o If prefix is specified, the value is used as the prefix for constructing the name of the
Package andFactory interfaces and classes. Otherwise, the capitalized package
name is used to construct these names.

» If packageName is specified, the value is used for the rightmost part of the name of
the generated Java package. Otherwise, the package name is used.

» If basePackage is specified, the value is used for the qualifier for the generated Java
package.

» If nsPrefix s specified, the value is used as the namespace prefix for any XMl doc-
uments that contain instances of classes from this package. Otherwise, the package
name is used.

» If nsURI is specified, the value is used as the namespace URI for any XMI documents
that contain instances of or associations to classes from this package.

EMF Users’ Guide Draft 1.0 September 17, 2002 19

In this example, there is moefix . There is also npackageName, so the default
name will be the name of the package, whicrerstérprise ”. The basePackage is
“org.eclipse.emf.samples ". Therefore the fully qualified name of the generated
package interface will be

org.eclipse.emf.samples.enterprise.EnterprisePackage.java

3.1.1.8 Specifying Multiple Inheritance in UML

EMF supports multiple inheritance of interfaces in much the same way that multiple
inheritance is supported in Java. You can define a class in UML that inherits from more
than one superclass. The code that is generated for this class will include an interface that
extends all the interfaces corresponding to the specified superclasses, but the implementa-
tion class will only extend one of the implementation classes.

This means that a generated class may not define all the methods that it is required to
implement based on the interfaces that the class supports. You will need to make sure that
an implementation is provided for any method that is missing.

You can specify which superclass is the primary superclass in your UML by attaching a
stereotype to the generalization relationship that appears in your model. A stereotype of
<<extends>> indicates the primary superclass and a stereotygemixin>> indi-

cates some other superclass. For a given subclass, there can only be one generalization
that carries the<extends>> stereotype.

For example:

FIGURE 10. UML for Multiple Inheritance

<<extends:= i
<2 mixin®

In this model, clasd has two superclassé&sandC The generated interfack, will start
with:

public interface A extends B, C

while the generated implementation clasknpl, will begin with:

EMF Users’ Guide Draft 1.0 September 17, 2002 20

public class Almpl extends Blmpl implements A

3.1.2 Code Generation Using XMI documents

You can also write XMI documents that can fully specify your model. There are two dif-
ferent types of XMI documents that are needed to specify a model:

» There will be oneecore document for each package in your model. This document
contains the detailed definitions of all the packages and classes in your model. The ele-
ments of theecore document are the classes and attributes of the Ecore model. The
details for specifying the XMI document are discusse@aore Properties and Code-
gen Specifications” on page 5bhe extension for thecore documents should be
“.ecore”. \

Theecore document contains classes that are defined iEtbes model that is used
by theorg.eclipse.emf.ecore plugin.

» There will be ongenmodel document for the entire model. This document is the input
to the code generation utility. It has references to elements definedeoaiteedocu-
ments and also includes some additional information needed for code generation that is
not part of the model. (For example, information about how names should be con-
structed.) The extension for tgenmodel documents is.yenmodel”

Thegenmodel document contains classes that are defined iG#miodel model
that is used by therg.eclipse.emf.codegen.ecore plugin.

The following sections illustrate the contents ofge@model andecore documents

that are used to specify teaterprise model show in Figure 1, “UML for enterprise
model,” on page 8. (Note that for this example, the model consists of only a single pack-
age, hence there is only oaeore document. If the model were to include multiple root
packages, there would be omeore document for each package.)

Theenterprise.genmodel document is shown iSection 3.1.2.1, “Genmodel Document
for the enterprise Model,” on page.22

The main elements of tlenterprise.ecore document are shown in the following sec-

tions. (Note that these elements are, in fact, all part of a single document. They are sepa-
rated into the various sections below to help direct your attention to the salient features of
each element.)

» Section 3.1.2.2, “The Enterprise Package Element in the Ecore Document,” on page 23
e Section 3.1.2.3, “The Company Class Element in the Ecore Document,” on page 24

e Section 3.1.2.4, “The Department Class Element in the Ecore Document,” on page 25

» Section 3.1.2.5, “The Person Class Element in the Ecore Document,” on page 25

e Section 3.1.2.6, “The Employee Class Element in the Ecore Document,” on page 25

e Section 3.1.2.7, “The EmploymentType Enumeration Element in the Ecore Document,”
on page 26

EMF Users’ Guide Draft 1.0 September 17, 2002 21

» Section 3.1.2.8, “The Date Datatype Element in the Ecore Document,” on page 27

3.1.2.1 Genmodel Document for the enterprise Model

Thegenmodel document is the document that ties together all the packages, classes, and
features in a model and provides any additional information that is not in the model but
that is needed by the code generation utility to produce the appropriate source code.

<?xml version="1.0" encoding="ASCII"?>
<genmodel:GenModel xmi:version="2.0" xmiIns:xmi="http://www.omg.org/XMI" xmins:ecore="http://

EMF Users’ Guide Draft 1.0 September 17, 2002 22

www.eclipse.org/emf/2002/Ecore"
xmins:genmodel="http://www.eclipse.org/emf/2002/GenModel"
modelDirectory="/org.eclipse.emf.samples/src"
editDirectory="/org.eclipse.emf.samples.edit/src" editorDirectory="/org.eclipse.emf.samples.editor/src"
modelPluginID="org.eclipse.emf.samples.enterprise">
<foreignModel>C:\emfleclipse\plugins\org.eclipse.emf.samples\src\model\enterprise.mdI</foreignModel>
<genPackages prefix="Enterprise" basePackage="org.eclipse.emf.samples"
ecorePackage="enterprise.ecore#/">
<genEnums ecoreEnum="enterprise.ecore#//[EmploymentType">
<genEnumlLiterals ecoreEnumLiteral="enterprise.ecore#//EmploymentType/FullTime"/>
<genEnumlLiterals ecoreEnumLiteral="enterprise.ecore#//[EmploymentType/PartTime"/>
<genEnumlLiterals ecoreEnumLiteral="enterprise.ecore#//[EmploymentType/OnLeave"/>
</genEnums>
<genDataTypes ecoreDataType="enterprise.ecore#//Date"/>
<genClasses ecoreClass="enterprise.ecore#//Department">
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Department/number"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Department/company"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Department/employee"/>
</genClasses>
<genClasses ecoreClass="enterprise.ecore#//Company">
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Company/name"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/department"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/parent"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/subsidiary"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/employeeOfTheMonth"/>
</genClasses>
<genClasses ecoreClass="enterprise.ecore#//Person">
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Person/comments"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Person/name"/>
</genClasses>
<genClasses ecoreClass="enterprise.ecore#//Employee">
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/manager"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/email"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/employmentType"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/dateOfHire"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/yearsOfService"/>
<genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/leaveOfAbsenceStart"/>
<genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Employee/department"/>
<genOperations ecoreOperation="enterprise.ecore#//Employee/initiateLeave">
<genParameters ecoreParameter="enterprise.ecore#//[Employee/initiateLeave/startDate"/>
</genOperations>
</genClasses>
</genPackages>
</genmodel:GenModel>

Note that most of the elements of this document consist entirely of references into the
enterprise.ecore document, which is described in the following sections.

The elements in this document that may contain additional information ayerthe
model:GenModel element and thgenPackages element.

3.1.2.2 The Enterprise Package Element in the Ecore Document

A package is specified as anore:EPackage element in amcore document.

EMF Users’ Guide Draft 1.0 September 17, 2002 23

<?xml version="1.0" encoding="ASCII"?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:ecore="http://www.eclipse.org/emf/2002/Ecore" name="enterprise"
nsURI="http:///enterprise.xmi" nsPrefix="enterprise">
<eClassifiers ... >

</eClassifiers>
</ecore:EPackage>

In this case we are defining a package whose nateatisrprise”. The details for the
eClassifiers that comprise this package are illustrated in the following sections.

3.1.2.3 The Company Class Element in the Ecore Document

A class is specified as atore:EClass element in an XMI document. For example, the
XMI that defines theCompany class from thé&nterprise model is:

<eClassifiers xsi:type="ecore:EClass" name="Company">
<eReferences name="department" eType="#//Department" upperBound="-1"
containment="true" eOpposite="#//Department/company"/>
<eReferences name="employeeOfTheMonth" eType="#//Employee"
resolveProxies="false"/>
<eReferences name="parent" eType="#//Company"
eOpposite="#//Company/subsidiary"/>
<eReferences name="subsidiary" eType="#//Company" upperBound="-1"
eOpposite="#//Company/parent"/>
<eAttributes name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
</eClassifiers>

Note the following:

* When noowerBound is specified;o" is assumed. When ngperBound is specified1” is
assumed. In the above example,dfigloyeeOfTheMonth andparent references and the
name attribute use both defaults, and therefore are single-valued. This means that code
generation will generaiget() andset() methods for these features.

* An upperBound that is set to-1” (as in thedepartment andsubsidiary references) indicates
that there is no upper bound. This implies that the cardinality is multi-valued. Therefore
noset() method will be generated and thatgje®() method will return aList

» Theeopposite attribute identifies the opposite end of a relationship that is navigable in
both directions. (For example, theartment reference specifies apposite attribute
while theemployeeOfTheMonth reference does not.) Thepposite attribute is needed so
that the generated code will ensure that when one end of a relationship is modified, the
other end will be updated accordingly.

* When theesolveProxies attribute is set tdalse”, (see themployeeOfTheMonth reference),
the generatedet() method will assume that the target object is never a proxy, and
therefore will not attempt to resolve the target. This improves the performance of the

EMF Users’ Guide Draft 1.0 September 17, 2002 24

get() method, but it should only be used if you are sure that the target oar a reference
will never be stored in a different document from the source.

3.1.2.4 The Department Class Element in the Ecore Document

The XMI that defines th®epartment class from thé&nterprise model is:

<eClassifiers xsi:type="ecore:EClass" name="Department">
<eReferences name="company" eType="#//Company" transient="true"
eOpposite="#//Company/department"/>
<eReferences name="employee" eType="#//Employee" upperBound="-1"
containment="true" eOpposite="#//Employee/department"/>
<eAttributes name="number"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
</eClassifiers>

3.1.2.5 The Person Class Element in the Ecore Document

An abstract class is specified assaore:EClass element in an XMI document where the
abstract attribute is set ttirue”. For example, the XMl that defines tRerson class
from theEnterprise model is

<eClassifiers xsi:type="ecore:EClass" name="Person" abstract="true">
<eAttributes name="comments"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
upperBound="-1"/>
<eAttributes name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
</eClassifiers>

Note the following:

» Theabstract="true" attribute will cause code generation to add the abstract keyword to the
generated implementation class.

3.1.2.6 The Employee Class Element in the Ecore Document

The XMI that defines th&mployee class from thé&nterprise model is:

<eClassifiers xsi:type="ecore:EClass" name="Employee" eSuperTypes="#//Person">
<eOperations name="initiateLeave">
<eParameters name="startDate" eType="#//Date"/>

</eOperations>

<eReferences name="department" eType="#//Department" transient="true" eOpposite="#//Department/
employee"/>

<eAttributes name="manager" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//[EBool-
ean"

EMF Users’ Guide Draft 1.0 September 17, 2002 25

defaultValueLiteral="false"/>
<eAttributes name="email" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eAttributes name="employmentType" eType="#//EmploymentType" defaultValueLiteral="FullTime"/>
<eAttributes name="dateOfHire" eType="#//Date"/>
<eAttributes name="yearsOfService" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//
Elnt"

changeable="false" volatile="true" transient="true"/>
<eAttributes name="leaveOfAbsenceStart" eType="#//Date" unsettable="true"/>
</eClassifiers>

Note the following:

» TheesuperTypes="#//Person” attribute means that the generated code foEthployee
interface will extend th@erson interface and that themployeelmpl class will
extend thd?ersonimpl class.

* Thechangeable="false" attribute (Segearsofservice) wWill mean that nset() method will
be generated for the attributes and references to which it applies.

* Thevolatile="true" attribute (segearsofservice) will mean that no storage will be reserved
for the attributes and references to which it applies and also that the geget@ted
andset() methods will throw atUnsupportedOperationException

* Thetransient="true" attribute (segearsofservice) will mean that the attributes and refer-
ences to which it applies will not be serialized.

* The data type of each attribute and reference is specified througtyghattribute.
For primitive types, the value efype is a type that is defined in the ecore model (e.g.
"ecore:EDataType http://www.eclipse.orglemf/2002/Ecore#//EString”). IN the case of th@nployment-
Type anddateOfHire attributes, the value efiype are types that are defined in the enter-
prise package (e:g/EmploymentType" and"#//Date".)

* ThedefaultvalueLiteral attribute (se@anager andemploymentType) provide the initial value
that the attribute will have if it has not been explicitly set.

* Theunsettable="true" attribute (se@aveofAbsencestart) will mean that the generated inter-
face will includeunset() andisSet() = methods for the attribute to which it
applies. (The use ahsettable="true" incurs some runtime overhead due to the fact that
the implementation for this will require an additional field to remember whether or not
the attribute has been set.)

* Theeoperations element (which defines thesiateLeave method) means that the indicated
method will be will generated in the interface and implementation class. The generated
Employeelmpl class will include a stub implementation of this method. The stub imple-
mentation will throw atunsupportedOperationException.

3.1.2.7 The EmploymentType Enumeration Element in the Ecore Document

An enumeration is specified as etore:EEnum element in an XMI document. For
example, the XMl that defines tit&mploymentType enumeration from the
Enterprise model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 26

<eClassifiers xsi:type="ecore:EEnum" name="EmploymentType">
<elLiterals name="FullTime"/>
<elLiterals name="PartTime" value="1"/>
<elLiterals name="OnlLeave" value="2"/>

</eClassifiers>

Note the following:
* TheelLiterals elements identify the literals that comprise this enumeration.

» Eachvalue attribute should be unique. (The literal namedime uses the default for
value which is"0".)

3.1.2.8 The Date Datatype Element in the Ecore Document

A datatype is specified as anore:EDataType element in an XMI document. For exam-
ple, the XMl that defines thBate datatype from th&nterprise model is:

<eClassifiers xsi:type="ecore:EDataType" hame="Date"
instanceClassName="java.util. Date"/>

Note the following:

» TheinstanceClassName attribute identifies the java interface or class to which the
datatype maps.

3.1.3 Code Generation Using Annotated Java Interfaces

If you prefer to use Java interfaces to specify your model, all you need to do is to write a
Javainterface declaration to represent each class in your model and aalavaleclara-
tion to define each enumeration in your model.

Within eachinterface you will need to specify get() method for each attribute or
relationship in the model and within eachs you will need to specify a field to repre-
sent each enumeration literal.

Each of theseterface ~ statementsjass statementgget() methods, and fields should
be preceded by a javadoc comment that includ@sredel tag. This tag is used to tell
the code generation utility that the construct represents an element of your model.

The code generation utility will automatically expand yeuriace declarations to
include any other methods that are needed to represent and access the classes in your
model. All the necessary implementation classes will also be generated automatically.

EMF Users’ Guide Draft 1.0 September 17, 2002 27

Much of the information that is needed to generate code can be gleaned from the Java
interface specification. For example, the name of the package that a class belongs to is
derived from theackage Statement that appears in the corresponidisigce declara-

tion. Also, the names of all attributes are derived by stripping off the pgix™from

the method names. For single-valued attributes and references, the type is the return type
of theget() method. Multi-valued attributes and references are identified by methods
that have a return type bfst orEList

Ecore properties that cannot be derived from the Java source code can be expressed via the
@modeltags. Each property is specified in the form:

/*‘k

* @model [<property>=<value>...]
*/

A full list of the possible properties can be foundaxction 4.1, “Ecore Properties and
Codegen Specifications,” on page 56

Examples of the@modeltags that are needed to specify émgerprise model illus-
trated in Figure 1, “UML for enterprise model,” on page 8 can be found in the following
sections:

» “Java Specification for the Enterprise Package” on page 28

» “Java Specification for the Company Class” on page 29

» “Java Specification for the Department Class” on page 31

» “Java Specification for the Person Class” on page 31

» “Java Specification for the Employee Class” on page 32

» “Java Specification for the EmploymentType Enumeration” on page 33

3.1.3.1 Java Specification for the Enterprise Package

In certain cases, it may be useful to provide a interface to define a package. Note that usu-
ally, this declaration is not required at all. The classes and enumerations that belong to the
package in your model are automatically identified based andiree andclass dec-
larations that are in a java package. The datatypes that belong to your package are identi-
fied by attributes and methods that use types that are not classes in your model.

The only situation where it may be necessary to provide the declaration shown here is
when you wish to override some the default settings for the package or when you wish to
define a datatype that is not actually referenced in your model.

EMF Users’ Guide Draft 1.0 September 17, 2002 28

package org.eclipse.emf.samples.enterprise;

public interface EnterprisePackage extends EPackage{
String eNAME =" enterprise
String eNS_URI =" enterprise.xmi
String eNS_PREFIX =" enterprise

/**

* @model instanceClass="java.util.Date"
*/
EDataType getDate();

} //[EnterprisePackage

Note the following:

» TheeNAMEeNS_URI, andeNS_PREFIX shown here are not actually required in
this case because the indicated values are in fact the default values that would normally
be generated based on thaeage statement.

* A get method in the package interface that hasraniel tag and that has a return type
of org.eclipse.emf.ecore.EDataType represents a datatype in your model. The
instanceClass attribute on theamodel tag identifies the java interface or class to which
the datatype maps.

* Note that the classes and enumerations that are part of the package do not have to be
specified explicitly. The EMF code generation utility will automatically determine the
rest of the contents of the package based on the other interfaces and classes that are pro-
cessed.

3.1.3.2 Java Specification for the Company Class

A class in your model is specified as a Java interface. The name of the class is the name of
the interface. The attributes and references in the class are represayetyl bynethods
in your interface that are preceded hgreodel tag.

For example, the Java interface that definesGbmpany class from thé&nterprise
model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 29

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;

/**

* @model
*/
public interface Company extends EObject{

/**

* @model
*/
String getName();

/**

* @model type="Department" opposite="company" containment="true"
*

/

EList getDepartment();

/**

* @model resolveProxies="false"
*/
Employee getEmployeeOfTheMonth();

/**

* @model opposite="subsidiary"
*/
Company getParent();

/**

* @model type="Company" opposite="parent"
*/
EList getSubsidiary();

} /l Company

Note the following:

* When theget) method returns a single object, the cardinality of the attribute or refer-
ence is single-valued. (For example, seeyth@me() , getEmployeeOfTheMonth() , and
getParent) Mmethods.) This means that code generation will generatgétf)jh and
set() methods for these features.

 When theget() method returns BList , the cardinality of the attribute or reference is
multi-valued. (For example, see tgDepartment) andgetSubsidiary() methods).
This means that neet() method will be generated. Note that the attribute on the
@model tag is required in this case to indicate the type of object that is contained in the
EList

» Theopposite attribute on theamodel tag identifies the opposite end of a relationship
that is navigable in both directions. (For example géfmepartment() method speci-
fies anopposite attribute while th@eteEmployeeOfTheMonth() method does not.) The
opposite attribute is needed so that the generated code for the implementation of the
method will ensure that when one end of a relationship is modified, the other end will
be updated accordingly.

* When theesolveProxies attribute on theamodeltag is set toralse” , (See thgetEm-
ployeeOfTheMonth() method), the generated implementation ofgb®) method will
assume that the target object is never a proxy, and therefore will not attempt to resolve
the target. This improves the performance ofge€) method, but it should only be
used if you are sure that the target of the reference will never be stored in a different
document from the source.

EMF Users’ Guide Draft 1.0 September 17, 2002 30

3.1.3.3 Java Specification for the Department Class

The Java interface that defines thepartment class from thé&nterprise model is:

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
/**
* @model
*/
public interface Department extends EObject{
/**

* @model

*

int getNumber();

/**

* @model opposite="department"

*/

Company getCompany();

/**

* @model type="Employee" opposite="department" containment="true"
*/

EList getEmployee();
} // Department

3.1.3.4 Java Specification for the Person Class

The Java interface that defines faerson class from the&nterprise model is:

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EODbject;

/**

* @model abstract="true"

*/

public interface Person extends EObject{
/**

* @model type="String"

*/

EList getComments();

/**

* @model

*/

String getName();

} // Person

Note the following:

* Theabstract="true" attribute on theamodel tag will cause code generation to add the
abstract keyword to the generated implemenation class.

EMF Users’ Guide Draft 1.0 September 17, 2002 31

3.1.3.5 Java Specification for the Employee Class

The Java interface that defines tmployee class from thé&nterprise model is:

package org.eclipse.emf.samples.enterprise;
/**

* @model

*/

public interface Employee extends Person{

}

/**

* @model default="false"
*/
boolean isManager();

/**

* @model
*/
String getEmail();

/**

* @model default="FullTime"
*/
EmploymentType getEmploymentType();

/**

* @model dataType="enterprise.Date"
*/
Date getDateOfHire();

/**

* @model transient="true" changable="false" volatile="true"
*

/

int getYearsOfService();

/**

* @model unsettable="true" dataType="enterprise.Date"
*/
Date getLeaveOfAbsenceStart();

/**

* @model opposite="employee"
*/
Department getDepartment();

/**

* @model parameters="org.eclipse.emf.samples.enterprise.Date"
*

/

void initiateLeave(Date startDate);

/I Employee

Note the following:

Theextends Person specification on this interface will mean that Eraployee-
Impl class will extend th@ersonlmpl class.

The changable="false" attribute on themodel tag (Se@etyearsOfsService()) Will
mean that nget() method will be generated for the attributes and references to
which it applies.

The volatile="true" attribute on themodel tag (Se@etyearsOfService()) will mean
that no storage will be reserved for the attributes and references to which it applies and

EMF Users’ Guide Draft 1.0 September 17, 2002 32

also that the generated implementations fogd#t€ andset() methods will throw
anUnsupportedOperationException

* Thetransient="true" attribute on themodel tag (Se@etyearsOfService()) will mean
that the attributes and references to which it applies will not be serialized.

* Thedefault attribute on theamodeltag (Se@sManager() andgetEmploymentType())
provide the initial value that the attribute will have if it has not been explicitly set.

e Theunsettable="true" attribute on theamodel tag (SeetLeaveOfAbsenceStart())
will mean that the generated interface will inclugtset() andisSet() methods
for the attribute to which it applies. (The usetitable="true" incurs some runtime
overhead due to the fact that the implementation for this will require an additional field
to remember whether or not the attribute has been set.)

* TheinitiateLeave(Date startbate) ~ Will be treated as an operation. The generated
Employeelmpl class will include a stub implementation of this method.

3.1.3.6 Java Specification for the EmploymentType Enumeration

An enumeration in your model is specified asitic final class that extends
org.eclipse.emf.common.dutil. AbstractEnumerator . YOU need to identify the names

and values of the enumeration literals and EMF code generation will automatically fill in
the implementation details. For example, the Java class that defines the
EmploymentType enumeration from th&nterprise model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 33

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util. AbstractEnumerator;

/**

* @model
*/
public final class EmploymentType extends AbstractEnumerator

{

/**

* @model name="FullTime"

*/

public static final int FULL_TIME = 0;
/**

* @model name="PartTime"

*/

public static final int PART_TIME = 1,
/**

* @model name="OnLeave"
*/
public static final int ON_LEAVE= 2;

private EmploymentType(int value, String name)

{

super (value, name);

}

} /[EmploymentType

Note the following:

» Eachpublic static final int field defines an enumeration literal. The initial values
for each field should be unique.

* The name of each literal is given by thee attribute on theamodel tag.

3.2 Generating your model

The steps for invoking the EMF code generation utility are described in the document
called ‘Tutorial: Generating an EMF Modg&lwhich can be found in the “Documents”
section of the EMF web site. Please seip://www.eclipse.org/emfbr details.

3.3 Configuring your EMF Runtime Environment
There is some setup that may be needed before you can start working with EMF objects.

In some cases there are three alternative mechanisms you can use to do the necessary
setup. The choice of which mechanism to use will depend on whether or not your applica-
tion runs from within the Eclipse workbench and whether the applicable configuration
option applies globally or locally.

EMF Users’ Guide Draft 1.0 September 17, 2002 34

If your application runs as a plugin within the workbench, you can use your plugin.xml
file to specify many of the configuration options you need. Otherwise, you will need to
invoke APIs that initialize and register the prerequisite objects. The specific API that you
need to use will depend on whether the customization is meant to apply globally or locally.

The following sections list the setup actions that you may need to take. Where appropriate,
each section describes the alternative setup mechanisms for specifying each customiza-
tion.

If you are using a generated package, you will need to make sure the package is either
initialized or registered before you beg8ee “Registering/Initializing a Package” on
page 35.

» At runtime, the contents of a generated package are accessed through a singleton
instance of a generated Package class and instances of classes in the package are cre-
ated using a singleton instance of a generated Factory class. Your application may need
to establish a reference to one or both of these singleton olgeetSAccessing the
Package and Factory classes” on page 37.

* A Resource corresponds to a collection of objects that are serialized in a single per-
sistent stream. If you are creating new objects or loading objects from an existing
stream, you will need to know how to creat@esource . See “Creating a
Resource " on page 37.

* A ResourceSet is a collection oResource objects. You will need a
ResourceSet if you haveResource s that have cross references or have common
customizationsSee “Creating &esourceSet ” on page 38.

* A Resource.Factory is used by the EMF runtime to create a ri@gource
whenever one is needed. If you need to provide your own implementation of the
Resource interface (e.g., if you want to serialize in a format other than XMI) then
you will also have to implement and register a Resource.Factory to instantiate your
Resource class.See “Registering Resource.Factory " on page 39.

* A URIConverter is a class that determines how a relatiV is resolved to an
absoluteJRI. If you need to override the default processing, you will need to imple-
ment and register your own implementation oftiRIConverter interface. See
“Registering a URIConverter” on page 41.

» Adapter objects handle events that are triggered Mytifier . One possible
mechanism for establishing the association between Adapter objects and Notifier
objects is to attach an AdapterFactory to a Resourcé&®et."Registering an Adapter-
Factory” on page 41.

3.3.1 Registering/Initializing a Package

For generated packages, before you can access the classes of a package, you need to
ensure that the package has been registered and initialized. If you are running within the
EMF workbench, you can register packages througpltiggn.xml file. (See “Regis-
tering and Initializing a Generated Package in a Plugin” on pap©8terwise, you need

EMF Users’ Guide Draft 1.0 September 17, 2002 35

to explicitly invoke a method that will initialize the packag8&eg “Registering and Ini-
tializing a Generated Package Using APIS” on page 36.

For dynamic packages, i.e., packages that are created by your application at runtime, your
application is responsible for the initialization and registration of the pack&ge.Reg-
istering a Dynamic Package” on page)36.

3.3.1.1 Registering and Initializing a Generated Package in a Plugin

To preregister a package or packages, you would include the
org.eclipse.emf.ecore.generated_package extension point in yoyplu-
gin.xml file. For example, assume that you generated the Enterprise package into a Java
package called “org.eclipse.emf.samples.enterpise”. Your plugin may contain the follow-
ing extension point element:
<extension point="org.eclipse.emf.ecore.generated_package">
<package uri = "enterpise.xmi"

class = "org.eclipse.emf.samples.enterpise.EnterpisePackage"/>
</extension>

3.3.1.2 Registering and Initializing a Generated Package Using APIs

If you are running outside of the workbench, you will need to explicitly initialize each
package that you require. You do this by invoking the sitait(@ method that is

defined on each package implementation. For example, a method to initialize the Enterp-
isePackage would look like this:

protected void initializeEnterprisePackage() {
EnterpisePackagelmpl.init();

}

3.3.1.3 Registering a Dynamic Package

If you have a dynamic package (i.e., a package that is created by your application at runt-
ime rather than being generated) you will need to ensure that your package is correctly
registered.

After you create your package you must ensure that it is registered. One way to do this is
using the following method:

public static void registerDynamicPackage(String uri, EPackage pkg)
{
EPackage.Registry.INSTANCE.put(uri, pka);
}
Where:

* uri Is the string under which the package is registered
* pkg is the package itself

EMF Users’ Guide Draft 1.0 September 17, 2002 36

A dynamic package must be an instance of a class that implemeBRableage inter-

face. Note the default implementationEf?ackage , EPackagelmpl , has constructors

that take gpackageURI string as one of their arguments register the new package auto-
matically. Therefore if you use one of these constructors to create your new package, you
do not have to do anything else to ensure that the package is registered. However, if you
use one of the oth&Packagelmpl constructors you need to register the package as
shown above.

3.3.2 Accessing the Package and Factory classes

If you need to access the meta data for your package, you will need to acquire a reference
to the generatedackage class. Similarly, if you need to create instances of the classes in
your model, you will need to do so using the generBtadory class. If you access

these objects frequently, you may find it convenient to cache the references to them. For
example, a method to look up and cacheBheerpisePackage andEnterpise-

Factory might look like this:

EnterpisePackage enterpisePackage= null ;
EnterpiseFactory enterpiseFactory= null ;
protected void lookupPackageAndFactory() {
Map registry = EPackage.Registry.INSTANCE;
String enterpiseURI = EnterpisePackage.eNS_URI,
enterpisePackage (EnterpisePackage)registry.get(enterpiseURI);
enterpiseFactory enterpisePackage.getEnterpiseFactory();

3.3.3 Creating aResource

A Resource should be created through eitheéR@source.Factory ora
ResourceSet . (Actually, thecreateResource() method on th&®esourceSet
class is implemented usifesource.Factory , so ultimately, everjResource
object is created throughResouce.Factory .)

Resource objects may also be created automatically. If you reference an object that is
defined in aResource that has not yet been loaded, Resource will be automati-
cally loaded.

For example, to createResource from aResourceSet |, you could use the following
method.

public static Resource createResourceFromResourceSet(ResourceSet resSet,
String uri)
{

Resource r = null ;
r = resSet.createResource(URI.createURI(uri));

return r

}
Where:

EMF Users’ Guide Draft 1.0 September 17, 2002 37

* resSet IS theResourceSet that will contain the neWResource
* uri isthe URI for thdResource to be serialized

To create &esource from aResource.Factory , you could use the following
method. Note that if you do this, you will eventually need to ad&Rkdsource to a
ResourceSet explicitly.

public static Resource createResourceFromDefaultFactory(String uri)

{
Resource r = null
Resource.Factory resFactory =
Resource.Factory.Registry.INSTANCE.getFactory(
URI.createURI(uri));
r = resFactory.createResource(URI.createURI(uri));

return r

}
Where:

* uri isthe URI for in which the Resource to be serialized

3.3.4 Creating aResourceSet

You can create ResourceSet simply by invokingnew on an implementation of the
ResourceSet interface. The default implementation is in
org.eclipse.emf.ecore.resource.impl

ThecreateResourceSet() method defined below provides the convenience of
being able to initialize thResourceSet with a specifiedResource.Fac-
tory.Registry or URIConverter . If these are needed but do not exist at the time
theResourceSet is created, they can be added later.
public static ResourceSet createResourceSet(Resource.Factory.Registry r,
URIConverter c) {
ResourceSet resSet = new ResourceSetimpl();

if (c!= null) resSet.setURIConverter(c);
if (r'= null) resSet.setResourceFactoryRegistry(r);
return resSet;

Where:

* r is theResource.Factory.Registry , if any, that will be used by the new
ResourceSet

* cistheURIConverter , if any, that will be used by the ndResourceSet

EMF Users’ Guide Draft 1.0 September 17, 2002 38

3.3.5 Registering &Resource.Factory

You have the option of substituting your own implementation oRé&ource interface
for the default implementation provided by EMF. This enables you to control the format
used to serialize your data.

In order to specify which implementationRé&source to use, you need to register a
Resource.Factory that can create an instance of the de$Resburce . The default
Resource.Factory used to create XMI streams is
org.eclipse.emf.ecore.xmi.XMIResourceFactorylmpl

You can register Resource.Factory by either protocol or file extension. Once a
Resource.Factory is registered, anytimeResource is generated, if the URI

matches one of the registered protocols or extensions, the sp&agedrce.Fac-

tory will be used. As a special case, “*” can be used as a wild card to register an exten-
sionResource.Factory as applying to all extensions. (Protocols take precedence, so
if a URI matches both a registered protocol and a registered extension, the protocol will be
used. Specific extensions take precedence over the wild card.)

TheResource.Factory that you register can be any type that implements the
org.eclipse.emf.ecore.resource.Resource.Factory interface. So, for
example, if you want to save your documents in a format other than XMI, you would
implement aResource that loads and saves the format you choose and then you would
implement and registerResource.Factory that creates an instance of your

Resource implementation.

3.3.5.1 Registering &esource.Factory for a Plugin

You can use the plugin extension poirdsd eclipse.emf.ecore.extension_parser” and
“org.eclipse.emf.ecore.protocol_parser” to register an implementation of a
Resource.Factory . (The term “parser” is used here because the specified
Resource.Factory determines which type &esource is used which in turn deter-
mines how arnnputStream will be parsed.)

For example, if you have defined an implementatioR@gource.Factory called
org.eclipse.dtd.impl.DTDResourceFactorylmpl which creates a

Resource that can be used to parse and serialize DTD files, and you want this to apply to
any file that has an extension of “.dtd”, you could do the following:

EMF Users’ Guide Draft 1.0 September 17, 2002 39

<extension point = "org.eclipse.emf.ecore.extension_parser">
<parser type="dtd"
class="org.eclipse.dtd.impl.DTDResourceFactorylmpl"/>
</extension>

On the other hand, if you want yoDif DResource implementation to be used for any
URI that has a protocol of “abc”, you could do the following:

<extension point = "org.eclipse.emf.ecore.protocol_parser">
<parser protocolName="abc"
class="org.eclipse.dtd.impl.DTDResourceFactorylmpl"/>
</extension>

3.3.5.2 Registering &esource.Factory Globally

The following method registersResourceFactory in the globaResource.Fac-
tory.Registry under a specified key.
public static void registerGlobalResourceFactory(
Resource.Factory f,
String key,
boolean isExtension)

Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m;

if (isExtension) m=reg.getExtensionToFactoryMap();

else m=reg.getProtocolToFactoryMap();

m.put(key, f);

Where:
» f isthe Resource.Factory to be registered.
* key Is the String under which the factory is registered.

* Theisextension flag indicates if the key represents an extensio# § or protocol
(false)

3.3.5.3 Registering &esource.Factory locally

The following method registersResourceFactory in the localResource.Fac-
tory.Registry for a givenResourceSet under a specified key.

EMF Users’ Guide Draft 1.0 September 17, 2002 40

public static void registerLocalResourceFactory(
ResourceSet resSet,
Resource.Factory f,
String key,
boolean isExtension)

Resource.Factory.Registry reg = resSet.getResourceFactoryRegistry();
if (reg== null) {
reg = new ResourceFactoryRegistrylmpl();
resSet.setResourceFactoryRegistry(reg);

}

Map m;
if (isExtension) m=reg.getExtensionToFactoryMap();
else m=reg.getProtocolToFactoryMap();
m.put(key,),
}
Where:

* resSet IS theResourceSet that defines the context for which the registration is in
effect.

» f is theResource.Factory to be registered.
* key is theString under which the factory is registered.

* Theisextension flag indicates if the key represents an extensio# § or protocol
(false)

3.3.6 Registering a URIConverter

If you need a customizddRIConverter you will need to define the implementation,
create an instance of the implementation, and then attachiRdsaaurceSet . There is
no mechanism for registeringlRIConverter for a plugin.

public static void setURIConverter(ResourceSet resSet, URIConverter c¢) {
if (c!= null) resSet.setURIConverter(c);
return

}

Where:
* resSet IS theResourceSet
* cistheURIConverter , that will be used by thResourceSet

3.3.7 Registering an AdapterFactory

An AdapterFactory is used to creatddapter objects and associate them with
Notifier objects. You need to register one or mddapterFactory objects with a
ResourceSet

EMF Users’ Guide Draft 1.0 September 17, 2002 41

public static void setURIConverter(ResourceSet resSet, AdapterFactoryaf) {
if (af'= null) resSet.getAdapterFactories().add(af);
return

}

Where:
* resSet IS theResourceSet
» af istheAdapterFactory |, that will be added to thiResourceSet

3.4 Running your application

3.4.1 Creating Instance Data

The following method illustrate the construction of two resources that contain instances of
classes that are defined in the enterprise model.

EMF Users’ Guide Draft 1.0 September 17, 2002 42

/**
* createlnstances
*
* Creates two resources that contain instances of classes from the
* enterprise package and adds the resources to the specified resource set.
*
*/
static void createlnstances(ResourceSet resSet) {
/I Access the factory (needed to create instances)
Map registry = EPackage.Registry.INSTANCE;
String enterpriseURI = EnterprisePackage.eNS_URI;
EnterprisePackage enterprisePackage =
(EnterprisePackage) registry.get(enterpriseURI);
EnterpriseFactory enterpriseFactory =
enterprisePackage.getEnterpriseFactory();

/I Create the resources
Resource resl =

resSet.createResource(URI.createURI("megacorp.enterprise”);
Resource res2 =

resSet.createResource(URI.createURI("acme.enterprise”);

/I Create the first company and add it to a resource
Company cl1 = enterpriseFactory.createCompany();
cl.setName("Mega Corp");

Department dl1 = enterpriseFactory.createDepartment();
d1.setNumber(99);

Employee el = enterpriseFactory.createEmployee();
el.setName("Jane Doe");

cl.getDepartment().add(d1);
d1.getEmployee().add(el);
resl.getContents().add(cl);

/I Create the second company and add it to a resource
Company c2 = enterpriseFactory.createCompany();
c2.setName("ACME");

Department d2 = enterpriseFactory.createDepartment();
d2.setNumber(101);

Employee e2 = enterpriseFactory.createEmployee();
e2.setName("John Smith");

c2.getDepartment().add(d2);
d2.getEmployee().add(e2);
res2.getContents().add(c2);
cl.getSubsidiary().add(c2);

}

This code performs the following tasks:

» Accesses the factory for the enterprise package. This involves first going to the EPack-
age.Registry to find the package that is registered under the URI that is assigned to the
enterprise package and then using the package to access the factory.

» Creates two resources.
» Creates the objects that are in the resources and links them together.

EMF Users’ Guide Draft 1.0 September 17, 2002 43

Note that the only objects that are added directly to the resources are the instances of the
Company class. The other classes are connected to the Company class through contain-
ment relationships, and therefore they should not be added to the resources.

The XMI documents that contain the contents of the resources are displayed in the follow-
ing section ‘(Serializing Your Instance Data” on page)44

3.4.2 Serializing Your Instance Data

The following method illustrate how the resources that were construciettiion 3.4.1,
“Creating Instance Data,” on page éh be serialized into XMl files.

/*'k
* Creates and initializes the resrouce set and then saves the
* resources contained in that resource set.
*/
public static void createAndSave() {
/I Initialize the enterprise package
EnterprisePackagelmpl.init();

/I Register the XMI resource factory for the .enterprise extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();

m.put(“"enterprise" , new XMIResourceFactorylmpl());

/I Obtain a new resource set
ResourceSet resSet = new ResourceSetimpl();

/I Create resources and instances; add the resources to the resource set
createlnstances(resSet);

/I Save each resource

Iterator r = resSet.getResources().iterator();

while (r.hasNext()) {
Resource res = (Resource) r.next();
Map options = new HashMap();
options.put(XMIResource.OPTION_DECLARE_XML, Boolean.TRUE);

try {
res.save(options);

} catch (IOException e) {
System.out.printin(e);

}
}

This code performs the following tasks:

« Initializes the enterprise package, which causes the package to be registered so that it
can later be looked up by its URI.

* Registers the XMI resource factory for tleaterprise extension.This will cause all
documents with this extension to be treated as XMI documents.

+ Obtains a resource set.

EMF Users’ Guide Draft 1.0 September 17, 2002 44

» Creates resources and instances using the method deSBeetian 3.4.1, “Creating
Instance Data,” on page 4Phis method will add all the resources it creates into the
specified resource set.

» Saves the resources.

The result of the createlstances method is to produce two resourcesmajked
corp.enterprise andacme.enterprise, which each contain one instance @@mnpany,
aDepartment, and arEmployee.

The contents of themwegacorp.enterprise resource is:

<?xml version="1.0" encoding="ASCII"?>
<enterprise:Company xmi:version="2.0" xmIns:xmi="http://www.omg.org/XMI" xmiIns:enterprise="enter-
prise.xmi" name="Mega Corp">

<department number="99">

<employee name="Jane Doe"/>

</department>

<subsidiary href="acme.enterprise#/"/>
</enterprise:Company>
<?xml version="1.0" encoding="ASCII"?>

And the contents of thecme.enterprise resource is:

<enterprise:Company xmi:version="2.0" xmIns:xmi="http://www.omg.org/XMI" xmiIns:enterprise="enter-
prise.xmi" name="ACME">
<department number="101">
<employee name="John Smith"/>
</department>
<parent href="megacorp.enterprise#/"/>
</enterprise:Company>

3.4.3 Loading Instance Data

The following method illustrates how the XMl files that were generated in the example in
Section 3.4.2, “Serializing Your Instance Data,” on pageaf¥be loaded back into mem-
ory.

EMF Users’ Guide Draft 1.0 September 17, 2002 45

/**
* load

*

* loads and prints the contents of a resource set
*
*/
public static void load() {
/I Initialize the enterprise package
EnterprisePackagelmpl.init();

/I Register the XMI resource factory for the .enterprise extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();

m.put(“"enterprise" , new XMIResourceFactorylmpl());

/I Obtain a new resource set
ResourceSet resSet= new ResourceSetimpl();

/I Load one of the resources into the resoruce set.
Resource res = resSet.getResource(
URl.createURI("megacorp.enterprise"), true);

/I Print all the resources inthe resource set.
/I Note: the process of printing the contents of the first resource
/I will cause the second resource to be demand loaded.

List resList = resSet.getResources();

for (int i=0; i<resList.size(); i++) |
res = (Resource) reslList.get(i);
System.out.printin("\n ");
System.out.printin("\nContents of resource " +res.getURI());
System.out.printin("\n \n"

UGRefPrint.print(res.getContents());

}

This code performs the following tasks:

« Initializes the enterprise package, which causes the package to be registered so that it

can later be looked up by its URI.

» Registers the XMI resource factory for tleaterprise extension.This will cause all

documents with this extension to be treated as XMI| documents.
+ Obtains a resource set.
» Loads one of the resources explicitly.

» Prints out both of the resources using the print utility that is descrili&ecion 3.6,

“Using Reflective APIs,” on page 47

The output of this method is shown below. Note that ordgacorp.enterprise resource

is explicitly loaded by this code, but the output includes botgacorp.enterprise and
acme.enterprise. The megacorp.enterprise resource includes a reference to an object in
theacme.enterprise document. Therefore, the process of printingneegjacorp.enter-

prise forces acme.enterprise to be demand loaded. In the above coderabloge,

EMF Users’ Guide Draft 1.0 September 17, 2002 46

initially contains one resource, but during the call@®RefPrint .print, the second
resource is added to this list.

Contents of resource megacorp.enterprise

Company:
name: Mega Corp
department:
number: 99
company:
name: Mega Corp
employee:
name: Jane Doe
department:
number: 99
subsidiary:
name: ACME

Contents of resource acme.enterprise

Company:
name: ACME
department:
number: 101
company:
name: ACME
employee:
name: John Smith
department:
number: 101
parent:
name: Mega Corp

3.5 Handling notifications

3.5.1 Defining Observers

<tbd>To be done</tbd>

3.5.2 Attaching Observers to Your Objects

<tbd>To be done</tbd>

3.6 Using Reflective APIs

EMF provides APIs that enable you to access your data reflectively. This means that you
can view and manipulate EMF data without having any prior knowledge of the model.

EMF Users’ Guide Draft 1.0 September 17, 2002 47

(See“Examining EObject Instances using Reflection” on pagar@Modifying EOb-

jects using reflection” on page »3Iso, you can dynamically create new classBsd
“Creating New Dynamic Classes” on page)s#.extend classes that have been generated
(See “Extending Generated Classes with Dynamic Classes” on page 53.

3.6.1 Examining EObject Instances using Reflection

The methods described in this section can be used to print out the conterEOd-an
ject without having any prior knowledge of the structure of Ef@bject . The meth-
ods defined here are all static and are assumed to be in the same class.

The only public method in this class is print, which takes a collecti&®bfect objects
and displays the contents of the objects in System.out.

Theprint () method invokeprintObject () to display each object in tl@&ollec-

tion . TheprintObject() method prints the name of the object and then displays the
contents of the object by invokimgintAllAttributes andprintAllRefer-

ences .

3.6.1.1 print

The print method invokgwrintObject () to display each object in ti@&ollection
This can be angollection that containE€ODbject objects. For example, it might be
the contents of Resource .

static public void print(Collection list) {
Iterator iter = list.iterator();
while (iter.hasNext()) {
Object object = iter.next();
if (object instanceof EObject)
printObject ()0, (EObject)object, null , true);
}
}
Where:

* list isthe collection oEObject instances to be printed. (For example, this could be
the collection returned by tlgetContents() method of &Resource object.

3.6.1.2 printObject

TheprintObject() method can be called either on a root object or it can be called to
display the target of a reference. When a root object is printed, the name for the object will
be the name of the object’s class. When a reference is printed, the name will be the name
of the reference.

All the attributes of the object are displayed by calpnigtAllAttributes 0.

EMF Users’ Guide Draft 1.0 September 17, 2002 48

TheprintReferences argument that is passedgontObject () is a flag to indi-

cate whether or not to display the references that belong to the object. In the case of a root
object, the references are always displayed. For a non-root object, the references will be
displayed if the object is being printed as part of its container. (This is needed to prevent
the possibility of infinite recursion when invokipgintObject ().)

If the printReferences flag is true, the references are displayed by cafingj-
AllIReferences()

static private void printObject(
int tablndex,
EObject eObject,
EReference referenceObj,

boolean printReferences) {
if (tablndex I= 0) {
System.out.printin();
for (int i = 0; i < tablndex; i++)
System.out.print(“t"),
}
ENamedElement nameObj =
(referenceObj == null)

? (ENamedElement) eObject.eClass()

. referenceObj;
System.out.printin(nameObj.getName() + ");
printAllAttributes ()(tabindex ~ + 1, eObject);
if (printReferences)

printAllReferences ()(tabindex, eObject);
}
Where:

* tabindex IS an integer that controls the indentation of the output line
* eObject IS the object to be printed.

» referenceObj IS theEReference that was traversed to accessject. If referen-
ceObj ISnull , theeObject IS a root object.

» TheprintReferences flag indicates whether the output for #mject should include
the objects that theobject references. (The references are only printed for contain-
ments.)

3.6.1.3 printAllAttributes

TheprintAllAttributes() method first accesses the meta object for a given object
and then accesses and traverses the list of attributes that belong to the meta object. The
printAttribute() method is invoked for each attribute to print out the appropriate
value, if it exists.

EMF Users’ Guide Draft 1.0 September 17, 2002 49

static private void printAllAttributes(int tabindex, EObject eObject) {

EClass eMetaObject = eObject.eClass();
if (eMetaObject == null)
return
Collection attrs = eMetaObject.getEAllAttributes();
if (attrs == null)
return
Iterator iAttr = attrs.iterator();
while (iAttr.hasNext()) {
EAttribute eAttr = (EAttribute) iAttr.next();
printAttribute ()(tabindex, eObject, eAttr);
}
}
Where:

* tabindex IS an integer that controls the indentation of the output line
* eObject IS the object to be printed.

3.6.1.4 printAttribute

The printAttribute() method displays the value for a single attribute, if it exists.
The value of the attribute is obtained by calling the reflective metkiid E
ject.eGet(EStructuralFeature) . Note that if the attribute is a single-valued

attribute, the value will be a sing@bject . Otherwise it will be &ollection of
objects.

EMF Users’ Guide Draft 1.0 September 17, 2002 50

static private void printAttribute(
int tablndex,
EObject eObject,
EAttribute eAttr)
if ('eObject.elsSet(eAttr)) {
return

}

Object value = eObject.eGet(eAttr);

if (eAttr.isVolatile() || (value == null))
return

String valueS ="' ;

if (eAttr.isMany()) {
Iterator vals = ((Collection) value).iterator();
while (vals.hasNext()) {
if (valueS.length() > 0)
valueS += " "
valueS += vals.next().toString();
}
}
else
valueS = value.toString();
for (int i = 0; i < tablndex; i++)
System.out.print(“t"),
System.out.printin(eAttr.getName() + ™" + valueS);
return
}
Where:

* tabindex IS an integer that controls the indentation of the output line
* eObject IS the object to be printed.
* eattr is the attribute to be printed.

3.6.1.5 printAllReferences

TheprintAllReferences() method first accesses the meta object for a given object
and then accesses and traverses the list of references that belong to the meta object. The
printReference() method is invoked for each reference to print out the appropriate
object, if it exists.

EMF Users’ Guide Draft 1.0 September 17, 2002 51

static private void printAllReferences(int tabindex, EObject eObject) {

EClass eMetaObject = eObject.eClass();
if (eMetaObject == null)
return
Collection refs = eMetaObject.getEAlIIReferences();
if (refs == null)
return
Iterator iRef = refs.iterator();
while (iRef.hasNext()) {
EReference ref = (EReference) iRef.next();
printReference ()(tabindex, eObject, ref);
}
}
Where:

* tabindex IS an integer that controls the indentation of the output line
* eObject IS the object to be printed.

3.6.1.6 printReference

TheprintReference() method displays the value for a single reference, if it exists.
The value of the reference is obtained by calling the reflective m&ibd
ject.eGet(EStructuralFeature) . Note that if the reference is a single-valued

reference, the value will be a sin@gdject . Otherwise it will be &ollection of
objects.

The target of the reference is printed out by calingtObject() recursively. Note

that for containment references, we want to print the contained object plus all of its refer-
ences while for non-containment references, we only want to print the object. This will
prevent the possibility of infinite recursion.

EMF Users’ Guide Draft 1.0 September 17, 2002 52

static private void printReference(
int tablndex,
EObject eObject,
EReference ref) {
Object value = eObject.eGet(ref);

if (ref.isVolatile() || (value == null))
return

if (ref.isMany()) {
Iterator vals = ((Collection) value).iterator();
while (vals.hasNext()) {

EObject eValue = (EObject)vals.next();
if (eValue== null)

return
boolean printNestedReferences =
eValue.eContainer() == eObject;
printObject(tablindex + 1, eValue, ref, printNestedReferences);
}
}
else {
EObject eValue = (EObject)value;
boolean printNestedReferences = eValue.eContainer() == eObject;
printObject(tablndex + 1, eValue, ref, printNestedReferences);
}
}
Where:

* tabindex IS an integer that controls the indentation of the output line
* eObject IS the object to be printed.
* ref Iisthe reference to be printed.

3.6.2 Modifying EObjects using reflection

<tbd> to be done </thd>

3.6.3 Creating New Dynamic Classes

<tbd> to be done </thd>

3.6.4 Extending Generated Classes with Dynamic Classes

<tbd> to be done </tbd>

3.7 Customizing EMF

3.7.1 Creating Keys to Access the Contents oResource

<tbd> to be done </thd>

EMF Users’ Guide Draft 1.0 September 17, 2002

53

3.7.2 Cross File References and Proxies

<tbd> to be done </thd>

3.7.3 Customizing theResource for non-XMI Serialization

<tbd> to be done </thd>

3.7.4 Handling XMI Documents Serialized from a Different Version of Your Model

<tbd> to be done </thd>

3.7.5 Customizing dJRIConverter

Suppose you have special rules for resolving relative URIs. You can implement those rules
by creating your own implementation of the

org.eclipse.emf.ecore.resource.URIConverter interface and attaching it

to theResourceSet that will be used to load and save the resource.

For example, suppose you would like all relative URIs to resolve to a specific location on
your file system. Your implementation ORIConverter could look like this:

EMF Users’ Guide Draft 1.0 September 17, 2002 54

public class UGURIConverterimpl extends URIConverterimpl

{
private URI baseURI= null ;

/**
* Construct a UGURIConverterimpl from a specified base uri
*/

public UGURIConverterimpl(String base)

{
if (base!= null) baseURI=URI.createURI(base);

}

/**
* Normalize the uri.
*<p>
* |f the uri is relative and if the baseURI has been specified,
* simply resolve the uri against the base.
* Otherwise defer to the super classs's implementation.

*/

public URI normalize(URI uri)

{

if (uri.isRelative() && baseURI!= null) {
return uri.resolve(baseURI);

}

return super .normalize(uri);

}

/**
* Creates an output stream and returns it.
* <p>
* |f the normalized uri is a file scheme, use the normalized uri to
* construct the output stream directly. Otherwise defer to the super classs's
* implementation.
*/
public OutputStream createOutputStream(URI uri) throws |OException
{
URI converted = normalize(uri);
String scheme = converted.scheme();
if ("file" .equals(scheme))
{

return createFileOutputStream(converted.toFileString());

}

return super .createOutputStream(uri);

}

/**
* Creates an input stream and returns it.
* <p>
* |f the normalized uri is a file scheme, use the normalized uri to
* construct the input stream directly. Otherwise defer to the super classs's
* implementation.
*/
public InputStream createlnputStream(URI uri) throws IOException
{
URI converted = normalize(uri);
String scheme = converted.scheme();
if ("file" .equals(scheme))

{

return createFileInputStream(converted.toFileString());

EMF Users’ Guide Draft 1.0 September 17, 2002 55

}

return super .createlnputStream(uri);

}
} /I URIConverterimpl

4.0 Quick Reference

The following sections provide reference information:

» See"Ecore Properties and Codegen Specifications” on pader%th description of all
the properties that you may need to use when generating code.

* See'EMF APIs” on page 76or a link to information on using the EMF APIs.

4.1 Ecore Properties and Codegen Specifications

The code patterns used by the EMF code generation utility are determined by the proper-
ties of the packages, classes, attributes, and relationships that you specify in your model.
EMF supports three different formats for the specification of a model, namely, UML,

XMI, and Java. Whichever format you use, you will need to be aware of how the model
properties are specified in that format.

The following sections enumerate all the properties that apply to each element of an Ecore
model. Each section has two tables. The first table lists the properties and how they impact
the code generation process and the second table shows how each of these properties is
specified in each of the three formats.

Here is an overview of the Ecore model elements:

* An EPackage (See “EPackage Properties” on pagg B3a collection of
EClassifier objects. Each package has a package URI which is used to uniquely
identify the package.

* An EClassifier is the description of a type in Ecore. Ed&tBlassifier is
either anEClass or anEDataType

* An EClass (See “EClass Properties” on page)39a description of a funda-
mental Ecore data element. Ev&i@bject is an instance of aBClass .

An EClass may be abstract or concrete and it may derive from other classes. It
consists of zero or moteStructuralFeatures andEOperations

* An EDataType (See “EDataType Properties” on page) @la description of
a type whose values are not Ecore objects. This can be a primitive type, a Java
Class that is defined outside of the Ecore model, d&famum

* An EEnum(See “EEnum Properties” on page)dg.a type that is constructed
for a specified list oEEnumLiterals (See “EEnumLiteral Properties” on

page 72.

EMF Users’ Guide Draft 1.0 September 17, 2002 56

* An EStructuralFeature is a component of aBClass that describe a field that
belongs to the Class. Ea&lStructuralFeature is either arEAttribute (See
“EAttribute Properties” on page §tr anEReference (See “EReference Proper-
ties” on page 69.

EachEAttribute or EReference has atype (i.e. either &Class or an
EDataType) and may also have other properties that define its cardinality, change-
ability, default value (if any), persistence, etc.

* An EOperation (See “EOperation Properties” on page) 1¢ta component of an
EClass that describes a method belonging to the class.

EachEOperation has a type (which may be &tlass , anEDataType , or null)
and also has zero or maE®aramter objects (See “EParameter Properties” on page
75).

EMF Users’ Guide Draft 1.0 September 17, 2002 57

4.1.1 EPackage Properties

The properties of akPackage in Ecore are:

TABLE 1. Ecore Properties for EPackage

Property Usage Default

name The name of the package. This name is used as tNe default.
name of the generated package Interface.

nsURI The Namespace URI of the package, i.e. the URInsName with a suf-
that appears in the xmins tag to identify this packfix of “.xmi”
age in an XMI document.

nsPrefix The Namespace prefix that is used when referencébie nsName with
to instances of the classes in this package are settie first character
alized. converted to upper
case.
eClassifiers The classes, enumerations and datatypes contairedpty

in the package. (Sé&Class Properties” on
page 59“EEnum Properties” on page 62
and“EDataType Properties” on page.p4

eSubpackages The nested packages. This information is used tanone
construct the default names and namespace URIs
for the subpackages. Also, a package and its sub-
packages are treated as a group for the purposes of
initialization, so that when one package is initial-
ized, all the other packages in the group will also

be initialized.
prefix Used as the prefix for the names of the generateame as package
Factory and Package classes. name specified in
the model
basePackage The prefix used for the Java package that contairis (i.e., the empty
the generated code for the model. string)

These properties are specified to EMF code generation in one of the following ways:

* UML - The properties are set via a package object in a UML diagram or via the specifi-
cation dialog box for the package. (S&ection 3.1.1.7, “Ecore Properties for Pack-
ages,” on page 1for an example.)

* XMI - Most of these properties are specified as attributes or sub-elements of the
ecore:EPackage element in the ecore document. Buere:EPackage document is
typically the root of the document. (S8ection 3.1.2.2, “The Enterprise Package Ele-
ment in the Ecore Document,” on pagef@Ban example.) Some of the package prop-
erties are specified in the genPackage element of the genmodel docum&dqi8ee
3.1.2.1, “Genmodel Document for the enterprise Model,” on paderzih example.)

» Java - The properties are implicitly derived from the java package that contains the var-
iousinterface declarations that define the classes in your model.

EMF Users’ Guide Draft 1.0 September 17, 2002 58

Alternatively, you can specify an expliciterface ~ statement for a package or from the
@modeltag that precedes theerface statement. You could do this if you want to
override some of the properties of the package. However, you may find that the easiest
way to do this is to allow the code generation utility to automatically create the initial
version of thisnterface statement, after which you can make the modifications you
require. (Se&ection 3.1.3.1, “Java Specification for the Enterprise Package,” on page
28 for an example.)

TABLE 2. Codegen Specifications for EPackage Properties

Property UML XMI Java
name name of the package in name attributé Implicitly derived from
the UML diagram or the Java packaae
the packageName
property
eNSURI field
eNSPrefix field
eClassifiers The classes, enumera- gClassifiers elemerd Derived from the inter-
tions, and datatypes that faces, classes and
are contained in the datatypes within this
UML Package Java packade
eSubpackages Nested packagés eSubpackages ele- n/&
ment
prefix prefix — property prefix attributd The prefix part of the
name of the Java pack-
agé
basePackage basePackage prop- basePackage The base part of the
erty® attributé Java packa(j’e

a. Specified on thecore:Package element in thecore document

. This is the Java package that is specified on the package statement of the interfaces and/or
classes contained in the package.

. This property is specified on the eCore page of the specification dialog for the UML Package.
. This field is a member of the interface that corresponds to the package itself.
. Subpackages cannot be specified if you use Java interfaces to specify your model.

Specified on thesubPackages element in thggenmodel document.

O

.o Q0

4.1.2 EClass Properties

The properties of akClass in Ecore are:

EMF Users’ Guide Draft 1.0 September 17, 2002 59

TABLE 3. Ecore Properties for EClass

Property

name

instanceClass

defaultValue

abstract

interface

eAttributes

eReferences

eOperations

eSupertypes

Usage Default

Used to construct the names of the generated inteo default
face and implementation class. (The name of the
implementation class has a suffix dfitpl ")

Used by the EMF runtime to validate the type of the generated inter-
objects on a type-safe list. face

For non-dynamic classes, this is always the gener-
ated interfacenull indicates a dynamic class.

The intrinsic default value for a class. This defaultull
will be applied to any attributes of the class.

Note: this property cannot be modified for EClass
objects. It's value is alwaysull

If true , the generated implementation class will false
have theabstract keyword

If true , only the javanterface will be gener- false
ated. There will be no corresponding implementa-
tion class and no create method in the factory.

The attributes associated with the class. Used tonone
construct the accessor methods for the interface

and implementation of the cla3s.
(See“EAttribute Properties” on page 56

The attributes associated with the class. Used tonone
construct the accessor methods for the interface

and implementation of the cla3s.
(See"EReference Properties” on page)69

The attributes associated with the class. Used tonone
construct the additional methods that are part of the
class. (Note: code generation creates stubs for the
implementations of these methods.)

(See*EOperation Properties” on page.y4

The supertypes for this class. Used to construct tmene
extends clauses of the generatederface
andclass statements.

Note: the generated interface will extend from all
the interfaces for all the supertypes. However, the
generated implementation class will only extend
from the implementation class of the first super-
type in the list.

a. Depending on the properties of the attribute or reference, the accessor methods may be

get() ,set()

, isSet() andunset() . Usually, the implementations of these methods

are generated automatically.

EMF Users’ Guide Draft 1.0

September 17, 2002

60

These properties are specified to EMF code generation in one of the following ways:

» UML - The properties are set via a UML class object or via the specification dialog box
for that class. (SeBection 3.1.1.1, “Basic UML Model Elements,” on pagddran
example.)

» XMI - The properties are specified as attributes or sub-elementseabaeEClass
element in the XMI document. Tleeore:EClass is typically one of theClassifiers
sub-elements of thecore:EPackage object that is at the root of the XMI document.
(SeeSection 3.1.2.3, “The Company Class Element in the Ecore Document,” on page
24 for an example.)

» Java - The properties are derived fromith&ace statement for a class or from the
@modeltag that precedes therface statement. (Se®ection 3.1.3.2, “Java Specifi-
cation for the Company Class,” on pagef@an example.)

TABLE 4. Codegen Specifications for EClass Properties

Property UML XMI Java

name The name of the class ame attributé The name of the Java
in the UML diagram interface

instanceClass n/a n/a n/a

abstract Theabstract prop- apstract attributé abstract property
erty on the UML class

interface The<<interface>> interface attributé interface property
stereotype on the UML
Class

attributes All the attributes asso- aitributes element Alltheget() methods
ciated the class on theinterface

that have @modeltag

and whose return type

is a primitive type
references All the relations associ- references elemerft Alltheget() methods

ated with the class on theinterface

that have &@model

tag and whose return

type is an Ecore class

EMF Users’ Guide Draft 1.0 September 17, 2002 61

TABLE 4. Codegen Specifications for EClass Properties

Property UML XMl Java
operations All the operations asso- gperations elemerft Any method that is
ciated with the class flagged with an

@modeltag and is not
theget() method for
and attribute or refer-

encé
supertypes All the generalizations gypertypes elemerft All the classes that are
associated with the listed in theextends
class clause of thenter-

face statement.

a. Specified on theClassifiers element that has asi:type of ecore:EClass in theecore doc-
ument

b. You do not specify the instanceClass property explicitly. The value is always the generated
interface.

c¢. You do not specify the default value property explicitly. The value is always null.

d. This property is set in Rational Rose using the “Abstract” checkbox on the “Details” page of
the “Specification” dialog for a class.

e. The property is specified via tl@@modeltag that precedes tiderface statement for the
class.

f. If there is potential ambiguity withget() method, you need to specify theafame-
ters= " attribute to give signature of the method.

4.1.3 EEnum Properties

The properties of aBEnumin Ecore are:

TABLE 5. Ecore Properties for EEnum

Property Usage Default

name Used to construct the name of the generptdd no default
lic final class

instanceClass Used by the EMF runtime to validate the type of the generated enu-
objects on a type-safe list. meration class

For non-dynamic classes, this is always the gener-
ated enumeration clasaull indicates a dynamic
class.

defaultValue The intrinsic default value for an enumeration. first enumerator
This default will be applied to any attributes of the
enumeration type that do not specify an explicit
default.

Note: this property cannot be modified for EEnum
objects. It's value is always the first enumerator.

EMF Users’ Guide Draft 1.0 September 17, 2002 62

TABLE 5. Ecore Properties for EEnum

Property Usage Default
serializable Controls whether or not the generated factory wiltrue
containconvertToString() andcreate-

FromString() methods for a datatype.

Note: this property cannot be modified for EEnum
objects. It's value is alwaysue .

eliterals The literals associated with this enumeration. Usemtbne
to construct thénal static integers and lit-
erals that comprise the generateds.

(See"EEnumLiteral Properties” on page
72)

These properties are specified to EMF code generation in one of the following ways:

» UML - The properties are set via a UML class object that has a stereotype of

<<enumeration>> , or via the specification dialog box for that class. (Seetion
3.1.1.3, “Attribute Specifications in UML,” on page &8 an example.)

XMI - The properties are specified as attributes or sub-elementseabas: EEnu-
meration element in the XMI document. Tleeore:EEnumeration is typically one of
theeClassifiers sub-elements of thecore:EPackage object that is at the root of the
XMI document. (Se&ection 3.1.2.7, “The EmploymentType Enumeration Element in
the Ecore Document,” on page &6 an example.)

Java - The properties are derived fromdhe statement for an enumeration or from
the @modeltag that precedes thiass statement. Note: thisass statement must be
preceded by @modeltag and should flagged aslic andfinal and shoul@xtend

the org.eclipse.emf.common.util. AbstractEnumerator class. (Se&ection 3.1.3.6,
“Java Specification for the EmploymentType Enumeration,” on pader3h exam-

ple.)

TABLE 6. Codegen Specification for EEnum Properties

Property UML XMI Java
name The name of a UML name attributd® The name of enumera-
class that has the tion class. (An enumer-
<<enumeration>> ation class is any java
stereotype class thatis pre-
ceded by @ model
tag.)
instanceClass n/a n/a n/a
defaultValue n/ac n/ac n/ac

EMF Users’ Guide Draft 1.0 September 17, 2002 63

TABLE 6. Codegen Specification for EEnum Properties

Property
serializable

eliterals

UML XMl Java

n/ad n/ad n/ad

All the attributes of the g jterals elemeft All variables of type
UML class int that are preceded

by a@modeltag.®

a. Specified on aaClassifiers element that has assi:type of ecore:EEnum in theecore doc-

ument

b. You do not specify the instanceClass property explicitly. The value is always the generated

class.

c. You do not specify the default value property explicitly. The value is always the first entry on

the eLiterals list.

d. You do not specify the serializable property explicitly for enumerations. The value of the this
property is always true.

)

. The@modeltag may have rame= argument, but should not have any other arguments.

4.1.4 EDataType Properties

The properties of akDataType in Ecore are:

TABLE 7. Ecore Properties for EDataType

Property
name

instanceClass

defaultValue

serializable

Usage Default

Used to construct the name of thet() method no default
in the package that accesses the datatype.

Used by code generation in constructing the signae default
ture of accessor methods that are generated for
attributes that are typed to this datatype.

Also used by the EMF runtime to validate the type
of objects on a type-safe list.

The intrinsic default value for a datatype. This For java primitive

default will be applied to any attributes of the types, the appropri-

datatype that do not specify an explicit default. ate Java default for
the primitive; Oth-
erwise,null

Controls whether or not the generated factory wiltrue
containconvertToString() andcreate-
FromString() methods for a datatype.

Note: If the serializable flag i&/se for a
datatype, all attributes of that datatype must be
transient.

These properties are specified to EMF code generation in one of the following ways:

EMF Users’ Guide Draft 1.0

September 17, 2002

64

* UML - The properties are set via a UML class object that has a stereotype of
<<datatype>> , or via the specification dialog box for that class. (Seetion
3.1.1.3, “Attribute Specifications in UML,” on page &8 an example.)

» XMI - The properties are specified as attributes or sub-elements of an
ecore:EDataType element in the XMI document. Tleeore:EDataType is typically
one of theeClassifiers sub-elements of thecore:EPackage object that is at the root
of the XMI document. (SeSection 3.1.2.8, “The Date Datatype Element in the Ecore
Document,” on page 2for an example.)

» Java - Any usage of a type that is not an EMF type will be implicitly treated as a
datatype. For example, if one of the attributes or methods in your model uses a type that
is not defined in your model (i.e. there is not interface with the @model tag to define
that type) the type will be treated as a datatype.

Alternatively, you can define a datatype explicitly by addiggt) method to the
package that defines the type. The return type ofjgftil method must be
org.eclipse.emf.ecore.EDataType and the method must be preceded by a
@modeltag. (Se&ection 3.1.3.1, “Java Specification for the Enterprise Package,” on
page 28or an example.)

TABLE 8. Codegen Specifications for EDataType Properties

Property UML XMI Java

name The name of a UML name attributé The name ofet()
class that has the method, without the
<<datatype>> ste- “get ” prefix.
reotype

instanceClass The name of an instanceClass TheinstanceClass
attribute of the class attributé property
which has the
<<javaclass>>
stereotype

defau/tVa/ue n/ac n/ac n/ac

serializable Theabstract prop- serializable attributé Theserializable
erty on the UML class property

a. Specified on aaClassifiers element that has assi:type of ecore:EDataType in theecore
document

b. This property is specified via tt@modeltag that precedes tiget() method that defines
the datatype.

c. You do not specify the default value property explicitly. For java primitive types, the value is
the appropriate Java default for the primitive; Otherwise it is null.

d. This property is set in Rational Rose using the “Abstract” checkbox on the “Details” page of
the “Specification” dialog for a class.

EMF Users’ Guide Draft 1.0 September 17, 2002 65

4.1.5 EAttribute Properties

The properties of agAttribute in Ecore are:

TABLE 9. Ecore Properties for EAttribute

Property Usage Default

name Name used to construct the names of accessor no default
methods

eType The type of the attribute. no default

Note: this must be an EDatatype
changeable Indicates whether the attribute may be modified. true

If changable istrue ,aset() method is gen-
erated for the attribute. Otherwise, set()
method is generated.

volatile Indicates whether the attribute cannot be cachedfalse

If volatile is true , the generated class does
not contain a field to hold the attribute and the gen-
eratedget() andset() methods for the

attribute are empty. In this case you should provide
your own implementation of the accessor methods.
Otherwise, the default implementations for these
methods will provide the expected behavior.

transient Indicates whether the attribute should not be false
stored.

If transient is true , the XMl serializer will
not write this attribute out when the class is serial-
ized. Otherwise, the attribute will be serialized.

unique Indicates whether a many-valued attribute is true
allowed to have duplicates.

If unique istrue ,the implementation of the list
that is used to contain the values will enforce

uniqueness.

defaultValue Determines the value returned by the get methodriio default
the attribute has never been set.

lowerBound Determines the setting of tliequired property 0
(see below).

If lowerBound is 0, therequired property
will be set tofalse . Otherwise, theequired
property will betrue .

EMF Users’ Guide Draft 1.0 September 17, 2002

TABLE 9. Ecore Properties for EAttribute

Property Usage Default
upperBound Determines the setting of timeany property (see 1
below).

If upperBound is 1, themany property will be
set tofalse . Otherwise, thenany property will
betrue .

many If manyis true |, thereis nset() method for false
the attribute and thget() method returns a list
that can only contain objects of the appropriate
type. Otherwise, bothet() andset() methods
are generated and they return and receive a refer-
ence to a single object of the appropriate type.
required Indicates whether the attribute is required. false

Note: this property has no impact on code genera-
tion or on the EMF runtime. This property is has
the potential to be useful for validation.

unsettable Indicates that the attribute may be unset. false

If unsettable istrue ,anisSet() methodis
generated for the attribute. Note that this requires
additional runtime storage for the class

These properties are specified to EMF code generation in one of the following ways:

* UML - The properties are set by via an attribute belonging to a UML class object or via
the specification dialog box for that attribute. (Seetion 3.1.1.1, “Basic UML Model
Elements,” on page l@ndSection 3.1.1.4, “The eCore Properties Page,” on page 15
for examples.)

» XMI - The properties are specified as attributes or sub-elementseabas: EAt-
tribute element in the XMI document. Tleeore:EAttribute is typically one of the
eAttributes sub-elements of agcore:EClass object, which in turn is one of the
eClassifiers sub-elements of thecore:EPackage object that is at the root of the
XMI document. (Se&ection 3.1.2.6, “The Employee Class Element in the Ecore Doc-
ument,” on page 2tor examples.)

» Java - The properties are derived fromdkef) method in thenterface that
defines the class to which this attribute belongs. g&i§ method must be preceded
by a@modeltag. (See&ection 3.1.3.5, “Java Specification for the Employee Class,”
on page 3Zor examples.)

EMF Users’ Guide Draft 1.0 September 17, 2002 67

TABLE 10. Codegen Specifications for EAttribute

Property UML

name the name of the UML
attribute

eType the type of the UML
attribute

changeable isChangeable prop-
ertyP

volatile isVolatile proper-
ty°

transient isTransient prop-
ertyP

unique isUnique property

defaultValue The initial value
assigned to the attribute

lowerBound cardinality stereotyge

upperBound cardinality stereotygk

many n/d

required n/a%

unsettable isUnsettable propery

XMI

name attributé

eType attributé

changeable attributé
volatile attributé®
transient attributé

unique attributé
defaultvalue attributé

lowerBound attributé

upperBound attributé*

n/d

n/ad

unsettable attributé

a. Specified on agAttributes element in thecore document
b. This property is specified on the eCore page of the specification dialog for the UML Attribute
c. This property is specified via ti@modeltag that precedes tiget()

theget()

lowerBound

type is omitted<<0..1>>
e. A return type ofava.util.List

is assumed.

method that defines the attribute.

d. The cardinality stereotype is specifiedadowerBound..upperBound>>
is either0 or 1 andupperBound is eitherl or *. If the cardinality stereo-

Java

name ofget()
method, without the
“get " prefix

For single-valued
attributes, the return
type of the get()
method. Otherwise, the

eType property
changeable proper-
ty©
volatile property

transient property
unique property
defaultValue prop-
erty®

ThelowerBound
property
TheupperBound

property, if it exists;
Otherwise, the return

type of the get meth&d

n/d

n/ad
unsettable
ty©

proper-

method that defines

where

or org.eclipse.emf.common.util.EList

indicates an upperBound of “-1” (which means there is no upper bound.) Any other type indi-
cates an upperBound of “1".

f. You do not specify thenany property explicitly. The value is derived from theperBound .
g. You do not specify theequired property explicitly. The value is derived from the

lowerBound .

EMF Users’ Guide Draft 1.0

September 17, 2002

68

4.1.6 EReference Properties

The properties of akReference in Ecore are:

TABLE 11. Ecore Properties for EReference

Property Usage Default

name Name used to construct the names of accessor no default
methods

eType The type of the reference. no default

In the case of single-valued references ghgpe

is the return type of the generatgt() method.

For multi-valued references, te@ype is the type

of objects that are allowed on the type-safe list that
is returned by thget() method.

Note: for references, the eType must be an EClass
changeable Indicates whether the reference may be modifiedtrue

If changeable ifalse noset() method is gener-

ated for the reference

volatile Indicates whether the reference cannot be cachethlse

If volatile istrue, the generated class does not con-
tain a field to hold the reference and the generated
get() andset() methods for the reference are
empty. In this case you should provide your own
implementation of the accessor methods.

transient Indicates whether the reference should not be false
stored.

If transient igrue, the XMl serializer will not write
this reference out when the class is serialized.

unique Indicates whether a many-valued attribute is true
allowed to have duplicates.

If unique istrue ,the implementation of the list
that is used to contain the values will enforce
uniqueness.

Note: The setting of thenique is alwaystrue
for references.

defaultValue Determines the value returned by the get method if
the attribute has never been set.

Note: ThedefaultValue property is always
null for references. It cannot be modified.

EMF Users’ Guide Draft 1.0 September 17, 2002

TABLE 11. Ecore Properties for EReference

Property Usage Default
lowerBound Determines the setting of tliequired property 0
(see below).

If lowerBound is 0, therequired property
will be set tofalse . Otherwise, theequired
property will betrue .

upperBound Determines the setting of timeany property (see 1
below).

If upperBound is 1, themany property will be
set tofalse . Otherwise, thenany property will
betrue .

many Indicates whether the reference is single-valued dalse
multi-valued.

If manyis true |, there is nset() method for

the attribute and thget() method returns a list
that can only contain objects of the appropriate
type. Otherwise, bothet() andset() methods
are generated and they return and receive a refer-
ence to a single object of the appropriate type.

required Indicates whether the reference is required. false

Note: this property has no impact on code genera-
tion or on the EMF runtime. This property is has
the potential to be useful for validation.

containment Indicates whether the reference is a containmentfalse

If containment is true, the generated accessor
methods will enforce containment semantics. (E.g.,
if you add an object to a new container, that object
will be automatically removed from any existing
container.

container Indicates whether the reference is a container. false

This is the opposite of a containment EReference.
If container is true, the generated accessor methods
will have container semantics.

resolveProxies Indicates whether proxy references should be true
resolved automatically.

eOpposite Identifies the EReference that represents the oppaal/
site end of the relationship.

This is used by the EMF runtime to preserve bidi-
rectional referential integrity. (E.g., if you set one

end of a relationship, the opposite end will be set
automatically.)

These properties are specified to EMF code generation in one of the following ways:

 UML - The properties are set by via a one of the roles of a relation belonging to a UML
class object or via the specification dialog box for that role. $8e&on 3.1.1.1, “Basic
UML Model Elements,” on page JdhdSection 3.1.1.4, “The eCore Properties Page,”
on page 15or examples.)

EMF Users’ Guide Draft 1.0 September 17, 2002 70

» XMI - The properties are specified as attributes or sub-elementseabas ERefer-
ence element in the XMI document. Treore:EReference is typically one of the
eReferences sub-elements of agcore:EClass object, which in turn is one of the
eClassifiers sub-elements of thecore:EPackage object that is at the root of the
XMI document. (Se&ection 3.1.2.3, “The Company Class Element in the Ecore Doc-
ument,” on page 2fbr examples.)

» Java - The properties are derived fromdgkef) method in thenterface that
defines the class to which this attribute belongs. The method must be preceded by a
@modeltag. (Se&ection 3.1.3.2, “Java Specification for the Company Class,” on
page 2%or examples.)

TABLE 12. Codegen Specifications for EReference Properties

Property UML XMl Java
name The name of the UML name attributé The name ofet()
relation. method, without the
“get " prefix.
eType The type of the UML eType attributé For single-valued
relation. attributes, the return
type of the get()
method. Otherwise, the
eType property
changeable isChangeable Prop- changeable attributét ~ Thechangeable
ertyP property
volatile isVolatile proper- yolatile attributeé Thevolatile prop-
tyP erty®
transient isTransient Prop- transient attributé Thetransient prop-
ertyP erty’
unique isUnique property unique attributé® Theunique property
defaultValue The initial value defaultValue attributé The defaultValue prop-
assigned to the attribute erty*
lowerBound cardinality? lowerBound attributé ~ ThelowerBound
property
upperBound cardinality? upperBound attributé TheupperBound
property, if it exists;
Otherwise, the return
type of the get meth&d
many n/d n/d n/d
required n/a% n/a% n/ad
containment roles that are marked as cgntainment attributé® 1 hecontainment

aggregates and have
by-value containment

property

EMF Users’ Guide Draft 1.0

September 17, 2002

71

TABLE 12. Codegen Specifications for EReference Properties

Property UML XMl Java
container the class on the owning container attributé Thecontainer prop-
side of a containment erty*
relation
resolveProxie resolveProxies resolveProxies TheresolveProx-
S property attributé ies property
eOpposite the relation that repre- eQpposite attributé® TheeOpposite prop-
sents the opposite role, erty®
if it exists

a. Specified on aaReferences element in thecore document

b. This property is specified on either the eCoreA or the eCoreB page of the specification dialog
for the UML Association

c. This property is specified via ti@modeltag that precedes tiget() method that defines
theget() method that defines the reference.

d. The cardinality is specified &werBound..upperBound wherelowerBound is
eitherO or 1 andupperBound is eitherl or *. If the cardinality is omitted)..* is
assumed.

e. A return type ofava.util.List or org.eclipse.emf.common.util.EList

indicates an upperBound of “-1” (which means there is no upper bound.) Any other type indi-
cates an upperBound of “1”.

f. You do not specify thenany property explicitly. The value is derived from theperBound .

g. You do not specify theequired property explicitly. The value is derived from the
lowerBound .

4.1.7 EEnumLiteral Properties

The properties of aBEnumLiteral in Ecore are:

TABLE 13. Ecore Properties for EEnumLiteral

Property Usage Default

name The name is used to generate the final static conno default
stants in the enumeration class that are used to
access the literal. These names are derived by
inserting “_" characters to separate the words in
the name and converting the name to upper case.
One of the final static constants is the result of this
conversion and the other one has the suffix of
“ LITERAL"

EMF Users’ Guide Draft 1.0 September 17, 2002

TABLE 13. Ecore Properties for EEnumLiteral

Property Usage Default

value Determines the integer value that is associated with
this literal

instance Identifies the instance of the Enumerator that For dynamic
defines the value of this enumeration literal. "this”; otherwise

the instance of the
_generated Enumer-
ator

This instance may be assigned to any attributes
whose type is the enumeration to which this enu
meration literal belongs.

These properties are specified to EMF code generation in one of the following ways:

» UML - The properties are set by via an attribute belonging to a UML class object that
has the<<enumeration>> stereotype, or via the specification dialog box for that
attribute. (Se&ection 3.1.1.3, “Attribute Specifications in UML,” on pagefdBan
example.)

* XMI - The properties are specified as attributes or sub-elementseaas EEnum-
Literal element in the XMI document. Tleeore:EEnumLiteral is typically one of the
elLiterals sub-elements of ascore:EEnum object, which in turn is one of tleClas-
sifiers sub-elements of thecore:EPackage object that is at the root of the XMI doc-
ument. (Se&ection 3.1.2.7, “The EmploymentType Enumeration Element in the Ecore
Document,” on page 2®r an example.)

» Java - The properties are derived fromitigic static final int field that
defines the enumeration literal within thlass that defines the enumeration to which
this literal belongs. The type of this field mustibe and the method must be pre-
ceded by @ modeltag. (Se&ection 3.1.3.6, “Java Specification for the Employment-
Type Enumeration,” on page & an example.)

TABLE 14. Codegen Specifications for EEnumLiteral Properties

Property UML XMl Java

nhame The name of the name attributé Thename property, if
attribute that represents it is present, otherwise,
the literal the name of the field.

value If specified, the initial yz|ye attributé The initial value of the
value of the attribute. field.

Otherwise, the literals
are numbered consecu-
tively, starting at 0.

instance n/d n/d n/d

a. Specified on aaLiterals element in thecore document
b. This property is specified via ti@modeltag that precedes the field that defines the datatype.

¢. You do not set the instance property explicitly. This property is automatically filled in when the
package to which the Enumeration belongs is initialized.

EMF Users’ Guide Draft 1.0 September 17, 2002 73

4.1.8 EOperation Properties

The properties of akOperation in Ecore are:

TABLE 15. Ecore Properties for EOperation

Property Usage Default
name The name of the generated method. no default
eType The return type of the me.thod null
eParameters The signature of the method. none

(See"EParameter Properties” on page)75

These properties are specified to EMF code generation in one of the following ways:

* UML - The properties are set by via an operation belonging to a UML class object, or
via the specification dialog box for that operation. (Seetion 3.1.1.3, “Attribute
Specifications in UML,” on page 1f8r an example.)

* XMI - The properties are specified as attributes or sub-elementseabaeEOpera-
tion element in the XMI document. Tleeore:EOperation is typically one of the
eOperations sub-elements of aecore:EClass object, which in turn is one of the
eClassifiers sub-elements of thecore:EPackage object that is at the root of the
XMI document. (Se&ection 3.1.2.6, “The Employee Class Element in the Ecore Doc-
ument,” on page 2for an example.)

» Java - The properties are derived from a method that is specified withiriehe
face that defines the class to which this operation belongs. The method must be pre-
ceded by @&@modeltag. (Se&ection 3.1.3.5, “Java Specification for the Employee
Class,” on page 3for an example.)

Note: if there is ambiguity with an accessor method (i.e. if the name of the method
begins with the prefixdet "), the parameters property must be specified on the
@modeltag to identify an EOperation.

TABLE 16. Codegen Specifications for EOperation Properties

Property UML XM Java
name name attributé

eType eType attributé
eParameters eParameters elemert

a. Specified on aaOperations element in thecore document

EMF Users’ Guide Draft 1.0 September 17, 2002 74

4.1.9 EParameter Properties

The properties of akParameter in Ecore are:

TABLE 17. Ecore Properties for EParameter

Property Usage Default
name The name of the generated argument no default
eType The type of the argument no default

These properties are specified to EMF code generation in one of the following ways:

* UML - The properties are set by via an argument on an operation belonging to a UML
class object, or via the specification dialog box for that argumentS&s®n 3.1.1.3,
“Attribute Specifications in UML,” on page 1f8r an example.)

* XMI - The properties are specified as attributes ofe@rre:EParameter element in
the XMI document. Thecore:EParameter is typically one of theParameters sub-
elements of aecore:EOperation object, which in turn is one of tle®perations
sub-elements of amcore:EClass object, which in turn is one of tleClassifiers sub-
elements of thecore:EPackage object that is at the root of the XMI document. (See
Section 3.1.2.6, “The Employee Class Element in the Ecore Document,” on dage 25
an example.)

» Java - The properties are derived from the signature of the method to which this param-
eter belongs. The method must be preceded@yrdeltag. (See&ection 3.1.3.5,
“Java Specification for the Employee Class,” on pagoBan example.)

TABLE 18. Codegen Specifications for EParameter Properties

Property UML XMl Java

name the name of the argu- name attributé the name of the argu-
ment that represents ment that represents the
this parameter parameter

eType the type of the argu- eType attributé the type of the argu-
ment ment

a. Specified on aaParameters element in thecore document

EMF Users’ Guide Draft 1.0 September 17, 2002 75

4.2 EMF APIs

The APIs for the EMF runtime are described in detail in the JavaDoc document for EMF.
You can access this document through the “Documents” section of the EMF web site.
Please seehttp://www.eclipse.org/emfbr details.

5.0 Appendix A - The Ecore Model

FIGURE 11. Ecore Model Class Hierarchy

EObject
ElModeElement
EF actory ENamedElement
I I I |
EFackage EClassifier EEnumLiteral ElypedEl ment
EClass EDataType EStricturalFeatures EOperation EFarameter
EEnum Eittribute EReference

EMF Users’ Guide Draft 1.0 September 17, 2002 76

FIGURE 12. Ecore Model Relationships, Attributes, and Operations

A

[

eP gk

B ariry

W ypads ey EC B EORRT
%crpaisframBirrgeluia Tape ECainTyps, Bsrbislee: Biirg) - Eiwaihec] 4
Wiy AT NG a0 aliType - EOVaTep, e eviue . ChsaObl Shing

spperaiann

e orisinn g Claus

A
ECia EDaiiTs
&3 ._flmm. gt nrnbss - by lemn T irae
v g Tog OO Ty B Cla) bl * A
mw:u:m-l:'ﬂlnﬁ A 1
LE R - B 3
R T e S - BRI kg E
«u.l:-:runrmuln- prnr— B | B! Fesan wl
giridarn EErurmtalar
U TV B S
ERHT i o
O o 3 +aRFEe Tapas aaiimy | 00
PP TIREE B = T | O
| alppanis Tll.r spRpRranen T
“eEarm
AT R EEnism
Eapinie
o = pabiyita e . i
ristiidil s 3 B - . L gl Bl b sne . EEmmiiinral
oz g ErmiLisavalys el EEnumLBerd

EMF Users’ Guide Draft 1.0

September 17, 2002

77

	EMF Users’ Guide Draft 1.0
	1.0 Overview
	2.0 Concepts
	2.1 Modeling
	2.1.1 The Ecore Model

	2.2 Code Generation
	2.2.1 Basic Code Generation
	2.2.2 EMF.Edit Code Generation

	2.3 Serialization and Loading
	2.3.1 Resource
	2.3.2 ResourceSet
	2.3.3 URIConverter

	2.4 XMI
	2.4.1 XMIResource

	2.5 Observers and Notifiers

	3.0 Tasks
	3.1 Defining Your Model
	3.1.1 Code Generation Using Rational Rose
	3.1.1.1 Basic UML Model Elements
	3.1.1.2 Specification of Abstract Classes
	3.1.1.3 Attribute Specifications in UML
	3.1.1.4 The eCore Properties Page
	3.1.1.5 Ecore Properties for Attributes
	3.1.1.6 Ecore Properties for Relationships
	3.1.1.7 Ecore Properties for Packages
	3.1.1.8 Specifying Multiple Inheritance in UML

	3.1.2 Code Generation Using XMI documents
	3.1.2.1 Genmodel Document for the enterprise Model
	3.1.2.2 The Enterprise Package Element in the Ecore Document
	3.1.2.3 The Company Class Element in the Ecore Document
	3.1.2.4 The Department Class Element in the Ecore Document
	3.1.2.5 The Person Class Element in the Ecore Document
	3.1.2.6 The Employee Class Element in the Ecore Document
	3.1.2.7 The EmploymentType Enumeration Element in the Ecore Document
	3.1.2.8 The Date Datatype Element in the Ecore Document

	3.1.3 Code Generation Using Annotated Java Interfaces
	3.1.3.1 Java Specification for the Enterprise Package
	3.1.3.2 Java Specification for the Company Class
	3.1.3.3 Java Specification for the Department Class
	3.1.3.4 Java Specification for the Person Class
	3.1.3.5 Java Specification for the Employee Class
	3.1.3.6 Java Specification for the EmploymentType Enumeration

	3.2 Generating your model
	3.3 Configuring your EMF Runtime Environment
	3.3.1 Registering/Initializing a Package
	3.3.1.1 Registering and Initializing a Generated Package in a Plugin
	3.3.1.2 Registering and Initializing a Generated Package Using APIs
	3.3.1.3 Registering a Dynamic Package

	3.3.2 Accessing the Package and Factory classes
	3.3.3 Creating a Resource
	3.3.4 Creating a ResourceSet
	3.3.5 Registering a Resource.Factory
	3.3.5.1 Registering a Resource.Factory for a Plugin
	3.3.5.2 Registering a Resource.Factory Globally
	3.3.5.3 Registering a Resource.Factory locally

	3.3.6 Registering a URIConverter
	3.3.7 Registering an AdapterFactory

	3.4 Running your application
	3.4.1 Creating Instance Data
	3.4.2 Serializing Your Instance Data
	3.4.3 Loading Instance Data

	3.5 Handling notifications
	3.5.1 Defining Observers
	3.5.2 Attaching Observers to Your Objects

	3.6 Using Reflective APIs
	3.6.1 Examining EObject Instances using Reflection
	3.6.1.1 print
	3.6.1.2 printObject
	3.6.1.3 printAllAttributes
	3.6.1.4 printAttribute
	3.6.1.5 printAllReferences
	3.6.1.6 printReference

	3.6.2 Modifying EObjects using reflection
	3.6.3 Creating New Dynamic Classes
	3.6.4 Extending Generated Classes with Dynamic Classes

	3.7 Customizing EMF
	3.7.1 Creating Keys to Access the Contents of a Resource
	3.7.2 Cross File References and Proxies
	3.7.3 Customizing the Resource for non-XMI Serialization
	3.7.4 Handling XMI Documents Serialized from a Different Version of Your Model
	3.7.5 Customizing a URIConverter

	4.0 Quick Reference
	4.1 Ecore Properties and Codegen Specifications
	4.1.1 EPackage Properties
	TABLE 1. Ecore Properties for EPackage
	TABLE 2. Codegen Specifications for EPackage Properties

	4.1.2 EClass Properties
	TABLE 3. Ecore Properties for EClass
	TABLE 4. Codegen Specifications for EClass Properties

	4.1.3 EEnum Properties
	TABLE 5. Ecore Properties for EEnum
	TABLE 6. Codegen Specification for EEnum Properties

	4.1.4 EDataType Properties
	TABLE 7. Ecore Properties for EDataType
	TABLE 8. Codegen Specifications for EDataType Properties

	4.1.5 EAttribute Properties
	TABLE 9. Ecore Properties for EAttribute
	TABLE 10. Codegen Specifications for EAttribute

	4.1.6 EReference Properties
	TABLE 11. Ecore Properties for EReference
	TABLE 12. Codegen Specifications for EReference Properties

	4.1.7 EEnumLiteral Properties
	TABLE 13. Ecore Properties for EEnumLiteral
	TABLE 14. Codegen Specifications for EEnumLiteral Properties

	4.1.8 EOperation Properties
	TABLE 15. Ecore Properties for EOperation
	TABLE 16. Codegen Specifications for EOperation Properties

	4.1.9 EParameter Properties
	TABLE 17. Ecore Properties for EParameter
	TABLE 18. Codegen Specifications for EParameter Properties

	4.2 EMF APIs

	5.0 Appendix A - The Ecore Model

