
EMF Users’ Guide Draft 1.0 September 17, 2002 1

EMF Users’ Guide
Draft 1.0

Last updated on 9/17/02

1.0 Overview

The Eclipse Modeling Framework, EMF, is a Java framework and code generation facility
for building tools and other applications based on a structured model. EMF provides a
mechanism to easily create, save, and restore instances of the classes in your model. This
makes it very easy to share data across different applications.

This document describes the basic steps for using EMF, including how to define your
model, how to generate and customize your application source code, and how to manipu-
late and save instance data.

• Section 2.0, “Concepts,” on page 1 outlines some of the key concepts essential to the
understanding of EMF.

• Section 3.0, “Tasks,” on page 6 gives examples for how to use EMF to accomplish
some commonly encountered tasks.

• Section 4.0, “Quick Reference,” on page 56 is a short reference guide to the APIs used
by an EMF application.

This document is a work in progress. Some sections have not yet been completed. Areas
where changes and additions are anticipated are identified using a <tbd> tag. For example,
<tbd> This information will be provided in a future draft of the EMF User’s Guide.</tbd>

2.0 Concepts

We first present some of the key concepts upon which EMF is based. This section is
intended to introduce these fundamental concepts at a high level and to give an indication
of how they relate to EMF. The concepts that are covered here are:

• Section 2.1, “Modeling,” on page 2

• Section 2.2, “Code Generation,” on page 2

• Section 2.3, “Serialization and Loading,” on page 3

• Section 2.4, “XMI,” on page 5

• Section 2.5, “Observers and Notifiers,” on page 6

EMF Users’ Guide Draft 1.0 September 17, 2002 2

2.1 Modeling

A model is an abstract representation of the data used by an application. A model may be
expressed simply as an informal description of the data or it may be described precisely
using any of a number of formal mechanisms, for example:

• UML created using a visual modeling tool

• XML that conforms to a schema that expresses all the necessary elements of the model

• Java interfaces that may have additional annotations to capture special information
about the model that is not expressible directly in Java

One of the advantages of using a formal definition of a model is that EMF can then be
used to assist in the automatic generation and maintenance of application code based on
the model. This in turn facilitates the creation of multiple applications that can communi-
cate easily because they share a common view of the underlying data.

A model is constructed from classes that describe objects in an application’s domain. Each
class may have attributes, associations, and operations associated with it. Usually, the
classes in a model are grouped into one or more packages.

2.1.1 The Ecore Model

EMF is itself based on a model called Ecore. The Ecore model is the meta-model for all
application models that are handled by EMF. (A “meta-model” is a model that represents
other models.)

The root of the Ecore Model is EObject . All EMF objects implement the EObject
interface.

The classes of the Ecore model include EPackage , EFactory , EClass , and
EStructuralFeature . (“Appendix A - The Ecore Model” on page 76 gives a more
complete description of the Ecore Model.)

If your model consists of a package that contains two classes, the EMF representation of
that model will consist of a single instance each of EPackage and EFactory plus two
instances of EClass , along with however many instances of EStructuralFeature
are needed to represent the attributes and associations that belong to your classes. When
your application creates instances of your classes, each of those instances will implement
the EObject interface.

2.2 Code Generation

Code generation is the process of converting your model into the Java source code for
your application. In many cases, after you generate your Java classes you will want to add
methods or modify the generated methods. EMF enables you to do this in a such a way
that if you later make a change to your model and regenerate, the code generation process
will preserve your changes.

EMF Users’ Guide Draft 1.0 September 17, 2002 3

EMF provides two separate code generation facilities:

• Basic Code Generation creates Java interfaces and classes that represent the elements
of your model. The generated APIs enable you to create instances of your classes and
access the structural features of each class.

• EMF.Edit Code Generation creates a simple graphical editor that can be used to create,
update, view, load, and store the Java classes that are generated by basic code genera-
tion.

2.2.1 Basic Code Generation

The result of EMF basic code generation is two or three Java packages for each package in
your model. One of these Java packages consists entirely of Java interfaces that define the
APIs to access instances of the classes in your model. The other Java package consists of
Java classes that implement those interfaces. The third package, which is optional, con-
tains a generated adapter factory and a generated switch class. These classes are useful
when implementing adapters.

The interface package includes one interface for each class in your model. These inter-
faces extend the EObject interface from the Ecore model. Each interface provides meth-
ods that enable you to access an instance of a class and to get and set the values for each of
the features of that class.

The interface package also contains two additional interfaces: one that extends the
EPackage interface and another that extends the EFactory interface. The EPackage
interface provides methods for accessing the meta-data from your model (i.e., the
EClass and EStructuralFeature objects that describe your classes) and the fac-
tory interface provides methods for creating instances of your data (i.e., the EObject
objects that implement your classes.)

The implementation package has Java classes that implement all the interfaces described
above.

2.2.2 EMF.Edit Code Generation

<tbd>To be done</tbd>

2.3 Serialization and Loading

Serialization is the process of writing your instance data into a standardized, persistent
form, e.g., a file on your file system or a Web resource.

Loading (sometimes referred to as “deserialization”) is the process of reading the persis-
tent form of the data to recreate instances of EObject in memory. In EMF, loading can
be accomplished either through an explicit call to a load API or it can happen automati-
cally whenever a reference to an EObject that has not yet been loaded is encountered.

EMF Users’ Guide Draft 1.0 September 17, 2002 4

The APIs that are used in EMF to control the loading and saving of objects are defined on
the Resource and ResourceSet interfaces.

The default implementation of Resource is XMIResourceImpl , which results in serial-
ization as XMI documents. The XMIResource interface provides additional APIs that
enable you to control some of the behavior of the default serializer and loader. If you wish
to serialize in some format other than the default XMI format, you can provide your own
implementation of Resource.

2.3.1 Resource

A Resource is a collection of EObject objects that are serialized into a single
Stream .

The Resource interface is defined in the package
org.eclipse.emf.ecore.resource . It provides APIs that enable you to:

• Load a Resource from an InputStream .

• Save a Resource to an OutputStream .

• Access any messages that were generated during the load or save operation.

• Optionally keep track of whether any objects in a Resource have been modified. The
default is not to keep track of modifications. Modification tracking can add significant
runtime overhead.

• Register the default factory for creating Resource objects. If you choose to provide
your own implementation of the Resource interface, for example, so you can use a
serialization format other than XMI, you will need to define and register a factory for
creating your implementation of Resource .

2.3.2 ResourceSet

A ResourceSet is a collection of Resource objects that may have cross-references
among them.

The ResourceSet interface defines APIs that enable you to:

• Create a new Resource

• Look up an individual object and, if necessary, load the Resource in which it is con-
tained.

• Set and get the URIConverter used to normalize URIs and resolve relative URIs.

• Set and get a Resource.Factory.Registry . (This registry enables you to pro-
vide alternative implementations of Resource and to have the appropriate implementa-
tion selected based on either the extension or the protocol of a given URI.)

• Get the list of registered AdapterFactory instances.

EMF Users’ Guide Draft 1.0 September 17, 2002 5

2.3.3 URIConverter

Uniform Resource Identifiers or URIs, as specified in http://www.ietf.org/rfc/rfc2396.txt, are used
to uniquely identify resources and objects within resources. For example, when one object
references another object that is located in a different resource, a URI is used to identify
the referenced object.

Often it is convenient to have a URI that is expressed as a relative location. For example,
if the URI refers to a file on a file system, it may be convenient to describe that file relative
to some known location rather than as an absolute path. This would enable your applica-
tion to run in different environments. Similarly, a URI may refer to a resource within your
Eclipse workbench, or to an object on the Web. Expressing the URI as a relative value
rather than an absolute location provides the flexibility that is needed to be able to share
resources.

A URIConverter is used to resolve a relative URI into an absolute InputStream or Output-
Stream. The URIConverter also provides an API to normalize relative URIs. Normaliza-
tion is used to determine if two different URIs in fact refer to the same underlying object.

EMF provides a default implementation of a URIConverter and also enables you to create
and register your own implementation.

2.4 XMI

The XML Metadata Interchange (XMI) is the default serialization format used by EMF.
This format is based on the XMI 2.0 specification from the OMG. This specification may
be found at http://cgi.omg.org/cgi-bin/doc?ad/01-06-12.

The XML specification may be found at http://www.w3.org/TR/REC-xml.

2.4.1 XMIResource
An XMIResource is an extension to the Resource interface (See “Resource” on page 4.)

that handles a resource whose contents are serialized as an XMI document. This is the

default type of resource used by EMF.

The XMIResource interface provides APIs that enable you to:

• Access and modify the XMI IDs will be used when objects are serialized. (Note that
IDs are optional. If an object does not have an ID, references to that object within a
document are based on the relative position of the object. Using IDs can increase the
size of your documents, so their use is not recommended.)

• Control whether the XMI documents are stored in zipped form. The default setting is to
use unzipped files.

• Specify the XML encoding to be used when saving the resource

EMF Users’ Guide Draft 1.0 September 17, 2002 6

• Specify various save options:

• Control whether the type of an element is written using “xmi:type” or
“xsi:type”. The default is to use “xsi:type”

• Control whether the encoded attribute style is used to serialize an attribute
whose value is an EObject. When an attribute is serialized under this option, the
value of an attribute is a QName URI pair, where the QName is optional,
depending on whether the referenced object’s type is identical to the feature.
When the option is not specified, an attribute whose value is an EObject is seri-
alized as an element.

• Determine the line width at which line breaks will be automatically added.

• Determine whether the serialized document will begin with:

<?xml version="1.0" encoding="encoding"?>

• Control whether to skip processing for escape characters. This processing adds
overhead that can be skipped if you know for sure that none of the values of
your attributes contain a character that needs to be escaped. These characters
are ampersand (‘&’), double-quote (‘”’), less-than(‘<‘), LF (‘\n’), CR (‘\r’), and
tab (‘\t’)

• Determine how dangling hrefs will be handled during save. A dangling href is a
cross file reference where the target is not in a valid resource, which means that
the URI for the target cannot be computed. The possible actions are to either
throw an exception, discard them silently, or record them and continue.

• Specify various load options:

• Control whether notifications are to be disabled during loading.

2.5 Observers and Notifiers

EMF provides a mechanism for attaching observers (also known as adaptors) to objects
(sometimes referred to as notifiers.) The observers are informed of any changes to the
notifiers to which they are attached. This allows you to extend the behavior of your EMF
objects by implementing observers that provide the extended behavior and attaching those
observers to your EMF objects.

3.0 Tasks

• Section 3.1, “Defining Your Model,” on page 7

• Section 3.1.1, “Code Generation Using Rational Rose,” on page 9

• Section 3.1.2, “Code Generation Using XMI documents,” on page 21

EMF Users’ Guide Draft 1.0 September 17, 2002 7

• Section 3.1.3, “Code Generation Using Annotated Java Interfaces,” on page 27

• Section 3.2, “Generating your model,” on page 34

• Section 3.3, “Configuring your EMF Runtime Environment,” on page 34

• Section 3.3.1, “Registering/Initializing a Package,” on page 35

• Section 3.3.5, “Registering a Resource.Factory ,” on page 39

• Section 3.3.4, “Creating a ResourceSet ,” on page 38

• Section 3.3.3, “Creating a Resource ,” on page 37

• Section 3.3.2, “Accessing the Package and Factory classes,” on page 37

• Section 3.4, “Running your application,” on page 42

• Section 3.4.1, “Creating Instance Data,” on page 42

• Section 3.4.2, “Serializing Your Instance Data,” on page 44

• Section 3.4.3, “Loading Instance Data,” on page 45

• Section 3.5, “Handling notifications,” on page 47

• Section 3.5.1, “Defining Observers,” on page 47

• Section 3.5.2, “Attaching Observers to Your Objects,” on page 47

• Section 3.6, “Using Reflective APIs,” on page 47

• Section 3.6.1, “Examining EObject Instances using Reflection,” on page 48

• Section 3.6.2, “Modifying EObjects using reflection,” on page 53

• Section 3.6.3, “Creating New Dynamic Classes,” on page 53

• Section 3.6.4, “Extending Generated Classes with Dynamic Classes,” on page
53

• Section 3.7, “Customizing EMF,” on page 53

• Section 3.7.1, “Creating Keys to Access the Contents of a Resource ,” on
page 53

• Section 3.7.3, “Customizing the Resource for non-XMI Serialization,” on
page 54

• Section 3.7.4, “Handling XMI Documents Serialized from a Different Version
of Your Model,” on page 54

3.1 Defining Your Model

The first step in creating an EMF-based application is to define your model. EMF allows
you to express your model in a variety of ways.

Whichever form you choose, your model specification will consist of some number of
packages, classes, attributes, and associations. Each of these has various properties that
you can specify.

EMF Users’ Guide Draft 1.0 September 17, 2002 8

Some properties are mandatory, but most have some default settings, so you only need to
specify them explicitly if you wish to override the defaults. For example, when you spec-
ify an attribute, the attribute name is required but the multiplicity is not. (If you do not
specify a multiplicity, single-valued is assumed.)

A complete list of the properties that are applicable to each model element is provided in
the section “Ecore Properties and Codegen Specifications” on page 56.

For the examples that appear in the following sections, assume that we wish to create a
model that consists of a single package called “enterprise” with classes that represent
companies, departments, and employees. This details of this model are illustrate below
using UML notation.

FIGURE 1. UML for enterprise model

EMF Users’ Guide Draft 1.0 September 17, 2002 9

You have three choices for how you could specify this model to EMF code generation:

• You can use the UML notation directly. (You will need to use some special annotations
in the form of Rose properties). See “Code Generation Using Rational Rose” on page
9.

• You can write a file that expresses the classes of the model using XMI elements. See
“Code Generation Using XMI documents” on page 21.

• You can write Java source files that define a Java interface for each of the classes in the
model. (You will need to use some special annotations in the form of Java comments.)
See “Code Generation Using Annotated Java Interfaces” on page 27.

Note that the comment boxes in Figure 1, “UML for enterprise model,” on page 8 indicate
that there are implementation details for this model that cannot be expressed directly in
UML. These comments have no impact on code generation. The actual mechanism that is
used to specify this information to code generation will depend on which code generation
technique you use. These mechanisms are discussed in the following sections.

3.1.1 Code Generation Using Rational Rose

If you use Rational Rose to define your model, you simply draw a Class Diagram contain-
ing Packages, Classes, Attributes, and Associations. An example of a UML diagram
depicting a package is shown in Figure 1, “UML for enterprise model,” on page 8. In gen-
eral, the UML elements in your diagram map directly to Ecore elements which determine
the precise code generation patterns to be used. Additionally, there are a few special anno-
tations that are used by the EMF basic code generation tool of which you may need to be
aware.

These will be discussed in the following sections:

• Section 3.1.1.1, “Basic UML Model Elements,” on page 10 shows how you specify the
most common properties of classes, attributes, and relationships.

• Section 3.1.1.2, “Specification of Abstract Classes,” on page 12 shows how an abstract
class is specified.

• Section 3.1.1.3, “Attribute Specifications in UML,” on page 13 shows how you specify
operations, datatypes and enumerations.

• Section 3.1.1.4, “The eCore Properties Page,” on page 15 shows how you set up your
Rose model to include special ecore properties that are not part of standard UML

• Section 3.1.1.5, “Ecore Properties for Attributes,” on page 16 shows how you specify
ecore properties that apply to attributes (i.e. transience, volatility, changeability, setta-
bility, and uniqueness.)

• Section 3.1.1.6, “Ecore Properties for Relationships,” on page 18 shows how you spec-
ify ecore properties that apply to relationships (i.e. transience, volatility, changeability,
settability, and resolveability.)

EMF Users’ Guide Draft 1.0 September 17, 2002 10

• Section 3.1.1.7, “Ecore Properties for Packages,” on page 19 shows how you specify
ecore properties that apply to attributes (i.e. prefix, package name, base package,
namespace prefix and namespace URI.)

• Section 3.1.1.8, “Specifying Multiple Inheritance in UML,” on page 20 shows how you
can specify that a class has multiple superclasses.

3.1.1.1 Basic UML Model Elements

The basic elements in your UML model are Classes, Attributes and Relationships. For
example:

FIGURE 2. Basic Ecore elements in UML diagram

In most cases, the code generation utility will create a Java interface and a Java implemen-
tation class for each UML class. Each interface will have accessor methods to get and set
each of the attributes and relationships specified in the model. For example, the Company
class shown in Figure 2, “Basic Ecore elements in UML diagram,” on page 10 will gener-
ate a Java interface named Company and a Java class named CompanyImpl .

The accessor methods that are created for each attribute and association will vary depend-
ing on the properties of the corresponding UML elements.

EMF Users’ Guide Draft 1.0 September 17, 2002 11

• Single-valued attributes and navigable relationships will generate a get() method1
that returns a value of the appropriate type and a set() method that accepts a parame-
ter of that type.

• Multi-valued attributes and navigable relationships will generate only a get() method
that returns an EList . The actual implementation of the EList that is returned is con-
strained to only accept values of the appropriate type.

• For relationships, the implementation of the set() method (in the case of single-val-
ued relationships) or the EList (in the case of multi-valued relationships) will be dif-
ferent depending on whether the relationship uses containment. In particular, the
implementation of a containment relationship will enforce the semantics that an
instance of an object can only have a single container.

• Relationships that are not navigable will not result in the generation of any accessor
methods.

• If you specify an inheritance relationship in your model, the resulting generated inter-
face and implementation class will have the same inheritance structure.

For example, the Company class has a single-valued attribute called “name”, two single-
valued relationships called “employeeOfTheMonth ” and “parent ”, and two multi-
valued relationships called “department ” and “subsidiary . Therefore the generated
Company interface will include the following:

public interface Company extends EObject{
 String getName();
 void setName(String value);
 EList getDepartment();
 Employee getEmployeeOfTheMonth();
 void setEmployeeOfTheMonth(Employee value);
 Company getParent();
 void setParent(Company);
 EList getSubsidiary();
} // Company

Note that the “department ” relationship on the Company class is a containment rela-
tionship while the “subsidiary ” relationship is non-containment. Both of these rela-
tionships are multi-valued, which means they generated interface has a get method but no
set method. The difference in the containment property leads to different implementations
for the generated get() methods. For example, the generated CompanyImpl class will
include the following methods:

1. For a single-valued attribute of type boolean, an is() method is generated instead of a get() method.

EMF Users’ Guide Draft 1.0 September 17, 2002 12

public EList getDepartment() {
if (department == null) {

department =
new EObjectContainmentWithInverseEList(

Department. class ,
this ,
EnterprisePackage.COMPANY__DEPARTMENT,
EnterprisePackage.DEPARTMENT__COMPANY);

}
return department;

}
public EList getSubsidiary() {

if (subsidiary == null) {
subsidiary =

new EObjectWithInverseResolvingEList(
Company. class ,
this ,
EnterprisePackage.COMPANY__SUBSIDIARY,
EnterprisePackage.COMPANY__PARENT);

}
return subsidiary;

}

The Employee class inherits from the Person class. Therefore, the first line of the
interface for Employee will start with:

public interface Employee extends Person

3.1.1.2 Specification of Abstract Classes

Note that the Person class is marked with the <<Abstract>> stereotype. This stereo-
type is only used in the UML for informational purposes to indicate that the Abstract prop-
erty is set for this class. This property is set via the Detail page of the
Specification dialog for the cass. For example:

EMF Users’ Guide Draft 1.0 September 17, 2002 13

FIGURE 3. Specification Dialog for the Person Class

• If you specify the Abstract property in your UML, the resulting generated imple-
mentation class will be abstract.

For example, the declaration for PersonImpl will be:

public abstract class PersonImpl extends EObjectImpl implements Person

3.1.1.3 Attribute Specifications in UML

The are some special conventions used by EMF to define the types of certain attributes.
Consider the following segment of the enterprise package:

EMF Users’ Guide Draft 1.0 September 17, 2002 14

FIGURE 4. Enumerations, DataTypes, and Default Values

• If you specify an initial value in your UML, the resulting attribute will be initialized
with the specified value

• If you specify an operation, the resulting interface will include the signature for that
operation and the implementation class will have a stub method. (The generated imple-
mentation of the stub method will throw a UnsupportedOperationException ,
so you will need to modify this method by hand after code generation.)

• If you need to refer to a type that is not an EMF class in your model, you can declare
that type using a <<datatype>> stereotype. UML classes with this stereotype do not
generate any code. Note that this class must include a single attribute that defines the
underlying type. The attribute should be flagged with a stereotype of
<<javaclass>> .

• If you wish to define an enumeration, you can do so using a UML class with the
<<enumeration>> stereotype. This results in the generation of a final class that
has static final fields that represent the enumeration values and enumeration literal
instances. The accessor methods for attributes of this enumeration type pass the literal
instances that are defined in this class.

EMF Users’ Guide Draft 1.0 September 17, 2002 15

The Employee class has a “dateOfHire ” attribute whose type is the datatype “Date ”
and an “employmentType ” attribute whose type is the enumeration
“EmploymentType ”. Therefore, the Employee interface will include the following
methods:

 Date getDateOfHire();
 void setDateOfHire(Date value);
 EmploymentType getEmploymentType();
 void setEmploymentType(EmploymentType value);
 void initiateLeave(Date startDate);

The EmploymentType interface is generated as follows:

public final class EmploymentType extends AbstractEnumerator
{
 public static final int FULL_TIME = 0;
 public static final int PART_TIME = 1;
 public static final int ON_LEAVE = 2;
 public static final EmploymentType FULL_TIME_LITERAL =
 new EmploymentType(FULL_TIME, "FullTime");
 public static final EmploymentType PART_TIME_LITERAL =
 new EmploymentType(PART_TIME, "PartTime");
 public static final EmploymentType ON_LEAVE_LITERAL =
 new EmploymentType(ON_LEAVE, " OnLeave ");
 public static final List VALUES =
 Collections.unmodifiableList(Arrays.asList(VALUES_ARRAY));
 public static EmploymentType get(String name)
 {...}
 public static EmploymentType get(int value)
 {...}
 private EmploymentType(int value, String name)
 {
 super (value, name);
 }

} //EmploymentType

3.1.1.4 The eCore Properties Page

In some cases there are properties that are required for code generation that cannot be
expressed in standard UML. For these cases, EMF provides a special Rose properties file
called ecore.pty. These properties are not shown explicitly in the example in Figure 1 on
page 8, although annotations are used in the diagram to indicate that the properties have
been defined.

Before you can use these properties, you must first add the appropriate model properties
file to your Rose model. This file is the ecore.pty file that is shipped in the
org.eclipse.emf.ecore plugin in the src\models directory.

The mechanism for adding these properties to your model is shown in Figure 5, “Adding a
Properties File to Your Model,” on page 16 and Figure 6, “Selecting the eCore.pty file,”
on page 16.

EMF Users’ Guide Draft 1.0 September 17, 2002 16

FIGURE 5. Adding a Properties File to Your Model

FIGURE 6. Selecting the eCore.pty file

In order to see a particular property, you need to open up the specifications page for the
object to which the property applies. The various properties are illustrated in

• “Ecore Properties for Attributes” on page 16

• “Ecore Properties for Relationships” on page 18

• “Ecore Properties for Packages” on page 19

3.1.1.5 Ecore Properties for Attributes

The following figure illustrates the eCore Properties page for Attributes.:

EMF Users’ Guide Draft 1.0 September 17, 2002 17

FIGURE 7. Properties page for the yearsOfService attribute

• If isTransient is True , the attribute or relationship will not be stored.

• If isVolatile is True , the attribute or relationship will not have any storage associ-
ated with it and the generated implementations of the get() and set() method for
the attribute or relationship will throw an UnsupportedOperationException .
(In other words, you will need to implement these methods explicitly.)

• If isChangeable is True , no set() method is generated for the attribute or asso-
ciation.

• If isUnsettable is True , isSet() and unset() methods are generated for the
attribute or association. (Note that this requires additional runtime storage for each such
attribute or association.)

• If isUnique is True for an attribute that has multi-valued multiplicity, uniqueness
semantics are enforced for the list that holds the attribute values.

In the case of the yearsOfService attribute shown here, the intention is to implement
the attribute to be derived from the dateOfHire attribute and from current date when
the application is run. The settings on the ecore properties page instruct code generation to
omit the default implementation of the get method from the implementation class
(isVolatile=True), to omit the set method altogether from the interface
(isChangeable=False), and to mark the attribute as transient so it will not be serial-
ized (isTransient=True .)

EMF Users’ Guide Draft 1.0 September 17, 2002 18

3.1.1.6 Ecore Properties for Relationships

The following figure shows the specification dialog for the employeeOfTheMonth
association. It is opened to the eCore A page, which displays that Ecore attributes that
apply to the employeeOfTheMonth role of the association.

FIGURE 8. Properties page for the employeeOfTheMonth association

For the most part, the properties that apply to attributes also apply to relationships. (See
Figure 7, “Properties page for the yearsOfService attribute,” on page 17 .) The exceptions
are that the isUnique property only applies to attributes and that the
isResolveProxies property only applies to relationships.

• If isResolveProxies is False for a relationship, the two ends of a relationship
would typically not be stored in separate documents. If they are stored in separate doc-
uments, you will need to resolve the proxies manually.

In the case of the employeeOfTheMonth relationship shown here, the intention is that
the indicated employee must be one of the employees that contained in the company.
Therefore, it will not be necessary to allow for the possibility that the target of this rela-
tionship is in a different XMI document from the source. Setting the
isResolveProxies property to False suppresses the generated code that would

EMF Users’ Guide Draft 1.0 September 17, 2002 19

attempt to resolve proxies when accessing this relationship, which makes the accessor
method more efficient than it would otherwise be.

3.1.1.7 Ecore Properties for Packages

The following figure illustrate the eCore page of the Specification dialog for Packages.

FIGURE 9. Ecore Properties Page for the Package

• If prefix is specified, the value is used as the prefix for constructing the name of the
Package and Factory interfaces and classes. Otherwise, the capitalized package
name is used to construct these names.

• If packageName is specified, the value is used for the rightmost part of the name of
the generated Java package. Otherwise, the package name is used.

• If basePackage is specified, the value is used for the qualifier for the generated Java
package.

• If nsPrefix is specified, the value is used as the namespace prefix for any XMI doc-
uments that contain instances of classes from this package. Otherwise, the package
name is used.

• If nsURI is specified, the value is used as the namespace URI for any XMI documents
that contain instances of or associations to classes from this package.

EMF Users’ Guide Draft 1.0 September 17, 2002 20

In this example, there is no prefix . There is also no packageName , so the default
name will be the name of the package, which is “enterprise ”. The basePackage is
“org.eclipse.emf.samples ”. Therefore the fully qualified name of the generated
package interface will be

org.eclipse.emf.samples.enterprise.EnterprisePackage.java .

3.1.1.8 Specifying Multiple Inheritance in UML

EMF supports multiple inheritance of interfaces in much the same way that multiple
inheritance is supported in Java. You can define a class in UML that inherits from more
than one superclass. The code that is generated for this class will include an interface that
extends all the interfaces corresponding to the specified superclasses, but the implementa-
tion class will only extend one of the implementation classes.

This means that a generated class may not define all the methods that it is required to
implement based on the interfaces that the class supports. You will need to make sure that
an implementation is provided for any method that is missing.

You can specify which superclass is the primary superclass in your UML by attaching a
stereotype to the generalization relationship that appears in your model. A stereotype of
<<extends>> indicates the primary superclass and a stereotype of <<mixin>> indi-
cates some other superclass. For a given subclass, there can only be one generalization
that carries the <<extends>> stereotype.

For example:

FIGURE 10. UML for Multiple Inheritance

In this model, class A has two superclasses, B and C. The generated interface, A, will start
with:

public interface A extends B, C

while the generated implementation class, AImpl, will begin with:

EMF Users’ Guide Draft 1.0 September 17, 2002 21

public class AImpl extends BImpl implements A

3.1.2 Code Generation Using XMI documents

You can also write XMI documents that can fully specify your model. There are two dif-
ferent types of XMI documents that are needed to specify a model:

• There will be one ecore document for each package in your model. This document
contains the detailed definitions of all the packages and classes in your model. The ele-
ments of the ecore document are the classes and attributes of the Ecore model. The
details for specifying the XMI document are discussed in “Ecore Properties and Code-
gen Specifications” on page 56. The extension for the ecore documents should be
“ .ecore”. \

The ecore document contains classes that are defined in the Ecore model that is used
by the org.eclipse.emf.ecore plugin.

• There will be one genmodel document for the entire model. This document is the input
to the code generation utility. It has references to elements defined in the ecore docu-
ments and also includes some additional information needed for code generation that is
not part of the model. (For example, information about how names should be con-
structed.) The extension for the genmodel documents is “.genmodel”

The genmodel document contains classes that are defined in the GenModel model
that is used by the org.eclipse.emf.codegen.ecore plugin.

The following sections illustrate the contents of the genmodel and ecore documents
that are used to specify the enterprise model show in Figure 1, “UML for enterprise
model,” on page 8. (Note that for this example, the model consists of only a single pack-
age, hence there is only one ecore document. If the model were to include multiple root
packages, there would be one ecore document for each package.)

The enterprise.genmodel document is shown in Section 3.1.2.1, “Genmodel Document
for the enterprise Model,” on page 22.

The main elements of the enterprise.ecore document are shown in the following sec-
tions. (Note that these elements are, in fact, all part of a single document. They are sepa-
rated into the various sections below to help direct your attention to the salient features of
each element.)

• Section 3.1.2.2, “The Enterprise Package Element in the Ecore Document,” on page 23

• Section 3.1.2.3, “The Company Class Element in the Ecore Document,” on page 24

• Section 3.1.2.4, “The Department Class Element in the Ecore Document,” on page 25

• Section 3.1.2.5, “The Person Class Element in the Ecore Document,” on page 25

• Section 3.1.2.6, “The Employee Class Element in the Ecore Document,” on page 25

• Section 3.1.2.7, “The EmploymentType Enumeration Element in the Ecore Document,”
on page 26

EMF Users’ Guide Draft 1.0 September 17, 2002 22

• Section 3.1.2.8, “The Date Datatype Element in the Ecore Document,” on page 27

3.1.2.1 Genmodel Document for the enterprise Model

The genmodel document is the document that ties together all the packages, classes, and
features in a model and provides any additional information that is not in the model but
that is needed by the code generation utility to produce the appropriate source code.

<?xml version="1.0" encoding="ASCII"?>
<genmodel:GenModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:ecore="http://

EMF Users’ Guide Draft 1.0 September 17, 2002 23

www.eclipse.org/emf/2002/Ecore"
 xmlns:genmodel="http://www.eclipse.org/emf/2002/GenModel"
 modelDirectory="/org.eclipse.emf.samples/src"
 editDirectory="/org.eclipse.emf.samples.edit/src" editorDirectory="/org.eclipse.emf.samples.editor/src"
 modelPluginID="org.eclipse.emf.samples.enterprise">
 <foreignModel>C:\emf\eclipse\plugins\org.eclipse.emf.samples\src\model\enterprise.mdl</foreignModel>
 <genPackages prefix="Enterprise" basePackage="org.eclipse.emf.samples"
 ecorePackage="enterprise.ecore#/">
 <genEnums ecoreEnum="enterprise.ecore#//EmploymentType">
 <genEnumLiterals ecoreEnumLiteral="enterprise.ecore#//EmploymentType/FullTime"/>
 <genEnumLiterals ecoreEnumLiteral="enterprise.ecore#//EmploymentType/PartTime"/>
 <genEnumLiterals ecoreEnumLiteral="enterprise.ecore#//EmploymentType/OnLeave"/>
 </genEnums>
 <genDataTypes ecoreDataType="enterprise.ecore#//Date"/>
 <genClasses ecoreClass="enterprise.ecore#//Department">
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Department/number"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Department/company"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Department/employee"/>
 </genClasses>
 <genClasses ecoreClass="enterprise.ecore#//Company">
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Company/name"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/department"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/parent"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/subsidiary"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Company/employeeOfTheMonth"/>
 </genClasses>
 <genClasses ecoreClass="enterprise.ecore#//Person">
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Person/comments"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Person/name"/>
 </genClasses>
 <genClasses ecoreClass="enterprise.ecore#//Employee">
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/manager"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/email"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/employmentType"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/dateOfHire"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/yearsOfService"/>
 <genFeatures ecoreFeature="ecore:EAttribute enterprise.ecore#//Employee/leaveOfAbsenceStart"/>
 <genFeatures ecoreFeature="ecore:EReference enterprise.ecore#//Employee/department"/>
 <genOperations ecoreOperation="enterprise.ecore#//Employee/initiateLeave">
 <genParameters ecoreParameter="enterprise.ecore#//Employee/initiateLeave/startDate"/>
 </genOperations>
 </genClasses>
 </genPackages>
</genmodel:GenModel>

Note that most of the elements of this document consist entirely of references into the
enterprise.ecore document, which is described in the following sections.

The elements in this document that may contain additional information are the gen-
model:GenModel element and the genPackages element.

3.1.2.2 The Enterprise Package Element in the Ecore Document

A package is specified as an ecore:EPackage element in an ecore document.

EMF Users’ Guide Draft 1.0 September 17, 2002 24

<?xml version="1.0" encoding="ASCII"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="enterprise"
 nsURI="http:///enterprise.xmi" nsPrefix="enterprise">
 <eClassifiers ... >
 ...
 </eClassifiers>
</ecore:EPackage>

In this case we are defining a package whose name is “enterprise”. The details for the
eClassifiers that comprise this package are illustrated in the following sections.

3.1.2.3 The Company Class Element in the Ecore Document

A class is specified as an ecore:EClass element in an XMI document. For example, the
XMI that defines the Company class from the Enterprise model is:

 <eClassifiers xsi:type="ecore:EClass" name="Company">
 <eReferences name="department" eType="#//Department" upperBound="-1"
 containment="true" eOpposite="#//Department/company"/>
 <eReferences name="employeeOfTheMonth" eType="#//Employee"
 resolveProxies="false"/>
 <eReferences name="parent" eType="#//Company"
 eOpposite="#//Company/subsidiary"/>
 <eReferences name="subsidiary" eType="#//Company" upperBound="-1"
 eOpposite="#//Company/parent"/>
 <eAttributes name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>

Note the following:

• When no lowerBound is specified, "0" is assumed. When no upperBound is specified “1” is
assumed. In the above example, the employeeOfTheMonth and parent references and the
name attribute use both defaults, and therefore are single-valued. This means that code
generation will generate get() and set() methods for these features.

• An upperBound that is set to “-1” (as in the department and subsidiary references) indicates
that there is no upper bound. This implies that the cardinality is multi-valued. Therefore
no set() method will be generated and that the get() method will return an EList .

• The eOpposite attribute identifies the opposite end of a relationship that is navigable in
both directions. (For example, the department reference specifies an eOpposite attribute
while the employeeOfTheMonth reference does not.) The eOpposite attribute is needed so
that the generated code will ensure that when one end of a relationship is modified, the
other end will be updated accordingly.

• When the resolveProxies attribute is set to "false", (see the employeeOfTheMonth reference),
the generated get() method will assume that the target object is never a proxy, and
therefore will not attempt to resolve the target. This improves the performance of the

EMF Users’ Guide Draft 1.0 September 17, 2002 25

get() method, but it should only be used if you are sure that the target oar a reference
will never be stored in a different document from the source.

3.1.2.4 The Department Class Element in the Ecore Document

The XMI that defines the Department class from the Enterprise model is:

 <eClassifiers xsi:type="ecore:EClass" name="Department">
 <eReferences name="company" eType="#//Company" transient="true"
 eOpposite="#//Company/department"/>
 <eReferences name="employee" eType="#//Employee" upperBound="-1"
 containment="true" eOpposite="#//Employee/department"/>
 <eAttributes name="number"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
 </eClassifiers>

3.1.2.5 The Person Class Element in the Ecore Document

An abstract class is specified as an ecore:EClass element in an XMI document where the
abstract attribute is set to “true”. For example, the XMI that defines the Person class
from the Enterprise model is

 <eClassifiers xsi:type="ecore:EClass" name="Person" abstract="true">
 <eAttributes name="comments"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"
 upperBound="-1"/>
 <eAttributes name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>

Note the following:

• The abstract="true" attribute will cause code generation to add the abstract keyword to the
generated implementation class.

3.1.2.6 The Employee Class Element in the Ecore Document

The XMI that defines the Employee class from the Enterprise model is:

 <eClassifiers xsi:type="ecore:EClass" name="Employee" eSuperTypes="#//Person">

 <eOperations name="initiateLeave">
 <eParameters name="startDate" eType="#//Date"/>
 </eOperations>
 <eReferences name="department" eType="#//Department" transient="true" eOpposite="#//Department/
employee"/>
 <eAttributes name="manager" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBool-
ean"

EMF Users’ Guide Draft 1.0 September 17, 2002 26

 defaultValueLiteral="false"/>
 <eAttributes name="email" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eAttributes name="employmentType" eType="#//EmploymentType" defaultValueLiteral="FullTime"/>
 <eAttributes name="dateOfHire" eType="#//Date"/>
 <eAttributes name="yearsOfService" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//
EInt"
 changeable="false" volatile="true" transient="true"/>
 <eAttributes name="leaveOfAbsenceStart" eType="#//Date" unsettable="true"/>
 </eClassifiers>

Note the following:

• The eSuperTypes="#//Person" attribute means that the generated code for the Employee
interface will extend the Person interface and that the EmployeeImpl class will
extend the PersonImpl class.

• The changeable="false" attribute (see yearsOfService) will mean that no set() method will
be generated for the attributes and references to which it applies.

• The volatile="true" attribute (see yearsOfService) will mean that no storage will be reserved
for the attributes and references to which it applies and also that the generated get()
and set() methods will throw an UnsupportedOperationException .

• The transient="true" attribute (see yearsOfService) will mean that the attributes and refer-
ences to which it applies will not be serialized.

• The data type of each attribute and reference is specified through the eType attribute.
For primitive types, the value of eType is a type that is defined in the ecore model (e.g.
"ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"). In the case of the employment-

Type and dateOfHire attributes, the value of eType are types that are defined in the enter-
prise package (e.g."#//EmploymentType" and "#//Date".)

• The defaultValueLiteral attribute (see manager and employmentType) provide the initial value
that the attribute will have if it has not been explicitly set.

• The unsettable="true" attribute (see leaveOfAbsenceStart) will mean that the generated inter-
face will include unset() and isSet() methods for the attribute to which it
applies. (The use of unsettable="true" incurs some runtime overhead due to the fact that
the implementation for this will require an additional field to remember whether or not
the attribute has been set.)

• The eOperations element (which defines the initiateLeave method) means that the indicated
method will be will generated in the interface and implementation class. The generated
EmployeeImpl class will include a stub implementation of this method. The stub imple-
mentation will throw an UnsupportedOperationException.

•

3.1.2.7 The EmploymentType Enumeration Element in the Ecore Document

An enumeration is specified as an ecore:EEnum element in an XMI document. For
example, the XMI that defines the EmploymentType enumeration from the
Enterprise model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 27

 <eClassifiers xsi:type="ecore:EEnum" name="EmploymentType">
 <eLiterals name="FullTime"/>
 <eLiterals name="PartTime" value="1"/>
 <eLiterals name="OnLeave" value="2"/>
 </eClassifiers>

Note the following:

• The eLiterals elements identify the literals that comprise this enumeration.

• Each value attribute should be unique. (The literal named FullTime uses the default for
value which is "0".)

3.1.2.8 The Date Datatype Element in the Ecore Document

A datatype is specified as an ecore:EDataType element in an XMI document. For exam-
ple, the XMI that defines the Date datatype from the Enterprise model is:

 <eClassifiers xsi:type="ecore:EDataType" name="Date"
 instanceClassName="java.util.Date"/>

Note the following:

• The instanceClassName attribute identifies the java interface or class to which the
datatype maps.

3.1.3 Code Generation Using Annotated Java Interfaces

If you prefer to use Java interfaces to specify your model, all you need to do is to write a
Java interface declaration to represent each class in your model and a Java class declara-
tion to define each enumeration in your model.

Within each interface you will need to specify a get() method for each attribute or
relationship in the model and within each class you will need to specify a field to repre-
sent each enumeration literal.

Each of these interface statements, class statements, get() methods, and fields should
be preceded by a javadoc comment that includes a @model tag. This tag is used to tell
the code generation utility that the construct represents an element of your model.

The code generation utility will automatically expand your interface declarations to
include any other methods that are needed to represent and access the classes in your
model. All the necessary implementation classes will also be generated automatically.

EMF Users’ Guide Draft 1.0 September 17, 2002 28

Much of the information that is needed to generate code can be gleaned from the Java
interface specification. For example, the name of the package that a class belongs to is
derived from the package statement that appears in the corresponding interface declara-
tion. Also, the names of all attributes are derived by stripping off the prefix “get ” from
the method names. For single-valued attributes and references, the type is the return type
of the get() method. Multi-valued attributes and references are identified by methods
that have a return type of List or EList .

Ecore properties that cannot be derived from the Java source code can be expressed via the
@model tags. Each property is specified in the form:

 /**
 * @model [<property>=<value>...]
 */

A full list of the possible properties can be found in Section 4.1, “Ecore Properties and
Codegen Specifications,” on page 56.

Examples of the @model tags that are needed to specify the enterprise model illus-
trated in Figure 1, “UML for enterprise model,” on page 8 can be found in the following
sections:

• “Java Specification for the Enterprise Package” on page 28

• “Java Specification for the Company Class” on page 29

• “Java Specification for the Department Class” on page 31

• “Java Specification for the Person Class” on page 31

• “Java Specification for the Employee Class” on page 32

• “Java Specification for the EmploymentType Enumeration” on page 33

3.1.3.1 Java Specification for the Enterprise Package

In certain cases, it may be useful to provide a interface to define a package. Note that usu-
ally, this declaration is not required at all. The classes and enumerations that belong to the
package in your model are automatically identified based on the interface and class dec-
larations that are in a java package. The datatypes that belong to your package are identi-
fied by attributes and methods that use types that are not classes in your model.

The only situation where it may be necessary to provide the declaration shown here is
when you wish to override some the default settings for the package or when you wish to
define a datatype that is not actually referenced in your model.

EMF Users’ Guide Draft 1.0 September 17, 2002 29

package org.eclipse.emf.samples.enterprise;
public interface EnterprisePackage extends EPackage{
 String eNAME = " enterprise ";

 String eNS_URI = " enterprise.xmi ";

 String eNS_PREFIX = " enterprise ";

 /**
 * @model instanceClass="java.util.Date"
 */
 EDataType getDate();
} //EnterprisePackage

Note the following:

• The eNAME, eNS_URI, and eNS_PREFIX shown here are not actually required in
this case because the indicated values are in fact the default values that would normally
be generated based on the package statement.

• A get method in the package interface that has an @model tag and that has a return type
of org.eclipse.emf.ecore.EDataType represents a datatype in your model. The
instanceClass attribute on the @model tag identifies the java interface or class to which
the datatype maps.

• Note that the classes and enumerations that are part of the package do not have to be
specified explicitly. The EMF code generation utility will automatically determine the
rest of the contents of the package based on the other interfaces and classes that are pro-
cessed.

3.1.3.2 Java Specification for the Company Class

A class in your model is specified as a Java interface. The name of the class is the name of
the interface. The attributes and references in the class are represented by get() methods
in your interface that are preceded by a @model tag.

For example, the Java interface that defines the Company class from the Enterprise
model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 30

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
/**
 * @model
 */
public interface Company extends EObject{
 /**
 * @model
 */
 String getName();
 /**
 * @model type="Department" opposite="company" containment="true"
 */
 EList getDepartment();
 /**
 * @model resolveProxies="false"
 */
 Employee getEmployeeOfTheMonth();
 /**
 * @model opposite="subsidiary"
 */
 Company getParent();
 /**
 * @model type="Company" opposite="parent"
 */
 EList getSubsidiary();
} // Company

Note the following:

• When the get() method returns a single object, the cardinality of the attribute or refer-
ence is single-valued. (For example, see the getName() , getEmployeeOfTheMonth() , and
getParent() methods.) This means that code generation will generate both get() and
set() methods for these features.

• When the get() method returns a EList , the cardinality of the attribute or reference is
multi-valued. (For example, see the getDepartment() and getSubsidiary() methods).
This means that no set() method will be generated. Note that the type attribute on the
@model tag is required in this case to indicate the type of object that is contained in the
EList .

• The opposite attribute on the @model tag identifies the opposite end of a relationship
that is navigable in both directions. (For example, the getDepartment() method speci-
fies an opposite attribute while the getEmployeeOfTheMonth() method does not.) The
opposite attribute is needed so that the generated code for the implementation of the
method will ensure that when one end of a relationship is modified, the other end will
be updated accordingly.

• When the resolveProxies attribute on the @model tag is set to "false" , (see the getEm-

ployeeOfTheMonth() method), the generated implementation of the get() method will
assume that the target object is never a proxy, and therefore will not attempt to resolve
the target. This improves the performance of the get() method, but it should only be
used if you are sure that the target of the reference will never be stored in a different
document from the source.

EMF Users’ Guide Draft 1.0 September 17, 2002 31

3.1.3.3 Java Specification for the Department Class

The Java interface that defines the Department class from the Enterprise model is:

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
/**
 * @model
 */
public interface Department extends EObject{
 /**
 * @model
 */
 int getNumber();
 /**
 * @model opposite="department"
 */
 Company getCompany();
 /**
 * @model type="Employee" opposite="department" containment="true"
 */
 EList getEmployee();
} // Department

3.1.3.4 Java Specification for the Person Class

The Java interface that defines the Person class from the Enterprise model is:

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
/**
 * @model abstract="true"
 */
public interface Person extends EObject{
 /**
 * @model type="String"
 */
 EList getComments();
 /**
 * @model
 */
 String getName();
} // Person

Note the following:

• The abstract="true" attribute on the @model tag will cause code generation to add the
abstract keyword to the generated implemenation class.

EMF Users’ Guide Draft 1.0 September 17, 2002 32

3.1.3.5 Java Specification for the Employee Class

The Java interface that defines the Employee class from the Enterprise model is:

package org.eclipse.emf.samples.enterprise;
/**
 * @model
 */
public interface Employee extends Person{
 /**
 * @model default="false"
 */
 boolean isManager();
 /**
 * @model
 */
 String getEmail();
 /**
 * @model default="FullTime"
 */
 EmploymentType getEmploymentType();
 /**
 * @model dataType="enterprise.Date"
 */
 Date getDateOfHire();
 /**
 * @model transient="true" changable="false" volatile="true"
 */
 int getYearsOfService();
 /**
 * @model unsettable="true" dataType="enterprise.Date"
 */
 Date getLeaveOfAbsenceStart();
 /**
 * @model opposite="employee"
 */
 Department getDepartment();

 /**

 * @model parameters="org.eclipse.emf.samples.enterprise.Date"

 */
 void initiateLeave(Date startDate);
} // Employee

Note the following:

• The extends Person specification on this interface will mean that the Employee-
Impl class will extend the PersonImpl class.

• The changable="false" attribute on the @model tag (see getYearsOfService()) will
mean that no set() method will be generated for the attributes and references to
which it applies.

• The volatile="true" attribute on the @model tag (see getYearsOfService()) will mean
that no storage will be reserved for the attributes and references to which it applies and

EMF Users’ Guide Draft 1.0 September 17, 2002 33

also that the generated implementations for the get() and set() methods will throw
an UnsupportedOperationException .

• The transient="true" attribute on the @model tag (see getYearsOfService()) will mean
that the attributes and references to which it applies will not be serialized.

• The default attribute on the @model tag (see isManager() and getEmploymentType())
provide the initial value that the attribute will have if it has not been explicitly set.

• The unsettable="true" attribute on the @model tag (see getLeaveOfAbsenceStart())
will mean that the generated interface will include unset() and isSet() methods
for the attribute to which it applies. (The use of unsettable="true" incurs some runtime
overhead due to the fact that the implementation for this will require an additional field
to remember whether or not the attribute has been set.)

• The initiateLeave(Date startDate) will be treated as an operation. The generated
EmployeeImpl class will include a stub implementation of this method.

3.1.3.6 Java Specification for the EmploymentType Enumeration

An enumeration in your model is specified as a public final class that extends
org.eclipse.emf.common.util. AbstractEnumerator . You need to identify the names
and values of the enumeration literals and EMF code generation will automatically fill in
the implementation details. For example, the Java class that defines the
EmploymentType enumeration from the Enterprise model is:

EMF Users’ Guide Draft 1.0 September 17, 2002 34

package org.eclipse.emf.samples.enterprise;
import org.eclipse.emf.common.util.AbstractEnumerator;
/**
 * @model
 */
public final class EmploymentType extends AbstractEnumerator
{
 /**
 * @model name="FullTime"
 */
 public static final int FULL_TIME = 0;

 /**
 * @model name="PartTime"
 */
 public static final int PART_TIME = 1;

 /**
 * @model name="OnLeave"
 */
 public static final int ON_LEAVE = 2;

 private EmploymentType(int value, String name)
 {
 super (value, name);
 }

} //EmploymentType

Note the following:

• Each public static final int field defines an enumeration literal. The initial values
for each field should be unique.

• The name of each literal is given by the name attribute on the @model tag.

3.2 Generating your model

The steps for invoking the EMF code generation utility are described in the document
called “Tutorial: Generating an EMF Model“, which can be found in the “Documents”
section of the EMF web site. Please see http://www.eclipse.org/emf/ for details.

3.3 Configuring your EMF Runtime Environment

There is some setup that may be needed before you can start working with EMF objects.

In some cases there are three alternative mechanisms you can use to do the necessary
setup. The choice of which mechanism to use will depend on whether or not your applica-
tion runs from within the Eclipse workbench and whether the applicable configuration
option applies globally or locally.

EMF Users’ Guide Draft 1.0 September 17, 2002 35

If your application runs as a plugin within the workbench, you can use your plugin.xml
file to specify many of the configuration options you need. Otherwise, you will need to
invoke APIs that initialize and register the prerequisite objects. The specific API that you
need to use will depend on whether the customization is meant to apply globally or locally.

The following sections list the setup actions that you may need to take. Where appropriate,
each section describes the alternative setup mechanisms for specifying each customiza-
tion.

• If you are using a generated package, you will need to make sure the package is either
initialized or registered before you begin. See “Registering/Initializing a Package” on
page 35.

• At runtime, the contents of a generated package are accessed through a singleton
instance of a generated Package class and instances of classes in the package are cre-
ated using a singleton instance of a generated Factory class. Your application may need
to establish a reference to one or both of these singleton objects. See “Accessing the
Package and Factory classes” on page 37.

• A Resource corresponds to a collection of objects that are serialized in a single per-
sistent stream. If you are creating new objects or loading objects from an existing
stream, you will need to know how to create a Resource . See “Creating a
Resource ” on page 37.

• A ResourceSet is a collection of Resource objects. You will need a
ResourceSet if you have Resource s that have cross references or have common
customizations. See “Creating a ResourceSet ” on page 38.

• A Resource.Factory is used by the EMF runtime to create a new Resource
whenever one is needed. If you need to provide your own implementation of the
Resource interface (e.g., if you want to serialize in a format other than XMI) then
you will also have to implement and register a Resource.Factory to instantiate your
Resource class. See “Registering a Resource.Factory ” on page 39.

• A URIConverter is a class that determines how a relative URI is resolved to an
absolute URI. If you need to override the default processing, you will need to imple-
ment and register your own implementation of the URIConverter interface. See
“Registering a URIConverter” on page 41.

• Adapter objects handle events that are triggered by a Notifier . One possible
mechanism for establishing the association between Adapter objects and Notifier
objects is to attach an AdapterFactory to a ResourceSet. See “Registering an Adapter-
Factory” on page 41.

3.3.1 Registering/Initializing a Package

For generated packages, before you can access the classes of a package, you need to
ensure that the package has been registered and initialized. If you are running within the
EMF workbench, you can register packages through the plugin.xml file. (See “Regis-
tering and Initializing a Generated Package in a Plugin” on page 36.) Otherwise, you need

EMF Users’ Guide Draft 1.0 September 17, 2002 36

to explicitly invoke a method that will initialize the package. (See “Registering and Ini-
tializing a Generated Package Using APIs” on page 36.)

For dynamic packages, i.e., packages that are created by your application at runtime, your
application is responsible for the initialization and registration of the package. (See “Reg-
istering a Dynamic Package” on page 36.)

3.3.1.1 Registering and Initializing a Generated Package in a Plugin

To preregister a package or packages, you would include the
org.eclipse.emf.ecore.generated_package extension point in your plu-
gin.xml file. For example, assume that you generated the Enterprise package into a Java
package called “org.eclipse.emf.samples.enterpise”. Your plugin may contain the follow-
ing extension point element:

<extension point="org.eclipse.emf.ecore.generated_package">
<package uri = "enterpise.xmi"
 class = "org.eclipse.emf.samples.enterpise.EnterpisePackage"/>

</extension>

3.3.1.2 Registering and Initializing a Generated Package Using APIs

If you are running outside of the workbench, you will need to explicitly initialize each
package that you require. You do this by invoking the static init() method that is
defined on each package implementation. For example, a method to initialize the Enterp-
isePackage would look like this:

protected void initializeEnterprisePackage() {

EnterpisePackageImpl.init();

}

3.3.1.3 Registering a Dynamic Package

If you have a dynamic package (i.e., a package that is created by your application at runt-
ime rather than being generated) you will need to ensure that your package is correctly
registered.

After you create your package you must ensure that it is registered. One way to do this is
using the following method:

 public static void registerDynamicPackage(String uri, EPackage pkg)
 {
 EPackage.Registry.INSTANCE.put(uri, pkg);
 }

Where:

• uri is the string under which the package is registered

• pkg is the package itself

EMF Users’ Guide Draft 1.0 September 17, 2002 37

A dynamic package must be an instance of a class that implements the EPackage inter-
face. Note the default implementation of EPackage , EPackageImpl , has constructors
that take a packageURI string as one of their arguments register the new package auto-
matically. Therefore if you use one of these constructors to create your new package, you
do not have to do anything else to ensure that the package is registered. However, if you
use one of the other EPackageImpl constructors you need to register the package as
shown above.

3.3.2 Accessing the Package and Factory classes

If you need to access the meta data for your package, you will need to acquire a reference
to the generated Package class. Similarly, if you need to create instances of the classes in
your model, you will need to do so using the generated Factory class. If you access
these objects frequently, you may find it convenient to cache the references to them. For
example, a method to look up and cache the EnterpisePackage and Enterpise-
Factory might look like this:

EnterpisePackage enterpisePackage= null ;

EnterpiseFactory enterpiseFactory= null ;

protected void lookupPackageAndFactory() {

Map registry = EPackage.Registry.INSTANCE;

String enterpiseURI = EnterpisePackage.eNS_URI;

enterpisePackage = (EnterpisePackage)registry.get(enterpiseURI);

enterpiseFactory = enterpisePackage.getEnterpiseFactory();

}

3.3.3 Creating a Resource

A Resource should be created through either a Resource.Factory or a
ResourceSet . (Actually, the createResource() method on the ResourceSet
class is implemented using Resource.Factory , so ultimately, every Resource
object is created through a Resouce.Factory .)

Resource objects may also be created automatically. If you reference an object that is
defined in a Resource that has not yet been loaded, the Resource will be automati-
cally loaded.

For example, to create a Resource from a ResourceSet , you could use the following
method.

public static Resource createResourceFromResourceSet(ResourceSet resSet,
 String uri)

{
Resource r = null ;
r = resSet.createResource(URI.createURI(uri));

return r;
}

Where:

EMF Users’ Guide Draft 1.0 September 17, 2002 38

• resSet is the ResourceSet that will contain the new Resource

• uri is the URI for the Resource to be serialized

To create a Resource from a Resource.Factory , you could use the following
method. Note that if you do this, you will eventually need to add the Resource to a
ResourceSet explicitly.

public static Resource createResourceFromDefaultFactory(String uri)
{

Resource r = null ;
Resource.Factory resFactory =

Resource.Factory.Registry.INSTANCE.getFactory(
URI.createURI(uri));

r = resFactory.createResource(URI.createURI(uri));

return r;
}

Where:

• uri is the URI for in which the Resource to be serialized

3.3.4 Creating a ResourceSet

You can create a ResourceSet simply by invoking new on an implementation of the
ResourceSet interface. The default implementation is in
org.eclipse.emf.ecore.resource.impl .

The createResourceSet() method defined below provides the convenience of
being able to initialize the ResourceSet with a specified Resource.Fac-
tory.Registry or URIConverter . If these are needed but do not exist at the time
the ResourceSet is created, they can be added later.

public static ResourceSet createResourceSet(Resource.Factory.Registry r,
 URIConverter c) {

ResourceSet resSet = new ResourceSetImpl();
if (c!= null) resSet.setURIConverter(c);
if (r!= null) resSet.setResourceFactoryRegistry(r);
return resSet;

Where:

• r is the Resource.Factory.Registry , if any, that will be used by the new
ResourceSet .

• c is the URIConverter , if any, that will be used by the new ResourceSet .

EMF Users’ Guide Draft 1.0 September 17, 2002 39

3.3.5 Registering a Resource.Factory

You have the option of substituting your own implementation of the Resource interface
for the default implementation provided by EMF. This enables you to control the format
used to serialize your data.

In order to specify which implementation of Resource to use, you need to register a
Resource.Factory that can create an instance of the desired Resource . The default
Resource.Factory used to create XMI streams is
org.eclipse.emf.ecore.xmi.XMIResourceFactoryImpl .

You can register a Resource.Factory by either protocol or file extension. Once a
Resource.Factory is registered, anytime a Resource is generated, if the URI
matches one of the registered protocols or extensions, the specified Resource.Fac-
tory will be used. As a special case, “*” can be used as a wild card to register an exten-
sion Resource.Factory as applying to all extensions. (Protocols take precedence, so
if a URI matches both a registered protocol and a registered extension, the protocol will be
used. Specific extensions take precedence over the wild card.)

The Resource.Factory that you register can be any type that implements the
org.eclipse.emf.ecore.resource.Resource.Factory interface. So, for
example, if you want to save your documents in a format other than XMI, you would
implement a Resource that loads and saves the format you choose and then you would
implement and register a Resource.Factory that creates an instance of your
Resource implementation.

3.3.5.1 Registering a Resource.Factory for a Plugin

You can use the plugin extension points “org.eclipse.emf.ecore.extension_parser” and
“org.eclipse.emf.ecore.protocol_parser” to register an implementation of a
Resource.Factory . (The term “parser” is used here because the specified
Resource.Factory determines which type of Resource is used which in turn deter-
mines how an InputStream will be parsed.)

For example, if you have defined an implementation of Resource.Factory called
org.eclipse.dtd.impl.DTDResourceFactoryImpl which creates a
Resource that can be used to parse and serialize DTD files, and you want this to apply to
any file that has an extension of “.dtd”, you could do the following:

EMF Users’ Guide Draft 1.0 September 17, 2002 40

<extension point = "org.eclipse.emf.ecore.extension_parser">
<parser type="dtd"
 class="org.eclipse.dtd.impl.DTDResourceFactoryImpl"/>

</extension>

On the other hand, if you want your DTDResource implementation to be used for any
URI that has a protocol of “abc”, you could do the following:

<extension point = "org.eclipse.emf.ecore.protocol_parser">
<parser protocolName="abc"
 class="org.eclipse.dtd.impl.DTDResourceFactoryImpl"/>

</extension>

3.3.5.2 Registering a Resource.Factory Globally

The following method registers a ResourceFactory in the global Resource.Fac-
tory.Registry under a specified key.

public static void registerGlobalResourceFactory(
Resource.Factory f,
String key,
boolean isExtension)

{
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m;
if (isExtension) m=reg.getExtensionToFactoryMap();
else m=reg.getProtocolToFactoryMap();
m.put(key, f);

}

Where:

• f is the Resource.Factory to be registered.

• key is the String under which the factory is registered.

• The isExtension flag indicates if the key represents an extension (true) or protocol
(false)

3.3.5.3 Registering a Resource.Factory locally

The following method registers a ResourceFactory in the local Resource.Fac-
tory.Registry for a given ResourceSet under a specified key.

EMF Users’ Guide Draft 1.0 September 17, 2002 41

public static void registerLocalResourceFactory(
ResourceSet resSet,
Resource.Factory f,
String key,
boolean isExtension)

{
Resource.Factory.Registry reg = resSet.getResourceFactoryRegistry();
if (reg== null) {

reg = new ResourceFactoryRegistryImpl();
resSet.setResourceFactoryRegistry(reg);

}
Map m;
if (isExtension) m=reg.getExtensionToFactoryMap();
else m=reg.getProtocolToFactoryMap();
m.put(key, f);

}

Where:

• resSet is the ResourceSet that defines the context for which the registration is in
effect.

• f is the Resource.Factory to be registered.

• key is the String under which the factory is registered.

• The isExtension flag indicates if the key represents an extension (true) or protocol
(false)

3.3.6 Registering a URIConverter

If you need a customized URIConverter you will need to define the implementation,
create an instance of the implementation, and then attach it to a ResourceSet . There is
no mechanism for registering a URIConverter for a plugin.

public static void setURIConverter(ResourceSet resSet, URIConverter c) {
if (c!= null) resSet.setURIConverter(c);
return ;

}

Where:

• resSet is the ResourceSet .

• c is the URIConverter , that will be used by the ResourceSet .

3.3.7 Registering an AdapterFactory

An AdapterFactory is used to create Adapter objects and associate them with
Notifier objects. You need to register one or more AdapterFactory objects with a
ResourceSet .

EMF Users’ Guide Draft 1.0 September 17, 2002 42

public static void setURIConverter(ResourceSet resSet, AdapterFactory af) {
if (af!= null) resSet.getAdapterFactories().add(af);
return ;

}

Where:

• resSet is the ResourceSet .

• af is the AdapterFactory , that will be added to the ResourceSet .

3.4 Running your application

3.4.1 Creating Instance Data

The following method illustrate the construction of two resources that contain instances of
classes that are defined in the enterprise model.

EMF Users’ Guide Draft 1.0 September 17, 2002 43

/**
 * createInstances
 *
 * Creates two resources that contain instances of classes from the
 * enterprise package and adds the resources to the specified resource set.
 *
 */
static void createInstances(ResourceSet resSet) {

// Access the factory (needed to create instances)
Map registry = EPackage.Registry.INSTANCE;
String enterpriseURI = EnterprisePackage.eNS_URI;
EnterprisePackage enterprisePackage =

(EnterprisePackage) registry.get(enterpriseURI);
EnterpriseFactory enterpriseFactory =

enterprisePackage.getEnterpriseFactory();

// Create the resources
Resource res1 =

resSet.createResource(URI.createURI("megacorp.enterprise"));
Resource res2 =
 resSet.createResource(URI.createURI("acme.enterprise"));

// Create the first company and add it to a resource
Company c1 = enterpriseFactory.createCompany();
c1.setName("Mega Corp");
Department d1 = enterpriseFactory.createDepartment();
d1.setNumber(99);
Employee e1 = enterpriseFactory.createEmployee();
e1.setName("Jane Doe");

c1.getDepartment().add(d1);
d1.getEmployee().add(e1);
res1.getContents().add(c1);

// Create the second company and add it to a resource
Company c2 = enterpriseFactory.createCompany();
c2.setName("ACME");
Department d2 = enterpriseFactory.createDepartment();
d2.setNumber(101);
Employee e2 = enterpriseFactory.createEmployee();
e2.setName("John Smith");

c2.getDepartment().add(d2);
d2.getEmployee().add(e2);
res2.getContents().add(c2);
c1.getSubsidiary().add(c2);

}

This code performs the following tasks:

• Accesses the factory for the enterprise package. This involves first going to the EPack-
age.Registry to find the package that is registered under the URI that is assigned to the
enterprise package and then using the package to access the factory.

• Creates two resources.

• Creates the objects that are in the resources and links them together.

EMF Users’ Guide Draft 1.0 September 17, 2002 44

Note that the only objects that are added directly to the resources are the instances of the
Company class. The other classes are connected to the Company class through contain-
ment relationships, and therefore they should not be added to the resources.

The XMI documents that contain the contents of the resources are displayed in the follow-
ing section (“Serializing Your Instance Data” on page 44).

3.4.2 Serializing Your Instance Data

The following method illustrate how the resources that were constructed in Section 3.4.1,
“Creating Instance Data,” on page 42 can be serialized into XMI files.

/**
 * Creates and initializes the resrouce set and then saves the
 * resources contained in that resource set.

 */
public static void createAndSave() {

// Initialize the enterprise package
EnterprisePackageImpl.init();

// Register the XMI resource factory for the .enterprise extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();
m.put("enterprise" , new XMIResourceFactoryImpl());

// Obtain a new resource set
ResourceSet resSet = new ResourceSetImpl();

// Create resources and instances; add the resources to the resource set
createInstances(resSet);

// Save each resource
Iterator r = resSet.getResources().iterator();
while (r.hasNext()) {

Resource res = (Resource) r.next();
Map options = new HashMap();
options.put(XMIResource.OPTION_DECLARE_XML, Boolean.TRUE);
try {

res.save(options);
} catch (IOException e) {

System.out.println(e);
}

}
}

This code performs the following tasks:

• Initializes the enterprise package, which causes the package to be registered so that it
can later be looked up by its URI.

• Registers the XMI resource factory for the .enterprise extension.This will cause all
documents with this extension to be treated as XMI documents.

• Obtains a resource set.

EMF Users’ Guide Draft 1.0 September 17, 2002 45

• Creates resources and instances using the method define in Section 3.4.1, “Creating
Instance Data,” on page 42. This method will add all the resources it creates into the
specified resource set.

• Saves the resources.

The result of the createIstances method is to produce two resources called mega-
corp.enterprise and acme.enterprise, which each contain one instance of a Company,
a Department, and an Employee.

The contents of the megacorp.enterprise resource is:

<?xml version="1.0" encoding="ASCII"?>
<enterprise:Company xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:enterprise="enter-
prise.xmi" name="Mega Corp">
 <department number="99">
 <employee name="Jane Doe"/>
 </department>
 <subsidiary href="acme.enterprise#/"/>
</enterprise:Company>
<?xml version="1.0" encoding="ASCII"?>

And the contents of the acme.enterprise resource is:

<enterprise:Company xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:enterprise="enter-
prise.xmi" name="ACME">
 <department number="101">
 <employee name="John Smith"/>
 </department>
 <parent href="megacorp.enterprise#/"/>
</enterprise:Company>

3.4.3 Loading Instance Data

The following method illustrates how the XMI files that were generated in the example in
Section 3.4.2, “Serializing Your Instance Data,” on page 44 can be loaded back into mem-
ory.

EMF Users’ Guide Draft 1.0 September 17, 2002 46

/**
 * load
 *
 * loads and prints the contents of a resource set
 *
 */
public static void load() {

// Initialize the enterprise package
EnterprisePackageImpl.init();

// Register the XMI resource factory for the .enterprise extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();
m.put("enterprise" , new XMIResourceFactoryImpl());

// Obtain a new resource set
ResourceSet resSet= new ResourceSetImpl();

// Load one of the resources into the resoruce set.
Resource res = resSet.getResource(

URI.createURI("megacorp.enterprise"), true);

// Print all the resources inthe resource set.
// Note: the process of printing the contents of the first resource
// will cause the second resource to be demand loaded.
List resList = resSet.getResources();
for (int i=0; i<resList.size(); i++) {

res = (Resource) resList.get(i);
System.out.println("\n---");
System.out.println("\nContents of resource " +res.getURI());
System.out.println("\n---\n");
UGRefPrint.print(res.getContents());

}

}

This code performs the following tasks:

• Initializes the enterprise package, which causes the package to be registered so that it
can later be looked up by its URI.

• Registers the XMI resource factory for the .enterprise extension.This will cause all
documents with this extension to be treated as XMI documents.

• Obtains a resource set.

• Loads one of the resources explicitly.

• Prints out both of the resources using the print utility that is described in Section 3.6,
“Using Reflective APIs,” on page 47.

The output of this method is shown below. Note that only megacorp.enterprise resource
is explicitly loaded by this code, but the output includes both megacorp.enterprise and
acme.enterprise. The megacorp.enterprise resource includes a reference to an object in
the acme.enterprise document. Therefore, the process of printing out megacorp.enter-
prise forces acme.enterprise to be demand loaded. In the above code above, resList

EMF Users’ Guide Draft 1.0 September 17, 2002 47

initially contains one resource, but during the call to UGRefPrint .print, the second
resource is added to this list.

Contents of resource megacorp.enterprise

Company:
name: Mega Corp
department:

number: 99
company:

name: Mega Corp
employee:

name: Jane Doe
department:

number: 99
subsidiary:

name: ACME

Contents of resource acme.enterprise

Company:
name: ACME
department:

number: 101
company:

name: ACME
employee:

name: John Smith
department:

number: 101
parent:

name: Mega Corp

3.5 Handling notifications

3.5.1 Defining Observers

<tbd>To be done</tbd>

3.5.2 Attaching Observers to Your Objects

<tbd>To be done</tbd>

3.6 Using Reflective APIs

EMF provides APIs that enable you to access your data reflectively. This means that you
can view and manipulate EMF data without having any prior knowledge of the model.

EMF Users’ Guide Draft 1.0 September 17, 2002 48

(See “Examining EObject Instances using Reflection” on page 48 and “Modifying EOb-
jects using reflection” on page 53.) Also, you can dynamically create new classes (See
“Creating New Dynamic Classes” on page 53.) or extend classes that have been generated
(See “Extending Generated Classes with Dynamic Classes” on page 53.).

3.6.1 Examining EObject Instances using Reflection

The methods described in this section can be used to print out the contents of an EOb-
ject without having any prior knowledge of the structure of that EObject . The meth-
ods defined here are all static and are assumed to be in the same class.

The only public method in this class is print, which takes a collection of EObject objects
and displays the contents of the objects in System.out.

The print () method invokes printObject () to display each object in the Collec-
tion . The printObject() method prints the name of the object and then displays the
contents of the object by invoking printAllAttributes and printAllRefer-
ences .

3.6.1.1 print

The print method invokes printObject () to display each object in the Collection .
This can be any Collection that contains EObject objects. For example, it might be
the contents of a Resource .

static public void print(Collection list) {

Iterator iter = list.iterator();
while (iter.hasNext()) {

Object object = iter.next();
if (object instanceof EObject)

printObject ()(0, (EObject)object, null , true);

}
}

Where:

• list is the collection of EObject instances to be printed. (For example, this could be
the collection returned by the getContents() method of a Resource object.

3.6.1.2 printObject

The printObject() method can be called either on a root object or it can be called to
display the target of a reference. When a root object is printed, the name for the object will
be the name of the object’s class. When a reference is printed, the name will be the name
of the reference.

All the attributes of the object are displayed by calling printAllAttributes ().

EMF Users’ Guide Draft 1.0 September 17, 2002 49

The printReferences argument that is passed to printObject () is a flag to indi-
cate whether or not to display the references that belong to the object. In the case of a root
object, the references are always displayed. For a non-root object, the references will be
displayed if the object is being printed as part of its container. (This is needed to prevent
the possibility of infinite recursion when invoking printObject ().)

If the printReferences flag is true, the references are displayed by calling print-
AllReferences() .

static private void printObject(
int tabIndex,
EObject eObject,
EReference referenceObj,
boolean printReferences) {
if (tabIndex != 0) {

System.out.println();
for (int i = 0; i < tabIndex; i++)

System.out.print("\t");
}
ENamedElement nameObj =

(referenceObj == null)
? (ENamedElement) eObject.eClass()
: referenceObj;

System.out.println(nameObj.getName() + ": ");

printAllAttributes ()(tabIndex + 1, eObject);

if (printReferences)

printAllReferences ()(tabIndex, eObject);

}

Where:

• tabIndex is an integer that controls the indentation of the output line

• eObject is the object to be printed.

• referenceObj is the EReference that was traversed to access eObject. If referen-

ceObj is null , the eObject is a root object.

• The printReferences flag indicates whether the output for the eObject should include
the objects that the eObject references. (The references are only printed for contain-
ments.)

3.6.1.3 printAllAttributes

The printAllAttributes() method first accesses the meta object for a given object
and then accesses and traverses the list of attributes that belong to the meta object. The
printAttribute() method is invoked for each attribute to print out the appropriate
value, if it exists.

EMF Users’ Guide Draft 1.0 September 17, 2002 50

static private void printAllAttributes(int tabIndex, EObject eObject) {
EClass eMetaObject = eObject.eClass();
if (eMetaObject == null)

return ;

Collection attrs = eMetaObject.getEAllAttributes();
if (attrs == null)

return ;
Iterator iAttr = attrs.iterator();

while (iAttr.hasNext()) {
EAttribute eAttr = (EAttribute) iAttr.next();

printAttribute ()(tabIndex, eObject, eAttr);

}
}

Where:

• tabIndex is an integer that controls the indentation of the output line

• eObject is the object to be printed.

3.6.1.4 printAttribute

The printAttribute() method displays the value for a single attribute, if it exists.
The value of the attribute is obtained by calling the reflective method EOb-
ject.eGet(EStructuralFeature) . Note that if the attribute is a single-valued
attribute, the value will be a single Object . Otherwise it will be a Collection of
objects.

EMF Users’ Guide Draft 1.0 September 17, 2002 51

static private void printAttribute(
int tabIndex,
EObject eObject,
EAttribute eAttr) {
if (!eObject.eIsSet(eAttr)) {

return ;
}

Object value = eObject.eGet(eAttr);

if (eAttr.isVolatile() || (value == null))
return ;

String valueS = "" ;
if (eAttr.isMany()) {

Iterator vals = ((Collection) value).iterator();
while (vals.hasNext()) {

if (valueS.length() > 0)
valueS += ", " ;

valueS += vals.next().toString();
}

}
else

valueS = value.toString();
for (int i = 0; i < tabIndex; i++)

System.out.print("\t");

System.out.println(eAttr.getName() + ": " + valueS);
return ;

}

Where:

• tabIndex is an integer that controls the indentation of the output line

• eObject is the object to be printed.

• eAttr is the attribute to be printed.

3.6.1.5 printAllReferences

The printAllReferences() method first accesses the meta object for a given object
and then accesses and traverses the list of references that belong to the meta object. The
printReference() method is invoked for each reference to print out the appropriate
object, if it exists.

EMF Users’ Guide Draft 1.0 September 17, 2002 52

static private void printAllReferences(int tabIndex, EObject eObject) {
EClass eMetaObject = eObject.eClass();
if (eMetaObject == null)

return ;

Collection refs = eMetaObject.getEAllReferences();

if (refs == null)
return ;

Iterator iRef = refs.iterator();

while (iRef.hasNext()) {
EReference ref = (EReference) iRef.next();

printReference ()(tabIndex, eObject, ref);

}
}

Where:

• tabIndex is an integer that controls the indentation of the output line

• eObject is the object to be printed.

3.6.1.6 printReference

The printReference() method displays the value for a single reference, if it exists.
The value of the reference is obtained by calling the reflective method EOb-
ject.eGet(EStructuralFeature) . Note that if the reference is a single-valued
reference, the value will be a single Object . Otherwise it will be a Collection of
objects.

The target of the reference is printed out by calling printObject() recursively. Note
that for containment references, we want to print the contained object plus all of its refer-
ences while for non-containment references, we only want to print the object. This will
prevent the possibility of infinite recursion.

EMF Users’ Guide Draft 1.0 September 17, 2002 53

static private void printReference(
int tabIndex,
EObject eObject,
EReference ref) {
Object value = eObject.eGet(ref);
if (ref.isVolatile() || (value == null))

return ;

if (ref.isMany()) {
Iterator vals = ((Collection) value).iterator();
while (vals.hasNext()) {

EObject eValue = (EObject)vals.next();
if (eValue== null)

return ;
boolean printNestedReferences =

eValue.eContainer() == eObject;
printObject(tabIndex + 1, eValue, ref, printNestedReferences);

}
}
else {

EObject eValue = (EObject)value;
boolean printNestedReferences = eValue.eContainer() == eObject;
printObject(tabIndex + 1, eValue, ref, printNestedReferences);

}
}

Where:

• tabIndex is an integer that controls the indentation of the output line

• eObject is the object to be printed.

• ref is the reference to be printed.

3.6.2 Modifying EObjects using reflection

<tbd> to be done </tbd>

3.6.3 Creating New Dynamic Classes

<tbd> to be done </tbd>

3.6.4 Extending Generated Classes with Dynamic Classes

<tbd> to be done </tbd>

3.7 Customizing EMF

3.7.1 Creating Keys to Access the Contents of a Resource

<tbd> to be done </tbd>

EMF Users’ Guide Draft 1.0 September 17, 2002 54

3.7.2 Cross File References and Proxies

<tbd> to be done </tbd>

3.7.3 Customizing the Resource for non-XMI Serialization

<tbd> to be done </tbd>

3.7.4 Handling XMI Documents Serialized from a Different Version of Your Model

<tbd> to be done </tbd>

3.7.5 Customizing a URIConverter

Suppose you have special rules for resolving relative URIs. You can implement those rules
by creating your own implementation of the
org.eclipse.emf.ecore.resource.URIConverter interface and attaching it
to the ResourceSet that will be used to load and save the resource.

For example, suppose you would like all relative URIs to resolve to a specific location on
your file system. Your implementation of URIConverter could look like this:

EMF Users’ Guide Draft 1.0 September 17, 2002 55

public class UGURIConverterImpl extends URIConverterImpl
{
 private URI baseURI= null ;

 /**
 * Construct a UGURIConverterImpl from a specified base uri
 */
 public UGURIConverterImpl(String base)
 {
 if (base!= null) baseURI=URI.createURI(base);
 }

 /**
 * Normalize the uri.
 * <p>
 * If the uri is relative and if the baseURI has been specified,
 * simply resolve the uri against the base.
 * Otherwise defer to the super classs's implementation.
 */
 public URI normalize(URI uri)
 {
 if (uri.isRelative() && baseURI!= null) {
 return uri.resolve(baseURI);
 }
 return super .normalize(uri);
 }

 /**
 * Creates an output stream and returns it.
 * <p>
 * If the normalized uri is a file scheme, use the normalized uri to
 * construct the output stream directly. Otherwise defer to the super classs's
 * implementation.
 */
 public OutputStream createOutputStream(URI uri) throws IOException
 {
 URI converted = normalize(uri);
 String scheme = converted.scheme();
 if ("file" .equals(scheme))
 {
 return createFileOutputStream(converted.toFileString());
 }
 return super .createOutputStream(uri);
 }

 /**
 * Creates an input stream and returns it.
 * <p>
 * If the normalized uri is a file scheme, use the normalized uri to
 * construct the input stream directly. Otherwise defer to the super classs's
 * implementation.
 */
 public InputStream createInputStream(URI uri) throws IOException
 {
 URI converted = normalize(uri);
 String scheme = converted.scheme();
 if ("file" .equals(scheme))
 {
 return createFileInputStream(converted.toFileString());

EMF Users’ Guide Draft 1.0 September 17, 2002 56

 }
 return super .createInputStream(uri);
 }
} // URIConverterImpl

4.0 Quick Reference

The following sections provide reference information:

• See “Ecore Properties and Codegen Specifications” on page 56 for an description of all
the properties that you may need to use when generating code.

• See “EMF APIs” on page 76 for a link to information on using the EMF APIs.

4.1 Ecore Properties and Codegen Specifications

The code patterns used by the EMF code generation utility are determined by the proper-
ties of the packages, classes, attributes, and relationships that you specify in your model.
EMF supports three different formats for the specification of a model, namely, UML,
XMI, and Java. Whichever format you use, you will need to be aware of how the model
properties are specified in that format.

The following sections enumerate all the properties that apply to each element of an Ecore
model. Each section has two tables. The first table lists the properties and how they impact
the code generation process and the second table shows how each of these properties is
specified in each of the three formats.

Here is an overview of the Ecore model elements:

• An EPackage (See “EPackage Properties” on page 58.) is a collection of
EClassifier objects. Each package has a package URI which is used to uniquely
identify the package.

• An EClassifier is the description of a type in Ecore. Each EClassifier is
either an EClass or an EDataType

• An EClass (See “EClass Properties” on page 59.) is a description of a funda-
mental Ecore data element. Every EObject is an instance of an EClass .

An EClass may be abstract or concrete and it may derive from other classes. It
consists of zero or more EStructuralFeatures and EOperations .

• An EDataType (See “EDataType Properties” on page 64.) is a description of
a type whose values are not Ecore objects. This can be a primitive type, a Java
Class that is defined outside of the Ecore model, or an EEnum.

• An EEnum (See “EEnum Properties” on page 62.) is a type that is constructed
for a specified list of EEnumLiterals (See “EEnumLiteral Properties” on
page 72.).

EMF Users’ Guide Draft 1.0 September 17, 2002 57

• An EStructuralFeature is a component of an EClass that describe a field that
belongs to the Class. Each EStructuralFeature is either an EAttribute (See
“EAttribute Properties” on page 66.) or an EReference (See “EReference Proper-
ties” on page 69.).

Each EAttribute or EReference has a type (i.e. either an EClass or an
EDataType) and may also have other properties that define its cardinality, change-
ability, default value (if any), persistence, etc.

• An EOperation (See “EOperation Properties” on page 74.) is a component of an
EClass that describes a method belonging to the class.

Each EOperation has a type (which may be an EClass , an EDataType , or null)
and also has zero or more EParamter objects (See “EParameter Properties” on page
75.).

EMF Users’ Guide Draft 1.0 September 17, 2002 58

4.1.1 EPackage Properties

The properties of an EPackage in Ecore are:

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set via a package object in a UML diagram or via the specifi-
cation dialog box for the package. (See Section 3.1.1.7, “Ecore Properties for Pack-
ages,” on page 19 for an example.)

• XMI - Most of these properties are specified as attributes or sub-elements of the
ecore:EPackage element in the ecore document. The ecore:EPackage document is
typically the root of the document. (See Section 3.1.2.2, “The Enterprise Package Ele-
ment in the Ecore Document,” on page 23 for an example.) Some of the package prop-
erties are specified in the genPackage element of the genmodel document (See Section
3.1.2.1, “Genmodel Document for the enterprise Model,” on page 22 for an example.)

• Java - The properties are implicitly derived from the java package that contains the var-
ious interface declarations that define the classes in your model.

TABLE 1. Ecore Properties for EPackage

Property Usage Default

name The name of the package. This name is used as the
name of the generated package Interface.

No default.

nsURI The Namespace URI of the package, i.e. the URI
that appears in the xmlns tag to identify this pack-
age in an XMI document.

nsName with a suf-
fix of “.xmi”

nsPrefix The Namespace prefix that is used when references
to instances of the classes in this package are seri-
alized.

The nsName with
the first character
converted to upper
case.

eClassifiers The classes, enumerations and datatypes contained
in the package. (See “EClass Properties” on
page 59, “EEnum Properties” on page 62,

and “EDataType Properties” on page 64.)

empty

eSubpackages The nested packages. This information is used to
construct the default names and namespace URIs
for the subpackages. Also, a package and its sub-
packages are treated as a group for the purposes of
initialization, so that when one package is initial-
ized, all the other packages in the group will also
be initialized.

none

prefix Used as the prefix for the names of the generated
Factory and Package classes.

Same as package
name specified in
the model

basePackage The prefix used for the Java package that contains
the generated code for the model.

““ (i.e., the empty
string)

EMF Users’ Guide Draft 1.0 September 17, 2002 59

Alternatively, you can specify an explicit interface statement for a package or from the
@model tag that precedes the interface statement. You could do this if you want to
override some of the properties of the package. However, you may find that the easiest
way to do this is to allow the code generation utility to automatically create the initial
version of this interface statement, after which you can make the modifications you
require. (See Section 3.1.3.1, “Java Specification for the Enterprise Package,” on page
28 for an example.)

4.1.2 EClass Properties

The properties of an EClass in Ecore are:

TABLE 2. Codegen Specifications for EPackage Properties

Property UML XMI Java

name name of the package in
the UML diagram or
the packageName

propertyc

name attributea

a. Specified on the ecore:Package element in the ecore document

Implicitly derived from

the Java packageb .

b. This is the Java package that is specified on the package statement of the interfaces and/or
classes contained in the package.

nsURI nsURI propertyc

c. This property is specified on the eCore page of the specification dialog for the UML Package.

nsURI attributea The initial value of the

eNSURI fieldd

d. This field is a member of the interface that corresponds to the package itself.

nsPrefix prefix propertyc nsPrefix attributea The initial value of the

eNSPrefix fieldd

eClassifiers The classes, enumera-
tions, and datatypes that
are contained in the
UML Package

eClassifiers elementa Derived from the inter-
faces, classes and
datatypes within this

Java packageb

eSubpackages Nested packagesc eSubpackages ele-

menta
n/ae

e. Subpackages cannot be specified if you use Java interfaces to specify your model.

prefix prefix propertyc prefix attributef

f. Specified on the subPackages element in the genmodel document.

The prefix part of the
name of the Java pack-

ageb

basePackage basePackage prop-

ertyc
basePackage

attributef
 The base part of the

Java packageb

EMF Users’ Guide Draft 1.0 September 17, 2002 60

TABLE 3. Ecore Properties for EClass

Property Usage Default

name Used to construct the names of the generated inter-
face and implementation class. (The name of the
implementation class has a suffix of “Impl ”)

no default

instanceClass Used by the EMF runtime to validate the type of
objects on a type-safe list.

For non-dynamic classes, this is always the gener-
ated interface. null indicates a dynamic class.

the generated inter-
face

defaultValue The intrinsic default value for a class. This default
will be applied to any attributes of the class.

Note: this property cannot be modified for EClass
objects. It’s value is always null .

null

abstract If true , the generated implementation class will
have the abstract keyword

false

interface If true , only the java interface will be gener-
ated. There will be no corresponding implementa-
tion class and no create method in the factory.

false

eAttributes The attributes associated with the class. Used to
construct the accessor methods for the interface

and implementation of the class.a

(See “EAttribute Properties” on page 66.)

a. Depending on the properties of the attribute or reference, the accessor methods may be
get() , set() , isSet() and unset() . Usually, the implementations of these methods
are generated automatically.

none

eReferences The attributes associated with the class. Used to
construct the accessor methods for the interface

and implementation of the class.a

(See “EReference Properties” on page 69.)

none

eOperations The attributes associated with the class. Used to
construct the additional methods that are part of the
class. (Note: code generation creates stubs for the
implementations of these methods.)

(See “EOperation Properties” on page 74.)

none

eSupertypes The supertypes for this class. Used to construct the
extends clauses of the generated interface
and class statements.

Note: the generated interface will extend from all
the interfaces for all the supertypes. However, the
generated implementation class will only extend
from the implementation class of the first super-
type in the list.

none

EMF Users’ Guide Draft 1.0 September 17, 2002 61

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set via a UML class object or via the specification dialog box
for that class. (See Section 3.1.1.1, “Basic UML Model Elements,” on page 10 for an
example.)

• XMI - The properties are specified as attributes or sub-elements of an ecore:EClass
element in the XMI document. The ecore:EClass is typically one of the eClassifiers
sub-elements of the ecore:EPackage object that is at the root of the XMI document.
(See Section 3.1.2.3, “The Company Class Element in the Ecore Document,” on page
24 for an example.)

• Java - The properties are derived from the interface statement for a class or from the
@model tag that precedes the interface statement. (See Section 3.1.3.2, “Java Specifi-
cation for the Company Class,” on page 29 for an example.)

TABLE 4. Codegen Specifications for EClass Properties

Property UML XMI Java

name The name of the class
in the UML diagram

name attributea The name of the Java
interface .

instanceClass n/ab n/ab n/ab

defaultValue n/ac n/ac n/ac

abstract The abstract prop-

erty on the UML classd.
abstract attributea abstract propertye

interface The <<interface>>
stereotype on the UML
Class

interface attributea interface propertye

attributes All the attributes asso-
ciated the class

attributes elementa All the get() methods
on the interface
that have a @model tag
and whose return type
is a primitive type

references All the relations associ-
ated with the class

references elementa All the get() methods
on the interface
that have a @model
tag and whose return
type is an Ecore class

EMF Users’ Guide Draft 1.0 September 17, 2002 62

4.1.3 EEnum Properties

The properties of an EEnum in Ecore are:

operations All the operations asso-
ciated with the class

operations elementa Any method that is
flagged with an
@model tag and is not
the get() method for
and attribute or refer-

encef

supertypes All the generalizations
associated with the
class

supertypes elementa All the classes that are
listed in the extends
clause of the inter-
face statement.

a. Specified on the eClassifiers element that has an xsi:type of ecore:EClass in the ecore doc-
ument

b. You do not specify the instanceClass property explicitly. The value is always the generated
interface.

c. You do not specify the default value property explicitly. The value is always null.

d. This property is set in Rational Rose using the “Abstract” checkbox on the “Details” page of
the “Specification” dialog for a class.

e. The property is specified via the @model tag that precedes the interface statement for the
class.

f. If there is potential ambiguity with a get() method, you need to specify the “parame-
ters= ” attribute to give signature of the method.

TABLE 5. Ecore Properties for EEnum

Property Usage Default

name Used to construct the name of the generated pub-
lic final class

no default

instanceClass Used by the EMF runtime to validate the type of
objects on a type-safe list.

For non-dynamic classes, this is always the gener-
ated enumeration class. null indicates a dynamic
class.

the generated enu-
meration class

defaultValue The intrinsic default value for an enumeration.
This default will be applied to any attributes of the
enumeration type that do not specify an explicit
default.

Note: this property cannot be modified for EEnum
objects. It’s value is always the first enumerator.

first enumerator

TABLE 4. Codegen Specifications for EClass Properties

Property UML XMI Java

EMF Users’ Guide Draft 1.0 September 17, 2002 63

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set via a UML class object that has a stereotype of
<<enumeration>> , or via the specification dialog box for that class. (See Section
3.1.1.3, “Attribute Specifications in UML,” on page 13 for an example.)

• XMI - The properties are specified as attributes or sub-elements of an ecore:EEnu-
meration element in the XMI document. The ecore:EEnumeration is typically one of
the eClassifiers sub-elements of the ecore:EPackage object that is at the root of the
XMI document. (See Section 3.1.2.7, “The EmploymentType Enumeration Element in
the Ecore Document,” on page 26 for an example.)

• Java - The properties are derived from the class statement for an enumeration or from
the @model tag that precedes the class statement. Note: this class statement must be
preceded by a @model tag and should flagged as public and final and should extend
the org.eclipse.emf.common.util.AbstractEnumerator class. (See Section 3.1.3.6,
“Java Specification for the EmploymentType Enumeration,” on page 33 for an exam-
ple.)

serializable Controls whether or not the generated factory will
contain convertToString() and create-
FromString() methods for a datatype.

Note: this property cannot be modified for EEnum
objects. It’s value is always true .

true

eLiterals The literals associated with this enumeration. Used
to construct the final static integers and lit-
erals that comprise the generated class.

(See “EEnumLiteral Properties” on page
72.)

none

TABLE 6. Codegen Specification for EEnum Properties

Property UML XMI Java

name The name of a UML
class that has the
<<enumeration>>
stereotype

name attributea The name of enumera-
tion class. (An enumer-
ation class is any java
class that is pre-
ceded by a @model
tag.)

instanceClass n/ab n/ab n/ab

defaultValue n/ac n/ac n/ac

TABLE 5. Ecore Properties for EEnum

Property Usage Default

EMF Users’ Guide Draft 1.0 September 17, 2002 64

4.1.4 EDataType Properties

The properties of an EDataType in Ecore are:

These properties are specified to EMF code generation in one of the following ways:

serializable n/ad n/ad n/ad

eLiterals All the attributes of the
UML class

eLiterals elementa All variables of type
int that are preceded

by a @model tag. e

a. Specified on an eClassifiers element that has an xsi:type of ecore:EEnum in the ecore doc-
ument

b. You do not specify the instanceClass property explicitly. The value is always the generated
class.

c. You do not specify the default value property explicitly. The value is always the first entry on
the eLiterals list.

d. You do not specify the serializable property explicitly for enumerations. The value of the this
property is always true.

e. The @model tag may have a name= argument, but should not have any other arguments.

TABLE 7. Ecore Properties for EDataType

Property Usage Default

name Used to construct the name of the get() method
in the package that accesses the datatype.

no default

instanceClass Used by code generation in constructing the signa-
ture of accessor methods that are generated for
attributes that are typed to this datatype.

Also used by the EMF runtime to validate the type
of objects on a type-safe list.

no default

defaultValue The intrinsic default value for a datatype. This
default will be applied to any attributes of the
datatype that do not specify an explicit default.

For java primitive
types, the appropri-
ate Java default for
the primitive; Oth-
erwise, null

serializable Controls whether or not the generated factory will
contain convertToString() and create-
FromString() methods for a datatype.

Note: If the serializable flag is false for a
datatype, all attributes of that datatype must be
transient.

true

TABLE 6. Codegen Specification for EEnum Properties

Property UML XMI Java

EMF Users’ Guide Draft 1.0 September 17, 2002 65

• UML - The properties are set via a UML class object that has a stereotype of
<<datatype>> , or via the specification dialog box for that class. (See Section
3.1.1.3, “Attribute Specifications in UML,” on page 13 for an example.)

• XMI - The properties are specified as attributes or sub-elements of an
ecore:EDataType element in the XMI document. The ecore:EDataType is typically
one of the eClassifiers sub-elements of the ecore:EPackage object that is at the root
of the XMI document. (See Section 3.1.2.8, “The Date Datatype Element in the Ecore
Document,” on page 27 for an example.)

• Java - Any usage of a type that is not an EMF type will be implicitly treated as a
datatype. For example, if one of the attributes or methods in your model uses a type that
is not defined in your model (i.e. there is not interface with the @model tag to define
that type) the type will be treated as a datatype.

Alternatively, you can define a datatype explicitly by adding a get() method to the
package that defines the type. The return type of this get() method must be
org.eclipse.emf.ecore.EDataType and the method must be preceded by a
@model tag. (See Section 3.1.3.1, “Java Specification for the Enterprise Package,” on
page 28 for an example.)

TABLE 8. Codegen Specifications for EDataType Properties

Property UML XMI Java

name The name of a UML
class that has the
<<datatype>> ste-
reotype

name attributea

a. Specified on an eClassifiers element that has an xsi:type of ecore:EDataType in the ecore
document

The name of get()
method, without the
“get ” prefix.

instanceClass The name of an
attribute of the class
which has the
<<javaclass>>
stereotype

instanceClass

attributea
The instanceClass

propertyb

b. This property is specified via the @model tag that precedes the get() method that defines
the datatype.

defaultValue n/ac

c. You do not specify the default value property explicitly. For java primitive types, the value is
the appropriate Java default for the primitive; Otherwise it is null.

n/ac n/ac

serializable The abstract prop-

erty on the UML classd.

d. This property is set in Rational Rose using the “Abstract” checkbox on the “Details” page of
the “Specification” dialog for a class.

serializable attributea The serializable

propertyb

EMF Users’ Guide Draft 1.0 September 17, 2002 66

4.1.5 EAttribute Properties

The properties of an EAttribute in Ecore are:

TABLE 9. Ecore Properties for EAttribute

Property Usage Default

name Name used to construct the names of accessor
methods

no default

eType The type of the attribute.

Note: this must be an EDatatype.

no default

changeable Indicates whether the attribute may be modified.

If changable is true , a set() method is gen-
erated for the attribute. Otherwise, no set()
method is generated.

true

volatile Indicates whether the attribute cannot be cached.

If volatile is true , the generated class does
not contain a field to hold the attribute and the gen-
erated get() and set() methods for the
attribute are empty. In this case you should provide
your own implementation of the accessor methods.
Otherwise, the default implementations for these
methods will provide the expected behavior.

false

transient Indicates whether the attribute should not be
stored.

If transient is true , the XMI serializer will
not write this attribute out when the class is serial-
ized. Otherwise, the attribute will be serialized.

false

unique Indicates whether a many-valued attribute is
allowed to have duplicates.

 If unique is true , the implementation of the list
that is used to contain the values will enforce
uniqueness.

true

defaultValue Determines the value returned by the get method if
the attribute has never been set.

no default

lowerBound Determines the setting of the required property
(see below).

If lowerBound is 0, the required property
will be set to false . Otherwise, the required
property will be true .

0

EMF Users’ Guide Draft 1.0 September 17, 2002 67

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set by via an attribute belonging to a UML class object or via
the specification dialog box for that attribute. (See Section 3.1.1.1, “Basic UML Model
Elements,” on page 10 and Section 3.1.1.4, “The eCore Properties Page,” on page 15
for examples.)

• XMI - The properties are specified as attributes or sub-elements of an ecore:EAt-
tribute element in the XMI document. The ecore:EAttribute is typically one of the
eAttributes sub-elements of an ecore:EClass object, which in turn is one of the
eClassifiers sub-elements of the ecore:EPackage object that is at the root of the
XMI document. (See Section 3.1.2.6, “The Employee Class Element in the Ecore Doc-
ument,” on page 25 for examples.)

• Java - The properties are derived from the get() method in the interface that
defines the class to which this attribute belongs. This get() method must be preceded
by a @model tag. (See Section 3.1.3.5, “Java Specification for the Employee Class,”
on page 32 for examples.)

upperBound Determines the setting of the many property (see
below).

If upperBound is 1, the many property will be
set to false . Otherwise, the many property will
be true .

1

many If many is true , there is no set() method for
the attribute and the get() method returns a list
that can only contain objects of the appropriate
type. Otherwise, both get() and set() methods
are generated and they return and receive a refer-
ence to a single object of the appropriate type.

false

required Indicates whether the attribute is required.

Note: this property has no impact on code genera-
tion or on the EMF runtime. This property is has
the potential to be useful for validation.

false

unsettable Indicates that the attribute may be unset.

If unsettable is true , an isSet() method is
generated for the attribute. Note that this requires
additional runtime storage for the class

false

TABLE 9. Ecore Properties for EAttribute

Property Usage Default

EMF Users’ Guide Draft 1.0 September 17, 2002 68

TABLE 10. Codegen Specifications for EAttribute

Property UML XMI Java

name the name of the UML
attribute

name attributea

a. Specified on an eAttributes element in the ecore document

name of get()
method, without the
“get ” prefix

eType the type of the UML
attribute

eType attributea For single-valued
attributes, the return
type of the get()
method. Otherwise, the

eType propertyc

changeable isChangeable prop-

ertyb

b. This property is specified on the eCore page of the specification dialog for the UML Attribute

changeable attributea changeable proper-

tyc

volatile isVolatile proper-

tyb
volatile attributea volatile propertyc

transient isTransient prop-

ertyb
transient attributea transient propertyc

c. This property is specified via the @model tag that precedes the get() method that defines
the get() method that defines the attribute.

unique isUnique propertyb unique attributea unique propertyc

defaultValue The initial value
assigned to the attribute

defaultValue attributea defaultValue prop-

ertyc

lowerBound cardinality stereotyped

d. The cardinality stereotype is specified as <<lowerBound..upperBound>> where
lowerBound is either 0 or 1 and upperBound is either 1 or * . If the cardinality stereo-
type is omitted, <<0..1>> is assumed.

lowerBound attributea The lowerBound

propertyc

upperBound cardinality stereotyped upperBound attributea The upperBound

propertyc, if it exists;
Otherwise, the return

type of the get methode

e. A return type of java.util.List or org.eclipse.emf.common.util.EList
indicates an upperBound of “-1” (which means there is no upper bound.) Any other type indi-
cates an upperBound of “1”.

many n/af

f. You do not specify the many property explicitly. The value is derived from the upperBound .

n/af n/af

required n/ag

g. You do not specify the required property explicitly. The value is derived from the
lowerBound .

n/ag n/ag

unsettable isUnsettable propertyb unsettable attributea unsettable proper-

tyc

EMF Users’ Guide Draft 1.0 September 17, 2002 69

4.1.6 EReference Properties

The properties of an EReference in Ecore are:

TABLE 11. Ecore Properties for EReference

Property Usage Default

name Name used to construct the names of accessor
methods

no default

eType The type of the reference.

In the case of single-valued references, the eType
is the return type of the generated get() method.
For multi-valued references, the eType is the type
of objects that are allowed on the type-safe list that
is returned by the get() method.

Note: for references, the eType must be an EClass

no default

changeable Indicates whether the reference may be modified.

If changeable is false, no set() method is gener-
ated for the reference

true

volatile Indicates whether the reference cannot be cached.

If volatile is true, the generated class does not con-
tain a field to hold the reference and the generated
get() and set() methods for the reference are
empty. In this case you should provide your own
implementation of the accessor methods.

false

transient Indicates whether the reference should not be
stored.

If transient is true, the XMI serializer will not write
this reference out when the class is serialized.

false

unique Indicates whether a many-valued attribute is
allowed to have duplicates.

 If unique is true , the implementation of the list
that is used to contain the values will enforce
uniqueness.

Note: The setting of the unique is always true
for references.

true

defaultValue Determines the value returned by the get method if
the attribute has never been set.

Note: The defaultValue property is always
null for references. It cannot be modified.

EMF Users’ Guide Draft 1.0 September 17, 2002 70

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set by via a one of the roles of a relation belonging to a UML
class object or via the specification dialog box for that role. (See Section 3.1.1.1, “Basic
UML Model Elements,” on page 10 and Section 3.1.1.4, “The eCore Properties Page,”
on page 15 for examples.)

lowerBound Determines the setting of the required property
(see below).

If lowerBound is 0, the required property
will be set to false . Otherwise, the required
property will be true .

0

upperBound Determines the setting of the many property (see
below).

If upperBound is 1, the many property will be
set to false . Otherwise, the many property will
be true .

1

many Indicates whether the reference is single-valued or
multi-valued.

If many is true , there is no set() method for
the attribute and the get() method returns a list
that can only contain objects of the appropriate
type. Otherwise, both get() and set() methods
are generated and they return and receive a refer-
ence to a single object of the appropriate type.

false

required Indicates whether the reference is required.

Note: this property has no impact on code genera-
tion or on the EMF runtime. This property is has
the potential to be useful for validation.

false

containment Indicates whether the reference is a containment.

If containment is true, the generated accessor
methods will enforce containment semantics. (E.g.,
if you add an object to a new container, that object
will be automatically removed from any existing
container.

false

container Indicates whether the reference is a container.

This is the opposite of a containment EReference.
If container is true, the generated accessor methods
will have container semantics.

false

resolveProxies Indicates whether proxy references should be
resolved automatically.

true

eOpposite Identifies the EReference that represents the oppo-
site end of the relationship.

This is used by the EMF runtime to preserve bidi-
rectional referential integrity. (E.g., if you set one
end of a relationship, the opposite end will be set
automatically.)

null

TABLE 11. Ecore Properties for EReference

Property Usage Default

EMF Users’ Guide Draft 1.0 September 17, 2002 71

• XMI - The properties are specified as attributes or sub-elements of an ecore:ERefer-
ence element in the XMI document. The ecore:EReference is typically one of the
eReferences sub-elements of an ecore:EClass object, which in turn is one of the
eClassifiers sub-elements of the ecore:EPackage object that is at the root of the
XMI document. (See Section 3.1.2.3, “The Company Class Element in the Ecore Doc-
ument,” on page 24 for examples.)

• Java - The properties are derived from the get() method in the interface that
defines the class to which this attribute belongs. The method must be preceded by a
@model tag. (See Section 3.1.3.2, “Java Specification for the Company Class,” on
page 29 for examples.)

TABLE 12. Codegen Specifications for EReference Properties

Property UML XMI Java

name The name of the UML
relation.

name attributea The name of get()
method, without the
“get ” prefix.

eType The type of the UML
relation.

eType attributea For single-valued
attributes, the return
type of the get()
method. Otherwise, the

eType propertyc

changeable isChangeable prop-

ertyb
changeable attributea The changeable

propertyc

volatile isVolatile proper-

tyb
volatile attributea The volatile prop-

ertyc

transient isTransient prop-

ertyb
transient attributea The transient prop-

ertyc

unique isUnique propertyb unique attributea The unique propertyc

defaultValue The initial value
assigned to the attribute

defaultValue attributea The defaultValue prop-

ertyc

lowerBound cardinalityd lowerBound attributea The lowerBound

propertyc

upperBound cardinalityd upperBound attributea The upperBound

propertyc, if it exists;
Otherwise, the return

type of the get methode

many n/af n/af n/af

required n/ag n/ag n/ag

containment roles that are marked as
aggregates and have
by-value containment

containment attributea The containment

propertyc

EMF Users’ Guide Draft 1.0 September 17, 2002 72

4.1.7 EEnumLiteral Properties

The properties of an EEnumLiteral in Ecore are:

container the class on the owning
side of a containment
relation

container attributea The container prop-

ertyc

resolveProxie
s

resolveProxies

propertyb
resolveProxies

attributea
The resolveProx-

ies propertyc

eOpposite the relation that repre-
sents the opposite role,
if it exists

eOpposite attributea The eOpposite prop-

ertyc

a. Specified on an eReferences element in the ecore document

b. This property is specified on either the eCoreA or the eCoreB page of the specification dialog
for the UML Association

c. This property is specified via the @model tag that precedes the get() method that defines
the get() method that defines the reference.

d. The cardinality is specified as lowerBound..upperBound where lowerBound is
either 0 or 1 and upperBound is either 1 or * . If the cardinality is omitted, 0..* is
assumed.

e. A return type of java.util.List or org.eclipse.emf.common.util.EList
indicates an upperBound of “-1” (which means there is no upper bound.) Any other type indi-
cates an upperBound of “1”.

f. You do not specify the many property explicitly. The value is derived from the upperBound .

g. You do not specify the required property explicitly. The value is derived from the
lowerBound .

TABLE 13. Ecore Properties for EEnumLiteral

Property Usage Default

name The name is used to generate the final static con-
stants in the enumeration class that are used to
access the literal. These names are derived by
inserting “_” characters to separate the words in
the name and converting the name to upper case.
One of the final static constants is the result of this
conversion and the other one has the suffix of
“_LITERAL”

no default

TABLE 12. Codegen Specifications for EReference Properties

Property UML XMI Java

EMF Users’ Guide Draft 1.0 September 17, 2002 73

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set by via an attribute belonging to a UML class object that
has the <<enumeration>> stereotype, or via the specification dialog box for that
attribute. (See Section 3.1.1.3, “Attribute Specifications in UML,” on page 13 for an
example.)

• XMI - The properties are specified as attributes or sub-elements of an ecore:EEnum-
Literal element in the XMI document. The ecore:EEnumLiteral is typically one of the
eLiterals sub-elements of an ecore:EEnum object, which in turn is one of the eClas-
sifiers sub-elements of the ecore:EPackage object that is at the root of the XMI doc-
ument. (See Section 3.1.2.7, “The EmploymentType Enumeration Element in the Ecore
Document,” on page 26 for an example.)

• Java - The properties are derived from the public static final int field that
defines the enumeration literal within the class that defines the enumeration to which
this literal belongs. The type of this field must be int and the method must be pre-
ceded by a @model tag. (See Section 3.1.3.6, “Java Specification for the Employment-
Type Enumeration,” on page 33 for an example.)

value Determines the integer value that is associated with
this literal

0

instance Identifies the instance of the Enumerator that
defines the value of this enumeration literal.

This instance may be assigned to any attributes
whose type is the enumeration to which this enu-
meration literal belongs.

For dynamic
”this”; otherwise
the instance of the
generated Enumer-
ator

TABLE 14. Codegen Specifications for EEnumLiteral Properties

Property UML XMI Java

name The name of the
attribute that represents
the literal

name attributea

a. Specified on an eLiterals element in the ecore document

The name propertyb, if
it is present, otherwise,
the name of the field.

b. This property is specified via the @model tag that precedes the field that defines the datatype.

value If specified, the initial
value of the attribute.
Otherwise, the literals
are numbered consecu-
tively, starting at 0.

value attributea The initial value of the
field.

instance n/ac

c. You do not set the instance property explicitly. This property is automatically filled in when the
package to which the Enumeration belongs is initialized.

n/ac n/ac

TABLE 13. Ecore Properties for EEnumLiteral

Property Usage Default

EMF Users’ Guide Draft 1.0 September 17, 2002 74

4.1.8 EOperation Properties

The properties of an EOperation in Ecore are:

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set by via an operation belonging to a UML class object, or
via the specification dialog box for that operation. (See Section 3.1.1.3, “Attribute
Specifications in UML,” on page 13 for an example.)

• XMI - The properties are specified as attributes or sub-elements of an ecore:EOpera-
tion element in the XMI document. The ecore:EOperation is typically one of the
eOperations sub-elements of an ecore:EClass object, which in turn is one of the
eClassifiers sub-elements of the ecore:EPackage object that is at the root of the
XMI document. (See Section 3.1.2.6, “The Employee Class Element in the Ecore Doc-
ument,” on page 25 for an example.)

• Java - The properties are derived from a method that is specified within the inter-
face that defines the class to which this operation belongs. The method must be pre-
ceded by a @model tag. (See Section 3.1.3.5, “Java Specification for the Employee
Class,” on page 32 for an example.)

Note: if there is ambiguity with an accessor method (i.e. if the name of the method
begins with the prefix “get ”), the parameters property must be specified on the
@model tag to identify an EOperation.

TABLE 15. Ecore Properties for EOperation

Property Usage Default

name The name of the generated method. no default

eType The return type of the me.thod null

eParameters The signature of the method.

(See “EParameter Properties” on page 75.)

none

TABLE 16. Codegen Specifications for EOperation Properties

Property UML XM Java

name name attributea

a. Specified on an eOperations element in the ecore document

eType eType attributea

eParameters eParameters elementa

EMF Users’ Guide Draft 1.0 September 17, 2002 75

4.1.9 EParameter Properties

The properties of an EParameter in Ecore are:

These properties are specified to EMF code generation in one of the following ways:

• UML - The properties are set by via an argument on an operation belonging to a UML
class object, or via the specification dialog box for that argument. (See Section 3.1.1.3,
“Attribute Specifications in UML,” on page 13 for an example.)

• XMI - The properties are specified as attributes of an ecore:EParameter element in
the XMI document. The ecore:EParameter is typically one of the eParameters sub-
elements of an ecore:EOperation object, which in turn is one of the eOperations
sub-elements of an ecore:EClass object, which in turn is one of the eClassifiers sub-
elements of the ecore:EPackage object that is at the root of the XMI document. (See
Section 3.1.2.6, “The Employee Class Element in the Ecore Document,” on page 25 for
an example.)

• Java - The properties are derived from the signature of the method to which this param-
eter belongs. The method must be preceded by a @model tag. (See Section 3.1.3.5,
“Java Specification for the Employee Class,” on page 32 for an example.)

TABLE 17. Ecore Properties for EParameter

Property Usage Default

name The name of the generated argument no default

eType The type of the argument no default

TABLE 18. Codegen Specifications for EParameter Properties

Property UML XMI Java

name the name of the argu-
ment that represents
this parameter

name attributea

a. Specified on an eParameters element in the ecore document

the name of the argu-
ment that represents the
parameter

eType the type of the argu-
ment

eType attributea the type of the argu-
ment

EMF Users’ Guide Draft 1.0 September 17, 2002 76

4.2 EMF APIs

The APIs for the EMF runtime are described in detail in the JavaDoc document for EMF.
You can access this document through the “Documents” section of the EMF web site.
Please see http://www.eclipse.org/emf/ for details.

5.0 Appendix A - The Ecore Model

FIGURE 11. Ecore Model Class Hierarchy

EMF Users’ Guide Draft 1.0 September 17, 2002 77

FIGURE 12. Ecore Model Relationships, Attributes, and Operations

	EMF Users’ Guide Draft 1.0
	1.0 Overview
	2.0 Concepts
	2.1 Modeling
	2.1.1 The Ecore Model

	2.2 Code Generation
	2.2.1 Basic Code Generation
	2.2.2 EMF.Edit Code Generation

	2.3 Serialization and Loading
	2.3.1 Resource
	2.3.2 ResourceSet
	2.3.3 URIConverter

	2.4 XMI
	2.4.1 XMIResource

	2.5 Observers and Notifiers

	3.0 Tasks
	3.1 Defining Your Model
	3.1.1 Code Generation Using Rational Rose
	3.1.1.1 Basic UML Model Elements
	3.1.1.2 Specification of Abstract Classes
	3.1.1.3 Attribute Specifications in UML
	3.1.1.4 The eCore Properties Page
	3.1.1.5 Ecore Properties for Attributes
	3.1.1.6 Ecore Properties for Relationships
	3.1.1.7 Ecore Properties for Packages
	3.1.1.8 Specifying Multiple Inheritance in UML

	3.1.2 Code Generation Using XMI documents
	3.1.2.1 Genmodel Document for the enterprise Model
	3.1.2.2 The Enterprise Package Element in the Ecore Document
	3.1.2.3 The Company Class Element in the Ecore Document
	3.1.2.4 The Department Class Element in the Ecore Document
	3.1.2.5 The Person Class Element in the Ecore Document
	3.1.2.6 The Employee Class Element in the Ecore Document
	3.1.2.7 The EmploymentType Enumeration Element in the Ecore Document
	3.1.2.8 The Date Datatype Element in the Ecore Document

	3.1.3 Code Generation Using Annotated Java Interfaces
	3.1.3.1 Java Specification for the Enterprise Package
	3.1.3.2 Java Specification for the Company Class
	3.1.3.3 Java Specification for the Department Class
	3.1.3.4 Java Specification for the Person Class
	3.1.3.5 Java Specification for the Employee Class
	3.1.3.6 Java Specification for the EmploymentType Enumeration

	3.2 Generating your model
	3.3 Configuring your EMF Runtime Environment
	3.3.1 Registering/Initializing a Package
	3.3.1.1 Registering and Initializing a Generated Package in a Plugin
	3.3.1.2 Registering and Initializing a Generated Package Using APIs
	3.3.1.3 Registering a Dynamic Package

	3.3.2 Accessing the Package and Factory classes
	3.3.3 Creating a Resource
	3.3.4 Creating a ResourceSet
	3.3.5 Registering a Resource.Factory
	3.3.5.1 Registering a Resource.Factory for a Plugin
	3.3.5.2 Registering a Resource.Factory Globally
	3.3.5.3 Registering a Resource.Factory locally

	3.3.6 Registering a URIConverter
	3.3.7 Registering an AdapterFactory

	3.4 Running your application
	3.4.1 Creating Instance Data
	3.4.2 Serializing Your Instance Data
	3.4.3 Loading Instance Data

	3.5 Handling notifications
	3.5.1 Defining Observers
	3.5.2 Attaching Observers to Your Objects

	3.6 Using Reflective APIs
	3.6.1 Examining EObject Instances using Reflection
	3.6.1.1 print
	3.6.1.2 printObject
	3.6.1.3 printAllAttributes
	3.6.1.4 printAttribute
	3.6.1.5 printAllReferences
	3.6.1.6 printReference

	3.6.2 Modifying EObjects using reflection
	3.6.3 Creating New Dynamic Classes
	3.6.4 Extending Generated Classes with Dynamic Classes

	3.7 Customizing EMF
	3.7.1 Creating Keys to Access the Contents of a Resource
	3.7.2 Cross File References and Proxies
	3.7.3 Customizing the Resource for non-XMI Serialization
	3.7.4 Handling XMI Documents Serialized from a Different Version of Your Model
	3.7.5 Customizing a URIConverter

	4.0 Quick Reference
	4.1 Ecore Properties and Codegen Specifications
	4.1.1 EPackage Properties
	TABLE 1. Ecore Properties for EPackage
	TABLE 2. Codegen Specifications for EPackage Properties

	4.1.2 EClass Properties
	TABLE 3. Ecore Properties for EClass
	TABLE 4. Codegen Specifications for EClass Properties

	4.1.3 EEnum Properties
	TABLE 5. Ecore Properties for EEnum
	TABLE 6. Codegen Specification for EEnum Properties

	4.1.4 EDataType Properties
	TABLE 7. Ecore Properties for EDataType
	TABLE 8. Codegen Specifications for EDataType Properties

	4.1.5 EAttribute Properties
	TABLE 9. Ecore Properties for EAttribute
	TABLE 10. Codegen Specifications for EAttribute

	4.1.6 EReference Properties
	TABLE 11. Ecore Properties for EReference
	TABLE 12. Codegen Specifications for EReference Properties

	4.1.7 EEnumLiteral Properties
	TABLE 13. Ecore Properties for EEnumLiteral
	TABLE 14. Codegen Specifications for EEnumLiteral Properties

	4.1.8 EOperation Properties
	TABLE 15. Ecore Properties for EOperation
	TABLE 16. Codegen Specifications for EOperation Properties

	4.1.9 EParameter Properties
	TABLE 17. Ecore Properties for EParameter
	TABLE 18. Codegen Specifications for EParameter Properties

	4.2 EMF APIs

	5.0 Appendix A - The Ecore Model

