
Best Trace Format (BTF)

Technical Specification

Version 2.2.0

Technical Specification Best Trace Format (BTF)

Version History

Version Date Author Description

2.2.0 2020-03-01 Vector Informatik

GmbH

> Updated structure of specification

> Updated introduction

> Update descriptions for comment, parameter

and event sections

> Outline constraints for comment, parameter and

event sections

> Improved and added examples

> Change instance number of scheduler from -1

to 0

> Changed source entity type of mtalimitexceeded

to stimulus

> Add new source entity type for OS-Events

> Add process interrupt_suspended event

> Removed timing tool specific simulation and

system events

> Removed NOT INITIALIZED state of processes,

runnables and semaphores

> Removed timing tool specific process events

boundedmigration, phasemigration, fullmigra-

tion and enforcedmigration

> Removed timing tool specific scheduler events

processactivate, processpolling and processter-

minate

> Removed timing tool specific semaphore event

ready and exclusivesemaphore

2.1.5 2016-01-29 Timing-Architects

Embedded Systems

GmbH

> Semaphore state chart: added missing state

transition.

> Updated description of Interrupt Service Rou-

tine: short version is changed from ISR to I.

> Added System-Events.

> Updated description of OS-Events.

> Improved description of SourceInstance in 2.3.

> Corrected description of #typeTable.

> Improved description of Source and Target in

2.3.

2.1.4 2015-03-24 Timing-Architects

Embedded Systems

GmbH

> Added Scheduler, OS-Events, Semaphore-

Events and Simulation-Events.

> Updated examples.

> Corrected diction of mtalimitexceeded.

> Changed allowed source type for activating a

process.

2.1.3 2014-04-10 Timing-Architects

Embedded Systems

GmbH

Process state chart: changed layout according to

OSEK state order.

© 2020 Vector Informatik GmbH Version 2.2.0 2

Technical Specification Best Trace Format (BTF)

Version Date Author Description

2.1.1 2013-10-30 Timing-Architects

Embedded Systems

GmbH

Clarified description and examples regard-

ing difference preempt/suspend for process-

es/runnables.

2.1 2013-06-18 Timing-Architects

Embedded Sys-

tems GmbH, Robert

Bosch GmbH

> Changed Process State Chart for compliance to

OSEK 2.2.3 Extended Task Model.

> Improved some descriptions.

2.0.2 2013-04-22 Timing-Architects

Embedded Systems

GmbH

First public release.

2.0.1 2013-03-29 Timing-Architects

Embedded Systems

GmbH

Added state charts and description of all entities.

2.0 2012-04-17 Timing-Architects

Embedded Systems

GmbH

Added new data types.

1.0 2011-07-18 Timing-Architects

Embedded Systems

GmbH, INCHRON

GmbH

Initial specification approved with thanks by Con-

tinental Automotive GmbH, extended by source-

entity-instance column.

© 2020 Vector Informatik GmbH Version 2.2.0 3

Technical Specification Best Trace Format (BTF)

Best Trace Format (BTF)

Contents

Version History . 2

1 Introduction . 10

2 Best Trace Format (BTF) . 11

2.1 Comment . 13

2.2 Parameter . 13

2.2.1 Version Parameter . 13

2.2.2 Creation Date Parameter . 14

2.2.3 Creator Parameter . 14

2.2.4 Entity Mapping Parameter . 14

2.2.5 Entity Type Mapping Parameter . 15

2.2.6 Time Scale Parameter . 16

2.2.7 Type Mapping Parameter . 17

2.3 Event . 18

2.3.1 Stimulus Events . 20

2.3.1.1 trigger . 20

2.3.2 Process Events (Task and ISR Events) 22

2.3.2.1 activate . 23

2.3.2.2 interrupt_suspended . 23

2.3.2.3 mtalimitexceeded . 24

2.3.2.4 park . 24

2.3.2.5 poll . 25

2.3.2.6 poll_parking . 25

2.3.2.7 preempt . 26

2.3.2.8 release . 26

2.3.2.9 release_parking . 27

2.3.2.10 resume . 27

2.3.2.11 run . 28

2.3.2.12 start . 28

2.3.2.13 terminate . 29

2.3.2.14 wait . 29

2.3.3 Runnable Events . 31

2.3.3.1 resume . 31

2.3.3.2 start . 32

2.3.3.3 suspend . 32

2.3.3.4 terminate . 33

© 2020 Vector Informatik GmbH Version 2.2.0 4

Technical Specification Best Trace Format (BTF)

2.3.4 Scheduler Events . 35

2.3.4.1 schedule . 35

2.3.4.2 schedulepoint . 35

2.3.5 OS-Events . 37

2.3.5.1 clear_event . 37

2.3.5.2 set_event . 37

2.3.5.3 wait_event . 38

2.3.6 Signal Events . 40

2.3.6.1 read . 40

2.3.6.2 write . 40

2.3.7 Semaphore Events . 42

2.3.7.1 assigned . 43

2.3.7.2 decrement . 43

2.3.7.3 free . 44

2.3.7.4 full . 44

2.3.7.5 increment . 44

2.3.7.6 lock . 45

2.3.7.7 lock_used . 45

2.3.7.8 overfull . 46

2.3.7.9 queued . 46

2.3.7.10 released . 47

2.3.7.11 requestsemaphore . 47

2.3.7.12 unlock . 48

2.3.7.13 unlock_full . 48

2.3.7.14 used . 49

2.3.7.15 waiting . 49

References . 51

© 2020 Vector Informatik GmbH Version 2.2.0 5

Technical Specification Best Trace Format (BTF)

List of Figures

2-1 BTF Specification . 11

2-2 Parameter Specification . 13

2-3 Event Specification . 18

2-4 Process State Chart . 22

2-5 Runnable State Chart . 31

2-6 Semaphore State Chart . 42

© 2020 Vector Informatik GmbH Version 2.2.0 6

Technical Specification Best Trace Format (BTF)

List of Tables

2-1 Definition of Version Parameter . 13

2-2 Definition of Creation Date Parameter . 14

2-3 Definition of Creator Parameter . 14

2-4 Definition of Entity Mapping Parameter . 15

2-5 Definition of Entity Type Mapping Parameter 16

2-6 Definition of Time Scale Parameter . 16

2-7 Definition of Type Mapping Parameter . 17

2-8 Description of Event Fields . 19

2-9 Definition of Stimulus Trigger Event . 20

2-10 States for Process Entities . 23

2-11 Definition of Process Activate Event . 23

2-12 Definition of Process Interrupt_Suspended Event 24

2-13 Definition of Process Mtalimitexceeded Event 24

2-14 Definition of Process Park Event . 25

2-15 Definition of Process Poll Event . 25

2-16 Definition of Process Poll_Parking Event 26

2-17 Definition of Process Preempt Event . 26

2-18 Definition of Process Release Event . 27

2-19 Definition of Process Release_Parking Event 27

2-20 Definition of Process Resume Event . 28

2-21 Definition of Process Run Event . 28

2-22 Definition of Process Start Event . 29

2-23 Definition of Process Terminate Event . 29

2-24 Definition of Process Wait Event . 30

2-25 States for Runnable Entities . 31

2-26 Definition of Runnable Resume Event . 32

2-27 Definition of Runnable Start Event . 32

2-28 Definition of Runnable Suspend Event . 33

2-29 Definition of Runnable Terminate Event . 33

2-30 Definition of Scheduler Schedule Event . 35

2-31 Definition of Scheduler Schedulepoint Event 35

2-32 Definition of OS-Event Clear_Event Event 37

2-33 Definition of OS-Event Set_Event Event 38

2-34 Definition of OS-Event Wait_Event . 38

2-35 Definition of Signal Read Event . 40

2-36 Definition of Signal Write Event . 40

2-37 States for Semaphore Entities . 42

2-38 Definition of Semaphore Assigned Event 43

2-39 Definition of Semaphore Decrement Event 43

2-40 Definition of Semaphore Free Event . 44

2-41 Definition of Semaphore Full Event . 44

2-42 Definition of Semaphore Increment Event 45

2-43 Definition of Semaphore Lock Event . 45

2-44 Definition of Semaphore Lock_Used Event 46

2-45 Definition of Semaphore Overfull Event . 46

© 2020 Vector Informatik GmbH Version 2.2.0 7

Technical Specification Best Trace Format (BTF)

2-46 Definition of Semaphore Queued Event 47

2-47 Definition of Semaphore Released Event 47

2-48 Definition of Semaphore Requestsemaphore Event 48

2-49 Definition of Semaphore Unlock Event . 48

2-50 Definition of Semaphore Unlock_Full Event 49

2-51 Definition of Semaphore Used Event . 49

2-52 Definition of Semaphore Waiting Event . 50

© 2020 Vector Informatik GmbH Version 2.2.0 8

Technical Specification Best Trace Format (BTF)

List of Listings

2-1 Snippet of a BTF File . 11

2-2 Syntax of Comments . 13

2-3 Example for BTF Events . 19

2-4 Example with Task Activations by Stimuli 21

2-5 Example with an OS-Event Set by a Stimulus 21

2-6 Example with a Signal Written by a Stimulus 21

2-7 BTF Extract with Process Events . 30

2-8 BTF Extract with Runnable and Task Events 34

2-9 BTF Extract with Sub-Runnables . 34

2-10 BTF Extract with Scheduler Events . 36

2-11 BTF Extract with OS-Event events . 39

2-12 BTF Extract with Signal Events . 41

2-13 BTF Extract with Semaphore Events . 50

© 2020 Vector Informatik GmbH Version 2.2.0 9

Technical Specification Best Trace Format (BTF)

1 Introduction

This document specifies the CSV-based Best Trace Format (BTF) used to record traces on

system level in order to analyze timing, performance, and reliability of embedded real-time

multi-core systems.

The Best Trace Format is based on the Better Trace Format (BTF V1.0) and its first public

release was v2.0.2 in 2013.

The BTF trace format, recorded by simulation or profiling tools, allows to analyze the behavior

of a system in a chronologically correct manner. It assumes a signal processing system

where one entity of the system influences another entity. Therefore, logged events in the

BTF do not only contain information about state changes of entities but also the reason of

these changes.

Advanced scheduling concepts may be used in multi-core systems where one traced entity

may have multiple instances at the same time. For this purpose, the Best Trace Format

provides instance identification in order to derive which instance of the entity is addressed in

the event log. This means for example that each task execution can be exactly identified for

the complete lifetime from activation until termination by its name and instance counter.

At first, a description of the optional comments which can appear anywhere within a trace log

is presented in Section 2.1. This is followed by the definition of the parameters in Section 2.2.

These describe the meta-information of a BTF compliant file. Finally, Section 2.3 specifies

the exact format of the CSV-based trace log. It introduces all entities and their according

logging events suggested by this specification to guarantee a reliable timing and performance

analysis.

The concepts used in this specification are based on OSEK [2] and AUTOSAR [1].

© 2020 Vector Informatik GmbH Version 2.2.0 10

Technical Specification Best Trace Format (BTF)

2 Best Trace Format (BTF)

The BTF trace is a ordered list of data records which is represented in a UTF-8 encoded

CSV (comma-separated values) format. As shown in Listing 2-1, each line of the file is a data

record and represents a piece of information, which can either be a comment, a parameter

definition, or an event entry. A comma (’,’) is used to separate the content within an entry.

For cases, in which floating numbers have to be represented, a dot (’.’) must be used as

decimal separator.

1 #version 2.2.0

2 #creator TA-Tool Suite 12.06.1

3 # Simulation of dualcore processor 120MHz, 16Kbyte RAM

4 #creationDate 2012-08-31T15:53:00

5 #timeScale ns

6 0,Stimulus_Task_A,0,T,Task_A,0,activate

7 100,Core_1,0,T,Task_A,0,start

8 100,Task_A,0,R,Runnable_A_1,0,start

9 200,Task_A,0,SIG,S1,0,read,12.3

Listing 2-1: Snippet of a BTF File

The interpretation of each line depends on its type. As shown in Figure 2-1, there are three

different groups of types available which are introduced in detail in the following sections.

BTFBTF

2..*{ordered}

data

2..*{ordered}

data

DataData

CommentComment EventEvent ParameterParameter

Figure 2-1: BTF Specification

© 2020 Vector Informatik GmbH Version 2.2.0 11

Technical Specification Best Trace Format (BTF)

There are two ways to represent the data records. The symbolic-mode describes entities and

events by names. The numeric-mode describes entities and events by a numerical identi-

fier. In the latter case, the parameters Entity Mappings (see Section 2.2.4), Type Mappings

(see Section 2.2.7), or Entity Type Mappings (see Section 2.2.5) define a mapping between

a numerical identifier and a string of the name.

© 2020 Vector Informatik GmbH Version 2.2.0 12

Technical Specification Best Trace Format (BTF)

2.1 Comment

Each row starting with a ’#’ symbol and followed by a blank space is defined as a Comment,

as shown in Listing 2-2.

1 # <content of comment>

Listing 2-2: Syntax of Comments

2.2 Parameter

ParameterParameter

CreatorCreatorVersionVersion CreationDateCreationDate TimeScaleTimeScale TypeMappingTypeMapping EntityTypeMappingEntityTypeMapping EntityMappingEntityMapping

Figure 2-2: Parameter Specification

A parameter gives meta information on the trace and allows one to interpret it correctly. As

a consequence, some pieces of information are mandatory and others are optional.

Each parameter definition is indicated by a ’#’ symbol at the beginning. In contrast to com-

ments, a parameter definition must not start with a blank space after the ’#’ symbol but with

a predefined keyword or symbol.

As shown in Figure 2-2, the following parameters are predefined.

2.2.1 Version Parameter

The version parameter is mandatory and specifies the version of the BTF format definition.

Each BTF file must start with the version parameter (version) that indicates which specifica-

tion has to be considered for processing the BTF file.

Property Description

Definition #version <number>

Type <number>: String

Multiplicity 1… 1

Example #version 2.1.6

Table 2-1: Definition of Version Parameter

⌈Constraint: There must be exactly one version parameter in a BTF file.⌋
⌈Constraint: The version parameter must be the first entry a BTF file.⌋

© 2020 Vector Informatik GmbH Version 2.2.0 13

Technical Specification Best Trace Format (BTF)

2.2.2 Creation Date Parameter

The creation date parameter is optional and specifies the timestamp of the start of simula-

tion or measurement. The format has to comply with ”ISO 8601 extended specification for

representations of dates and times”: YYYY-MM-DDTHH:MM:SS. The time shall be in UTC

time, which is indicated by a ’Z’ at the end.

Property Description

Definition #creationDate <date>

Type <date>: String matching ISO 8601 date format

Multiplicity 0… 1

Example #creationDate 2012-09-02T16:40:30Z

Table 2-2: Definition of Creation Date Parameter

⌈Constraint: The BTF file must not contain more than one creation date parameter.⌋
⌈Constraint: The creation date parameter must be written before the first event entry.⌋

2.2.3 Creator Parameter

The creator parameter is optional and specifies the name and version of the application

software or device that generated the trace.

Property Description

Definition #creator <info>

Type <info>: String

Multiplicity 0… 1

Example #creator TA-Simulator (12.10.2.47)

Table 2-3: Definition of Creator Parameter

⌈Constraint: The BTF file must not contain more than one creator parameter.⌋
⌈Constraint: The creator parameter must be written before the first event entry.⌋

2.2.4 Entity Mapping Parameter

The entity mapping parameter is optional and indicates a mapping of an entity to a numerical

ID. An entity can be a task, runnable, etc.

© 2020 Vector Informatik GmbH Version 2.2.0 14

Technical Specification Best Trace Format (BTF)

Property Description

Definition #entityMapping <id> <name>

<id>: Non-negative integer
Type

<name>: String

Multiplicity 0… 1

#entityMapping 0 Task_1ms

#entityMapping 1 GetSignal

#entityMapping 2 Main
Example

#entityMapping 3 Temperature

Table 2-4: Definition of Entity Mapping Parameter

⌈Constraint: The IDs within the entity mapping parameter must be unique.⌋
⌈Constraint: The entity mapping must be written before the first event of the according

entity.⌋

2.2.5 Entity Type Mapping Parameter

The entity typemapping parameter is optional and indicates a bijectivemapping of an entity to

a specific entity type. Instead of entering the names of the entities and types in this mapping,

it is also possible to use the numerical IDs defined in the type mapping or entity mapping.

© 2020 Vector Informatik GmbH Version 2.2.0 15

Technical Specification Best Trace Format (BTF)

Property Description

Definition #entityTypeMapping <type> <name>

<type>: String/non-negative integer
Type

<name>: String/non-negative integer

Multiplicity 0… 1

#entityTypeMapping T Task_1ms

#entityTypeMapping R GetSignal

#entityTypeMapping R Main
Example

#entityTypeMapping SIG Temperature

#entityMapping 0 Task_1ms

#entityMapping 1 GetSignal

#entityMapping 2 Main

#entityMapping 3 Temperature

#typeMapping 0 T

#typeMapping 1 R

#typeMapping 2 SIG

#entityTypeMapping 0 0

#entityTypeMapping 1 1

#entityTypeMapping 1 2

Example (numeric)

#entityTypeMapping 2 3

Table 2-5: Definition of Entity Type Mapping Parameter

⌈Constraint: In case the numeric IDs from a type mapping or entity mapping are used, the

type mapping or entity mapping must be defined before the entity type mapping.⌋
⌈Constraint: The entity type mapping must be written before the first event of the according

entity.⌋

2.2.6 Time Scale Parameter

The time scale parameter is mandatory and specifies the resolution of the timestamps in the

trace.

Property Description

Definition #timescale <time>

Type <time>: String (Enumeration [ps,ns,us,ms,s])

Multiplicity 1… 1

Example #timescale ns

Table 2-6: Definition of Time Scale Parameter

⌈Constraint: The BTF file must contain exactly one time scale parameter.⌋
⌈Constraint: The time scale parameter must be written before the first event entry.⌋

© 2020 Vector Informatik GmbH Version 2.2.0 16

Technical Specification Best Trace Format (BTF)

2.2.7 Type Mapping Parameter

The type mapping parameter is optional and indicates the mapping of an entity type to a

numerical ID. See Section 2.3 for existing entity types.

Property Description

Definition #typeMapping <id> <name>

<id>: Non-negative integer
Type

<name>: String

Multiplicity 0… 1

#typeMapping 0 T

#typeMapping 1 RExample

#typeMapping 2 SIG

Table 2-7: Definition of Type Mapping Parameter

⌈Constraint: The IDs within the type mapping parameter must be unique.⌋
⌈Constraint: The type mapping must be written before the first event of the according type.⌋

© 2020 Vector Informatik GmbH Version 2.2.0 17

Technical Specification Best Trace Format (BTF)

2.3 Event

EventEvent

ProcessProcessStimulusStimulus RunnableRunnable SchedulerScheduler OS-EventOS-Event SignalSignal SemaphoreSemaphore

Figure 2-3: Event Specification

An Event gives information on what happened where and when within a system. To do so,

an event entry is specified by the following elements:

<Time>,<Source>,<SourceInstance >,<TargetType>,<Target>,<TargetInstance>,<Event>,<Note>

An event entry is defined by eight fields, separated by commas. Each field describes a

dedicated piece of information, which is necessary to interpret the event. The order of the

fields and, thus, the position of the information, is fixed and cannot be changed. However,

for some events, the last field is optional and can be omitted. Table 2-8 gives a detailed

overview on the specified fields and their purpose.

Field Name Type Description

1 <Time> Non-negative

Integer

Timestamp that states the absolute point in time at

which the event was observed. The corresponding

time scale is defined by the Time Scale Parameter

(#timescale).

2 <Source> String Unique textual identifier of an entity which states the

source of the observed event and that allows one to

unambiguously distinguish between all entities.

3 <SourceInstance> Integer Unique numerical identifier for the source instance

of the observed event that allows one to unambigu-

ously distinguish between instances of the same en-

tity.

4 <TargetType> String Type of the target entity and, thus, of the observed

event.

5 <Target> String Unique textual identifier of an entity which states the

target of the observed event and that allows one to

unambiguously distinguish between all entities.

6 <TargetInstance> Integer Unique numerical identifier for the target instance

of the observed event that allows one to unambigu-

ously distinguish between instances of the same en-

tity.

7 <Event> String Name of the observed event.

© 2020 Vector Informatik GmbH Version 2.2.0 18

Technical Specification Best Trace Format (BTF)

Field Name Type Description

8 <Note> String Additional information for specific events.

Table 2-8: Description of Event Fields

⌈Constraint: The <Time> field must not decrease from one line to the next line in a BTF

file.⌋
As shown in Figure 2-3, there are specific types of observable Events available which are

stated in the fourth field (<TargetType>) of an event entry. Following sections introduce the

types that are currently defined in the BTF. It is not required that all defined entity types

appear in one single BTF file. Therefore, a BTF file may focus on only one or multiple target

entity types as it is shown in Listing 2-1.

1 0,Stimulus_Task_A,0,T,Task_A,0,activate

2 100,Core_1,0,T,Task_A,0,start

3 100,Task_A,0,R,Runnable_A_1,0,start

4 7100,Task_A,0,R,Runnable_A_1,0,terminate

5 7100,Task_A,0,R,Runnable_A_2,0,start

6 10000,Stimulus_Task_B,0,T,Task_B,0,activate

7 10100,Task_A,0,R,Runnable_A_2,0,suspend

8 10100,Core_1,0,T,Task_A,0,preempt

9 10100,Core_1,0,T,Task_B,0,start

10 10100,Task_B,0,R,Runnable_B_1,0,start

11 17100,Task_B,0,R,Runnable_B_1,0,terminate

12 17100,Core_1,0,T,Task_B,0,terminate

13 17200,Core_1,0,T,Task_A,0,resume

14 17200,Task_A,0,R,Runnable_A_2,0,resume

15 21200,Task_A,0,R,Runnable_A_2,0,terminate

16 21200,Core_1,0,T,Task_A,0,terminate

Listing 2-3: Example for BTF Events

© 2020 Vector Informatik GmbH Version 2.2.0 19

Technical Specification Best Trace Format (BTF)

2.3.1 Stimulus Events

A Stimulus (STI) is used to represent interactions among the internal behavior and between

the system and the surrounding environment.

2.3.1.1 trigger

The trigger event indicates that the internal behavior or the surrounding environment triggers

the activation of a task/interrupt service routine or the setting of a signal value or OS-Event.

Field Description

<Source> The source shall state the name of the stimulus entity that is triggered, if a

process is activated or a signal value or OS-Event is set by the surrounding

environment, or it shall state the name of a task/interrupt service routine, if

the event represent an inter-process activation.

<SourceInstance> In case of an inter-process activation, the source instance shall state the

number of the process instance or otherwise the number of the stimulus

instance, which shall increase gaplessly with each event.

<TargetType> STI

<Target> The target shall state the name of the stimulus entity that is triggered.

<TargetInstance> The target instance shall state the number of the stimulus instance that is

triggered.

<Event> trigger

<Note> This field shall not be used for a trigger event.

Table 2-9: Definition of Stimulus Trigger Event

⌈Constraint: In case of an inter-process activation, the process instance stated as source

shall be in RUNNING state at the time of the triggering.⌋
⌈Constraint: If the source is a stimulus, the source instance must be equal to the target

instance.⌋
⌈Constraint: If the source is a stimulus, the source must be equal to the target.⌋
⌈Constraint: The trigger event must appear before the associated process activation and

signal or OS-Event set event.⌋
⌈Constraint: If the source is a stimulus, the source instance shall change unambiguously

with each event.⌋

Example

In Listing 2-4, Task_A is activated by Stimulus_Task_A (line 2), which is triggered before

(line 1) as a single stimulus by environment, e.g., due to some alarm or schedule table. After

that, Task_A activates Task_B via an inter-process activation. Therefore, Task_A triggers

Stimulus_Task_B (line 4) and this stimulus activates Task_B afterwards (line 5).

© 2020 Vector Informatik GmbH Version 2.2.0 20

Technical Specification Best Trace Format (BTF)

1 0,Stimulus_Task_A,0,STI,Stimulus_Task_A,0,trigger

2 0,Stimulus_Task_A,0,T,Task_A,0,activate

3 100,Core_1,0,T,Task_A,0,start

4 7100,Task_A,0,STI,Stimulus_Task_B,0,trigger

5 7100,Stimulus_Task_B,0,T,Task_B,0,activate

6 7200,Core_1,0,T,Task_A,0,preempt

7 7200,Core_1,0,T,Task_B,0,start

Listing 2-4: Example with Task Activations by Stimuli

In Listing 2-5, the stimulus Periodic_Stimulus sets OS-Event Event_1.

1 20000000,SIM,0,STI,Periodic_Stimulus,1,trigger

2 20000000,Periodic_Stimulus,1,EVENT,Event_1,0,set_event,Task_1

Listing 2-5: Example with an OS-Event Set by a Stimulus

In Listing 2-6, the stimulus Periodic_Stimulus writes signal Signal_1.

1 20000000,SIM,0,STI,Periodic_Stimulus,1,trigger

2 20000000,Periodic_Stimulus,1,SIG,Signal_1,0,write,2

Listing 2-6: Example with a Signal Written by a Stimulus

© 2020 Vector Informatik GmbH Version 2.2.0 21

Technical Specification Best Trace Format (BTF)

2.3.2 Process Events (Task and ISR Events)

A Process can be either a task (T) or an interrupt service routine (I). It is activated by a

stimulus as described in Section 2.3.1. After activation, a scheduler assigns the process

to a core where the process is executed. A running process can be preempted by another

process and change to READY. Alternatively, a cooperative process can change itself to

READY, e.g. at a schedule point, or explicitly migrate to another core.

If a running process calls the system service to wait for at least one operating system event

and these events are not set, the process changes its state to WAITING. If the according

event gets set, the process is again READY for execution.

A process accessing a resource which is locked by a semaphore (e.g. spinlock), checks

repeatedly the availability of this resource within a loop. This active waiting of the process is

represented by the POLLING state. The scheduler might decide in this scenario to remove

the process from the core which results in PARKING. Is the resource available again, the

process changes its state to READY.

TERMINATED

ACTIVEREADYPARKINGWAITING

POLLING RUNNING

activate

start

terminate

resumepreempt

poll

run

wait

park poll_parking

release_parking

release

mtalimitexceeded

interrupt_suspended

ALLOCATED TO CORE

REMOVED FROM CORE

WAITING FOR RESOURCEWAITING FOR OS-EVENT

Figure 2-4: Process State Chart

© 2020 Vector Informatik GmbH Version 2.2.0 22

Technical Specification Best Trace Format (BTF)

State Description

ACTIVE The process instance is ready for execution.

PARKING The process instance has been preempted while actively waiting for a resource

that is not available.

POLLING The process instance has requested a not available resource and waits actively.

READY The process instance has been preempted.

RUNNING The process instance executes on a core.

TERMINATED The process instance has finished its execution or hasn’t been activated yet.

WAITING The process instance has called the system service to wait for an OS-Event which

is not set and waits passively.

Table 2-10: States for Process Entities

At the beginning of a BTF trace, a process may be in any defined state.

2.3.2.1 activate

The activate event indicates that a process instance (target) is activated by a stimulus (source)

and, thus, transitions from TERMINATED to ACTIVE state.

Field Description

<Source> The source must state the name of the stimulus entity that activates the

process.

<SourceInstance> The source instance must state the number of the stimulus instance that

activates the task.

<TargetType> ”T” if the activated process is a task and ”I” if the it is an interrupt service

routine.

<Target> The target must state the name of the process that is activated.

<TargetInstance> The target instance must state the number of the process instance that is ac-

tivated and shall increase gaplessly with each activate or mtalimitexceeded

event.

<Event> activate

<Note> This field must not be used for this event.

Table 2-11: Definition of Process Activate Event

⌈Constraint: The source stimulusmust be triggered before the process instance is activated.

This order must be considered in the BTF file.⌋

2.3.2.2 interrupt_suspended

The interrupt_suspended event indicates that the stated interrupt service routine instance

(target) is not scheduled for execution by the scheduler (source) because of a previous OS

service call to suspend interrupts.

© 2020 Vector Informatik GmbH Version 2.2.0 23

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the scheduler entity that manages the

scheduling of this interrupt service routine.

<SourceInstance> 0

<TargetType> I

<Target> The target must state the name of the interrupt service routine that is sus-

pended from execution.

<Target> The target instance must state the number of the interrupt service routine

instance that is suspended from execution.

<Event> interrupt_suspended

<Note> This field must not be used for this event.

Table 2-12: Definition of Process Interrupt_Suspended Event

2.3.2.3 mtalimitexceeded

The mtalimitexceeded event indicates that a stimulus (source) attempts to activate a task

(target) but the maximum allowed number of concurrent activations of this task is already

reached and, thus, the task is not activated.

Field Description

<Source> The source must state the name of the stimulus entity that attempts to acti-

vate the task.

<SourceInstance> The source instance must state the number of the stimulus instance that

attempts to activate the task.

<TargetType> T

<Target> The target must state the name of the task entity whose maximum number

of concurrent activations would be exceeded.

<TargetInstance> The instance number of the stated task entity must be increased with each

event.

<Event> mtalimitexceeded

<Note> This field must not be used for this event.

Table 2-13: Definition of Process Mtalimitexceeded Event

2.3.2.4 park

The park event indicates that a process (target) that is actively waiting for a resource is

suspended, i.e, its execution is removed from the allocated core (source).

© 2020 Vector Informatik GmbH Version 2.2.0 24

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core from which the process gets

removed.

<SourceInstance> 0

<TargetType> ”T” if the parking process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is parked.

<TargetInstance> The target instance must state the number of the process instance that is

parked.

<Event> park

<Note> This field must not be used for this event.

Table 2-14: Definition of Process Park Event

2.3.2.5 poll

The poll event indicates that a process (target) that is executing on a core (source) requests

a resource that is not available and starts waiting actively to access it.

Field Description

<Source> The source must state the name of the core on which the process is execut-

ing.

<SourceInstance> 0

<TargetType> ”T” if the polling process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is polling.

<TargetInstance> The target instance must state the number of the process instance that is

polling.

<Event> poll

<Note> This field must not be used for this event.

Table 2-15: Definition of Process Poll Event

2.3.2.6 poll_parking

The poll_parking event indicates that a process (target) that has been removed from the

allocated core during actively waiting for a resource gets allocated to a core (source). During

this reallocation, the requested resource is still not available.

© 2020 Vector Informatik GmbH Version 2.2.0 25

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core on which the process resumes

actively waiting for a resource.

<SourceInstance> 0

<TargetType> ”T” if the process that resumes actively waiting is a task and ”I” if it is an

interrupt service routine.

<Target> The target must state the name of the process that resumes actively waiting.

<TargetInstance> The target instance must state the number of the process instance that re-

sumes actively waiting.

<Event> poll_parking

<Note> This field must not be used for this event.

Table 2-16: Definition of Process Poll_Parking Event

2.3.2.7 preempt

The preempt event indicates that a process (target) that is executing on a core (source) gets

removed from it due to a scheduling decision.

Field Description

<Source> The source must state the name of the core from which the process gets

removed.

<SourceInstance> 0

<TargetType> ”T” if the preempted process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is preempted.

<TargetInstance> The target instance must state the number of the process instance that is

preempted.

<Event> preempt

<Note> This field must not be used for this event

Table 2-17: Definition of Process Preempt Event

2.3.2.8 release

The release event indicates that at least one OS-Event a process (target) is passively waiting

for is set and the process is ready to proceed execution. During this time, the process is still

removed from a core (source) due to a scheduling decision.

© 2020 Vector Informatik GmbH Version 2.2.0 26

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core from which the process got

removed when it started passively waiting for at least one OS-Event.

<SourceInstance> 0

<TargetType> ”T” if the released process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is released.

<TargetInstance> The target instance must state the number of the process instance that is

released.

<Event> release

<Note> This field must not be used for this event.

Table 2-18: Definition of Process Release Event

2.3.2.9 release_parking

The release_parking event indicates that a process (target) that has been removed from the

allocated core (source) during actively waiting for a resource gets access to this resource.

During this time, the process is still removed from the core due to a scheduling decision.

Field Description

<Source> The source must state the name of the core from which the process got

removed due to a scheduling decision.

<SourceInstance> 0

<TargetType> ”T” if the process getting access to a resource is a task and ”I” if it is an

interrupt service routine.

<Target> The target must state the name of the process that gets access to a resource.

<TargetInstance> The target instance must state the number of the process instance that gets

access to a resource.

<Event> release_parking

<Note> This field must not be used for this event.

Table 2-19: Definition of Process Release_Parking Event

2.3.2.10 resume

The resume event indicates that a process (target) that has been removed from a core by a

scheduler gets allocated to a core (source) due to a new scheduling decision.

© 2020 Vector Informatik GmbH Version 2.2.0 27

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core to which the process gets allo-

cated.

<SourceInstance> 0

<TargetType> ”T” if the resuming process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is resuming.

<TargetInstance> The target instance must state the number of the process instance that is

resuming.

<Event> resume

<Note> This field must not be used for this event.

Table 2-20: Definition of Process Resume Event

2.3.2.11 run

The run event indicates that a process (target) that is actively waiting for a resource on a

core (source) gets access to this resource and continues execution.

Field Description

<Source> The source must state the name of the core on which the process is execut-

ing.

<SourceInstance> 0

<TargetType> ”T” if the running process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is running.

<TargetInstance> The target instance must state the number of the process instance that is

running.

<Event> run

<Note> This field must not be used for this event.

Table 2-21: Definition of Process Run Event

2.3.2.12 start

The start event indicates that a process (target) that is active for execution gets scheduled

and allocated to a core (source).

© 2020 Vector Informatik GmbH Version 2.2.0 28

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core to which the process gets allo-

cated.

<SourceInstance> 0

<TargetType> ”T” if the starting process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is starting.

<TargetInstance> The target instance must state the number of the process instance that is

starting.

<Event> start

<Note> This field must not be used for this event.

Table 2-22: Definition of Process Start Event

2.3.2.13 terminate

The terminate event indicates that a process (target) has finished its execution.

Field Description

<Source> The source must state the name of the core on which the process has fin-

ished its execution.

<SourceInstance> 0

<TargetType> ”T” if the terminating process is a task and ”I” if it is an interrupt service

routine.

<Target> The target must state the name of the process that is terminating.

<TargetInstance> The target instance must state the number of the process instance that is

terminating.

<Event> terminate

<Note> This field must not be used for this event.

Table 2-23: Definition of Process Terminate Event

2.3.2.14 wait

The wait event indicates that a process (target) calls a system service to wait for at least one

OS-Event and these events are not set. The process gets removed from the core (source) it

is allocated to.

© 2020 Vector Informatik GmbH Version 2.2.0 29

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the core from which the process gets

removed.

<SourceInstance> 0

<TargetType> ”T” if the waiting process is a task and ”I” if it is an interrupt service routine.

<Target> The target must state the name of the process that is waiting.

<TargetInstance> The target instance must state the number of the process instance that is

waiting.

<Event> wait

<Note> This field must not be used for this event.

Table 2-24: Definition of Process Wait Event

Example

The example shows the activation of TASK_InputProcessing (line 1), triggered by timer

TIMER_2ms. TASK_InputProcessing starts execution (line 2). Afterwards, TIMER_1ms acti-

vates TASK_1MS (line 3). Due to scheduling effects, TASK_InputProcessing gets preempted

(line 4) and TASK_1MS starts execution (line 5). After TASK_1MS has finished execution

(line 6), TASK_InputProcessing resumes execution (line 7).

1 6150000,TIMER_2ms,3,T,TASK_InputProcessing,3,activate

2 6150100,Core_1,0,T,TASK_InputProcessing,3,start

3 6250000,TIMER_1MS,6,T,TASK_1MS,6,activate

4 6250100,Core_1,0,T,TASK_InputProcessing,3,preempt

5 6250100,Core_1,0,T,TASK_1MS,6,start

6 6721825,Core_1,0,T,TASK_1MS,6,terminate

7 6721925,Core_1,0,T,TASK_InputProcessing,3,resume

8 7110175,Core_1,0,T,TASK_InputProcessing,3,terminate

Listing 2-7: BTF Extract with Process Events

© 2020 Vector Informatik GmbH Version 2.2.0 30

Technical Specification Best Trace Format (BTF)

2.3.3 Runnable Events

A runnable (R) is called in context of a process instance or by another runnable. A called

runnable starts and changes to RUNNING. If the process instancewhich includes the runnable

gets removed from core (e.g. preempted), the currently executed runnable is suspended and

changes to state SUSPENDED. If the process instance gets allocated to core (e.g. resumed),

the runnable changes to RUNNING.After complete execution, the runnable changes to TER-

MINATED.

RUNNING SUSPENDEDTERMINATED

start

terminate

resume

suspend

Figure 2-5: Runnable State Chart

State Description

RUNNING The runnable instance executes on a core.

SUSPENDED The runnable instance stops execution as the process instance has to be re-

moved from core.

TERMINATED The runnable instance has finished execution or hasn’t been started yet.

Table 2-25: States for Runnable Entities

At the beginning of a BTF trace, a runnable may be in any of above states.

As runnables are executed in context of a process, the process is seen as source of all

state transitions. This implies that the process has to be allocated to a core to initiate a new

runnable state. This has an effect on the expected process and runnable event order in a

BTF trace. These constraints will be defined in the following chapters.

Similar scenario is also expected in case a runnable calls another runnable (sub-runnable) as

direct function call. Constraints will be defined which define that a runnable is in RUNNING

state if a sub-runnable is in RUNNING state. Below chapters imply that the process context

must also be used as source for sub-runnables.

2.3.3.1 resume

The resume event indicates that a runnable (target) can continue execution as its process

(source) resumes.

© 2020 Vector Informatik GmbH Version 2.2.0 31

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process that is calling the runnable.

<SourceInstance> The source instance must state the number of the process instance that is

calling the runnable.

<TargetType> ”R”

<Target> The target must state the name of the runnable that is resuming.

<TargetInstance> The target instance must state the number of the runnable instance that is

resuming.

<Event> resume

<Note> This field must not be used for this event.

Table 2-26: Definition of Runnable Resume Event

⌈Constraint: A runnable instance gets resumed after its process instance got allocated to a

core. This order has to be considered in the BTF file.⌋
⌈Constraint: A sub-runnable instance gets resumed after its calling runnable instance is

resumed. This order has to be considered in the BTF file.⌋

2.3.3.2 start

The start event indicates that a runnable (target) gets called by a process (source) and starts

execution.

Field Description

<Source> The source must state the name of the process that is calling the runnable.

<SourceInstance> The source instance must state the number of the process instance that is

calling the runnable.

<TargetType> ”R”

<Target> The target must state the name of the runnable that is starting.

<TargetInstance> The target instance must state the number of the runnable instance that is

starting and must increase gaplessly with each event.

<Event> start

<Note> This field must not be used for this event.

Table 2-27: Definition of Runnable Start Event

⌈Constraint: A runnable instance gets started after its process instance got allocated to a

core. This order has to be considered in the BTF file.⌋
⌈Constraint: A sub-runnable instance gets started after its calling runnable instance is

started. This order has to be considered in the BTF file.⌋

2.3.3.3 suspend

The suspend event indicates that a runnable (target) has to pause its execution as its calling

process (source) gets preempted.

© 2020 Vector Informatik GmbH Version 2.2.0 32

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process that is calling the runnable.

<SourceInstance> The source instance must state the number of the process instance that is

calling the runnable.

<TargetType> ”R”

<Target> The target must state the name of the runnable that is suspended.

<TargetInstance> The target instance must state the number of the runnable instance that is

suspended.

<Event> suspend

<Note> This field must not be used for this event.

Table 2-28: Definition of Runnable Suspend Event

⌈Constraint: A runnable instance gets suspended before its process instance is removed

from a core. This order has to be considered in the BTF file.⌋
⌈Constraint: A sub-runnable instance gets suspended before its calling runnable instance

is suspended. This order has to be considered in the BTF file.⌋

2.3.3.4 terminate

The terminate event indicates that a runnable (target) that has been called by a process

(source) has finished its execution.

Field Description

<Source> The source must state the name of the process that is calling the runnable.

<SourceInstance> The source instance must state the number of the process instance that is

calling the runnable.

<TargetType> ”R”

<Target> The target must state the name of the runnable that is terminating.

<TargetInstance> The target instance must state the number of the runnable instance that is

terminating.

<Event> terminate

<Note> This field must not be used for this event.

Table 2-29: Definition of Runnable Terminate Event

⌈Constraint: All runnable instances executed in context of a process instance have to be ter-
minated before the process instance itself gets terminated. This order has to be considered

in the BTF file.⌋
⌈Constraint: All sub-runnable instances called by a runnable instance have to be terminated

before the runnable instance itself gets terminated. This order has to be considered in the

BTF file.⌋

© 2020 Vector Informatik GmbH Version 2.2.0 33

Technical Specification Best Trace Format (BTF)

Example

Runnable Runnable_A is started (line 1) and then suspended as Task_B with Runnable_B

gets allocated to Core_1 (line 2 till 6). After termination of Runnable_B (line 7), Runnable_A

resumes execution as Task_A gets allocated to Core_1 (line 9 and 10).

1 100100,Task_A,0,R,Runnable_A,0,start

2 125000,Stimulus_2,0,T,Task_B,0,activate

3 125100,Task_A,0,R,Runnable_A,0,suspend

4 125100,Core_1,0,T,Task_A,0,preempt

5 125100,Core_1,0,T,Task_B,0,start

6 125100,Task_B,0,R,Runnable_B,0,start

7 126100,Task_B,0,R,Runnable_B,0,terminate

8 126100,Core_1,0,T,Task_B,0,terminate

9 126200,Core_1,0,T,Task_A,0,resume

10 126200,Task_A,0,R,Runnable_A,0,resume

11 151200,Task_A,0,R,Runnable_A,0,terminate

Listing 2-8: BTF Extract with Runnable and Task Events

In Listing 2-9 Runnable_1 gets started by Task_1 (line 1). Afterwards, Runnable_1 starts

Runnable_1_1 as direct function call (line 2). Due to scheduling effects, first Runnable_1_1

and then Runnable_1 get suspended (line 3 and 4). This enables execution of Runnable_2

(line 5). After Runnable_2 finishes execution (line 6), Runnable_1 resumes execution (line

7) first and afterwards Runnable_1_1 (line 8). Then sub-runnable Runnable_1_1 (line 9) and

runnable Runnable_1 (line 10) finishes execution.

1 100,Task_1,0,R,Runnable_1,0,start

2 170,Task_1,0,R,Runnable_1_1,0,start

3 205,Task_1,0,R,Runnable_1_1,0,suspend

4 205,Task_1,0,R,Runnable_1,0,suspend

5 205,Task_2,0,R,Runnable_2,0,start

6 275,Task_2,0,R,Runnable_2,0,terminate

7 375,Task_1,0,R,Runnable_1,0,resume

8 375,Task_1,0,R,Runnable_1_1,0,resume

9 410,Task_1,0,R,Runnable_1_1,0,terminate

10 480,Task_1,0,R,Runnable_1,0,terminate

Listing 2-9: BTF Extract with Sub-Runnables

© 2020 Vector Informatik GmbH Version 2.2.0 34

Technical Specification Best Trace Format (BTF)

2.3.4 Scheduler Events

The scheduler (SCHED) is part of the operating system and manages one or multiple cores.

It is responsible for the execution order of all mapped processes on those cores.

2.3.4.1 schedule

The schedule event indicates that the scheduler (target and source) makes a scheduling

decision.

Field Description

<Source> The source must state the name of the scheduler that makes the scheduling

decision.

<SourceInstance> 0

<TargetType> ”SCHED”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> schedule

<Note> This field must not be used for this event.

Table 2-30: Definition of Scheduler Schedule Event

2.3.4.2 schedulepoint

The schedulepoint event indicates that a scheduler (target) is requested by a task (source)

at a cooperative schedule point.

Field Description

<Source> The source must state the name of the task that calls a cooperative schedule

point.

<SourceInstance> The source instance must state the number of the task instance that calls a

cooperative schedule point.

<TargetType> ”SCHED”

<Target> The target must state the name of the scheduler that is requested.

<TargetInstance> 0

<Event> schedulepoint

<Note> This field must not be used for this event.

Table 2-31: Definition of Scheduler Schedulepoint Event

⌈Constraint: The source task instance has to be in RUNNING state to call a schedule point.⌋

Example

TASK_B is preempted (line 3), because it reaches a schedule point (line 2). A schedule

decision is required and therefore Scheduler_1 is called (line 4). As no task with higher

priority is active, TASK_B can be resumed (line 5).

© 2020 Vector Informatik GmbH Version 2.2.0 35

Technical Specification Best Trace Format (BTF)

1 10100,Core_1,0,T,Task_B,0,start

2 17100,Task_B,0,SCHED,Scheduler_1,0,schedulepoint

3 17100,Core_1,0,T,Task_B,0,preempt

4 17200,Scheduler_1,0,SCHED,Scheduler_1,0,schedule

5 17200,Core_1,0,T,Task_B,0,resume

6 24200,Core_1,0,T,Task_B,0,terminate

Listing 2-10: BTF Extract with Scheduler Events

© 2020 Vector Informatik GmbH Version 2.2.0 36

Technical Specification Best Trace Format (BTF)

2.3.5 OS-Events

OS-Events (EVENT) are objects provided by the operating system. They offer a possibility to

synchronize different processes. AnOS-Event is always associated with a task, which ”owns”

the event. If for example a task instance requires information provided by another process

at a predefined position, it waits for an OS-Event it owns (wait_event). If the according

information is available, the providing process sets the OS-Event (set_event) for the waiting

task instance. In case the event should be reset, it has to be cleared (clear_event) by its

owner.

2.3.5.1 clear_event

The clear_event event indicates that a potentially set OS-Event (target) gets reset by the

task owning this OS-Event.

Field Description

<Source> The source must state the name of the task that owns the OS-Event and

clears it.

<SourceInstance> The source instance must state the number of the task instance that owns

the OS-Event and clears it.

<TargetType> ”EVENT”

<Target> The target must state the name of the OS-Event that is cleared.

<TargetInstance> 0

<Event> clear_event

<Note> This field must not be used for this event.

Table 2-32: Definition of OS-Event Clear_Event Event

⌈Constraint: The source task instance has to be in RUNNING state to clear an OS-Event.⌋

2.3.5.2 set_event

The set_event event indicates that an OS-Event (target) gets set by a process or a stimulus

(source).

© 2020 Vector Informatik GmbH Version 2.2.0 37

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process or stimulus that sets the

event.

<SourceInstance> The source instance must state the number of the process or stimulus in-

stance that sets the event.

<TargetType> ”EVENT”

<Target> The target must state the name of the OS-Event that is set.

<TargetInstance> 0

<Event> set_event

<Note> This field must state the name of the task that owns the event and for that it

gets set.

Table 2-33: Definition of OS-Event Set_Event Event

⌈Constraint: The source process instance has to be in RUNNING state to set an OS-Event.⌋

⌈Constraint: The source stimulus has to be triggered before setting an OS-Event. This

order has to be considered in the BTF file.⌋

2.3.5.3 wait_event

The wait_event event indicates that a task calls a system service to wait for an OS-Event.

Field Description

<Source> The source must state the name of the task that owns the OS-Event and that

calls the system service to wait for this OS-Event.

<SourceInstance> The source instance must state the number of the task instance that owns

the OS-Event and that calls the system service to wait for the OS-Event.

<TargetType> ”EVENT”

<Target> The target must state the name of the OS-Event the task has to wait for.

<TargetInstance> 0

<Event> wait_event

<Note> This field must not be used for this event.

Table 2-34: Definition of OS-Event Wait_Event

⌈Constraint: The source task instance has to be in RUNNING state to call a system service

to wait for an OS-Event.⌋

Example

Task_A calls the system service to wait for the OS-Event ExampleOsEvent (line 5) and there-

fore, Task_A has to wait (line 6). Task_B sets this event for Task_A (line 7), so that Task_A

can resume (line 8 and 9). Afterwards, the event gets cleared (line 10).

© 2020 Vector Informatik GmbH Version 2.2.0 38

Technical Specification Best Trace Format (BTF)

1 0,Stimulus_Task_A,0,T,Task_A,0,activate

2 100,Core_1,0,T,Task_A,0,start

3 1000,Stimulus_Task_B,0,T,Task_B,0,activate

4 1100,Core_2,0,T,Task_B,0,start

5 10108,Task_A,0,EVENT,ExampleOsEvent,0,wait_event

6 10108,Core_1,0,T,Task_A,0,wait

7 11100,Task_B,0,EVENT,ExampleOsEvent,0,set_event,Task_A

8 11100,Core_1,0,T,Task_A,0,release

9 11200,Core_1,0,T,Task_A,0,resume

10 11200,Task_A,0,EVENT,ExampleOsEvent,0,clear_event

11 21100,Core_1,0,T,Task_A,0,terminate

12 21100,Core_2,0,T,Task_B,0,terminate

Listing 2-11: BTF Extract with OS-Event events

© 2020 Vector Informatik GmbH Version 2.2.0 39

Technical Specification Best Trace Format (BTF)

2.3.6 Signal Events

A Signal (SIG) is basically an address in the memory of a micro-controller. This memory

location contains a certain value, which can be accessed by a process instance if required.

So generally, a signal fulfills the function of naming the memory space, like a label. According

to the stored value the process accessing it might change its behavior (READ). Besides a

process also a stimulus is able to write to the storage location and change the value of this

label (WRITE).

2.3.6.1 read

The read event indicates that a signal (target) gets read by a process (source).

Field Description

<Source> The source must state the name of the process that reads the signal.

<SourceInstance> The source instance must state the number of the process instance that

reads the signal.

<TargetType> ”SIG”

<Target> The target must state the name of signal that is read by the process.

<TargetInstance> 0

<Event> read

<Note> This field can be used to track the current numerical value of the signal.

Table 2-35: Definition of Signal Read Event

⌈Constraint: The source process instance has to be in RUNNING state to read a signal.⌋

2.3.6.2 write

The write event indicates that a signal (target) gets written by a process or stimulus (source).

Field Description

<Source> The source must state the name of the process or stimulus that writes the

signal.

<SourceInstance> The source instance must state the number of the process or stimulus in-

stance that writes the signal.

<TargetType> ”SIG”

<Target> The target must state the name of signal that is written by the process.

<TargetInstance> 0

<Event> write

<Note> This field can be used to track the new numerical value of the signal.

Table 2-36: Definition of Signal Write Event

⌈Constraint: The source process instance has to be in RUNNING state to write a signal.⌋
⌈Constraint: The source stimulus instance has to be triggered before writting to a signal.⌋

© 2020 Vector Informatik GmbH Version 2.2.0 40

Technical Specification Best Trace Format (BTF)

Example

Stimulus STI_MODE_SWITCHwrites value 1 to signal HighPowerMode (line 1) which is later

read by TASK_200MS (line 2). Afterwards, TASK_WritingActuator writes value 0 to signal

S16_C1_1 (line 3) and TASK_10MS reads it (line 4).

1 1222481,STI_MODE_SWITCH,0,SIG,HighPowerMode,0,write,1

2 1222481,TASK_200MS,0,SIG,HighPowerMode,0,read,1

3 4482566,TASK_WritingActuator,2,SIG,S16_C1_1,0,write,0

4 5590428,TASK_10MS,0,SIG,S16_C1_1,0,read,0

Listing 2-12: BTF Extract with Signal Events

© 2020 Vector Informatik GmbH Version 2.2.0 41

Technical Specification Best Trace Format (BTF)

2.3.7 Semaphore Events

If more than one process is able to access a common resource, it might be necessary to

restrict the maximum amount of accesses in order to protect this resource from race condi-

tions. Therefore, the operating system provides the possibility to use a semaphore (SEM)

(e.g. spinlock). It is possible to assign processes to the protected resource as long as the

maximum amount of simultaneous accesses is not reached (semaphore is unlocked). If a

process is assigned and the maximum amount of semaphore users is reached, the resource

gets locked. In this state every new accessing entity has to poll until one of the previous

accessing ones releases the resource.

FREEUSED

OVERFULLFULL

free

used

unlock_full

lock_used
unlock

lock

full

overfull

overfull

used

Semaphore: Unlocked

Semaphore: Locked

Figure 2-6: Semaphore State Chart

State Description

FREE Semaphore has no assigned users.

FULL Semaphore has assigned requests and has reached its maximum amount of simul-

taneous accesses.

OVERFULL Semaphore is locked and at least one request is waiting for the semaphore.

USED Semaphore has assigned requests and is still able to handle at least one request.

Table 2-37: States for Semaphore Entities

© 2020 Vector Informatik GmbH Version 2.2.0 42

Technical Specification Best Trace Format (BTF)

At the beginning of a trace, a semaphore may be in any of above states.

2.3.7.1 assigned

The assigned event indicates that a process (source) gets assigned to a semaphore (target)

and does not have to wait for assignment.

Field Description

<Source> The source must state the name of the process that gets assigned.

<SourceInstance> The source instance must state the number of the process instance that gets

assigned.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore the process is assigned

to.

<TargetInstance> 0

<Event> assigned

<Note> This field must state the amount of accesses.

Table 2-38: Definition of Semaphore Assigned Event

⌈Constraint: The assigned event has to appear after the increment or decrement event in

the BTF file.⌋

2.3.7.2 decrement

The decrement event indicates that a process (source) has released a semaphore (target)

and now decrements its counter.

Field Description

<Source> The source must state the name of the process that decrements the counter

<SourceInstance> The source instance must state the number of the process instance that

decrements the counter

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore whose counter gets decre-

mented

<TargetInstance> 0

<Event> decrement

<Note> This field must state the amount of accesses after the current release/decre-

ment

Table 2-39: Definition of Semaphore Decrement Event

⌈Constraint: The source process instance has to be in RUNNING state to decrement a

semaphore.⌋
⌈Constraint: The decrement event has to appear after the released event in the BTF file.⌋
⌈Constraint: The semaphore has to change its state after the decrement event. This order

© 2020 Vector Informatik GmbH Version 2.2.0 43

Technical Specification Best Trace Format (BTF)

must be considered in the BTF file.⌋

2.3.7.3 free

The free event indicates that a semaphore (source and target) reaches 0 assigned users and

was not full before.

Field Description

<Source> The source must state the name of the semaphore that gets freed.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> free

<Note> This field must state the amount of accesses, which is 0 in this case.

Table 2-40: Definition of Semaphore Free Event

2.3.7.4 full

The full event indicates that a semaphore (source and target) gets released by a user and

reaches its maximum amount of assignable semaphore users. In this case, no requesting

user has to wait anymore.

Field Description

<Source> The source must state the name of the semaphore that gets released and

reaches its maximum amount of assignable semaphore users.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> full

<Note> This field must state the amount of accesses, which is the maximum amount

of assignable semaphore users in this case.

Table 2-41: Definition of Semaphore Full Event

2.3.7.5 increment

The increment event indicates that a process (source) has requested a semaphore (target)

and now increments its counter.

© 2020 Vector Informatik GmbH Version 2.2.0 44

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process that increments the counter.

<SourceInstance> The source instance must state the number of the process instance that

increments the counter.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore whose counter gets incre-

mented.

<TargetInstance> 0

<Event> increment

<Note> This field must state the amount of accesses after the current request/incre-

ment.

Table 2-42: Definition of Semaphore Increment Event

⌈Constraint: The source process instance has to be in RUNNING state to increment a

semaphore.⌋
⌈Constraint: The increment event has to appear after the requestsemaphore event in the

BTF file.⌋
⌈Constraint: The semaphore has to change its state after the increment event. This order

must be considered in the BTF file.⌋

2.3.7.6 lock

The lock event indicates that a semaphore (source and target) is requested by a user and

reaches its maximum amount of assignable semaphore users and had no user assigned

before.

Field Description

<Source> The source must state the name of the semaphore that is requested by a

user and reaches its maximum amount of assignable semaphore users and

had no user assigned before.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> lock

<Note> This field must state the amount of accesses, which is 1 in this case.

Table 2-43: Definition of Semaphore Lock Event

2.3.7.7 lock_used

The lock_used event indicates that a semaphore (source and target) is requested by an

additional user and reaches its maximum amount of assignable semaphore users.

© 2020 Vector Informatik GmbH Version 2.2.0 45

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the semaphore that is requested by an

additional user and reaches its maximum amount of assignable semaphore

users.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> lock_used

<Note> This field must state the amount of accesses, which is the maximum amount

of assignable semaphore users in this case.

Table 2-44: Definition of Semaphore Lock_Used Event

2.3.7.8 overfull

The overfull event indicates that a semaphore (source and target) is requested by a user and

has more simultaneous accesses as assignable. Therefore, at least one requesting user has

to wait.

Field Description

<Source> The source must state the name of the semaphore that is requested by a

user and has more simultaneous accesses as assignable.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> overfull

<Note> This field must state the amount of accesses, which is greater as the maxi-

mum amount of assignable semaphore users in this case.

Table 2-45: Definition of Semaphore Overfull Event

2.3.7.9 queued

The queued event indicates that a process (source) has requested a semaphore (target) and

this request is queued to be either assigned or waiting later on.

© 2020 Vector Informatik GmbH Version 2.2.0 46

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process that is queued.

<SourceInstance> The source instance must state the number of the process instance that is

queued.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore that queues the process

request.

<TargetInstance> 0

<Event> queued

<Note> This field must state the amount of accesses after the current request/incre-

ment.

Table 2-46: Definition of Semaphore Queued Event

⌈Constraint: The queued event has to appear after the increment event in the BTF file.⌋

2.3.7.10 released

The released event indicates that a process (source) that is assigned to a semaphore (target)

releases this semaphore.

Field Description

<Source> The sourcemust state the name of the process that releases the semaphore.

<SourceInstance> The source instance must state the number of the process instance that

releases the semaphore.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore that gets released.

<TargetInstance> 0

<Event> released

<Note> This field must state the amount of accesses before processing the current

release/decrement.

Table 2-47: Definition of Semaphore Released Event

⌈Constraint: The source process instance has to be in RUNNING state to release a semaphore.⌋

2.3.7.11 requestsemaphore

The requestsemaphore event indicates that a process (source) requests a semaphore (tar-

get).

© 2020 Vector Informatik GmbH Version 2.2.0 47

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The sourcemust state the name of the process that requests the semaphore.

<SourceInstance> The source instance must state the number of the process instance that

requests the semaphore.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore that gets requested.

<TargetInstance> 0

<Event> requestsemaphore

<Note> This field must state the amount of accesses before processing the current

request/increment.

Table 2-48: Definition of Semaphore Requestsemaphore Event

⌈Constraint: The source process instance has to be in RUNNING state to request a semaphore.⌋

2.3.7.12 unlock

The unlock event indicates that a semaphore (source and target) reaches 0 assigned users

and was full before.

Field Description

<Source> The source must state the name of the semaphore that reaches 0 assigned

users and was full before.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> unlock

<Note> This field must state the amount of accesses, which is 0 in this case.

Table 2-49: Definition of Semaphore Unlock Event

2.3.7.13 unlock_full

The unlock_full event indicates that a semaphore (source and target) is released by a user,

has still other users assigned and was full before.

© 2020 Vector Informatik GmbH Version 2.2.0 48

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the semaphore that is released by a user,

has still other users assigned and was full before.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> unlock_full

<Note> This field must state the amount of accesses, which is greater than 0 and

less than the maximum amount of assignable semaphore users in this case.

Table 2-50: Definition of Semaphore Unlock_Full Event

2.3.7.14 used

The used event indicates that a semaphore (source and target) is requested and has users

assigned. The amount of assigned semaphore users is afterwards still less than the maxi-

mum amount of assignable semaphore users.

Field Description

<Source> The source must state the name of the semaphore that gets a user assigned

but does not reach the maximum amount of assignable semaphore users.

<SourceInstance> 0

<TargetType> ”SEM”

<Target> The target must state the same name as the source.

<TargetInstance> 0

<Event> used

<Note> This field must state the amount of accesses, which is greater than 0 and

less than the maximum amount of assignable semaphore users in this case.

Table 2-51: Definition of Semaphore Used Event

2.3.7.15 waiting

The waiting event indicates that a process (source) requests a semaphore (target). The

semaphore has already reached the maximum amount of assignable semaphore users.

Therefore, the request has to wait.

© 2020 Vector Informatik GmbH Version 2.2.0 49

Technical Specification Best Trace Format (BTF)

Field Description

<Source> The source must state the name of the process that requests the semaphore

and has to wait for its assignment.

<SourceInstance> The source instance must state the number of the process instance that

requests the semaphore and has to wait for its assignment.

<TargetType> ”SEM”

<Target> The target must state the name of the semaphore that gets requested and

has already reached its maximum amount of assignable semaphore users.

<TargetInstance> 0

<Event> waiting

<Note> This field must state the amount of accesses after processing the current

request/increment.

Table 2-52: Definition of Semaphore Waiting Event

⌈Constraint: The waiting event has to appear after the increment event in the BTF file.⌋

Example

The following example shows the behavior of a semaphore Sem1, which has 1 as its maxi-

mum count of assignable semaphore users. It is requested by Process1 (line 2 till 4), which

gets assigned to the resource (line 6). Therefore, Sem1 gets locked (line 5) and the second

requesting process Process2 (line 7 till 9) has to wait (line 10 and 11) until Process1 releases

the resource (line 12 and 13).

1 0,Sem1,0,SEM,Sem1,0,free,0

2 308,Process1,0,SEM,Sem1,0,requestsemaphore,0

3 308,Process1,0,SEM,Sem1,0,increment,1

4 308,Process1,0,SEM,Sem1,0,queued,1

5 308,Sem1,0,SEM,Sem1,0,lock,1

6 308,Process1,0,SEM,Sem1,0,assigned,1

7 9539,Process2,0,SEM,Sem1,0,requestsemaphore,1

8 9539,Process2,0,SEM,Sem1,0,increment,2

9 9539,Process2,0,SEM,Sem1,0,queued,2

10 9539,Sem1,0,SEM,Sem1,0,overfull,2

11 9539,Process2,0,SEM,Sem1,0,waiting,2

12 462154,Process1,0,SEM,Sem1,0,released,2

13 462154,Process1,0,SEM,Sem1,0,decrement,1

14 462154,Sem1,0,SEM,Sem1,0,full,1

15 462154,Process2,0,SEM,Sem1,0,assigned,1

Listing 2-13: BTF Extract with Semaphore Events

© 2020 Vector Informatik GmbH Version 2.2.0 50

Technical Specification Best Trace Format (BTF)

References

[1] AUTOSAR.Specification of Operating System. Specification. Release 4.4.0.AUTOSAR,

2018.

[2] ISO 17356-3:2005: Road vehicles – Open Interface for Embedded Automotive Applica-

tions – Part 3: OSEK/VDXOperating System (OS). Tech. rep. Geneva, CH: International

Organization for Standardization, 2005.

© 2020 Vector Informatik GmbH Version 2.2.0 51

	Version History
	Introduction
	Best Trace Format (BTF)
	Comment
	Parameter
	Version Parameter
	Creation Date Parameter
	Creator Parameter
	Entity Mapping Parameter
	Entity Type Mapping Parameter
	Time Scale Parameter
	Type Mapping Parameter

	Event
	Stimulus Events
	trigger

	Process Events (Task and ISR Events)
	activate
	interrupt_suspended
	mtalimitexceeded
	park
	poll
	poll_parking
	preempt
	release
	release_parking
	resume
	run
	start
	terminate
	wait

	Runnable Events
	resume
	start
	suspend
	terminate

	Scheduler Events
	schedule
	schedulepoint

	OS-Events
	clear_event
	set_event
	wait_event

	Signal Events
	read
	write

	Semaphore Events
	assigned
	decrement
	free
	full
	increment
	lock
	lock_used
	overfull
	queued
	released
	requestsemaphore
	unlock
	unlock_full
	used
	waiting

	References

