
March 2008 Page 1 TmL Eclipse Project

MOBILE DEVICES AND EMULATORS WITH TML

Mobile devices are gaining strong acceptance as an essential component in the end-user

daily life. In order to harness the potential of mobile devices more powerful software

development environments and tools are needed to support developers to create

sophisticated applications and make the bridge between robust IDE and mobile devices.

Eclipse is a natural choice of a base platform for such development environments and

tools. Eclipse has a proven track-record as an IDE for desktop applications in Java, C/C++

and various other programming languages. By using Eclipse's powerful and flexible

plug-in and extension point mechanism for extensibility, one can leverage those existing

capabilities for embedded software development.

The most significant contribution of TmL will be support to integration of mobile device

emulation into the Eclipse IDE and simulation of end-to-end enterprise environments for

testing of enterprise applications (backend and communication simulation).

Device emulation is important because hardware prototypes are often not yet available

when developers start creating the applications for a new mobile device. Simulation of

end-to-end enterprise environments is important because such environments in reality

may involve several devices and more expensive equipment such as servers. Device

emulation and simulation of end-to-end enterprise environments were thus chosen to be

the initial focus of the TmL project.

INTRODUCTION

This document describes the components that were implemented so far in the scope

of the Tools for mobile Linux project. It reviews the project goal of providing tools and

frameworks to support development of mobile applications and describes how the two

existing components contribute to it. The first component is the Device Framework, which

supports integration of a mobile device or emulator to the Eclipse IDE. The second

component is the VNC viewer, which allows an Eclipse view to display the contents of a

device or emulator display using the well-known VNC (or RFB, Remote Frame Buffer)

protocol. The two components will be often used together to support a given device or

emulator.

By TmL Team, Eclipse Foundation.

Copyright © 2008 Eclipse Foundation.
March 15, 2008

SUMMARY

March 2008 Page 2 TmL Eclipse Project

The bottom line of mobile development is providing tools which spanning the entire

software development lifecycle adding support to run, debug and validate applications

developed directly into mobile devices or using emulated environments.

The TmL framework addresses integration between development and the end-user

mobile device. Using the framework it is possible help the developer providing an ease

way to run the application created using emulator, simulator or the real device including

debug, deploy and testing with simulated mobile infrastructure.

Most existing Eclipse projects have a more general, horizontal focus. It is important

batting around existing Eclipse projects to vertically extend Eclipse into a powerful

development environment for the mobile device market. Therefore it is natural that TmL

will interact, re-use and extend other existing projects

It is part of this environment the creation of a framework to cover the end-to-end mobile

services development. It should be capable to address a simulated mobile infrastructure

to support messaging, location and several other mobile based services.

► OVERVIEW

Applications developed for mobile devices cannot easily be executed on a

developer’s PC. Execution on actual device hardware is often hindered by

limited availability of hardware, esp. in the early development phase.

A critical piece of the TmL development environment is a Device Framework.

TmL seeks to define an extensible framework for a real device or emulator. The

design goal is to keep the device generic enough to accommodate

implementations using different technologies like: virtualization servers,

operating system, communication protocols and others.

The framework shall provide for ways to:

TOOLS FOR MOBILE LINUX (TML)

MOBILE DEVELOPMENT AND TML

March 2008 Page 3 TmL Eclipse Project

• Support different launching parameters and configurations

• Infrastructure for Eclipse control components to communicate with

devices executing in the real or emulated context

• Provide Properties pages to define device configurations and arguments,

including arguments to be passed on to the device system

• Support launching of and connection to remote devices

To implement parts of the emulator framework we are looking at the possibility

of using existing DSDP/TM features, as well as open source protocols like the

“Remote Frame buffer Protocol” (RFB).

Part of the development environment for mobile device applications is the

simulation of the interaction with a mobile infrastructure. This infrastructure

may include components like:

• Simulated messaging servers

• Deployment servers

Simulation or capture/replay of location based data (Cell information, GPS, etc.)

► COMPONENTS

Addressing these capabilities the TmL scope was split in three components:

• Device Framework, responsible for providing an extensible platform to

support mobile devices and their aggregate services.

• VNC Protocol, a scratch implementation of RFB protocol to support

visualize the frame buffer content. It can also promoting the protocol

communication interface between device and TmL framework.

• Simulated end-to-end environment, responsible for supporting a fully

infrastructure to connect mobile devices and it has also providing the

integration among all devices connected into this network.

► ARCHITECTURE

The architecture of the TmL project is based on the Eclipse extension point and

plug-in mechanism..

The TmL Device Framework comprises components that are useful for handling

mobile devices and emulators, such as the VNC Viewer component. It also has

an adapter layer for TM interoperability.

Examples of services are:

• Starting and stopping devices or emulators.

• Deploying and launching applications on a device or emulator.

• A frame buffer service to visualize the contents of a remote display using

e.g. the VNC Viewer component.

March 2008 Page 4 TmL Eclipse Project

Eclipse Platform

VNC ViewerDevice Framework

Device A

Emulator A

Simulator A

Start

Stop

Reset

Halt

Viewer

Tools for mobile Linux - TmL

TmL Services

TmL Devices

The TmL Device Framework is designed as a generic framework that can be used as the

basis to create Eclipse plug-in that connects devices and emulators to the Eclipse

integrated development environment (IDE).

Device manufactures can implement plug-ins based on this framework to support their

devices, thus allowing third party application developers and independent software

vendors (ISV’s) to run, test and debug applications on the corresponding devices and/or

emulators.

The Device Framework makes directly access from the Eclipse IDE, enabling the user to

manage the services provided by each one. An example of such a service is display

visualization, which can be provided by a mobile phone emulator through a VNC server

and used on the IDE by means of the TmL VNC Viewer embedded in an Eclipse View.

The Device Framework supports common services, such as ftp or telnet, which can be

shared by devices and emulators with minimal customization. In addition to this, other

services provided by the framework can be extended and customized for each different

plug-in.

► DEFINITIONS

The main purpose of the TmL Device Framework is to integrate devices and

emulators on the IDE. The framework defining set of actions called services and

associates them to the device.

DEVICE FRAMEWORK

March 2008 Page 5 TmL Eclipse Project

♦ SERVICE

A service represents a number of related functionalities and is

implemented as a plug-in. The framework attempts to provide

implementations that are either general enough (e.g. the VNC viewer) or

contain partial implementations that must be extended by specific plug-

ins (e.g. the Status state machine).

Real

Device

ISV Device Plug-in

Virtual

Device

Tools for Mobile Linux - TmL

Device
Framework

org.eclipse.tml.device

QEmu using

Linux ARM

QEmu using

ReactOS

VMWare using

Windows

Phone Device DemoBoard

♦ MOBILE DEVICE

A mobile device represents an abstract description of a real device or a

device emulator. It must be implemented as a plug-in that extends the

device extension point defined by the TmL Device Framework..

Service

ISV Device Plug-in

Tools for Mobile Linux - TmL

Device

Framework

org.eclipse.tml.service

Start Stop Deploy

Reset Halt Display

The device object typically contains binary executables that emulate the

mobile device or a collection of scripts that manage the connection

between the host computer and the mobile device itself.

The device plug-in also contains configurable properties and extends

those extension points from the TmL framework corresponding to the

services available from the mobile device or emulator.

March 2008 Page 6 TmL Eclipse Project

Prior to using a mobile device, the user must create an instance of it.

Several instances of the same device should be created as long as they

have non-conflicting properties (e.g. different ports). The TmL

framework provides the code for creation of mobile device instances.

Examples of mobile devices include:

• QEmu using Linux ARM

• QEmu using React OS

• VMWare using Linux

• Phone Device

• Demo board

A device must indicate the location of the binaries in the filesystem, the

startup command line and the correct parameters required to run

different services for that device or emulator (e.g. startup command is

different for QEmu-based emulators and VMware-based emulators).

Besides, each mobile device should support a set of services. This

support in some cases demands an additional code and extra

configuration to work with those mobile device associated.

♦ MOBILE DEVICE INSTANCES

One can think of a TmL-based mobile device plug-in as a “class” that

contains static information required to create and run instances of the

corresponding device, whereas the dynamic information associated with

each individual instance is stored in the Eclipse workspace and linked to

the corresponding instance.

The diagram above shows the difference between mobile device plug-ins

and mobile device instances.

Each mobile device plug-in provides features such as a New Device

Instance Wizard to create a new device instance, property edition and

other functionalities.

March 2008 Page 7 TmL Eclipse Project

A mobile device instance assigns values for the mobile device properties

defined in the corresponding plug-in. These property values are stored

in metadata from the user workspace.

♦ MOBILE DEVICE PLUG-IN EXAMPLE

The diagram below clarifies the files that each plug-in contains and is

part of a mobile device plug-in or a mobile device instance.

The example is a QEmu ARM emulator running Linux. The QEmu ARM

plug-in is represented as a device with binaries to start the emulator,

descriptions of the device, a properties.config file and service

configurations.

QEmuARM Plugin

binaries Descriptors

Launcher

Custom Start Service

Custom Stop Service

Properties and Parameters Status State Machine

Resources

id description

Instance N

w
iz
a
rd
s

Custom properties

The properties are described in properties.config located in the QEmuARM

plug-in. This file describes which properties are needed to mobile device,

services and device instances. It is composed by:

March 2008 Page 8 TmL Eclipse Project

• Instance properties - that will be replaced by the properties

inside properties.config in the instance. (note that some

properties can be read-only)

Properties.config

<host>127.0.0.1</host>

<port>5900</port>

• Emulator properties – that will be replaced by the user using a

properties page and they are properties valid for all

instances of this plug-in type.

Properties.config

<instance>

 <host>127.0.0.1</host>

 <port>5900</port>

</instance>

<emulator>

 <parameters>

 <param id=”1" name=”-L” value=”.” />

 <param id=”1" name=”-m” value=”256” />

 <param id=”1" name=”-vnc” host=”y” />

 </parameters>

 <location read-only=”y”>

 <path>/qemu/bin</path>

 <bin>run.bat</bin>

 </location>

</emulator>

The properties.config for each instance has the properties values

associated with the properties described in properties.config located in the

QEmuARM.

The Start/Stop Service is configured to start, stop and refresh status using

the specific commands for this device.

The Display service is also configured to provide protocol setting and

connection parameters specific for this device.

► EXTENSIBILITY

This section describes the extension points available and it shows which

functionality each one implements or extends.

♦ DEVICE

The purpose of this extension is define a new device allowing developer

setup id, name , description, version, provider, copyright, icon and class

handler that framework will load when any information about this

device was requested.

March 2008 Page 9 TmL Eclipse Project

♦ SERVICE

This extension defines a new service and it associate information data for

this service. Each service could be linked with devices providing a set of

common functionalities related to maintain this kind of service.

♦ SERVICE DEFINITIONS

This extension is used by devices to link services and devices. It is

responsible for provide the status transition using valid values and

manage the service execution.

serviceDefinition

service

state

March 2008 Page 10 TmL Eclipse Project

♦ STATUS

This extension is used to provide the state machine for each device. It is

possible uses a set of default states or define additional status specific for

a device.

► TARGET MANAGEMENT (TM) INTEGRATION

The TmL framework will provide a set of adapters to support TM Platform. It

will be possible choose run TmL default UI or making use of TM Interface totally

transparent for the user.

The plug-in developer just need implements the customized adapters provided

by framework and some additional extension points, then the plug-in

automatically will be integrated with TM Platform.

March 2008 Page 11 TmL Eclipse Project

► PLAN AND FUTURE IDEAS

This section describes the current plan for TmL and promotes discussion about

new Ideas for the future.

• Automatic wizards to create device plug-ins

• Skins

• Keyboard mapping

• Multiple displays

The VNC Viewer Component is designed as a library to support visualizes frame buffer

content directly inside SWT components.

► USING VNC VIEWER

The VNC viewer is a standalone library that implements RFB/VNC protocol in

SWT Components. It is totally possible uses this component without load all

classes of TmL.

TmL also implements a plug-in that uses this library and makes connection

between the RFB protocol and Eclipse Views.

► ARCHITECTURE

VNC Framework

Generic
Protocol
Definition

Remote Display
Definition

Protocol Graphical ToolKit

VNC Component

VNC VIEWER COMPONENT

March 2008 Page 12 TmL Eclipse Project

SWT
VNC

Protocol

Eclipse VNC Component

VNC Viewer

VNC Framework

VNC Viewer View - Eclipse

ISV Service Plug-in

Protocol

VNC 3.3 VNC 3.5 VNC 3.8

VNC

IRemote
Display

ISWTPainte
r

SWTRemot

eDisplay

VNCSWTP
ainter

IVNCPainte
r

Composite IPainter

IProtoClient

ViewPart

VNCViewer

View

VNC ComponentEclipse Integration

 [1] Eclipse Portal (http://www.eclipse.org)

[2] Tml Site (http://www.eclipse.org/dsdp/tml)

[3] Tml Wiki (http://wiki.eclipse.org/DSDP/TML)

[4] Motorola (http://www.motorola.com)

[5] Eldorado (http://www.eldorado.org.br

REFERENCES

