(y

Eclipse b3

The penultimate guide

Henrik Lindberg, Cloudsmith Inc.



Draft Draft

Eclipse b3: The penultimate guide
by Henrik Lindberg

0.3 - Second Mgjor Draft - describing first implementation of b3.
Copyright © 2010 Cloudsmith Inc. All Rights Reserved.

This book and the accompanying materials are made available under the terms of the Eclipse Public License v1.0 which is available at http://
www.eclipse.org/org/documents/epl-v10.html.



http://www.eclipse.org/org/documents/epl-v10.html
http://www.eclipse.org/org/documents/epl-v10.html

Draft

Draft

Dedication

Don't worry, I have my hat on, and
I think this is what the documentation
suggested...

\

Stew has hisfirst build tool experience.

This guide is dedicated to all software developers who have voiced their frustration with manually
putting software build systems together, and to all early adopters that have voiced their frustration
over the lack of examples and documentation when trying to construct an automated system.




Draft Draft
Table of Contents

= =0 PP viii

WY USE D32 e e viii

Why read thiS DOOK ...........iiiiiiii e iX

ThiS DOOK'S GUTIEINCE ...cevviieeiii et e e iX

Conventions used iN thiSBOOK ...........oouiiiiiiii e iX

Getting examples from thiS DOOK ...........oovuuiiiiiiii e X

ReqUESE FOr COMIMENT ... e e e e e e e e e e e eeen X

ACKNOWIEAGEMENTS ....eiiii e e e e e e e et e e e e e e aens X

[ 1 L oo [0 (o o T PP 1

L INtroduction t0 D3 ...ouei e e 2

FUNCEIONAl OVEIVIBW ...t e e e 2

GEtiNg COMPONENES ....uiiii e e e e e e e e e e e e e et e e et e e e e e et e e eanaeeenees 3

The BUITA UNIT .oeeneiii ettt et e e e eeeaa e eees 8

(21071 o L= PSPPSR 9

Builder source, input and OUEPUL .........ccuuereiieiiieii e e e e e 10

More aboUt BUITAENS .......uvieiiiii e 10

BUIlder FUNCLIONS ... 11

Turning something into abuild unit ...........c.cooiiiiii i, 11

o V1 o TR g T 12

S 1010 7= Y 13

I oI 1= = 1< 0o PSPPSR 15

2. The b3 eXpression [aNQUAGE .. ...u.eeeniiii e e et e e e e e e e e e e e e eanaeees 16

1011 o PP TP PPPT 16

General INFOMMBLION ... iieeeeiei et e eeaans 16

1= T ORI STUPPPTTPN 16

SHTUCKUN <.ttt et e e e et e e e ean s 16

Comments and dOCUMENEBEION ........ccuuurireiiinieeiii e e e e 17

15/ == 18

LITEIAlS .oveeeet e 18

0] 07 11 o N 22

What can be imported .........oooeeiii 23

0 1o PP 23

Defining @ fUNCLION .....vuiii e e 23

FUNCLION EXaMPIES .....ceeeci e 24

(0155 o P 25

Expression and EXpression BIOCK ...........cocuuiiiiiiiiiiiiiii e 25

OpErators - PreECEAENCE ......cuvueereeeiieeie et e et e et e e e e e e e e et eeaaeeens 26

The . operator — fEatUre @CCESS ......uuivii e i e e e e e 27

The [ ] operator - indexed/Keyed aCCeSS .......cvvveviiieiiii e 27

Call BXPIESSION ...cveiciii e e 27

Increment and DECrEMENE ........uviiiiiiieeiii e 28

L0100 = e 28

N[ T St o= o o P 28

SEOUENCE OPEIELON .. evueeiieiieeteeee et et e e e e et et e e e et e et e et e e e e e e e e e e e eaneees 29

F OB NG /oo 30

A0 - e 30

REIAtioNal OPEIELOrS ... cvviiiei e e e e e 30

V= o010 o = = o] (R 30

INStANCEOT OPEIEION .....ivvieeii et e e e e e e e e e e e e e e e eees 31

Logical connectives & & and || ....vuevevneeei i 31

Variables and CONSANTS ........oeveivniieiiiiie e e 31

ASSIGNMENt OPEFALiONS ....vuieiieeieeei e e e e e e e e e e e e e eanaeee 31

L= 0 (=55 o 31

ST (g =4 0 (=S Lo 31

B A= 10 (=-> S Mo P 32




Draft Eclipse b3 Draft

THIOW EXPIESSION ...ttt ettt ettt e et e et e e e e eae e eeens 33

CACNE EXPIESSION ...ttt ettt ettt e e 33

TYPECESE ...ttt 33

With CONLEXT EXPIESSION ...cevuiieiiiii ettt et 33

BitWiSe OPEIAIONS .....ueieiiiee et 34

PrOPEITIES ..t 34
PrOPEITY SEES ...oeiieeeiei et 34

Loading properties from files ..........coovuiiiiiiii e 36

Property SEtS @re CONCEINS ........uieriieiiiieiee ettt 36

ACCESSING PrOPEITIES ..ceveieeeeii ettt ettt e et e et 37

1070001 1 o H PP 37
FUNCEION CONCEIM CONEEXE ....evvvieeieii e 38

Proceed EXPreSSION ........ciieetii ittt et 39

WIth @XPIESSION ....vuiieiiii et 40

TYPE SYSIEIM e 41
SYSEEM FUNCLIONS ...ttt eeees 41
EVAIUBLION ... 42

LOOPING FUNCLIONS ......uiiiiii et e 42

SEE TUNCLIONS ... 42

ASSENT FUNCLION ..oevvieie e 44

3. The BUI UNIT oeeeee et 46
BUITA UNIT e 46

Uit DOOY OVEIVIEW ... 47
CaPADITTIES ...t 48
REDOSITONES ...ttt e et e e et e e enb e 50

CONLBINEYS ...ttt ettt e e e e e e e e e e e b s 53
SYNCAMONIZALION .....uiieiii e 53

BUITAEN'S ... et 54

1] oL | PSP 56

SOUICE ettt ettt ettt et e e et et 61

(O 0 1o 11 | TP TIPPTPPPI 62
Annotations in input, SOUrce and OUEPUL ............ceeeuunereriiieeeiiiee e 62

The DUITAEr' S TOQIC ..evvvnieeiii e 63

THE BUITASEL ... 63

Unit & BUIlAEr CONCEIN ...covvieiiiit e e 64
Adding or overriding BUITAErs ..........coooviiiiiii e 64

UNIT CONCEIM ...ttt ettt e et e e et e e e e e eees 64

BUIlAEr CONCEIMN ...t 65

Predicates in CONCEIN CONLEXT ........uiiiiie ettt 68

CoNCErN EXAMPIES ......viieee e 69

A VEISIONS ...ttt ettt ettt e et e et a b e eaeata e aee 70
OmMNi Version intrOdUCTTION .........coouuiiiiiiiie e 70

B3 and OMNI VEISION ... 70

B3'S NAMEA FOMMELS .....eieeeeie e e 71
VEISION TANGES ...ttt ettt ettt ettt et e ettt e ettt e et et e e e e et e e e e aba s 71

[T, EXAMPIES <.t et e et e e e e e e e eae 72
5. EXAMPIE L - TBD ..ottt ettt e 73
IV 0 APPENIX .t 74
AL TNSEBITELION ...t 76
Installing for ECliPSe SDK ......ciiiiiiieiiii e 76
Installing the Headl eSS ProdUCL ..............ooieiiiiiiiiiiecei e 77
1070007 ol (o] £ PPN 79
SUBVEISION (SVN) ..iiitiie ettt ettt et e e et e e e et e e eebe e eeees 79

[ o1 o = TP UUPPTTRPPPPN 80
EClipse teChNOIOGY .......uiieiiiieiii e 80
EQUINOX .t 80

PLELTOIM <. e 80

Java Development TOOIS (IDT) ..covvveneiiiiieeeeeii et 80




Draft Eclipse b3 Draft
Plugin Development Environment (PDE) .........coeuvuiiiiiiiineiiiieeeceie e 80

Rich Client Platform (RCP) .........uiiiiiiiieiiiii e 81

072 USSP 81

The Eclipse COMPONENT TYPES .....uuiiiiiri ettt eeaans 81
Plugins, features and OSGi buNAIES .........c..viiiiiiiiii e 81
Fragments .. ..o 82
PIOTUCES ... et e et e e e e e e e 82

THE WOTKSDECE ...t 82
The Target PlatfOrm ........i oo 83
Launch ConfiguIration .............ooieiiiiei e e 83
N N TSP 83
................................................................................................................. 85
The Installable UNIt .......coooinn e 85
MeEtaOEta FEPOSITONY ...eevueiiiiie ettt et 86
ATFACE FEPOSITONY ... ettt 86
Combined / co-located rePOSITONES .. ..ccuvurieiiitieee it 86
PrOTT e e 86
P2 INEEINEIS ...ttt et 86
L0F (<00 (1= PP UPPPRTTRPPIN 87
PUBIISNING ..o 87
INSEBITING ..t 88
The SDK @OENE ...t 88

The director appPliCatiON ...........ooviiiiieiiii e 89

The P2 INSEAlEN ..o 89

The EPP WIZAr ....coooviiiiiiiiie e e 89

The Buckminster inStaller ..........ooveieiiiiiii e 89
SNIPPING e 90
SUMMBIY ettt ettt et et et e e e e e e e e ean s 91
D. OMNi Version DEAIIS .......coouuuiiiiiiii et 92
INEFOTUCTION ...ttt et e et e ettt e e e et e e eena e eeees 92
BaCKGrOUNG ... .ot 92
IMPIEMENTALION ...t 93
VBISION ..ottt ettt ettt et e e e e e eee 93

1600] 071072 1115 o o H TP PP TPPPIN 93

Raw and Original Version String ..........oveeeeeeieiiiinieieiineeeeein e 94
OMNi VEISION RANGE ...ceveeiiiiiie et 94
Other range fOMMELS .......ocvveiiiiiie e 94
FOrmat SPECIfiCatION .........coeuueieiiii e 95
Format Pattern EXPlanalion ..............oieeiiuiieiiiiieece e 97
Examples of Version FOMMELS ............ieiiuiiieiiiiieeeie et 99
TOOING SUPPOIT ...ttt ettt e e e e e 101
More examples USINg “FOIMEL" ..........oveiimiiieiiii e 102
N ST 103
RESOUICES ...ttt et enes 105




Draft Draft
List of Figures
1.2, B3 rom L10.000 FL ..eeenieeiii e 2
1.2, Transitive Materi@liZation ..........oooeuuiiiiii e e e 3
O T o 0 0 == P 3
1.4. Federation Of REPOSITONES ... ...uuiiiiieiiiieee e e e e e e e e e e e eaans 4
1.5. DynamicC repoSitory SEIECHION ......uivie it e e e e e e e e e e e e 5
I\ (= T = o g 1Y o= 5
1.7. TElling B3 What t0 BL ...covniiii e e e e 6
1.8. Ordering at “Bill’s Better BUrgers (D3)” ......uiieniiiii i 6
1.9. Ordering at the B3 DEli ..o.uuiviiiiiiiiii e e 7
1.10. GEttiNG UNITS — SUMIMAIY ...uevvuieineeiieeeieeet e eea e et eeeetsesanaeetn s eeetnaaenneestnaeranneeenaeeeen 8
00 O =011 o 0 o OSSP 8
I 2 = TH 11 o = £ PP 9
0 T o1 TS 10 Y 13
I o B o PSR 13
C.L ANAomy Of @ TU ..o e e 85
L3 o 720 | 4 - 1 o o 87




Draft

Draft

List of Tables

N B =0 1= 0 I o (o) 1 R 19
DA O < - (0] £ 26
2.3, DITWISE TUNLION L.ttt e et e et eeaeaa s 34

Vi



Draft Draft

List of Examples

4.1. An OSGi Version eXpreSSEa IN AW .....uuveuneeeieeeiieeeee e e e ete e e s e s e eaneeaeeeeanaeeenaeenes 70

Vi



Draft Draft

Preface

Software development is becoming software assembly, with components sourced from around the
world based on awide range of implementation technologies. Building, assemblying, packaging, and
provisioning software is getting increasingly more complex while the toolsin the domain have under-
gone little change.

A point solution, such as the Eclipse Plug-In Development Environment (PDE) does a great job of
streamlining development componentized plug-ins and feature-sets when using the Eclipse IDE inter-
actively. However, the PDE manages only those components implemented as Eclipse plug-ins, and
uses a different way of building when automating builds in “headless fashion”. There is aso only
limited support in Eclipse for materializing the project workspace per se — i.e. fulfilling all external
and internal component dependencies.

The objective for Eclipse b3 isto simplify software build and assembly by leveraging and extending
the Eclipse platform to make mixed-component development as efficient as plug-in development, and
to make automated building as simply a choice of invoking the one and only build definition from
within the graphical user interface, or from the command line. To accomplish this, b3 focuses on the
following:

» introduces technology neutral way of describing a development project’s component structure and
dependencies based on the Eclipse Modeling Framwork EMF.

* provides a mechanism for materializing source and binary artifacts for a project of any degree of
complexity and...

* builds the end result by orchestrating the execution of built-in and user-provided build and test
actions.

Why use b3?

As a developer, you want to stay focused on the construction of your code, you expect it to be built
interactively giving you instant error feedback. Once your code compiles, you expect to instantly be
ableto run/debug it — and when you make changesto the codeit hot depl oysinto the running instance.
At some point the edit/debug cycle is over — you have a set of components, and unit tests.

But you're not really done, of course. Y ou still need to share what you've done so it can be integrated
and built on abuild server, tested, fixed, rebuilt, retested etc. Thevision for b3 is simple— the system
should just take care of al thisfor you automatically!

Most of the information needed is already formally expressed in your code, so b3 can figure out alot
about the components and how things should be put together. There are certain choices you made as
adeveloper that are almost impossible for b3 to figure out on its own. So, alittle work is still required
on your part. But alot less than before b3. Another important set of benefits comes from b3’ s ability
to run the same actions both interactively in the IDE and headlessly on a server. This is particularly
useful for organizationsimplementing continuous build integration and test automation, aswell asfor
open source development where anyone should be able to build the source.

What is special about b3?

e b3isbuild with EMF (Eclipse Modeling Framework), and X Text - this has many advantages, most
importantly:

e Theuse of EMF models makesit easy to transform build related information to and from b3. Al
aspects of the b3 build is captured in models (including the build logic).

e The use of XText gives the b3 model a concrete human friendly textual syntax for the parts of
the build system that are not automatically generated. Y ou can enjoy working with an editor with

viii



Draft

Preface Draft

syntax coloring, code completion, and all the nice features you expect from an Eclipse based
text editor.

Why read this book

This

We've attempted to make this book a clear, concise and definitive reference. We've tried to cover the
bases regarding using b3 in the most typical usage scenarios. We've also tried to provide enough detail
to serve as a starting point for more specialized scenarios, including customizing b3 itself. Following
are the key topics we address:

» Thegeneral natureof b3. Not everyonewantsto jumpinto b3 syntax right away, sowewill quickly
get you up to speed on b3's architecture and what it can do for you.

* How to get and install b3.

» How to get softwar e components from various sour ces. b3 provides the mechanisms to get soft-
ware components in source and binary form from a variety of sources such as source code reposi-
tories, Eclipse p2 update sites, and Maven.

* How toinvoke actions that perform builds and other common tasks.

» Best practices when working with Eclipse plug-in projects, and when building RCP applications.
 Publishing the built result so it can be consumed by users.

* Solution cookbook with examples of how to solve various common issues when building software.
» Setting up continuousintegration with Hudson and b3.

» Unit testing.

» Extending b3.

» Reference documentation.

book’s audience

We expect that most readers have familiarity with Eclipse in general. When describing b3 features
that directly related to developing Eclipse plugins, OSGi bundles in general, writing complete RcP
applications, managing p2 repositories, or using b3 for C++ development, we expect the reader to
have an understanding of development using the respective technology. Although we do provide in-
troductions to the technologies surrounding b3, as it would otherwise be difficult to understand the
full picture, these introductions are by no means intended to serve as anything but starting points for
further explorations.

Conventions used in this book

Most books show you all the conventions used, but there are only a few things that needs to be men-
tioned...

Manually inserted line breaks

Examplestendsto get quite wide, and line breaks must be inserted or the lineswill be truncated. When

thisisthe case, and whereline break matter, weinclude a [ where thelineis broken, and one or several
- characters on the subseguent line to denote that what follows is a continuation of the previous line.
Hereisan example:

http://somihere. outthere.com 8080/ w t h/| ong/ pat h/ and/ paraneters/|i kel




Draft Preface Draft

=7t hi sOne=wi t hAVal ue&andThi sOne=wi t hAnot her Val uell

=&t hi sThi rdPar anet er =wi t hYet Ani t her Val ueld
-&soForth=unti| TheLi neNeedsToBeBr okenUpAgai n&andThenSonme=ext r aSt uf f At TheEnd

If you typein one of these examples, you should remove everything from the O to thelast - (inclusive)
on the next line and and have no line breaks.

Replaceables

Replaceables denote text that is variable in nature — the replaceable part is something you would
type, or that is generated by the system. We use the guillemots characters « and » around the part that
should be replaced e.g., copy «fromName» «t oNane».

Getting examples from this book

The examplesin this book can be obtained from the b3 source code repository. Up to date information
isfound at the general b3 project page at Eclipse.

The b3 project pageislocated at http://www.eclipse.org/modeling/emft/b3.

Request for comment

Please help us improve future revisions of this book by reporting any errors, bugs in examples, con-
fusing or misleading statements, or examples that you would like to see included.

Please report issues with this book in the Eclipse Bugzilla under the category Modeling — EMFT.b3
- documentation. The b3 Bugzillaisfound at https://bugs.eclipse.org/bugs/.

Acknowledgements

Eclipse b3 isstrongly influenced by the Eclipse Buckminster project, and the experiences gained from
using Buckminster for avariety of builds.

We are also very grateful to Cloudsmith Inc, our current employer, and its investors for making it
possible for us to work on b3.

TO-DO: Itisnot yet possible to acknowledge those that helped putting this documentation together ...



http://www.eclipse.org/modeling/emft/b3
https://bugs.eclipse.org/bugs/

Draft Draft

Part I. Introduction

This part is intended as a quick introduction to b3's functional domain which includes provisioning, building,
sharing, testing and publishing software components.

If you need a primer on some of the central Eclipse concepts such as the Eclipse workspace and target platform,
0sGi and the Eclipse Plugin Development Environment (PDE), and the Eclipse provisioning platform (p2), you
may want to start by reading Appendix B, Eclipse, and Appendix C, p2, where eclipse technology is explained
and put into a build domain context.

Specifically, this part discusses how b3 works.




Draft Draft

| ntroduction to b3

This chapter is an overview of the functionality in b3.

Functional Overview

The highest level description of what b3 doesis simply asfollows. Y ou want to build something, and
have nothing of the material you want to build. Y ou tell b3 to materialize the units you are going to
build, and then you tell b3 to build it. This produces output within your workspace, or somewhere
on disk.

Figure 1.1. b3 from 10.000 ft

Before

Action
“materialize” “

Action
“puild” Ly

Materialization fetches components so they can be
worked on. Actions such as build can then be performed.

When you request the unit to build (A, in the example above), b3 will not only fetch this unit, but also
resolve all of its dependencies transitively.




Draft Introduction to b3 Draft

Figure 1.2. Transitive M aterialization

When requesting unit A, it in turn requires B, and C — they both require
D, B requires F, and F in turn requires G, similarly C, requires E and H.

Getting Components

Thefirst two questions are usually, Where does b3 get the units? and Where does b3 store them?

Figure 1.3. Repositories

GVS SV cree D2 Maen Ll ook S

RMAP

NEdeoeddod

Units are looked up in arepository configuration which holds the rules for ac-
cessing different types of repositories. TBD - REMOVE RMAP TEXT IN CLOUD

When b3 needs aunit, alookup is performed in arepository configuration. This configuration contains
rules how to trandlate a request for a unit of some particular type and version to arepository location
of aparticular repository type, and how to address the component within this repository.

Eclipse b3 supports awide variety of repositories, and it is possible to extend b3 with new types.

» CVS—itispossihleto reference components found in HEAD, in branches and via timestamps.
» SVN — it ispossibleto reference components found on trunk, branches, and named tags.

e GIT — specific git features worth mentioning

» Update Site — components published on a Eclipse Update Site in the format specified by the
Update Manager (in use up to Eclipse 3.5).




Draft Introduction to b3 Draft

* p2 — components available in a p2 repository can be fetched.
» Maven — components stored in amaven repository can be fetched.
» URL — asingle component can be fetched from a given location.

» Workspace— the components currently in the workspace (probably in source form) are also avail-
ableto b3’ sresolution process— naturally thereisno need to actually fetch them, but their presence
may override resolving to the same component in binary form in some other repository.

» Target Platform — the componentsin atarget platform are available to b3’ s resolution process —
these are also not fetched, but affect the resolution process.

The repository configuration does not have to be a singleton — it is possible to reference other con-
fgurations.

Figure 1.4. Federation of Repositories

RMAP
RMAP PB-MAP

RMAP

NEdoddE- o

A federation of repository configurations, including a platform base builder map.

It can be useful to organizethe overall respoistory configuration in adistributed fashion. Y ou may want
that different projects maintain atheir own configuration — which is especially important if projects
arefollowing different naming standards, and when they are performing refactoring of repositories. An
important feature for projects at Eclipseis that the platform base builder maps are directly supported.
Thisisimportant because many Eclipse projectsinclude components from the Eclipse Orbit repository
and a platform base builder map is provided for this repository, and it can be directly used. Some
projects, that are currently building with the platform base builder naturally also benefitsasitiseasier
to transition to b3 by directly being able to use existing mapsl.

1Although not required, if you are using the platform base builder maps it is recommended that you switch to a b3 repository configuration
asitiseasier to maintain if you are following typical project naming standards.




Draft Introduction to b3 Draft

Figure 1.5. Dynamic repository selection

Resolution can take different routes depending on rules and parameters.

When b3 resolves a request for a unit it can take parameters and rules into account when selecting
the repository to use. Y ou can for instance organize the respositories so that users looks up units from
alocal repository rather than aways going to a central repository, and you can do this dynamically
using b3 expressions e.g., when the component name matches aregular expression (and much more).

Figure 1.6. Materialization Types

v v v v v v v v
4 EdogE deE
workspace “eclipse” target pl. file system

Eclipse b3 can materialize (store) fetched components in different types of containers.

When b3 materializes components, they can be stored in different types of locations. Eclipse b3 sup-
ports Eclipse related locations, and the file system, but can be extended with other types of locations.

» Workspace — typically projects are materialized to the workspace, but it is aso possible to bind
binary components (this was common practice prior to Eclipse 3.5 because of difficultieswith man-
aging the target platform)

» Eclipse — i.e, ingtalling tools into an Eclipse based product such as the Eclipse sDk or an RCP

application. Prior to Eclipse 3.5, this was done by using the Update Manager. Since 3.5 this is
performed using p2.




Draft Introduction to b3 Draft

» Target Platform — i.e., installing into a definition against which components are built. Prior to
Eclipse 3.5 the target platform had to be created separately, and then referenced in later operations.
In 3.5, atarget platform can be dynamically created and installed into.

» File System — i.e,, storing the component on disk.

Now you have seen how b3 gets components, and where they are stored when materialized. But how
do you tell b3 what you want?

TBD - CHANGE IMAGE BELOW TO UNIT QUERY

Figure1.7. Telling b3 what to get

Component QUERY

Getting things is done by submitting a Unit Query.

Figure 1.8. Ordering at “ Bill’s Better Burgers (b3)”

-
7

Telling b3 what you want can be as easy as ordering ameal at Bills Better Burgers...

e
&

Most of thetime, the only thing needed isto state the name of the component you want. Eclipse b3 will
then find the latest version of the component. But sometimes you may have very detailed requirements
on your meal.




Draft

Introduction to b3 Draft

Figure 1.9. Ordering at the B3 Deli

mutable or
not?

source or
binary?

for here or
for to go?

we are out of
binaries - do you
want the source
instead?

override that broken
provolone 2.0?

Give me A,
hold the mayo! HAGE, or
English?

Getting picky at the b3 Deli. (Are you sure that pepper is south Brazilian?)

As you will see later, b3 has a very powerful query mechanism, and aspect oriented programming
techniques where you can specify many options and perform advanced overrides:

Do you require source, or prefer source, but can work with binary, or only require binary form.

Do you require source that can be modified and checked in (given that you have authority to do
so naturally).

Do you want to load some units from a branch or tag and override the default.

Do you want to override certain unit-version combinations even if requirements in the unit say
otherwise.

Y ou may want to specify that a search should use a particular repository for certain components —
perhaps loading them from a central repository instead of alocal mirror.

You may want some units from a release repository, but some should be picked from a nightly
build repository.

Eclipse b3 queries are entered and edited in the b3 text editor (just like everything else in b3). TBD
- REFERENCE TO THE EDITOR - AND SPECIFICALLY HOW TO WRITE A b3 SCRIPT THAT
QUERIES




Draft Introduction to b3 Draft

Figure 1.10. Getting units — summary

e Ee
o 3@

Summary of getting a component — a query is resolved and units
fetched from repositories, and materialized into different containers.

The Build Unit

We have aready introduced the term Unit without any further explanation. Now isthetimeto look a
bit closer at what is meant by a unit in b3, and more specificaly, a Build Unit, which is the primary
type of unit used by b3 (the other typeis p2's Installable Unit).

Figure 1.11. Build Unit

s includes

d requires
rce binary

meta data
source
mentation

A Build Unit is an abstraction — a named and versioned piece of content.

A build unit is an abstraction of a (buildable) unit in a software system having a name, one or several
typesand aversion. A build unit typically has content 2__ and it can exist in multi pleforms— such as
source or binary. When b3 obtains the definition of a unit, and subsequently its content, a translator
matching the unit instance’ s physical shapeisused tointerpret the component’ s metadataand trand ate
it into a b3 Build Unit. This translation takes place each time the component is requested — there is
no need to save the result. This has some important benefits:

» Noround trip engineering is required. The meta data at the source is used directly.
» Does not require restating already expressed facts such as dependencies.

A build unit isnot tied to any particular implementation technology — b3 worksjust asfine with Java,
C, PHP, asit does with any collection of files. Even if it is possible to turn just about anything into a
leaf unit, in order to be really useful however, there must be some meta data available that describes
the component and its dependencies.

2A build unit without content functions as a configuration or grouping mechanism.




Draft

Introduction to b3 Draft

Eclipse b3 has discover and translators for several meta data formats, and it is possible to add ex-
tensions for additional types. And in case you wonder, it is possible to combine different types of
repositories with different types of component readers (although some combinations are nonsensical
as certain type of meta data may only exist in certain types of repositories). Hereis alist of available
trandators:

 Eclipsetypes: plugin, feature, product, fragments

* OSGi types: bundle

e Maven: maven poM (version 1 and 2)

» Buckminster: Buckminster’s cspec and Component Specification Extension (CSPEX).

A Build Unit isamodel. Since aBuild Unit is an instance of a model, it is not difficult to write
trangl ations — there are many tools available in the modeling domain for such tasks. One especially
suited isthe MoDisco (model discovery) project which allows discovery of structure from source code
- which can be used to detect the buildable units and their dependencies even if they are not expressed
in concrete meta data.

Other ways of using modeling is to transform a high level model of your system’s building blocks
into executable build units.

Authoring a Build Unit.  You can also author build units directly using the concrete b3 domain
specificlanguage DSL and X Text based editor. Hereisavery simple example of aleaf component called
“apple” containing atext file and an image in afolder called docs.

unit apple version 1.0.0 {
bui | der content {
source { docs/ [ facts.txt, picture.gif ] }
}

Y ouwill seealot more examplesusing theb3 DsL, asthisisthe easiest way toillustrate the capabilities
of b3 — even if most of the units you are going to be using (at least if you are working with Eclipse
and 0sGi based technology) are automatically and dynamically trandated into b3 models.

Builders

Build Units have Builders which are similar to methods of a class. A builder can be thought of as a
getter-function which returns either static data, or dynamically computed / built result.

Figure 1.12. Builders

lib
headers

Unit A’s compile builder requires the result from the lib and headers builders from unit B.

The return type of abuilder is always a Build Set which represents a collection of files (actually col-
lection of URI), and named/typed values (called annotations). So, whenthel i b builder in Figure 1.12,
“Builders” is evaluated by the conpi | e builder it will get a collection of the lib files in component
B. Theselib files could either have been statically declared, or be computed dynamically (component
A does not know, nor care).

A builder can also aggregate the build results of other builders as you will see in the next section.




Draft Introduction to b3 Draft

Builder source, input and output

A builder has three different features for declaring a build result:

source A source declaration defines references to files (using URI no-
tation), and includes the ability to declare additional typed an-
notations. If a builder has no other declared build result, the
source declaration is also what is returned by the builder.

bui | der content {
source { docs/ [ facts.txt, picture.gif ]; }

}

input An input declaration declares that the builder requiresinput of
build results from other builders. These result can come from
other builders declared for the same unit, a unit having a par-
ticular name and version, or aunit that satisfies a particular re-
quirement. If a builder has no other declared build result, the
input declaration is also what is returned by the builder.

bui | der bookOf Fruits {
i nput {
uni t/ appl e/ 1. 0. O#cont ent ;
uni t/ banana/ 1. 0. O#cont ent ;

}

output An output declaration looks the same as a source declaration
(a set of URI, and typed annotations), but this is a declaration
of what the builder’s logic will (is supposed to) produce. You
can think of the output declaration as a declaration of “derived
files” if you like. Having just an output declaration does not
do much however, expressions that actually builds (creates the
derived result) must naturally also be stated (in the example
below, theinput is placed in azip file as specified by the output
declaration).

/**

* Produces a zip file with all the content
* fromthe apple and banana units.
*/
bui | der bookOf Fruits {
i nput {
uni t/ appl e/ 1. 0. O#cont ent ;
uni t/ banana/ 1. 0. O#cont ent ;

}
out put { bookOfFruits.zip; }
zi p(i nput, output);

More about builders

The previous section showed some very simple examples of what you can do with builders. Thereis
much more you can do with builders, and thisis explained in detail in the section called “Builders’.
Here are some useful things to know as you read on:

» The builder's logic uses a comprehensive expression language borrowing much from languages
like Ruby, Scala, and ocL.

e The expression language is fully integrated with Java, anything that can be called from Java can
also be called from the b3 expression language.

» Declaration in source, input, and output can be filtered using expressions (to reduce issues with
combinatory explotion).

10



Draft

Introduction to b3 Draft

» Requirements can use version ranges (example above has single verision requirements).

 Builders can take parameters, be marked as private to limit their visibility, and fina to limit the
ability to redefine them.

* Builders have asserts (pre/post and post input conditions) that can be used to assert that (typicaly)
external processes (like a compiler) has produced what it is supposed to.

 Builders can run in sequence or in parallel (they are in fact Eclipse Jobs, and use Eclipse Job syn-
cronization).

 Builders can have default properties, can create new properties and pass these on to downstream
builders (selectivly and dynamically).

» Theexpression language pointcut/advice mechanism allows buildersto override just about anything
in the buildersit is calling (and what they in turn are calling). As an example, expensive asserts can
be introduced dynamically when there are issues with a build.

* Builders can be declared outside of units, and applied to units using comprehensive point cut rules
(unit name, version, type(s), provided and required capabilities, etc. etc.). This means that it is
easy to introduce new ways to build things, troubleshoot and experiment without having access
to or modifying the translation of source to model, and perhaps more importantly, it separates the
concerns of “build logic” from the concerns of “structure of build material”.

Builder functions

Y ou may have wondered how the body of abuilder actually builds anything specific, like compilejava
code, an RCP application or a p2 repository. You have already |learned that b3 has a comprehensive
expression language and that it can call on anything that is available in Java— thisis good news as it
means that you can very easily add support for building things in new ways, but if this was the only
thing available, it would also be ailmost as hard as writing all your build logic directly in Java.

In order to make things simple — b3 comes with support for build functionsin the following domains:
» Java— compile, jar, etc.

» PDE — build bundles, features, fragments and products, pack, sign, and zip the result.

p2 — build arepository (or aggregate severa repositories).
» Genera — fetch files and execute system commands

* ANT — invoke ANT tasks.

Turning something into a build unit

As you have seen earlier, there is nothing you have to do if the software unit you are interested in
already has meta data for which there is a trandation into a build unit available (asiit is for al the
Eclipse related types; bundle/plugin, feature, and product).

When thisis not the case what you need to do depends on if there is meta data available at all, and if
the metadataisrich enough to be useful — if that isthe case, you are probably best of by adding anew
trandlator. For more information about how to extend b3 see 772. If however, the metadataismissing,
or ispoor, or you just don’t want to create an extension, it isrecommended to use the b3’ sDsL format®.

Thedefault b3 tranglators expectsto find an optional fileinsidethe unit with the nameof “this.b3”. This
fileis created with the b3 editor. The content of this b3 file is evaluated as the last step of discovery,
having first translated any available meta data into a b3 model. The this.b3 then acts as additional

3Althpugh you can use the EMF technology of your choice to produce your build models.

11



Draft Introduction to b3 Draft

adviceto the discovered unit. (And naturally, if there was no metadatato discover, the this.b3 contains
the full specification).

There is also a hybrid solution possible, for some reason it may not be possible to insert the this.b3
meta datainto the actual unit, and then you can author a build model in some other unit and still refer
to the content in the original unit(s). This would resemble the traditional way of having a build script
that contains all the knowledge of how to build, but you still benefit from the power of using b3.

/f@m Note
Itisonly infairy talesafrog turnsinto prince by amerekiss.

Advising units

Eclipse b3 has an extension mechanism for that allowsyou to “ decorate” aunit with additional advice.
Thisisuseful in severa situations:

* adding additional buildersto aunit
* overriding faulty meta data

* adding dependencies to underspecified units

hooking actions that should be executed throughout the various processing steps
» wrapping existing logic to do some additional work before or after the original action

Handling adviceis an integral part of the b3 model and iseasy to useintheb3 DSL. Hereisasimple
example, where a new builder is introduced:

| **

* Used to advice 'Fruit' that the waste (seeds and peel)
* can be built.
*/
concern FruitProcessing {
bui | der waste(Fruit unit) {
input { unit#peel; unit#seeds; }
}
}
unit nyunit {
bui | der makeStuff () {
input { with (FruitProcessing) unit/apple/l.0.0#waste; }

}
}

Youwill seeall thedetailslater, but abrief explanation isthat thisexampleintroducesanamed concern
Frui t Processi ng, which defines a new builder called wast e that operates on build units of type
Frui t - when evaluated, this builder combinesthe peel and seeds from any fruit. The new concern
is used in the unit myuni t by using awi t h expression before the reference to a particular fruit (an
appl e). Theintroduced concernisin effect for all downstream processing (i.e., itispossibleto invoke
the waste builder on all fruits (even if the example above does not illustrate this).

Here is amore advanced example:

context unit requires fruit.product/_/[1.0.0, 2.0.0] {
context builder input nutrition.supplenent/vitamn.C {
- input unit/orange
}

}

In this example, the selection of build units is based on a predicate (all build units that require a
fruit. product capability of any name (the _ means any) in the version range 1. 0. 0 to0 2. 0. 0
wherethe unit has an applicable builder that requiresinput of avitamin C nutrional supplement). When
such a builder is encountered, any input requirement on abuild unit called or ange is removed.

12



Draft Introduction to b3 Draft

Summary

Eclipse b3 gets the building blocks of a software system called units from repositories, reading and
trandlating them into a common build model, and then materiaizing them into different containers
such as the workspace or target platform. When the units have been materialized b3 runs builders
defined in the units (or via advice) such as building a product or arepository of plugins.

Figure 1.13. b3 Summary

e

<>

 Ge——

b3 builds a product.

Build me A
product

Figure 1.14. b3 headless

fepos

<>

(=

Look Ma— No head!

Build me A
product

The Figure 1.14, “b3 headless” illustrates the most important feature of them all — the ability to build
exactly the same thing in a headless configuration without having to do any additional authoring!

Reading on. Y ou have now seen an overview of b3 and how it relates to other Eclipse technolo-
gies. Y ou should now have a high level understanding of the capabilities. The rest of this book is not

13



Draft Introduction to b3 Draft

intended to be read from start to finish (although you may still want to), but instead provide detailed
drill down in the various parts, as well as presenting examples, and reference material.

14



Draft Draft

Part Il. b3 reference

In this part, we take a deeper look into b3. The chapters are not intended to be read in sequence, although we
try to follow alogical sequence — starting with the general expression language capabilities (even if these has
the least to do with actually building stuff, they are at the core of the b3 model). Alternatively, you may want to
start by installing b3 as described in Appendix A, Installation, and then running through some of the examples
inPart I, “Examples’.




Draft

Draft

Intro

The b3 expression language

In this chapter we take a closer look at the generic part of the b3 expression language. If you like to
read things in top-down fashion you probably want to start by reading Chapter 3, The Build Unit and
skip back to this chapter when encountering generic things (expressions and functions) that are not
immediately understandable or when you are interested in the details.,

The b3 expression language is a Domain Specific Language (DSL) for constructing executable build
models. It is based on ideas from multiple sources - Xtend, Xtext, Scala, Java, Ruby and ocL.

Thelanguage is powerful, but is not considered to be ageneral purpose programming language. How-
ever, when constructing builds, wefeel that it should be possible to do so using amodern function/ob-
ject oriented type of language that gets the job done with as little noise as possible.

This chapter focuses on the concrete syntax and basic principles of the b3 language. Later chapters
cover the build specific aspects of b3.

Although not required for reading and understanding the syntax, it is recommended to install b3, and
open up the editor. Y ou can immediately run the b3 code from within the editor and try things out.

General information

Files

The b3 language uses the file extension *.b3’, and the filename typically reflects the name of abuild
unit described in the file, but thisis not an absolute requirement. A filenameof ‘t hi s. b3’ has special
meaning in b3's meta data translation where the information in the t hi s. b3 file is applied after
discovered meta data has been translated into the b3 model - other than that, thet hi s. b3 fileisjust
like any other b3 language file.

Structure

A typical b3 file describes a single Build Unit, which is either a control mechanism for orchestrating
build-actions, or arepresentation of amore concrete buildable thing (e.g., thingslike abundle, library,
product or application).

In addition to import statements, and the definition of build units, ab3 file may also contain definitions
of reusable property sets, general purpose functions and cross cutting concerns.

@ Note
We said that atypical b3 file describesasingle build unit, but it may in fact contain none,
one or several build units. A b3 file without a build unit may be used to only describe

An aspect oriented term denoting the possibility to override or amend the system. See the section called “Concern”.

16



Draft The b3 expression language Draft

genera purpose functions and concerns, and a b3 file with multiple build unitsis useful
both at the top level whereiit is used to separate

Here is a sample b3 file with some general processing (keywordsin bold):
function square(Double x) @ x * x
function hypot henuse(Doubl e a, Double b) : Mth.sqgrt(square(a) + square(b))

function List<String> i mageFi| eNanes(List<String> fil eNames) {
fileNanes.select( f | switch f
case ~/.*\.jpg/ : true
case ~/.*\.gif/ : true
case ~/.*\.png/ : true
_: false
endswi t ch);

}

function String aTrigononetricFact () {
var a = 3.0
var b = 4.0
"Atriangle with the sides %, and % has the hypothenuse %".format(a, b
hypot henuse(a, b))
}

And hereis asample with abuild unit;

unit fruitsallad version 1.0.0 {
bui | der make {
i nput {
org.myorg.apple / 2.3.0 #dice
org. myorg. banana / [1.0,2.0) #slice
org. myorg. orange #di ce;

}
source {
src/ [ vanilla.xxx, syrup.xxx ];
}
out put {
sal l adi r/ nysal | ad. zi p
}

myFrui t Processor (i nput, source, output)

}

How all of thisworksis explained later (and with more realistic examples).

Comments and documentation

The b3 language supports both single line comments, and multi line comments (like in Javaand many
other languages).

/1 this is a single |ine coment
/* This is a nultiline
comment */

Documentation iswritten in the style of Java Doc, where amulti line comment starting with more than
one star after the leading / indicates that the comment is documentation. Documentation can only be
used in certain places - one of them isfor the unit itself.

/**

* This is docunentation for the build unit '"munit'.
*/

unit nyunit { }

17



Draft

The b3 expression language Draft

5 Note

Any whitespace before leading ™' characters, and any trailing whitespace is removed
from the documentation string beforeit is stored in the build model. For linesthat do not
have aleading ‘*’ all leading whitespace is kept.

Types

The b3 language is a statically typed language, but uses type inference to reduce the amount of type
declarations (compared to Java). This means that you can write the following statements without
declaring the type of the variables as the b3 language detects the type from the value being assigned.

var a = "hello";
var b = 10;
var ¢ = 1.0e+3;

In an untyped (or dynamically typed) system variables can refer to different types of values over time.
Thisis not possible in b3 — once a variable is created, its type is defined. It may however refer to
subclasses of its declared (or inferred) type.

To declare avariable and its type, the keyword var isreplaced by the type name.

Nunmber a
Object b

42;
"hel l 0";

Thetyping system of Javaissupported with full useof generics. Thisisimportant to be abletointegrate
well with function written in Java. When authoring typical b3 language build constructs, typing is
typicaly inferred.

Y ou can read more about the typing system in the section called “ Type system”.

Literals

The b3 language supports conventional literals for integers and redl (i.e., floating point) numbers, and
strings, but also for several other literal types. These are explained in the following sections.

Numbers

Integers

Decimal integers are written as you expect. These are all decimal integers:

012345678 10 100 123 4567839393

Octal integers are written with aleading O digit, and may be followed by the digits 0 to 7. These are
all octal numbers:

01 023 07 0567

The expectation isthat these are rarely used, but are valuable when writing logic where octal numbers
aretypically used (like in Unix file permissions).

Hexadecimal integers are written with aleading Ox (or 0X), and may be followed by a sequence of 0
to9,atof, or AtoF (lower and upper caseletters may be mixed). These are all hexadecimal numbers:

0x1 Oxabc 0X1 OXO Ox7FFFFe

Internally, a b3 language literal integer is represented as aj ava. | ang. I nt eger (if nothing elseis
stated).

18



Draft The b3 expression language Draft

Floating point numbers

Floating point numbers are supported in plain, or scientific notation. The integer part may be omitted.
The following are all floating point numbers.

0.0 .1 3.14 .14 1.0e+2 .2e2 2e-2 1.0E+10

Internally floating point numbers are represented by j ava. | ang. Doubl e if nothing else is stated.

Strings

Strings are enclosed in " " or ' '. A string enclosed in "' may contain unescaped ' characters, and vice
versa. Special characters are escaped with a backslash \ character. The b3 language literal string sup-
portsthe same escapesasaj ava. | ang. Stri ng (e.g., \t, \n,\").

"This is a string"
'l ama string that says "hello"'
"l also say \"hello\""

Regular expressions

The b3 language supports a literal regular expression. A literal regular expression is written with a
leading ~ (tilde) followed by the regular expression enclosed in/ /. Options may follow the ending
slash character.

Regular expressions can also be constructed using the Java regular expression classes and methods.
Using these gives more control over the use of the regular expression, such as making it possible to
access the various parts of amatch, but in many cases, aregular expression is used for simple boolean
matching, and it is convenient to be able to declare literal regular expressions.

Here are some examples of literal regular expressions

~/[a-zA-Z_][a-zA-Z0-9_]*/
~/[a-z]*/i

~I ™. *$l g
~/org\.myorg\..*/

A literal regular expression is represented by an instance of thej ava. uti | . regex. Pattern class.
See the documentation of the java Pattern class for an explanation of the regular expression syntax,
and additional functionality available.

Regular expression options. The options to a regular expression consist of single character flags
with the following meaning:

Table 2.1. regexp options

Option Character java.util.regexp.Pattern Meaning
Equivalence

i CASE_INSENSITIVE upper and lower charsare consid-
ered equal

m MULTILINE makes” and $ also match line be-
ginning and ending

u UNICODE_CASE makes case insensitive matching
unicode aware

c CANON_EQ compares unicode using full
canonical equivalence

d DOTALL makes . aso match line termina
tors

Useof literal regexp. Literal regexp can be used in matches expression asin:

19



Draft

The b3 expression language Draft

Literal

name ~= ~/[a-z]*/
or in switch expressions asin:
switch aString case ~/[a-z] : ...

and in many places where predicates are used for matching.

/@J Note
Sincelitral regular expressions are compiled to an instance of Pat t er n by the b3 parser
any regular expression syntax errors are caught and displayed in the b3 editor, and the
literal regexp can be used as an argument in calls to java when more functionality than
matching is needed.

list and map

Literal listsareenclosed in[ ] and may contain any other object.

var
var
var
var

[1, 2, 3, 9, 456];

["hello", "world"];

["hello", 42, "world"];

["hello", ["world 1", 20], ["world 2", 20]];

o0 T

The type of the list elementsisinferred, but it is possible to specify the element type by providing a
type prefix enclosed in < >, asthe first entry in the list. (For empty lists, the type must be stated, or
if amore generic type than theinferred is wanted).

[<String>1]; // an enpty list of strings

Literal maps (i.e, key/value pairs) are written with enclosing [ ] where the key is written with a:
suffix. Thekey may beanidentifier, aproperty identifier, or astringenclosedin" ". Here are examples
of some maps. (Again, the type of the resulting map is inferred).

var a = [name: "Fred Upstairs", occupation: "Dancer", shoesize: 9.5];

var b = [cource: "Advanced b3" participants: ["mary", "john", "fred" ]];
/1 with nore exotic keys
var ¢ = [$target.platform "w n32", "har egen njoddbagare": true];

Thevalues are expressions, but the keysin maps are literal. Thetype of the key and value are inferred,
but they may be specified by providing atype prefix inside the map.

[<String, Integer> key: ...]

Using expressionsaskeys.  If you want to use maps with expressions as keys, you can use the java
Map API (i.e, put (Obj ect key, Object value)).

Evauation and mutability. A literal list or map is constructed each time it is evaluated. Thus, a
literal map can be seen as a call to new, followed by a sequence of add/put operation. If you want to
createit only onceyou can usethe cache expression, but you then have to be aware of that the created
list/map is mutable. To make the list/map immutable use java's unmodifiable collection api.

Empty list or map

When an empty list or map iswanted the type information must be supplied asthereis no way to infer
the type of the list, nor isit possible to know if an empty list or an empty map should be created —
they look exactly thesamei.e,[ ].

var anEnptyList = [<String>];
var anEnptyMap = [<String, Object>];

Literal functions

Literal function, also called lambdas can be thought of as ‘function as data’ which means that they
can be assigned to variables (or constants), passed around as parameters, be stored in literal arrays

20



Draft

The b3 expression language Draft

or maps etc. A literal function is aso a closure which means that it has access to the definitions in
the scope where it is declared. A literal function can also accept parameters. The parameter types and
return type can aso be declared. Thisis explained in detail in the section called “Functions’, and in
the section called “ Type system”.

A literal functionisenclosedin{ } with| (pipe) characters separating the parameters from the rest of
the lambda. The leading pipe character may be omitted if the result is not ambigous (which it can be
when lambdas are written using the short form explained below). A single pipe character is required
when there are no parameters, without it, the construct would simply be an expression block (sequence
of expressions).

Here are some examples using literal functions:
var x = 10;

var a = {|] x + 2 };

var b = a(); // bis set to 12

var add = {x, y| x +y}; // no |eading pipe

var add = {|x, y| x + y}; // optional |eading pipe (not required)
var d = add(5,4); // dis set to 9.

Literal Functionsasparameters. Sinceit isquite common to passliteral functions as parameters,
there is a shorthand notation where the enclosing { } may be omitted. Here is an exampl e that shows
both the long, and the shorthand notation:

/1 1ong/standard notation
aCol | ection.select({x | x instanceof Number});

/1 shorthand notation
aCol | ection.select(x | x instanceof Number);

More information about short hand notation is found in the section called “Call expression”.

Returntype. Thereturntypeof alambdacan be specified by a<> enclosed typeref after the opening
bracket asin this example:

{<Integer>a, b| a+ b };

Parameter types. Parameter types can be specified the same way asin aregular function, but this
is not required when the type(s) can beinferred.

{Integer a, Integer b | a + b};
/1 with return type specified as well
{<Integer> Integer a, Integer b | a + b};

Other special literals

null

unit

The special valuenul | stands for unknown/no value (just like in Java).

The special variable uni t has a similar meaning to java'st hi s when used in expressions inside a
builder funtion. The keyword uni t isaso used when declaring a build unit, to denote a requirement
on something of build unit type, and when specifying advice/modificationsto be applied to build units.

source, input, output

The special variablessour ce, i nput and out put refersto the result of evaluating the corresponding
declarations inside builder function. The keywords sour ce and out put are also used to declare the
base locations for source and output for build units.

21



Draft The b3 expression language Draft

Theuse of theseareexplained in the section called “ Input”, the section called “ Source”, and the section
called “Output”.

Wildcard (')

The special value _ (any) isawildcard comparable value— it comparestot r ue with any other value.
It is also used in some special cases to represent an unnamed variable in a mechanism referred to as
currying.

Hereisan example:

var aTenAsThird =[_, _, 10, _];
/1 does list have 4 elenents and a 10 in the 3d position?
theTruth = [1,2,10,3] == aTenAsThird;

Identifiers

Identifiers (ID) must begin with aletter (a-z, A-Z) or underscore_’, followed by an optional sequence
of letters, numers and the underscore character.

If anidentifier happensto be areserved word (such asf unct i on), theidentifier can be escaped with a
preceding * character? - i.e., A unct i on. Us ng keywords as identifiers should naturally be avoided,
but since identifiers are used to reference java code, or any EMF model, these have a different (or no)
set of reserved words, and clashes may occur.

Importing

Imports are done in the outermost scope of a b3 file before any other expressions. Here is the syntax
for imports:

reexport? inport (QualifiedNanme | URIString) (as ID)? ;

r eexport This optional keyword makes the import available in afile that
imports this b3 file as if it had been stated in that file. How-
ever, imported/reexported elements are overridden by explicit
imports. Not yet implemented.

i mport This keyword is required to indicate that an import is wanted.

«Qual i fi edNane» A qualified name is a series of ‘.’ separated IDs - like a Java
package name. A qualified nameis used to import a Javaclass.
Itisnot possible to import everything in a package (i.e., ending
the reference with *.** is not allowed.

«URI String» A URI string isa URI written as a string (enclosed in ""). The
evauator will use all available knowledgeto interpret what the
URI isreferring to. Typically thiswill be another b3 file, or an
EMF model. Not yet implemented.

as «| D» The optiona as «I D» is used to assign the import to an im-
mutable variable. Thisvariableisavailable in al scopesin the
b3 file. By default, a Javaimport will make the final part of the
qualified name available, and for auRl it isthe final part of the
path with any suffix removed. If some other nameiswanted, it
should be stated with as «| D».

Here are some examples:

import java.l ang. Mat h;

2This construct is used by most XText based DSLs.

22



Draft The b3 expression language Draft

inmport java.lang. Math as Cal cul ator;
reexport inport "platform/resource:/nyStandardStuff.b3" as common;
import "http://ww.nyorg.org/ b3/ gl obal Settings.b3" as myorgSettings;

,éb Note

In the first protype implementation of b3, only import of java classes is supported (alias
is supported).

What can be imported

It is possible to import b3 files, and java classes. Y ou can aso import EMF models. In addition there
is amechanism for importing a properties file as a property set — see the section called “ Properties’.

Functions

Functions are general purpose, callable elements of the b3 language. They can be used in any expres-
sion.

Functions can be declared outside of the main body of auni t, orinaconcer n.

Function calls are resolved using polymorphism, the function with the most specific type matching
the input parametersis selected.

You may think of functions as just being methods on objects, but the concept is far more powerful
as you can define new function that appear “as if they were methods”. L ets say you want to add the
method canel Case toaSt ri ng — thisisimpossible in Java, but in the b3 language you can do this
easily (as shown in the section called “ Function examples”).

Defining a function

The definition of af unct i on hasthe following syntax:

Function :
DOCUMENTATI ON? Visibility? final? ReturnTypeRef?
Functi onName TypePar anet er Decl ar ati ons?
(( ParaneterDeclarationList ))?
(when ( : Expression ; ) | ( { ExpressionList? }))?
(( : Expression ;)| ({ ExpressionList? } ))

Par anet er Decl ar at i onLi st :
(Paranet er Decl aration (, ParaneterDeclartion)* (, ParameterDeclarationEllipse)?)
| Paranet erDecl arati onEl | i pse

Par amet er Decl aration : TypeRef? ID ;
Par ant er Decl ar ati onEl | i pse :

TypeRef? 1D ;
ReturnTypeRef : // shown |ater - basically a reference to a Cl ass
TypePar anet er Decl arations : // shown later - this is for Java generics

«DOCUMENTATI ON\»
Thisis Java doc style documentation for the function.

«Visibility»
Thevisibility isoneof pri vat e or publ i ¢ with adefault of publ i c.

final
The keyword f i nal makes it impossible to redeclare/override the function using the exact same
parameter declaration.

23



Draft

The b3 expression language Draft

«Ret ur nTypeRef »
This is a declaration of the return type and is required if the type can not be inferred. A more
detailed explanation is found in the section called “ Type system”.

«Funct i onNane»
This is the name of the function/method. The name is an unqualified name (compare to name of
aJava Method).

«TypePar anet er Decl arati on»
Thisoptiona part isfor Javatype generics. Thisisexplained in the section called “ Type system”.
NOTE: Not yet supported.

«Par amet er Decl ar ati onLi st »
Thisisalist of parameter declarations, which isalist of «TypeRef »? «I D», where the last (or
only) entry can be avariable arguments parameter declaration. . . «TypeRef »?«l D». Although
the type declaration isoptional, it can only be inferred in contexts where aliteral/lambdafunction
is being used in an expression that passes parameters to the function. If the type is omitted in a
named function the type of Qbj ect isassumed. NOTE: In thefirst implementation of b3, the type
inference is limited, and parameter types must always be declared.

when: «Expr essi on»; |{«Expressi onLi st »}
The keyword when is used to specify a guard expression. Guards are very useful when writing
system functions, you will probably not need to use them in your regular b3 logic.

The guard expression is used to determine the functions applicability to a given set of parameter
types when performing polymorphic function selection. The guard expression(s) are evaluated
with the types of the parameters in a call bound to the corresponding parameter names. As an
example, a function with parameters (Nunber a, Nunber b) that is called with the declared
types| nt eger and Doubl e, will have a bound to the class | nt eger, and b bound to the class
Doubl e in the guard expression (as opposed to a and b being bound to the integer and double
instances when the actual call is being made). Note that the guard function only has accessto the
types, the actual values are not known when the evaluation of the guard takes place.

A guard must return aboolean value, and if the guard returnsfal se, thefunction will not be selected
even if argument types otherwise match the declared function parameters.

. «Expressi on»; |{«Expressi onLi st »}
The function body is either a: followed by a semicolon terminated «Expr essi on», or alist of
semicolon terminated expressions enclosed in{ }.

/ém Note
Thevalue of thefunction isalwaysthelast evaluated expression. Thereisno explicit
‘return’ expression in b3.

Function examples

Here are some simple examples:

function square(Nunmber x) : x * x ;
function hypot henuse(Nunber a, Nunber b) : square(a)+square(b) ;
function timeRi ght Now : SystemtineO Day() ;

private final function toUpperAndSplit(String a) {
a. toUpper ();

a.split('_");
}
Hereisamoreinteresting example:

import java.lang. String;

24



Draft

The b3 expression language Draft

/**

* Turns a string with _ separators into a canel case string.
* | nput "non_canel _case" becones "nonCanel Case"
*/
function canel Case(String s) :
s.split( ~/_/ ).inject( "", _, | r, s | r + s[0].toUpper() + s.subString(1));

N Tip

~ -

The method i nj ect (used in the previous example) takes three arguments, a starting
valuetoinject, and awildcard that isaso called curried parameter that isreplaced by each
element in the collection on which the method isinvoked. Thethird argument toi nj ect
isaliteral function—itisinvoked for each element inthecollection, andi nj ect returns
thevalue of thelast invocation asthe value of the method. In the example, this meansthat
onfirstinvocation theliteral function will receivethevalue"" inthe parameter r , and the
first element from the spl i t in the parameter s. It then turns the first character in's to
upper case, and concatenatesthiswith therest of s totheresultr . Onthe next invocation,
i nj ect usesthereturned value asthevauefor parameter r , and s isset to the next value
from spl i t . This continues until the result has been collected and i nj ect returns.

As explained in detail in the section called “Call expression”, functions can be invoked using either
function call style, or feature call style, but since you just learned about declaration of functions, this
fact isimportant for understanding how functions are delcared and used. Thefollowing two invocation
are equivalent:

canel Case("i _amnot_in_canel _case"); // function style
"i_am.not _in_canel _case".canel Case(); // feature style

This works with multiple parameters too. Imagine an unCanel which takes an additional parameter
that defines a separator string as an extra parameter. These invocation are then equivalent:

"i Am nCanel Case".unCanel (' _'); // produces "i _am.in_canel _case"
unCanel ("i Am nCanel Case", '_');

Expressions

The b3 language is based on expressions (as opposed to a mix of statements and expressions). As an
examplein Javathereisanif-then-else expression (i.e., expr ? expr : expr ), and anif-then-else
statement (i.e.,i f (expr) expr; else expr;.Intheb3 language you will find corresponding
expression for if-then-else, switch-case, try-catch, etc. but they are all just expressions.

L oops are notably missing from the language itself. Loops are instead supported as functions/opera-
tions on collections and often make use of literal functions. This reduces the syntactic noise dramat-
icaly. If you really need to iterate a specified number of times, or need an iteration with an index
variable, thisis easily achived by using a sequnce expression which can be thought of as a virtual
collection of numbersin a sequence.

The b3 language is based on functions, but writing expressions for +, - *, / etc using functions is
not human friendly, and the b3 language therefore supports operators (that translate into functions
by the b3 engine). Since operators are supported, the b3 language also has a definition of operator
precedence and | eft/right associativity. The precedence used is comparable to Java (but there are some
new operators that are borrowed from other languages).

Expression and Expression Block

An Expression is something simple like 1+1, "hel | 0", or something more complex likevar a
= if 1>2 then 3 else 4 endif.Anexpression can aso be an Expression Block — a list of
semicolon terminated expressions enclosed in curly brackets.

var a = "this is an expression";

25



Draft The b3 expression language Draft
var a = {
var b = "this is an expression in an expression bl ock";

b. t oUpper () ;
}

The first expression assigns a string literal to a variable a. The second example assigns the value of
the last expression in the expression block to the variable a (i.e., thestring"this is an expr..."
in upper case.

Sincean expression block isan expression it can be used wherever an expression can be used. A notable
difference from java, isthat it can be used as an argument in afunction call. This reduces the need for
local variables, and reduces the risk of leaving dangling/unused expression when editing/refactoring.
Keep use within reason to increases readabilty of the code.

toUpper ( {Logger.log("calling toUpper on 'abcl123'"); "abcl123";});

Operators - precedence

Hereisatablewith the operators, their Left (L), Right (R) associativity (in column A), and precedence
(from highest to lowest).

Table2.2. Operators

A Operator Operation Performed

- if-, switch, try, (expression ), literal, var / val | primary expressions - see following sections
reference, with, new, throw, literals

L feature access

L [ 1 array index or keyed access

L () function/method call

R ++ increment pre/post (unary)

R -- decrement pre/post (unary)

R ! logical complement (unary) / not

L sequence

L * 1, % multiplication, division, modulo

L +, - addition, subtraction

L <, <= less, less or equal

L >, >= greater, greater or equal

R i nst anceof type comparison

L =3 equal

L ~= matches

L = not equal

L === identical

L | === not identical

L && logical and

L | logical or

R var, val variable, value (constant) definition

R = assignment

R *= =, %, 4=, - = assignment operations

Internally operators are implemented as system function with names corresponding to the operators.
The same polymorphic binding mechanism used for regular function calls is naturally used for oper-

26



Draft The b3 expression language Draft

ators as well. The exact definition of what operators do, and what types they operate on is therefore
determined by the system library.

The *.” operator — feature access

There are two operators that both deal with keyed access; the feature operator *.’, and the at operator
1T (explained in the next section).

When using the feature operator, there is a difference between just accessing a feature as avaue, and
when calling afeature. Thisdistinction isimportant when dealing with java objects as most java object
have their features declared as private members and access is via getter and setter methods.

Accessing afeaturevalue. When afeature valueis requested the resol ution depends on which type
of object the feature operator is applied to — for b3 and model objects, the name of the feature is used
asis. For java objects, the request is changed to a getter method call using java beans conventions
(i.e., x. f oo ismodified to x. get Foo() (ori sFoo() for boolean features), if not available with the
name as given.

Settingafeaturevalue.  Setting feature valueswork the sameway as access; for javaobjectsfeature
assignment is modified to a setter method call. In the case of a setter, the name as given is never
assumed to be a setter, it must follow the beans convention of set XXX( someQbj ect ) .

Calling afeaturevalue. Calling featuresis done by polymorphic function resolution that takes all
defined functions as well as the methods defined on the instance on which the feature call is being
performed into account. (Defined functions may mask methods defined in ajava class.)

Since feature calls are made with verbatim feature name, it is possible to invoke getter and setter

methods on a java object should you prefer to use such calls directly, or if the java object does not
follow the bean conventions. Here are example of some feature calls:

someoj ect . set Si ze(10) ;
someQt her vj ect . | engt h(10) ;

The [ ] operator - indexed/keyed access

The at operator [ ] isused to accessinstancesin collections. For list elements and strings, the index
is numeric (integer), starting with 0. For Map elements, the index is any type of object (by default
literal mapsin b3 use strings as keys).

When [ ] isapplied to astring, a one-character string is returned.

For lists, and strings, an | ndexQut Of Bounds exceptionsisthrown on attempt to accessitems outside
the available range. For map elements, nul | isreturned for missing elements.

Call expression

Calling functions is done the conventional way; arguments are passed as a ( ) enclosed comma
separated list of expressions.

Calls have three different forms:

» Named function call —asint oSt ri ng(42)

e Featurecall —asin42.toString()

» Expression call —asin(40 + 2).toString()

The three examples above results in exactly the same call to thet oSt ri ng function.

27



Draft

The b3 expression language Draft

5 Note

b3 makes no distinction between functions implemented in b3 and methods available in
Java— Javamethods are simply seen asfunctionswith afirst parameter of the particular
type where the method was declared.

Calling static Java methods

Calling static Java methods is supported in b3. Here is an example:

var a
var b

éb Note

b3 makes instances of classes available as instances of (b3) meta class types and the
static methods are simply handled the same way as al other function calls. It is even
possible to introduce new functions for classes.

Mat h. si n(0);
sin(Math, 0);

Lambda parameter shorthand

There are many cases where afunction takes one or more lambda functions as parameters. A syntactic
shorthand is available for this case. The following two expressions are equivalent, and the second
shows the shorthand notation:

func({x] x + x});
func(x | x + x);

This also works for multiple lambda parameters:
func(x | x +x, y |y - vVy);

In case there is an ambiguity where the parameters of the lambda starts, an optional bar ‘| * can be
used. Look at the following example, where the first declaration is an error because of ambiguity on
parameter a, and the second where a bar is used to correct the ambiguity.

foo(a, b, ¢ | b +¢c); // error, both foo and the | anbda expected to have 2 parans
foo(a, |b, ¢c] b+ ¢c); // corrected

The ambiguity would not occur if the lambdawas fully typed asin this example:

foo(a, <Integer> Integer b, Integer ¢ | a + b);

Increment and Decrement

Increment ++ and Decrement - - is supported in both prefix and postfix notation with the same se-
mantics asin Java. It is possible to use increment and decrement with any expression resulting in an
assignable value (i.e variables, feature access, and indexed/keyed access). The type of the value must
be numeric.

Not operator

Thelogical not operator ‘! ' negates a boolean expression.

New expression

The new expression is used to create new instances. Here is the syntax for new:

new TypeRef ( (ParameterList)? ) (as ID)? ContextBlock? ;

28



Draft

The b3 expression language Draft

Initssimplest form, the syntax isthe same as for Java (the parantheses may be omitted if there are no
arguments to pass to the constructor). Here are some examples:

var a = new Person("John", "Smth");
var a = new Person();
var a = new Person;

The parameter list is the same as for any function call, so shorthand notation for passing alambdais
supported. The optional as | D, makesit possible to refer to the not yet constructed instance inside the
optional context block. The as | D has no other effect. The context block makes it possible to access
the features of the newly created object as variables (without preceeding them with the created object
and a period). Here are some examples:

var johnSnith
firstNane
| ast Nane
s

var cooki eSmth = new Person(johnSnith) as child {

new Person {
"John";
"Smth";

firstNane = "Eul alia";
ni ckName = "Cookie";
| ast Name = chil d. parent.| ast Nan®;

b

/] equival ent to:

var cooki eSnith = new Person(johnSnith);

cooki eSmith.firstName = "Eulalia";

cooki eSmi t h. ni ckNane " Cooki e";

cooki eSmi t h. | ast Nane cooki eSm t h. parent . | ast Nane;

Sequence operator

The sequence operator . . creates an iterable sequence from Ihs to rhs as in 1. . 9 with a default
increment of 1. The sequence operator works on integer or double numbers. The from value may be
larger than the to value — this creates a sequence in descending order.

For double numbers, if the difference between to and from islessthan 2.0 the default increment is0.1.

The sequence can befurther controlled using the sequence functions. They al return the sequenceitsel f
to allow convenient chaining. The functionsi ncl udeFr om( Bool ean) andi ncl udeTo( Bool ean)

are used to control if the stated from and to values respectively are included in the sequence or not
(both are by default t r ue). Thefunction st ep( Nunber ) isused to specify the step valueif something
other than the default is wanted. The step is an absolute value (i.e., is awyas positive even if the
seguence is decending).

The sequence operator produces an iterabl e result which means that the system functions operating on
sets (e.g., col | ect, i nj ect ) can bedirectly used, but it is also possible to get the iterator by calling
thei t er at or function.

Here is a simple example adding the numbers 1 to 9, setting the variable a to 45.
var a = inject(1..9, 0, | a, b| a+ b);

/1 or alternativly
(1..9).inject(0, | a, b | a + b);

In the following example, the step is set to 2 to sum the odd values. This also illustrates the different
ways functions can be invoked.

var a = inject(step(1l..9, 2), 0, | a, b | a +b);
Il or

var a = inject((1..9).step(2), O, | a, b | a +b);
Il or
var a
Il or

(1..9).step(2).inject(0, | a, b|] a+ b);

29



Draft The b3 expression language Draft
var a = step(1..9, 2).inject(0, | a, b| a + b);
f@m Note
Theuseof parenthesisaround (1. . 9) whenusingtheform(1..9).i nj ect isrequired
since the feature call expression . i nj ect has higher precedence.
The left and right hand sides of a sequence expression does not have to be literal values — complex
epxressions can be used, but since the precedence of the sequence operator is quite high, the expres-
sions have to be enclosed in parantheses. (Thisis by design, because the typical use of sequence op-
erator isfor literal sequences as al loops over collections have specially designed functions that does
not require iteration using index variables). Here is an example using expression:
var a = 1;
var b = ((a + 2)..(1+2+3)).inject(0, |a,b]ath);
This examples will set the variable b to 18.
* % and /
The multiplication *, modulo % and division/ operators operates on humerical values. They can be
used with all numerical typesin Java.
+ and -

The addition +, and subtraction - operators operate on numerical values. They can be used with all
numerical typesin Java.

The + operator can aso be used to concatenate strings (all Char Sequence instances can be used,
whichincludes St ri ng, and St ri ngBuf f er).

Relational operators

Therelational operators <, >, <=, >= compares two objects (implementing Conpar abl e, or Nunber )
and returns a boolean result.

Therelational operators == and ! = tests the equality of two objects, and the === operator tests if two
objects are identical (the same instance), and finally ! === tests if two objects are not identicial (the
sameas! (a === b)).

Matches operator

The matches operation ~= matches the |hs against a pattern on the rhs. The pattern can be a literal
regular expression, or asimple pattern string. The simple string pattern can use * to denote O or more
characters, and ? to denote any single char.

The ~= operator also matches lists, maps, numbers and objects. For numbers and objects, the result
is the same as when using the == operator. When matching lists the comparision of list elementsis
performed using ~=. When matching maps, the values (i.e., not keys) are matched using ~= .

Here are some examplesthat all evaluatetot r ue:

"hell 0" ~= "?ello";

"hell 0" ~= "h*o";

"hello" ~= ~/.ellol;

"hell 0" ~= ~/h.*o/;

["hello", "goodbye"] ~= ["h*o", "*o00*"];

[greeting: "hello", farewell: "goodbye"] ~= [greeting: "h*o", farewell: "*o00*"];

30



Draft The b3 expression language Draft

instanceof operator

The i nst anceof operator is used as in Java to test if an object is an instance of a particular type
(class or interface).

Logical connectives && and ||

Thelogical connectivesfor and &&, andor | | worksthesameway asin Java. Expressionsare evaluated
from left to right until the truth or falsehood of the overall expression is known.

Variables and Constants

Variables are defined by using the keyword var or by stating the type of the variable. Constants
are defined by using the keyword val . Variables and constants may be marked asf i nal to prevent
redefinition in inner scopes. Definition of a constant or definition of a variable with inferred type
always requires that avalue is assigned. Uninitialized variables have a default value of nul | .

Here are some examples:

var a = 10; // type is inferred
Integer a = 10; // type is declared
Integer b; // initialized to nul
final var a = 10

final Integer a = 10

val ¢ = 10; // type inferred
val Integer ¢ = 20

final val ¢ = 10

final val Integer ¢ = 10

Assignment operations

Assignment operation works the same way as in Java. The assignment operator = assigns a value
to something assignable (also known as a L-value for “left hand side value”). Assignable items are
variables, constants (for initialization), features, indexed, and keyed access.

The assignment operators +=, - =, *=, / =, and % also works the same asin Java - they are shorthand
notation for a= a «op» b.

If expression

If-then-else expressions are written on the form:

i f «Expression» then «Expression»
(el seif «Expression» then «Expression»)*
(el se «Expression»)?

endi f

Note that there is no need to terminate the expressions with a semicolon if you want to use the result

asin:
var a = if french == true
then "'fin"
else "'the end "
endif + " is shown at the end of a novie";

Switch expression

The switch-case expression allows switching by comparing an expression against multiple expression
cases, or simply evaluating expression cases in turn until one returns true. In contrast to a C or Java
switch statement, the b3 language switch does not fall through from one case to the next, and as a
conseguence, the b3 language does not have ‘break’ or ‘ continue’ expressions.

31



Draft The b3 expression language Draft

A switch expression is written on the form:
swi tch «Expression»?

(case «Expression» : «Expression»)*
endswi t ch

Notice the lack of a default case. If you want a default case, Ssimply enter acase _ : lastinthelist
(the _expression isawildcard that compares true against anything).

f@m Note
‘“switch true case «e» ! isequivalentto’ switch case «e»:’

If either the result of the switch expression, or the result of the case condition imple-
ments the java interface Conpar abl e the comparison is performed using conpar eTo,
otherwise the comparison is performed using equal s. A literal regular expression im-
plements this interface, and can thus be used directly as case expressions.

If none of the cases match, the switch expression evaluatesto nul | .

Remember that switch-case is an expression and it is possible to write expression like this:

var a = "The condition is " + switch condition
case 1: "critical" case 2: "severe" case _: "ok"
endswi t ch;

Try expression

The b3 language has support for exceptions and try-catch-finally expression — they are written on
the form:

try «Expression»
(catch «TypeRef» «I D» : «Expression»)*
(finally «Expression»)?

entry

Here isan example:

var a = "First linein file " + try "is: " + file.readOneLine()
catch | CException e :
"could not be read due to ERROR " + e.get Message()
endtry;

Thisexamplewill set a to amessage string either containing alineread from afile, or an error message.

,éb Note

The b3 language itself does not have checked exceptions. All exceptions are treated as
unchecked.

The value of the try expression is the value of the try block if ho exception was caught, and the value
of the triggered catch block if an exception is caught. The value of the finally block is never used.

,/é‘__b Implementation Note

The current implementation performstypeinference by taking the common supertype of
the try expression, and all catch expressions. The rationale behind thisis that you either
do not care because the value of thetry/catch isnever used (asinjava), or you do care, in
which case you will be returning something that makes sensein all catch expressions (or
thetry/catch would never have been used in thisfashioninthefirst place). Thealternative
would be to have catch expression return null, and let type be inferred only from the
try expression.

32



Draft The b3 expression language Draft

Throw expression

Thet hr ow expression works like Java s throw statement. Here is an example:

t hrow new SoneExceptiond ass("CQuch, that hurt!");

It is aso possible to throw any object, in which case b3 will wrap it in a B3User Except i on. This
exception has an Obj ect get Dat a() method that returns the object being thrown. The exception
produces a message on the format “User data exception: «data.toString()»”. Here is an example:

throw "Quch, that hurts";

,éb Implementation Note
Exceptions are very much part of Java and required for interfacing with Java. Unfortu-
nately it also makes the b3 language dependant on Java for Exception classes, the dis-
tinction between checked and unchecked exceptions etc. Thereis no defined mechanism
(at least not yet) in the b3 language to create new Exception classes (in fact thereis cur-
rently no way to create any new types or classes).

Cache expression

The cache expression evaluates an expression, and if it isthe first time the expression isevaluated in
the current invocation (i.e., arun of ab3 engine) the expression is cached. Subsequent evaluation of
the same expression returns the result from the cache instead of re-evaluating the expression.

f@m Note
The vauein the cacheis mutable (i.e., if it isamutable object such asalLi st or Map).
If an immutable instance is wanted, Java utitlity methods should be used to create an
unmodifiable version of the cached value.

The cache expression isuseful if your logic contains large static data structures that are required many
times.

Here are some examples:

cache 1 + 1;
var a = cache [sonmeString + someQ her, y.getMessage(), z.expensive() ];

Warning

O The data in the cache is only cleared when the b3 engine has finished executing. The
cache may get a cache eviction policy in the future so you should not rely on the fact
that callsinside a cached expression only gets executed once.

Typecast

In b3 atypecast is performed by calling an instance of a meta class as in this example:

i f(x instanceof SoneCd ass)
(Soned ass) (x) . aSoneMet hod() ;

Note the subtle difference from Java (where the casted expression is not enclosed in parantheses).

With context expression

Thewi t h cont ext expression, isused to evaluate ablock expression in the context of another object.
Applying a context means that there is no need to restate the expression that constitutes the context.
Compare the two equivalent examples:

33



Draft

The b3 expression language Draft

/] exanple 1 - not using with context
docunent . chapters[3].title = "Title of chapter"”;
document . chapters[3].authors = ["mary", "john"];

/] exanple 2 - using with context
with context docunent.chapters[3] {
title = "Title of chapter"”;
authors = ["mary", "john"];

}

Thevalue of awi t h cont ext expression isthe context instance (i.e., docunent . chapt ers[ 3] in
the example above).

Thewi th context expression isvery similar to the new expression (except that no new object is
created). Just as in the case with the new expression, it is possible to give the context instance object
an dlias (i.e., atermporary name if there isthe need to refer to it in the context block.

Thewi t h cont ext expression isuseful to avoid having to use regular variablesto act asthe context.

Bitwise operations

Notably missing from the set of operators in b3 are bitwise operators as found in C++ or Java (as
bitwise operations are probably not that commonly used in build scripts). Should you ever have to use
bitwise operations it would be very complicated if there were no support at all, and the b3 language
therefore supports bitwise operations via system functions, as shown in the table below. Bitwise op-
erations are available for integral values (i.e., non floating point).

Table 2.3. bitwise funtion

Function java equivalence

bitwi seShiftLeft(i, shift) i << shift

bi t wi seShi ftRight (i, shift) i >> shift

bi t wi seUnsi gnedRi ght Shift (i, shift) i >>> shift (i.e., right shift with zero extension)
bi t wi seAnd(i, i) i & i

bi t wi seXor (i, i) iNi

bi twi seOr (i, i) i

bi t wi seConpl enment (i) ~i

Properties

The b3 language has extensive support for property management. The rationale behind this is that
many build related utilities rely on the use of properties to control their behavior and it quickly gets
very complex to manage properties that are loosely defined in various property files. Thisis solved
in b3 by defining property sets that are either specified in b3 directly or loaded from properties files.
The b3 property sets can extend other property sets, and can be filtered. All in a structured way.

\ Tip

~ -
Loading properties from filesis valuable when sharing property definitions between b3
and other tools.

Property sets

Properties are (semi) globally scoped variables that may be hidden/redefined in inner scopes. When
returning from a scope that defined properties, the property values return to their previous values.




Draft

The b3 expression language Draft

Properties are declared in property sets, and these come in two flavors — regular property sets, and
default property sets. The difference is that when a default set is evaluated, only those properties that
are not already set will be defined. A regular property set will define and set all values defined in the
property set irrepective of if they already have avalue or not).

Property sets can be named and referenced from other property sets. The named property sets can be
referenced both by default, and regular property sets. The evaluation depends on where and how they
arereferenced (i.e., aregular property set referenced from adefault property set will be evaluated with
default property set semantics).

A property set may extend another property set, and it may extend a property set imported from a
propertiesfile.

A default property set is declared like this:

default properties «PropertyBody»

And named property sets are declared like this:

properties «l D» «PropertyBody»

A Proper t yBody has the following syntax

PropertyBody : ((extends ID)? { PropertyOperation* }) | UR
PropertyQOperati on
Fi |l teredProperty
| PropertyDefinition
| PropertyBody

Fi |l teredProperty
: when (Bool eanExpression) (PropertyDefinition | PropertyBody)

PropertyDefinition
: final ? nutabl e? TypeRef PropertyNanme = Expression ;

Property names are qualified names prefixed with $. Properties loaded from files automatically gets
the $ prefix in b3 when loaded (i.e., properties in files should not be stated with aleading $). Here is
an example of anamed property set:

properties PlatformAgnosticProperties {
$target.platform= "*";
$target.os = "*";
$target. ws

[IRORTEN
’

}

Naming property sets.  The name of the property set must be unique among all named concernsin
the b3 file (i.e., other named property sets, and named concerns). The name of asetisan ID.

Extending a property body. The expression following ext ends must evaluate to a property set.
Here isan example:

properties nyProperties {
$this.is.a. standard. property = 10;
}

unit {
default properties extends nyProperties {
$this.is.an.extra. property = true;

}

Filtering properties. A property definition may be filtered by preceding the property definition
with when( «Expr essi on») , where the Expr essi on isaboolean expression.

35



Draft

The b3 expression language Draft

The expression may reference any property already defined in the same scope, or in a property set it
extends (directly or indirectly). Here is an example:

when ($target.platform == "linux") $conpiler.xyz.optimze = true;
when ($target.platform== "linux) {
$extra.propertyl.for.linux = true;
$extra. property2.for.linux = true;
H
when ($target.platform== "linux & $build.type == "server")

extends standard.|inux {
$extra.server.property.for.linux = true;

}

Properties are defined once.  Note that it is not possible to define the same property more than
once in aproperty set. Properties are by default created as constant values, and their value can not be
modified once the property is created. It is however possible to make a property behave as avariable
by using the keyword nut abl e, but it still only possible to declare each property once.

The property operations are evaluated in the order they are stated. This makes it possible to involve
already defined properties in subsequent statements. Here is an example:

properties nySet extends sonePropertySet {
$conpilerFlags = "-a -b -c";
when ($target.platform== "linux")
$conpi | er Fl agsOpti m zed = $conpil erFlags + " -O4"
}

Property value expressions may use the full set of expressions available in the b3 language, and prop-
erties may refer to any type of object. Care must be taken though for properties that are later used
as system properties (input parameters) to external actions, as passing of propertiesis typicaly done
using string values and property values will be converted usingt oSt ri ng() operation on non string
values before they are used in such contexts.

Final properties. Propertiescan bedeclared asf i nal . Thismeansthat it isnot possible to redefine
the property in an inner property scope. An attempt to redefine a final property will throw a runtime
exception.

Mutable properties. Properties are by default immutable, and its constant value is assigned when
the property is defined. Other property scopes can however define a property with the same name and
adifferent value. A property declared as mutable is different — it makes the property behave more
like aglobal variable asit can be modified from any inner scope.

Loading properties from files

A property set can also be defined by loading it from astandard java propertiesfile. A property set that
is loaded from afile can not at the same time extend other property sets. Thefile to load is specified
with aURI. Hereis an example:

properties ServerBuil dProperties "http://somewhere. conlfserver. properties" ;

properties Local Buil dProperties "workspace:/ny. build.stuff/local Build. properties";

Other property sets can extends a set from a propertiesfile. And since a property set can include other
property sets, and these in turn can extend other, or be loaded from properties files, thereis really no
limit to how the property sets can be composed.

Property sets are concerns

You will learn more about concerns in the section called “Concern”, but it is good to know that a
property set isasimple kind of concern — something named that can be applied “ after the fact” asin
“apply this property set when calling this function”. Here is an example:

with Local Buil dProperties : doSoneStuff();

36



Draft The b3 expression language Draft

Accessing properties

Properties can be accessed in expressionsthe sameway variables are accessed. If aproperty ismutable
it may be modified.

var a = "You are running on " + $target.os;

ém Note

Since properties have qualified names, care must be taken when using a feature or
feature call expression in combination with a property. As an example the expres-
sion $target. os.toUpper () will try to find a property value for the property
$t ar get . os. t oUpper, and then call this value as a lambda. This will most likely
fail asthereis no such property. The correct way isto either separate the feature refer-
ence from the property with a space $t ar get . os . t oUpper () ; , enclose the property
reference in parentheses ($t ar get . os) . t oUpper () ; , or use a named function call
t oUpper ( $t ar get . 0s) ;

cConcern

A concern is an aspect oriented programming concept which groups a set of advice. An advice is
something that is dynamically woven into the fabric of the logic, and can be as simple as modifying
avaue, or complex overrides of functions found using query patterns with calls to the overridden
function after having modified arguments used in original call.

A concern can be defined for the purpose of applying it viareference (viaits name), or for the purpose
of extendingit. It isal so possibleto both define and apply aconcern at the sametime. using anonymous
advice. How these anonymous concerns are defined and applied is explaind in the section the section
called “With expression”.

The referenceable form of a concern must have a name, and can optionally extend other concerns.
The name of a concerns must be unique among al concerns in the same b3 file (i.e., other concerns,
and named property sets).

The syntax for concern is as follows:

Concern :
concern ID (extends ID (, ID* )? {
( (properties ...)

| (default properties ...)
| (function ...)

| (builder ...)

| Cont ext

)*

Cont ext : context Context Sel ector ContextBl ock ;

Cont ext Sel ector : function | unit | builder ;

concern «ID
Marks that a concern is being declared and givesit a name. The name is an unqualified name.

ext ends «l D» (, «I D»)*
Makes the concern extend other concerns. (When concerns are applied they are applied in the
order they appear in the extends list, and all extended concerns are applied before the extending
concern).

properties,default properties
These keywords are followed by property set definitions (with the same syntax as when they are
not inside of a concern). Property sets are evaluated in the order they are specified.

37



Draft The b3 expression language Draft

function ..., builder ..
These keywords are followed by afunction or builder definition. (The same syntax as when they
are not inside a concern is used — with one exception for builder definitions which is explained
in the section called “Adding or overriding builders’).

,éb Note
A function or builder introduced thisway (asadirect child of concer n), will sSimply
override any existing function or builder with the same parameter signature. Thisis
thus primarily intended as a mechanism for introducing new function or builders.
There is no relationship between the introduced function and the overridden and it
is not possible to use the proceed expression to call the overridden function. A
cont ext should be used if weaving is wanted.

context «Context Sel ector» «Context Bl ock»
Thisdeclaresthat thefollowing adviceisfor a specific context. The Cont ext Sel ect or consists
of acontext type (f uncti on, uni t orbui | der), and predicate(s) to specify which instance(s) of
the selected type to apply the following context block on. The Cont ext Bl ock contains the dy-
namic advice to weave. The context blocks are different for the various types of contexts (f unc-
tion,unit orbuil der). The function context block is described in the following section, and
the contexts for unit and builder are explained in the section called “Unit & Builder Concern”.

Function concern context

A function concern context is used to specify advice / weaving of funtionality for alredy declared
functions (aswell as future functions dynamically introduced in a scope while the advice isin affect).
Thisis done by specifying a query with predicates for function name and parameter types. When the
concern isin effect, al preexisting matching functions as well as all matching functions introduced
in the future will be advised.

Since b3 treats methods for Java classes asfunctions, it is possible to advise these aswell. Such advice
is however only applied when calling java methods from b3°.

Warning

O Thereis currently no support for matching on return/produced value type. Care must be
taked to return a value compatible with the advised function’ s return type or a runtime
exception is thrown. (Thisis not as difficult as it may sound, since thereisapr oceed
expression that calls the originl function — see “proceed expression” below for more
information).

Here is the syntax for the function concern context:

function «NanePredi cate» ( ( «ParaneterPredicatelList» ) )?
«Bl ockExpr essi on»

«NanmePr edi cat e»
A name predicate is one of:

* literal name— an ID or String which specifies an exact match.
» regular expression — alitteral regular expression (such as~/ t o( Upper | Lower ) Case/ )

» wildcard — aliteral wildcard (i.e., _ ) used to match any name (typicaly used when there is
also parameter predicates).

«Par anet er Pr edi cat eLi st »
A comma separated list of parameter predicates as explained below.

3if you need to advice calls from javato java, you need to use other tools such as AspectJ).

38



Draft

The b3 expression language Draft

«Bl ockExpr essi on»

A b3 list of expressions enclosed in{ }. Thislist may include the pr oceed expression as ex-
plained in the section called “ Proceed expression”.

Parameter Predicate List. The parameter predicate list constsists of a comma separated list of
parameter predicates. It is possible to match single or multiple parameters with one predicate. When
matching a single parameter, it is also possible to give this parameter a name. A named predicate
provides accessto the corresponding argument val ue when the advised functionis called. Modification
of the arguments have effect on the values seen in the advised function when using pr oceed.

o _(?]*|+)—anytype 01, OM, or 1M times. Also matches varargs. As an example:

context function foo(_*)

matches all functions having the name “foo”.

* «typeref» (?|*|+)—giventype, 01, OM, or 1M times. As an example:

foo(l nteger+)

matches all function having the name f oo, and one or more | nt eger parameters.

* «typeref» «name» — given type (occurs once). The argument is available in the block expres-

sion by referencing the specified name (the name does not have to match the name in the original
function). As an example:

foo(lnteger p)

matches afunction called f oo that hasasingle| nt eger parameter, the parameter’ svalue is made
availableinthevariable ‘p’.

e ... _—anyvararg (may only appear last in the parameter predicate list). Here is an example:

()

matches any function that is declared with varargs of some type.

* ... «typeRef» — vararg of given type (may only appear last in the predicate list). Here is an

example:
_(_*, ...Integer)

matches any function that is declared with varargs of | nt eger type.

e ... «t ypeRef » «nane» — vararg of giventype. Theargument isavailablein theblock expression.

Asan example;
_(_*, ... Integer x)

matches any function that isdeclared with varargs of | nt eger type, and thevarargslistisavailable
viathe variable ‘x’

ém Note

The multiplicy rules are not greedy, thus| nt eger *, | nteger a will giveaccessto
the last integer in a series of integers (including a single integer argument).

Proceed expression

Itispossibleto call the advised function by using apr oceed expressi on*. The proceed expression be-
haveslikeacall, but does not take any arguments. Instead, the original arguments are passed (possibly

4Reqursi ve advice and proceed can be used.

39



Draft The b3 expression language Draft

modified by the advice). The value of the pr oceed expression is the value produced by the advised
function, and it is thus possible to define processing before, after, or around the advised function.

,ém Note

If aproceed expression is not used, the advised function’ s body is never evaluated.

Here is an example of a before advice:
context function _(Person p, _*) {

Systemout. println("A person was called")
proceed

}
Hereis an example of a before advice that alters an argument:

context function _(Person p, _*) {

p = p.copy();
p.nane = if p.name == null then "unknown" el se p.nanme endif;
proceed

}

In thisexample, acopy is made of the argument Per son p, and the copy isthen modified (if the name
isnul | ,itissetto" unknown"). The original person object isleft unmodified.

In both of the examples above, the pr oceed expression is the last expression, and thus, the value
produced by the original function becomes the value produced by the advised function.

Here is an example using an after advice:

context function _(Person p, _*) {
var result = proceed

if p.name ~= ~/John.*/

then Systemout. println("A person naned John was processed"
endi f;
result;

}

Processing performed both before and after the proceed is called around-advice, but thereisreally no
difference between before, after or around advice — it all depends on where and how the pr oceed
expression is used and what is being returned.

With expression

Thewi t h expression is used to apply concernsthat have effect in the inner scopes of the with expres-
sion. Thewith expression may apply already defined concerns, extend such concerns, and declare new
(anonymous) concerns. Here is a simple example:

var a = with aConcern : aCal | ToSonet hi ng()

Hereis amore elaborate example:

wi th aConcern
properties {$a = 10;}
concern {
function foo(Nunmber x) : x-3

A
var x = foo($a)
var y = foo(x)

b

In this example wi t h is used to apply ‘aConcer n’ that is defined somewhere else (just shown for
syntax illustration). It also defines a property set, and an anonymous concern with afunction f oo that
returns its parameter - 3. As aresult, the variable y will be set to 4, and this is also the value of the
entirewi t h expression.

40



Draft The b3 expression language Draft

Type system

The type system of the b3 language is based on Java. Most of the time, the b3 type inference system
is capable of inferring the type, but there are some cases where the type must be defined.

» Parametersto general functions— thereissimply no way to know all possiblelocationsfrom which
afunction may be called.

» When the inferred type becomes Object (other other generic type) but the returned values share
some other trait (interface) that is more suitable as the return type.

Thetype system isbased on Java, but has an additional type construct borrowed from Scalafor declar-
ing parameter and return types. The type system syntax is as follows:

TypeRef : SinpleTypeRef | O osureTypeRef ;

Simpl eTypeRef : ID (:: ID* (< TypeParam (, TypeParam* >)? ;

Cl osureTypeRef : ( ( TypeRef (, TypeRef)* ))? => TypeRef ;

TypePar anDecl aration : |1D ((extends TypeRef (& TypeRef)*) | (super TypeRef))?
TypeParam : TypeRef Param | W/ dcar dRef Param ;

TypeRef Param : TypeRef ;
W dcardRef Param: ? ((extends TypeRef (& TypeRef)*) | (super TypeRef))?

This looks very complicated because Java generics are complicated. You don't have to use generics,
but when your code interfaces with Java, you may have to. Using generics has many benefits as more
inferences can be made.

Here are some examples using the above syntax in function definitions:

/**

* Conplicated generics exanple (borrowed froman xtend wi ki page)

*/

function List<M> sort<T extends Conparabl e<T> M- (List<M> toSort, (M =>T closure){
}

/**

* Exanple fromjava tutorial. Note that the constraints on T are after the function
* name as proposed in the future xtext w ki doc.

*/

function T foo <T extends Annotation> (C ass<T> annotationType) {

}

/**

* Same exanpl e, but using closure type style
*/
function (O ass<T>) => T foo <T extends Somed ass> (aC ass) {

}

DISCUSS. - One wiki article about a possible future xpand language showed type constraints written
differently than in Java. In Java the a type specification of <T extends Annotation> T foo(Class<T>
annotationType) instead of asin the article where placing the <T extends Annotation> after the func-
tion name. Wonder about the rationale for this?

The current implementation of b3 does not have full support for java generics. Type variables are
notably missing. Eclipse b3 work on type system started before the Java integration was madein XText
0.8. It will possibly change to benefit from the new featuresin XText 0.8.

System functions

The b3 language has a default set of system functions. Among the things supported are functions that
handle loops and set operations. This section documents these functions.

41



Draft

The b3 expression language Draft

5 Note

The wildcard card character _is used to denote that the type is inferred. This notation
was choosen rather than using full java generics declarations as these declarations are
quite complex to read.

Evaluation

_ evaluate(function, ...argunents);

(_*)=>_ function;
oj ect ...argunents;

Evauatesthe f unct i on lambda passing the variable number of arguments. The number and type of
arguments must be compatible with the signature of the function. The result of evaluating the function
isreturned. Thisisessentially the same as using the call expression, but may be clearer to usein some
contexts.

Looping functions

_ whil eTrue(condition, body);

>Bool ean condition;
> body;

()
0
Evaluates the condi t i on lambda, and if it evaluatesto t r ue, the body lambda is evaluated. The

process isrepeated until thecondi t i on lambdano longer returnst r ue. The last result of evaluating
the body isreturned. (Thisisthe while loop in the b3 language).

_ whil eFal se(condi ti on, body);

() =>Bool ean condi ti on;
()=>_ body;

Evaluates the condi ti on lambda, and if it evaluates to f al se, the body lambda is evaluated. The
processisrepeated until thecondi t i on lambdano longer returnsf al se. Thelast result of evaluating
the body isreturned.

_ whil eTrue(body);
() =>_ body;

Evaluatesthebody lambdauntil it doesnot returnt r ue. (Thisisthedo-whileloopin the b3 language).
Theresult of the function isthe non t r ue value that terminated the repetition.

_ whi | eFal se(body) ;
() =>_ body;

Evaluatesthe body lambdauntil it does not returnf al se. Theresult of thefunctionisthenonf al se
value that terminated the repetition.

Set functions

_ do(collection, body);

Iterabl e<_> collection;
() =>_ body;

Iterates over thecol | ect i on and evaluates the body lambda with each value from the collection as
aparameter. The last result of evaluating the body is returned.

42



Draft

The b3 expression language Draft

Li st<_> sel ect(col |l ection, body);

Iterabl e<_> collection;
(_) =>Bool ean body;

Iterates over the col | ecti on and evaluates the body lambda with each value from the collection
as an argument. If the body lambda returnst r ue, the current value is added to a resulting list. The
resulting list is returned.

List< > reject(collection, body);

Iterabl e<_> collection;
(_) =>Bool ean body;

Iterates over the col | ect i on and evaluates the body lambda with each value from the collection as
an argument. If the body lambdareturnsf al se, the current value is not added to a resulting list (all
other values are). The resulting list is returned.

Bool ean exists(collection, body);

Iterable< > collection;
(_)=>_ body;

Iterates over thecol | ecti on and evaluates the body lambda with each value from the collection as
aparameter. If thebody returnst r ue, theiteration stopsand t r ue isreturned. If theiteration reaches
the end of the collection without the body having returnedt r ue, f al se isreturned.

Bool ean all (col | ection, body);

Iterabl e<_> collection;
(L) =>_ body;

Iterates over the col | ecti on and evaluates the body lambda with each value from the collection
as a parameter. If the body returnsf al se, the iteration stops and f al se is returned. If the iteration
reaches the end of the collection without the body having returned f al se, t r ue isreturned.

Li st< > collect(collection, body);

Iterabl e<_> collection;
(_) =>_ body;

Iterates over the col | ecti on and evaluates the body lambda with each value from the collection
as an argument. Each returned value from the body is added to the resulting list. The resulting list
isreturned.

_inject(collection, startValue, body);

Iterabl e< > collection;

__ start Val ue;

(_, )=>_ body;

Iterates over thecol | ect i on and evaluates the body lambda for each value from the collection with
the previous value of the body evaluation and the current value from the iteration as arguments. The
parameter st ar t Val ue isused for thefirst iteration. Thelast result of evaluating the body is returned.

Thetypica useisasin the following example which returns the value 45 (sum of 1 to 9):

(0..8).inject(1, {sum x | sum+ x; }

Currying

Currying means that a call is curried/spiced with parameters. The set operation that takes lambdas as
arguments use lambdasthat take only on argument (or two inthecaseof i nj ect ), but what if you want
to call afunction that takes more than one argument? In these cases, you can use currying. To do this,

43



Draft The b3 expression language Draft

simply state the parametersthat should be passed to the lambdaand use awildcard for the parameter(s)
that should receive the value from the current value from the iteration. Hereis an example:

function (Nunber, Nunber, Nunber) => Bool ean
between(x, mn, max) : x >= mn && X <= max ;

aCol | ection.select(_, 1.0, 2.0, between);

,éb Note

Currying ani nj ect isspecia as there are two anonymous values being passed. Inject
can be called with _, val, func (which isalso the default if currying is not used),
orval, _, func,orval, func, _.Thepractica value of thisisonly if caling a
function that was not designed to be used withi nj ect .

Remember that the parameter list is only evaluated once when the set function isinvoked.

Assert function

The system functions include a number of assert functions. The primary use of these are for writing
tests, but they are also very useful when advising code when trying to pinpoint issues in a complex
build. All assertion functions either returnt r ue, or throw an assertion exception. The given message
is used as the message text for the exception along with information about the asserted condition's
reason for failing.

assert Equal s (message, expected, actual);
String nessage;

_ expect ed,;

_actual ;

Assertsthat act ual isequal to expect ed.

assert True (nmessage, actual);

String nessage;
_ actual ;

Assertsthat act ual istrue.

assert Fal se (nessage, actual);

String nessage;
__actual ;

Assertsthat act ual isfal se.

assertNull (nessage, actual);

String message;
__actual ;

Assertsthat act ual isnul | .

assertNot Nul | (message, actual);

String nmessage;
_ actual;

Assertsthat act ual isnotnul | .

assert Type (nessage, expected, actual);

String nessage;




Draft The b3 expression language Draft

Type expect ed;
__actual;

Asserts that act ual . get Gl ass() isequal to expect ed (i.e., exact class). This function is mainly
useful when testing b3 itself.

assert Assi gnabl e (nmessage, expected, actual);

String nessage;
Type expect ed;
__actual ;

Assertsthat act ual can be assigned to a variable of type expect ed. Thisfunction is mainly useful
when testing b3 itself.

45



Draft Draft

The Build Unit

In this chapter we take acloser ook at the b3 Build Unit. As mentioned earlier in the introduction (the
section called “The Build Unit") a Build Unit is an abstraction of the buildable aspect of apart in a
software system (i.e., components, modules, plugins, platforms, repositories, bundles, etc.).

Build Unit

A build unit is declared with a unit preamble, followed by the unit’s body enclosed in curly brackets.
Hereisan example:

/**

* 'nyunit’ is a build unit, this is its docunentation.
*/
unit nyunit version 1.0.0 {
/1 body of wunit
}

The preamble has the following syntax:

«DOCUMENTATI O\»?

«Execut i onMbde»?

unit «Uni t Name»? (version «Version»)?

(i mpl ements «lnterfaceNane» (, «lnterfaceNanme»)*)?

«DOCUMENTATI ON»
The build unit can have optional Java Doc style documentation.

«Execut i onMbde»
The execution mode is either par al | el or sequenti al . Thedefault ispar al | el . The execu-
tion mode defined for a unit defines the execution mode for builders operating on the unit. In
addition, global b3 preferences can specify the exeuction mode for all units/ builders. The mode
used is parallell, unless the builder is specified as sequential, the unit is specified as sequential,
or the global execution mode preference is set to sequential.

Sequentia execution means that al dependencies are built in sequential order, when running in
parallell al dependant builders may run in paralell, but concurrency is controlled via synchro-
nization rules (locking of resources). Thisis explained further in the section called “ Synchroniza-
tion”

The execution mode is not the same as being thread safe — al b3's actions are thread safe in
respect to how synchronized in Java behaves.

uni t
This keyword indicates that thisis abuild unit declaration.

«Uni t Name»
Although most build untis should declare a name, the name of a unit is in fact optional in the
b3 model, since a unit can be used to define additions or overrides. When a unit is declared in a
t hi s. b3 file with the purpose of decorating/amending the meta data translation of the real unit
it is embedded in, the name is typically omitted as the resulting unit most likely should keep its

46



Draft The Build Unit Draft

origina name. If aunit nameisstatedin at hi s. b3, it overrides the original name generated by
default. All other units should have a name.

The unit name is an escaped qualified name which means that it is either a qualified name (i.e.,
java package naming standard), or astring enclosed in " ". The rationale for this naming standard
isthat units should retain their original names and that namesin different name spaces may follow
very different naming conventions than the java package naming standard. The scheme used by
b3 should be convenient for typical naming types, while not preventing more exotic schemesfrom
being used.

Simply follow therule, “if the nameis not compliant with the java package naming standard write
itasastring”. Thisalso enables full use of NLS names.

version «Version»
A uni t may have an optional version declaration. The Ver si on iswritten in the Omni Version
format which natively supports the 0sGi versioning scheme, but can also represent many other
versioning schemes with very different semantics. The b3 language allows unescaped version
literalsin most version schemes, but some exotic scheme may use keywords or special characters
that interfere with the reserved words and characters in the b3 language. If that is the case, the

version can be entered as a string enclosed in " "'.

The version string is parsed by the b3 model and feedback in the form of an error marker is
displayed if there are errors.

Details about b3's use of the omni version is found in Chapter 4, \ersions.

i mpl ement's «l nterfaceNane» (, «I nt er f aceName»)*

A unit may optionaly have a declaration of implemented (typically build related) interfaces.
Theinterface nameis an ID of an imported interface. Although possible to use any interface the
intent is interfaces specifically constructed for building are usedlsupport for building in a partic-
ular domain makes such interfaces available. As an example support for building eclipse relat-
ed artifacts such as bundles, eclipse features and RCP products are supported via the interfaces
org. ecl i pse. b3. bui | d. Gsgi Bundl e, and org. ecl i pse. b3. bui | d. Ecl i pseFeat ure.
SUBJECT TO CHANGE - interface names subject to implementation.

Having the capability to implement multiple interfacesisimportant asit allows a unit to formally
statethat it is multiple things asthe sametime - for instance: being an osgi.bundle, being in binary
or source form, being in the form of projects checked out from a particular type of source code
repository etc.

When a build unit implements an interface, all functions, and more importantly all builders de-
clared for thisinterface are applicable for the the unit.

Unit body overview

The body of a unit iswritten within enclosing { }. The body can contain:

» default property set — see the section called “Properties” for details regarding properties and
default properties. The default properties of a unit will always have been evaluated in the context
used to evaluate a builder for the unit (before the builder’ s default properties are evaluated, if any).
Example:

default properties {
$target.platform= "*";
$conpi l er.optimzation = "-O4";
}

* required capabilities — states dependencies on the prescense of units (and other things) required
in order to make the build unit buildable. Example:

bt you are familiar with Eclipse Buckminster, the interfaces mostly resembles Buckminster's component type.

47



Draft

The Build Unit Draft

requires osgi.bundl e/ org. nyorg. nybundl e/[1.0.0,2.0.0];

» environment required capabilities - states dependencies on the presence of capabilities in b3

itself — i.e., things that are required in order to understand/act on the b3 file itself (e.g., support
for a particular meta data trandlator)., and thus such regquirements must be resolved before other
processing can take place.

By default, al javaimports, and implements declaration are treated as environment required capa-
bilities. There is no need to restate these as requirements. Typically, there is no need to use envi-
ronment requirements, but in some cases, the dependency on something in the environment does
not tell the full story - as an example, a resolver may be operating against a SVN repository, and
normally it does not matter if the subversion support comes from Subversive or Subclipse, but if it
does, it is possible to specify this as an environment requirement. Example:

requires env osgi.bundl e/ org. nyorg. b3processi ng. special/[1.0.0,2.0.0];

Syntax supported, but functionality not implemented in the first version of b3.

 provided capabilities — states (general) capabilities that this unit is providing. Typicaly, a unit

that isproviding capabilitiesthat should be discovered by the resol ution processdo so viathe builder
actions as these also declare the concrete artifacts that manifest the capability. Some capabilities
may however not require any manifestation (other than the presence of the unit itself) and these can
be declared in the unit directly. A unit is always providing itself as a unit capability without any
specification being required. Example:

provi des org. myorg. docunent ati on. styl esheets/plai nhtn ;

* synchronization of build actions — when running parallel build, it may not be enough to state

that individual actions or units must be processed sequentially. It istherefore possible to advice the
engine to process actions in different units sequentially (even if they on their own may be safe to
execute in parallel). Synchronization syntax and semantics are not yet fully defined. The prototype
introduces syntax that is subject to change. Builders are implemented as Eclipse Jobs, and should
use the Jobs syncronization capabilities (syncing on resources, but also needs mechanism to syn-
cronize on things external compilersaredoing, perhapsall such syncronization arejust via URIsas
this provides a hierarchy - there seems to be no requirement that the URIs reference somethingex-
isting, only that it is possible to compute if one resource contains another.

* repositories — states which repositories to use when resolving and materializing units into the

environment.

* builder s— declarations of build functionsthat the b3 enginewill schedule and execute. The builder

functions have declarative syntax that makes this possible, but are otherwise very similar to general
purpose functions.

* named property sets— declaration of additional named property setsthat can be referenced from

other property sets in the unit, or when executing builders and function. Example:

properties WndowsProperties {
$zi p. processor = "W nZip. exe";

}

» concerns — declarations of concerns (‘overrides') that can be referenced from other concernsin
the unit, or when executing builders and functions.

Capabilities

Capabilities are used during resolution where required capabilities are matched with provided capa-
bilities. This section explains the parts common to both provided and required capabilities.

Capabilities are written on a common form:

«NaneSpace» / «CapabilityNane»

48



Draft

The Build Unit Draft

Where «NanmeSpace» is a qualified name indicating the capability type. This typically corresponds
to the interfaces that a unit implements, but a capability name space does not have to be represented
by ajavainterface, they can be arbitrarily invented.

All units provides a capability in the or g. ecl i pse. b3. uni t name space — i.e the capability of
‘being abuild unit’, where the capability name being the name of the unit. Sincethisisacapability that
iscommonly used — this name space is used as default if no name spaceis stated, and it can optionally
be declared using the the keyword uni t to make it more clear what is wanted. As an example — the
capability “abuild unit called ‘orange’’’ can be written as:

orange
uni t/ orange
org. eclipse.b3.unit/orange

The capability name follows the same rules as a unit name; it is either a qualified name, or a string
enclosed in" . Here are some examples.

osgi . bundl e/ org. myor g. mybundl e
se.myorg.song/"A janta & ja"
nutritional.supplenent.vitanmin/C

Provided capabilities

Provided capabilities are declared using the keyword pr ovi des followed by a list of capabilities.
Provided capabilities may be filtered by using the keyword when followed by a boolean expression
in parentheses.

Provided capabilities can optionally (but typically) declare the version of what isbeing provided. The
version follows the same semantics as the Ver si on vaue for the unit (i.e., it isan Omi Ver si on).
The version is specified with a separating / after the capability.

Here are some examples:

provi des osgi . bundl e/ org. myorg. nybundl e/ 1. 0.0
provi des org. myorg.settings/serverDefaults/1.0.0

provi des when ($build.type == "server")
org. myorg. settings/serverDefaults/1.0
provi des exanpl e/ soneunit, exanple/soneotherunit;

Syntax is subject to change. The combination of when() and a list makes you think the when() isapplied
to everything inthelist, but thefilter isfor one capability only. It isbetter if thefilter isapplied to one-
thing, being either one capability, or a capability block - as shown in the example below. Provided
capability specification then looks like the corresponding requirementsin builders.

/1 Syntax will change to this
provi des exanpl e/ soneunit;
provi des when (cond) exanpl e/ soneunit;
provi des { exanpl e/ soneuni te; exanpl e/ soneot herunit; }
provi des when ($soneProperty == "sone val ue") {
org. nmyorg.settings/serverDefaults/1.0
org. nyorg. awsomess/ pi zzazz

}

Unit required capabilities

Required capabilities declared at the unit level can be used for several purposes:
» Declaring dependencies on the execution environment.

 Declaring dependencies that are common to multiple builders (to make it easier to modify a partic-
ular dependency asit isin one location only).

 Declaring general dependenciesthat affect the overall resolution, but that are not directly referenced
by builders (e.g., unit has dependency on something that acts as a configuration that when resolved
provides many different capabilities required by builders).

49



Draft The Build Unit Draft

Typically, aunit doesnot declare any required dependencies— these areinsted declared in the builders
that have the concrete need. This makesit easier to maintain a build unit’s dependencies.

Required capabilities are declared the same way as provided capabilities but with the following dif-
ferences: the keyword isr equi r es (instead of pr ovi des), and the optional version, is an optional
version range. The b3 parser creates an instance of the version range and any errorsin version range
syntax is flagged as an error in the b3 editor with an explanation. A version range is one of:

» A single «Ver si on» which means a version >= stated version.

* Two, comma separated Ver si on instances indicating the min and max version enclosed with a
prefix of [ or (, and a suffix of ], or ). The use of [ indicates inclusion of the min version, ]
indicatesinclusion of the max version. The ( and) does not include the stated min and max values.

A required capability declared in the build unit can optionally have an alias which makes it possible
to reference the requirement in builders. Here is an example of using an alias:

requires osgi.bundle/org.nyorg.runtine/[1.0.0, 2.3.4) as runtine;

Here are more examples of r equi r es:

requi res osgi. bundl e/ org. nyorg. nybundl e/[1.0, 2.0];
requires {
eclipse.feature/org. eclipse. execut abl eFeature
osgi . bundl e/ org. nyorg. nybundl e/[ 1.0, 2.0];
}

Environment Requirements

Requirements on the environment are written like regular requirements, but with requi res env
instead of justr equi res.

Repositories

The b3 engine has support for resolution from the workspace and target platform by default. This
means that whenever a build unit has a requirement on something else, it needs to be present in these
locations. When evaluating builds in a build unit, it is possible to declare that other locations should
be used - thisisdone with ar eposi t ori es statement inside the build unit.

Typically, it is only top level build units (i.e., build units that a user interacts with in the IDE, on
the command line, or from a build server) that define repositories, but using repository statements
inside “downstream” build unitsis avery powerful and important mechanism to enable separation of
concerns. First, lets ook at how repositories are declared.

Declaring repositories

A build unit’s repository configuration is declared using a repositories statement with the following
syntax:

Reposi toriesDeclaration : repositories { «RepositoryConfiguration»* } ;

Reposi t oryConfi gurati on
«Sel ect First»
| «Sel ect Best »
| «Sel ectSw tch»
| «Repository»

SelectFirst : select-first { «RepositoryConfiguration»* }
Sel ect Best : sel ect-best { «RepoitoryConfiguration»* }
Sel ect Swtich : select-switch «Expression«

(case «Expression» : «RepositoryConfiguration*)+

Repository : ( «URI» | repository «ID» ) «ContextBl ock»?

50



Draft

The Build Unit Draft

repositories
This keyword marksthat thisis a declaration of repositoriesto use from this point forward. A list
of repository configurations are enclosed in curly brackets. The list of repository configurations
is a select-first configuration (see below).

Reposi t oryConfi gurati on
A repository configuration is one of the selection strategies sel ect -fi rst, or sel ect - best
or a concrete repository definition.

sel ect-first
A select first strategy is defined with thiskeyword. It meansthat the first returned resolution from
thelist of enclosed repository declarations will be used.

sel ect-best
A select best strategy is defined with this keyword. It meansthat all the repositoriesin thelist of
repositoriesisgiven achanceto resolvearequest and that the resol ution that scores highest against
the resolution options for the request (source/no source, mutable source/not mutable source, etc.)
will be used.

select-switch
A select switch stategy is defined with this keword. 1t means that a selection is made using a
switch-case expression where the expression following sel ect - swi t ch is compared against
each case inturn. Therepository declaration for the first matching caseis selected to be used for
resolving arequest. Thefinal constant valuer equest isboundto aninstance of Requi r edCapa-
bi | i t y thus enabling the switch expression and cases to make comparisonson r equest . nane,
request . naneSpace, version range etc.

The select-switch configuration is useful when resolution requests are slow, and you really just
want to test against one particular repository for a matching request.

Reposi tory
A concrete repository entry iseither auRl string, or the keywordr eposi t or y followed by atype
reference to arepository handler class. The URI is a b3 specific URI that starts with a repository
scheme name that has been registered with the b3 engine. The repository scheme name mapsto a
repository handler, and the rest of the URI isinterpreted by the specific handler. Hereisasimple
example:

"p2: http://downl oads. ecl i pse.org/galil eo”

Cont ext Bl ock
The URI-string, or the repository 1D is optionally followed by awith context block (described in
detail in the section called “With context expression”) allows the repository handler instance to
be configured / initialized. The capabilities vary between different types of handlers, and some
may use only simple literal values, but some may also provide advanced features using lambda
functions.

Repositories examples

The ssimplest repositories to declare are p2 repositories. The default configuration of a p2 repository
handler will resolve against the repository and when units are required, they will be installed into the
current target platform. If that is what you want, all that has to be stated is the URL of the repository.
Here isan example, using afirst found strategy and some p2 repositories:

repositories { select-first {
"p2: http://downl oads. ecl i pse.org/galil eo"
"p2: http://downl oads. ecl i pse. or g/ nyproj - updat es-3. 5/ "

}
}

If you also want to look for thingsin souce code repositories, and provide the ability to resolve against
either binary repositories or source code repositories, you need a select-best strategy and declaration
of the source code repositories.

51



Draft

The Build Unit Draft

import org.eclipse.b3.repositories.svn; repositories { sel ect-best {
select-first { // list of p2 repositories as before

}

repository "svn: https://sonmewhere. org/ somerepo/ trunk" {
mutable = false; // do not use this repo for nutable source requests
/'l set nobre options

}

repository "svn:svn+ssh://nyorg.org/ourrepo/trunk" {
mutable = true; // the default, but restated for clarity
/1 set nobre options

}
}

The settable options naturally vary with the type of repository that is being used, you need to consult
thereference documentation for each type of repository handler to get the complete documentation, but
since b3 knows about the type of repository being used, its features, and any documentation available
for those features, you will find what you need using code completion.

The repository handlers are designed to allow for the most commonly used configuration by default,
variations on common themes by setting options, which includes using literal functions / lambdas
when something needs to be computed. As an example, the default trandlation of the final URL to use
in a SvN repository is done by taking the location URI (which aways should refer to the svN trunk)
and appending the unit name. If something else is wanted, it is possible to set the boolean options
modul eBef or eTag, and nodul eBef or eBr anch, and the option subMbdul e - if these are declared,
the resulting URL will be automatically constructed. Finally, if these options are not enough, by as-
signing a lambda with the signature ( Request ) =>URI to the option uni t URI can be implemented
to return the wanted URL.

It is up to the implementer of a particular repository handler to decide on available options, and if
advanced option using lambdas can be used.

Herezis an advanced exmple using mapping between units and maven identifiers for a maven repos-
itory“:

repository "maven: http://..." {
/1 option like location etc. omtted...

/**
* Map a.b.c.d to a/b.c.d, and everything in org.nyorg.
* as org.nyorg/*.* Use default mapping for all other requests
* (by producing null).
/
mapRequest = {<Mavenl d> Request request |
switch request. nane
case "a.b.c.d" : new Mavenld() {
groupld= "a"; artifactld= "b.c.d";

}
case ~/org\.myorg\.*/:
new Mavenl d() {

groupl d="org. myorg";
artifactld = nane.substring("org.myorg.".length());

}

endswi t ch;

}
}

Since b3 uses qualified names for units without distinction of the maven gr oupl d,andarti fact 1 d,
amapping between afully qualified name and the maven conceptsis required. The maven repository
handler has a default way of doing this, and by using alambda, this default mapping can be augment-
ed. In the example above a switch statement is used to detect the special "a. b. c¢. d" unit, and all
unitsunder or g. myor g — for these, apropriately configured Mavenl d instances are returned. For all
other instances the switch produces nothing, and null is returned, which tells the maven repository
handler .that the default translation should be used.

’This exampleis subject to the actual implementation of the maven repository handler - it is not available when this was written.

52



Draft The Build Unit Draft

Containers

The term container is used to denote a writeable place where build units can be stored. A build unit
may define containers that are used to store build units that are found by the resolution process. The
b3 engine has one predefined container called wor kspace, and when PDE support is installed there
isalso at ar get Pl at f or mcontainer. These refer to the running instance’' s workspace location, and
the active target platform.

It is possible to override the default definition, and also to add other containers/locations.

The syntax for defining containersis:
Cont ai nersDefinition : containers { «ContainerDefinition» } ;

ContainerDefinition : container «l D» agent «l D» «ContextBl ock»? ;

The syntax is straight forward. A list of containers can be defined. Each container has a name, and
areference to an agent class. The agent can be configured/specialized by providing a context block.
The b3 engine has three agent types available in the default configuration of b3:

* wor kspace
. p2
e filesystem

Container selection. The default is to place al units in source form in the container named
wor kspace, and al artifactsfrom ap2 repository intoacontainer calledt ar get Pl at f or m(and these
by default are references to the running instance's workspace and active target platform). This gives
two possibilities — all repository configurations can be modified to use container IDs that refer to
new containers that you have defined, or you simply redefine the wor kspace andt ar get Pl at f orm
containers to suit your needs.

When this document was prepared, the details of the workspace and p2 agents were not finished,
but based on the corresponding support in Buckminster, it will look something like in the following
examples:

containers {
container targetPlatformagent p2 {
| ocation = new Path($targetPl atfornDir,"standard");
conflictResolution = ConflictResol uti on. UPDATE;
}

cont ai ner workspace agent workspace {
| ocati on = new Pat h($user. hone, "workspaces/ nywor kspace");
conflictResolution = ConflictResol uti on. UPDATE;

}

cont ai ner auxWor kspace agent workspace {
I ocati on = new Pat h($user. hone, "workspaces/ nyauxwor kspace");
conflictResolution = ConfictResol ution. FAIL;

}
}

DISCUSS How should the active target platform be switched while running b3?

Synchronization

TODO: Synchronization is currently specified as synchronizing different builders across different
units. Synchronization syntax and semantics are not yet fully defined. The prototype introduces syn-
tax that is subject to change. Builders are implemented as Eclipse Jobs, and should use the Jobs
syncronization capabilities (syncing on resour ces, but also needs mechanism to syncronize on things
external compilers are doing, perhaps all such syncronization are just via URIs as this provides a
hierarchy - there seems to be no requirement that the URIs reference somethingexisting, only that it
is possible to compute if one resource contains another.

53



Draft The Build Unit Draft

Builders

A Builder isafunction with additional declarative syntax used by the b3 engine to plan, schedule and
execute a build. In addition to the traits of a general purpose function, a builder has declarative input
(dependencies on other builders), declaration of source, and declaration of output, a predetermined
return type, the ability to declare provided capabilities, and asserts triggered before the builder is run,
once its dependencies have been processed, and after the builder is finished.

Builders also differ from regular functions in that they are called asynchronously — calling a builder
producesaB3Bui | dJob (aspecialization of an Eclipse Job) that when scheduled will runthebuilder’s
logic and produce a build result. Thisis however all taken care of by the b3 engine.

Here isthe syntax for abuilder:

Bui | der :
«DOCUMENTATI ON«?
«Visibility»?
«Execut i onMbde»?
final?
bui | der
«Bui | der Narme» (( «Paramet er Decl arati onList» ))?
( provides «Provi dedCapabilityList» )?
( precondition ((: «Expression» ;) | ({ «ExpressionList» }))?
( postinputcondition ((: «Expression» ;) | ({ «ExpressionList» }))?
( postcondition ((: «Expression» ;) | ({ «ExpressionList» }))?

{
( default properties «PropertyBody»)?
( «lnput» )?
( «Source» )?
( «Qutput» )?
«Expr essi onLi st »?

«DOCUMENTATI ON»
Java Doc styled documentation for the builder.

«Visibility»
Thevisibility isoneof pri vat e or publ i ¢ with adefault of publ i c.

«Execut i onMbde»
The same as execution mode for aunit; sequent i al or par al | el , withadefault of paral | el .
Parallel meansthat if the builder has multipleinput dependenciesthesewill beexecutedin parallel.
The unit and the global execution mode must also be set to parallel in order for parallell execution
to take place.

final
The keyword f i nal makes it impossible to override the builder.

bui | der
The keyword bui | der statesthat a builder is being defined.

«Bui | der Nane»
The name of a builder follows the same rules as a unit name (i.e., a qualified name, or a name
enclosedin" ".

«Par anet er Decl ar ati onLi st »
Thebuilder can optionally have acomma separated list of Par anet er Decl ar at i on (see below)
thus creating a parameterized builder. As shown later, the parameters can be passed to the builder
when the builder isused inan | nput expression.

«Par amet er Decl ar ati on»
The parameter declaration isthe same asfor agenera functioni.e., Type?| D, with the last decla-
ration in aparameter declaration list isoptionally prefixed with.. . . toindicate avariable number
of arguments of the specified type (thistypeis optional and defaultsto Obj ect ).




Draft The Build Unit Draft

provi des «Provi dedCapabilityList»
The keyword provi des declares that the result of this builder is a manifestation of the stated
capability. The stated provided capabilities automatically become capabilities provided by the
unit. ThePr ovi dedCapabi | i ti yLi st isacommaseparated list of Pr ovi dedCapabi l ity (as
shown elsewhere).

conditions
The keywords pr econdi ti on, post i nput condi ti on, and post condi ti on are used to de-
clare assertions. All conditions are entered as either a: followed by a single expressions, or as a
block expression. Theintent isto write assertion expression that throw exceptionsif condition are
not met. Several assertion functions are availablefor this purpose — see REF: Assertion function.

In addition to what is described per condition type below, the conditional expressions also have
access to any declared builder parameters.

The purpose of the assertions is to enable early detection of build related problems. A builder
action may produce files, but there are cases when empty files are generated, expected files are
missing, or have the wrong checksum etc.

/f@m Note
An aternative to using the postcondition assertion is to simply perform the checks
as expressions in the builders body and throw exceptions instead of returning the
output, but this requires a bit more coding, and makes it more complex to turn such
assertions on/off from a calling context. This is important as assertions may take
a long time to execute, and are probably only turned on when some problem is
detected with the build.

preconditi on «Expression»
Theprecondi ti on isevauated before the builder is evaluated, but the default propertiesin the
unit and builder have been evaluated.

The pr econdi t i on has access to the arguments passed to the builder, but does not have access
tothei nput, sour ce, nor out put .

posti nput condi ti on «Expr essi on»
The post i nput condi ti on isevaluated after all input has been evaluated, and it has access to
evaluated i nput , sour ce, and out put . The variables are always bound to a result even if the
corresponding declaration is missing, in which case the structures are empty.

post condi ti on «Expression»
The post condi ti on expression has accessto i nput , sour ce and ouput . The post condition
also has accessto the builder’ sresult viathe variable bui | der . (Note that the default annotations
in output are only evaluated if the output also is the produced result of the builder).

default properties «PropertyBody»
The keywords def aul t properti es are used to declare a default property set. The Pr oper -
t yBody isthe same as shown in the section called “Properties’. The default properties comein
effect if the corresponding properties are not aready set. The default properties are evaluated
before any other declaration in the builder is evaluated.

«| nput »
The input declares input from other builders. This optional list of other buildersis automatically
processed by the b3 build engine in the correct order. The input is described in detail later. The
input declaration iswhere abuilder's dependencies are declared. If the builder only consists of an
input declaration, the result of merging the result is a so the produced result of the builder.

Sour ce
The source declares the resources considered to be the builder’ s source (if it has any). If abuilder
has source declared (but no output), and contains no processing, the source is the result produced
by the builder. Using source declaration is described in detail |ater.

55



Draft The Build Unit Draft

«Qut put »

Output is the declarative output of a builder that performs processing of source (or additional
processing of aggregated input, possibly in combination with source). The output declaration
consists of alist of resource references and annotations. In addition to being used as a description
to processing logic, the output is also used when computing if the result of abuilder is up to date
or not. An output declaration can even be used when there is no input or source (the result is
derived from something else) for the purpose of conveniently creating a result from the builder.
If output is declared, and the builder has no processing, the output is the result produced by the
builder. The output is described in detail later.

«Expr essi onLi st »
The expression list is a semicolon separated list of expressions evaluated in order. The expres-
sion list is optional if the builder has declared input, output, or source. The output is returned
if declared, and if no output is declared, source is returned (if declared), and finally the input is
returned (if declared). If none of input, source or output is declared, the expectation is that the
builder’ slist of expressions produce aBui | dSet 3containi ng the wanted result. If thereisno such
expression an empty result is returned (an empty Bui | dSet ).

,éb Note

To produce aresult, any b3 language expression can be used, and the evaluated in-
put, source and output are available viathe variablesi nput , sour ce and out put .
These are all of type Bui | dSet . Thisalows for advanced processing of the evalu-
ated result of the corresponding declarative statements, aswell asfreeform creation
of aresult by instantiating a Bui | dSet object, or modifying a Bui | dSet bound
to either i nput , sour ce, or out put (changes to abuild bags has no effect on the
underlying declarative model). The Bui | dSet is further explained in the section
caled “The BuildSet”.

Before reading more about the details, here are some builder examples:

/** sinple builder with just source */ builder docunents {
source { docs/ [ intro.htm, fag.htm]; }
}

/** a builder that aggregates the result of several other builders */
bui | der everything {
i nput {
#docunent sZi p;
uni t/ org. myorg. cor e#someSt uff ;
uni t/org. myor g. myapp#everyt hi ng;

}

/** a builder that processes the result of another builder */
bui | der docunentszZip {

input { #docunents; }

out put { docunents.zip; }

M/Zi pUtil . create(output, input);

out put ;

Input

Thei nput declaration states requirements on evaluation of other builders (in the same build unit,
or in other build units). The declaration can be filtered, and the evaluation of other builders can be
advised. The declarative input has the following syntax:

Input : input { «Prerequisite»+ } ;

Prerequisite :

3BuildSet isthe return type of al builders.

56



Draft

The Build Unit Draft

( when ( «Expression» ) )?
( «Wthd ause» :)?

«Bui | der Ref erence»

(as «ID»)?

Wt hd ause :
with ( «concernlD» (, «concernlD»)* )?
( ( default properties ...
| properties ...
| concern «Concer nBl ock»
)

?*

Bui | der Ref er ence
. «DirectBui |l der Ref er ence»
| «lI ndirectBuil der Ref erence»
| «CapabilityReferencedBuil der»
| «ConmpundRef er ence»

Di rect Bui | der Ref erence
unit? # «Buil der Nane» «Par anet erLi st»? ;

I ndi rect Bui | der Ref erence :
«requi redCapabi lityl D» # «Buil der Name» «Par amet er Li st »? ;

Capabi | i t yRef erencedBui | der :
«Requi redCapabi lity» # «
Bui | der Name»
«

Par anmet er Li st »
?.

ConpoundRef erence : { «Prerequisite»* } ;

i nput
This keyword is used to declare dependencies on other builders that should be evaluated before
this builder startsits processing.

«Prerequi site»
Eachentry inthei nput isareferenceto another builder. Itispossibletofilter thelist using awhen
expression. The evaluation of a builder can be made in a new closure using awi t h expression.
The entry can be aliased using an as expression which makesit possibleto refer to an individual
builder’ s result, or an aggregation of builder results (i.e., multiple entries having the same alias)
in the builderslogic.

when «Expressi on»
The optional when expression is a boolean expression, that if it evaluates to t r ue will include
the entry in the processing.

«Wthd ause»
Thewi t h clause makesit possible to declare that the evaluation should be made with referenced
property sets, and other concernsin effect. The wi t h clause also makes it possible to state new
properties and concerns.

«Bui | der Ref er ence»
A reference to another buildersis one of:

» A # followed by the name of a builder in the same unit, optionally followed by alist of argu-
ments®. This may also be written with the keyword uni t before the #.

» AnID being the alias of arequired capability declared in the unit being processed, followed by
# and a builder name, optionally followed by alist of arguments.

57



Draft The Build Unit Draft

A specification of arequired capability followed by a# and the name of a builder (applicable
to a unit being the resulting resolution of the requirement) optionally followed by a list of
arguments.

» Or alist of multiple references as described above enclosed in { }.

as «| D»
It is possible to alias the input requirement using the keyword as followed by a name. This cre-
ates alocal variable in the builder’s context that may be referenced in the logic that follows the
declarative input/source/output statements. This is a valuable mechanism as it allows for post
processing of individual parts of the resulting input before returning the result, or for returning
only parts of the input. See below for examples.

,éb Note
Note that these aliases are not available in the declarative input itself — you can not
declare an alias and then use it as areference to the result inside input.

\ Tip

~ -

Y ou can use the same alias for multiple builders. The produced result of al builders
with the same alias will be merged and made available via alocal variable having
the alias asits name. See the section called “Input examples using 'as ID™” for how
this can be used.

Input examples
An input specification is typically very simple, like in this example which references the result from
abuilder in another build unit:osgi.bundle (etc) subject to change to an interface name

i nput { osgi.bundl e/ org. nyorg. nybundl e/ 1. O#anot her Bui | der ; }

If the referenced builder is defined for the same unit, you just have to referenceit viaits builder name
(Or if you prefer to be more explicit, the keyword uni t has the same function as “this’ in java - the
exampl e below shows both forms).

i nput { #anotherBuilder; } input { unit#anotherBuilder; }

It is possible to reference a required capability declared in a build unit via its alias. You may for
instance use the same requirement in many builders, and rather than repeating the same requirement
multiple times, you can declare it at the unit level, and then reference it asin this example:

unit UsingAnAlias {
requires osgi.bundl e/ org. nyorg. nybundl e/ 1.0 as MyBundl ¢;

bui | der exanpl eBui | der {
i nput { MyBundl e#soneBui | der; }
}

}
Input examples using ‘when’

Here is a simple example using a when expression to filter the input if different bundles should be
used on different platforms (and thisis not already handled by bundles with appropriate filters):

i nput {
when ($target.plaform== "wi n32")
o0sgi . bundl e/ org. nyor g. nyW nBundl e/ 1. O#soneBui | der ;
when ($target.platform!= "w n32")

0sgi . bundl e/ or g. nyor g. nyDef aul t Bundl e/ 1. O#someBui | der ;
}

Using a compound list makes it possible to filter several requirements at the same time:

58



The Build Unit Draft

i nput {
when ($target. pl af orne="w n32") {
0sgi . bundl e/ org. nyor g. nyW nBundl e/ 1. O#soneBui | der;
0sgi . bundl e/ or g. nyor g. nyW nBundl e2/ 1. O#soneBui | der;

}

Input examples using ‘with’

Itispossibleto useawi t h clauseto evaluate a particular builder or set of builders with a specified set
of concerns (properties and other advice). The mechanism allows reuse of already declared property
sets and concerns as well as direct declaration of such.

As an example, we want to make it possible to run obfuscation on jar files in bundles. To do
this, we first declare a concern called Obf uscat i on that injects/weaves this capability into every
osgi . bundl e. (You may want to do more than just provide the obfuscated bundles via a separate
builder — it could for instance be useful to be ableto make al referencesto thejars of abundle aways
get the obfuscated version - see the section called “ Concern examples’. Here is the example where a
builder called obf uscat edJar s isadded to all OSGi bundles.

i mport org.soneorg. Cbfuscator; concern Obfuscation {
context unit inplenments osgi.bundle {
bui | der obfuscatedJars {
input { unit#jars }
Obf uscat or. obf uscat e(i nput);

}

The defined concern can then be applied when evaluating input. Here is an example, where some
advanced graphics code in multiple bundles are obfuscated. To keep things simple, we assume that
this builder is declared in the same unit as the Obf uscat or concern.

bui | der graphi cSubsystem {
i nput {
with Qbfuscation : {
osgi . bundl e/ or g. super graph. | ayout/[ 1. 0, 3. 0] #obf uscat edJars;
osgi . bundl e/ or g. super graph. ani mati on/[1.0, 3.0]#obfuscatedJars;

}

The use of thewi t h expression will weave the Obf uscat i on code into the model, and then evaluate
the builders. It is now possible to use the obf uscat edJar s builder on these bundles. Once the input
has been processed, the Obf uscat i on is unwoven®.

Thewi t h expression accepts references to declared concerns, and property sets. As an example, you
may need to feed the obfuscater logic with different properties for different platforms.

i mport org.sonmeorg. Obf uscat or;
concern Cbfuscation { /* as in the previous exanple */ }

properties ObfuscationProperties {
$or g. super gr aph. obf uscation = "default";
when ($target.platform== "w n32")
$or g. super gr aph. obf uscation.type = "full";

}

bui | der graphi cSubsystem {
i nput {
with Qbfuscation, ObfuscationProperties : {
osgi . bundl e/ or g. super graph. | ayout/[ 1.0, 3. 0] #obf uscat edJars;
o0sgi . bundl e/ org. super graph. ani mati on/[1.0, 3.0]#obfuscatedJars;

}

Sactually| the context containing weaved/wrapped elements just goes out of scope.

59



Draft

The Build Unit Draft

If the advice and properties are only required in one particular place, you can state them directly in the
wi t h part, or in combination with referenced concerns and properties. The exampl es shows declaration
of aproperty set ( but it is also possible to declare any concern).

bui | der graphi cSubsystem {
i nput {
wi th Cbfuscation
properties {
$or g. super gr aph. obf uscation = "default";
when ($target.platform== "w n32")
$or g. super gr aph. obf uscation.type = "full"

}

osgi . bundl e/ or g. supergraph. | ayout/[ 1. 0, 3. 0] #obf uscat edJar s
0sgi . bundl e/ or g. super graph. ani mati on/[1. 0, 3. 0] #obf uscat edJars

3
}

Hereis atypical combination of a concern adding a builder and a default property set:

i mport org.soneorg. Obfuscat or
concern Obfuscation {
context unit inplenments osgi.bundle {
bui | der obfuscatedJars {
input { unit#jars }
Obf uscat or. obf uscat e(i nput)

default properties {
$or g. super gr aph. obfuscati on = "defaul t";
when ($target.platform== "w n32")
$or g. super gr aph. obfuscati on.type = "full";

}

This declaration means that whenever the Obfuscation concern is brought into effect the properties
defined in the default property set will be set if not already set from the command line, or in an outer
scope.

/ém Note

Thewi t h expression is a powerful general expression that you may also use in the non
buuilder logic. There are many more possibilities using concerns, and properties (they
can extend a concern or property declaration, you can place a property set inside a con-
cern etc.).

Input examples using 'as ID'

Aliases in the input are useful to enable referencing (and merging) different parts of the input in the
subsequent logic. Here is a smple example, where several builders are evaluated, but only a subset
is returned.

bui | der exanpl e {
i nput {
uni t #anot her Bui | der
{ unit#builderA; unit#builderB; } as inportant;

}
i mportant;

}

In this example, the b3 engine will resolve al of the references and evaluate them (i.e., anot her -
Bui | der,bui | der A,and bui | der B). Analiasi npor t ant isdefined for bui | der Aand bui | der B.
Thefinal expression' i nport ant ; ' defines the produced result of the builder — the combined result
of bui | der Aand bui | der B.

Y ou can merge disjunct results by using the same alias asin this example:

60



Draft

The Build Unit Draft

bui | der exanpl e {
i nput {
uni t #anot her Bui | der as regul ar;
{ unit#buil derA; unit#builderB; } as inportant;
wi th SoneConcern : unit#yet Anot herBuil der as regul ar;

}

/1 variables 'regular' and 'inportant' refers to the respective nerged results

}

The ability to merge digunct results reduces the need to introduce intermediate builders to group
certain results.

Using parameterized builders

It is possible to use parameterized builders. This is not much different than having functions with
parameters.

It is expected that top level builders (i.e., builders invoked from the command line, or from a user
interface) are declared without parameters to make it easy to invoke them - a user interface may filter
them out for instance to avoid having to ask the user for input in a complicated dialogue.

Calling functions with parameters is a general feature in the b3 language, and the topic is explored in
detail in the section about functions. Here is a simple example using a parameterized builder:

bui | der bob(String brandNane) {
/* bob does sonething interesting with brandNane, like using it to filter,
passing the value to an external builder, etc.
*/
} builder pat {
input { bob("Super Zlide - the ultimate ganm ng experience"); }

}

Thereisawaysoneimplicit parameter — uni t , which alwaysrefersto the build unit being processed.
When defining builders inside a build unit, this parameter is never declared (it is implicit that these
builders will be used only for the unit in which they are declared). When declaring builders outside
the scope of build unit (in concerns), the unit parameter is explicit.

Source

The source of a builder can be declarativly stated. The simplest form is a reference to a top level
source folder asin:

source { src/; }

The source declaration can however be more complex, listing sets of referencesto files, and usefilters
to only inlude references under certain conditions. The source declaration can also include annotation
— properties set when the source declaration is eval uated.

A source declaration evaluates to a Bui | dSet , the same structure that is produced as the result of a
builder. This means that the source declaration can ssimply be used as the result of a builder if al that
iswanted is a set of referencesto the source.

Here is the syntax for input:
Source : source { URl VectorEl enent* Annotations? } ;

URI Vect or El enent : FilteredEl enent | UnbasedEl enent | BasedEl enent ;
UnbasedEl emrent : UR (, URI)* ; ;
BasedEl enent : URI [ UR (, URI)* ]
Fi | t eredEl enent :

(when ( Expression ) (UnbasedEl ement | BasedEl ement | ConpoundEl enent) ;
ConpoundEl enent : { URl VectorEl ement* } ;

Annot ations : annotations { AnnotationsPropertyStatenents } ;
Annot ati onsPropertyStatements : ... // the sane as a property set

61



Draft The Build Unit Draft

The URI elementsused areresolved before use; the URI fragments (enclosed in [ ] in the BasedElement)
are resolved against the base URI (the URI before the[]), and all (resulting) URI elements are resolved
against the sour ceLocat i on URI found in the build unit being processed.

Output

It is possible to declaratively state the output of a builder — i.e., where the result of the build action
logic is supposed to be placed (or rather “is placed” in the case of invoking some external action that
outputs things in some location).

The absolutely simplest use of out put iswhen the result is already existing in the file system (pro-
duced by some action outside of b3's direct control), then all that is needed is to return the declared
output. In other situations, some logic is processing the input or source and needs to know where
generated artifacts are supposed to end up in the file system. The output thus has dual use — as a
specification of what to return, and as a parameter to the build logic.

The declaration of out put is exactly the same as the declaration of i nput except for the keyword
out put (instead of i nput ). The resulution of URI elementsin the out put declaration is performed
against the processed unit’sout put Locat i on.

Here are some examples:
output { plugins/; features/; }
output { tnp/ [ plugins/, features/]; }

/1 using filters

output { when (S$target.platform== "w n32")
win/ [ plugins/, features/];
when ($target.platform!= "w n32")

nonWn/ [ plugins/, features/];

}

/'l nested construction with filters

out put {
when ($target.os == "linux") {
when ($target.ws == "notif")
xwi ndows [x11/, notif/];
when ($target.ws != "notif") gtk/;
}
}

Annotations in input, source and output

Annotations are stored as typed key value pairsin the Bui | dSet instances resulting from evaluating
i nput , sour ce, and out put (aswell asinthe merged local aliased results). Typically annotation are
produced by the building logic — to hold information about the built result that would not easily be
obtai nable otherwise (such asresolution of version qualifiers), but it is possible to declare annotations
directly using the same syntax as for property sets.

When annotations are declared they are evaluated as follows:

* Ininput, the annotation act as default properties applied on the merged annotation of all the pro-
duced result. Aliased merged sub results however only contain the annotations merged from the in-
cluded builders. Note: when this document was written, the ability to declare (default) annotations
in the input was missing from the implementation.

* Insour ce, theannotations act asregular properties asthey are applied when the source declaration
is evaluated.

* Inout put , the annotations act as default properties and are evaluated if the output is the produced
result from he builder. This enables the builder’s logic to manipulate the outputBui | dSet ’s an-

62



Draft

The Build Unit Draft

notations until it is returned. See the section called “ The BuildSet” for a description of available
Bui | dSet functions.

/@J A note about the rationale for annotations

You may wonder about the rationale to use the property like annotations instead of a
more type safe and strict approach, and this deserves a comment. One goal with b3 isto
interface well with many different kinds of external (existing) build systems, and these
are often of command line type and script based tools that have limited ability to deal
with parametersin calls. Using properties to communicate with such tools have proved
to be successful in Eclipse Buckminster and we extended the support for properties to
also be able to return them in the form of annotations.

DISCUSS: Should we have a more restrictive policy? It isgood to have annotations be declared. If an
external builder triesto set something else - that could be an error. Thisto make it possible to detect
which annotations that are useful to reference. The downside is when there is an actorsthat produces
alot of annotation - it hasto be declared every time, or the logic that wraps some actor would need to
only update annotation that were actually declared. Yet another alternative isto specify an interface
that the annotations should comply with. Using reflective modeling is also an option worth exploring.

The builder’s logic

As dready described in the previous sections about builder, the builder’s logic does not have to be
stated if all that iswanted is the return of the evaluated input, source, or output. Also shown in earlier
sections is that the variables input, source, and output refer to the corresponding evaluated result (of
type Bui | dSet ). The merged aliased subresults from the input are also available via variables with
the same names as the aliases (these are also of type Bui | dSet ).

Thevariable uni t isalso bound in the builder’s context. It refersto the build unit being processed by
the builder (much like the implicit variablet hi s in Java).

The BuildSet

TheBui | dSet isadatastructure used to carry data between Builders. The same data structureis used
for both input and output, and it consists of a collection of URI e ements, and typed named annotations.

Seethe sectionscalled Input, Source, and Output for examplesof how Bui | dSet instancesare created
and passed between builders. Most of thetimethe functionality availableviathe declarative statements
are enough, but when authoring more complicated build logic, and interfacing with external tools,
thereis aneed to use the Bui | dSet API directly.

Here is a selection of the funtions available for Bui | dSet .

bool ean cont ai nsVal ue (Bui | dSet b, String nane)
Returnst r ue if the annotation is defined in the Bui | dSet (may havethevauenul | )

Qbj ect defineVal ue (BuildSet b, String name, Object val ue, Type cl ass)
Defines a constant value have the given name and type. Returns the defined value.

Qbj ect defi neFi nal Val ue (Bui | dSet b, String nane, Object value, Type cl ass)
Defines a constant final value have the given name and type. Returns the defined value.

(bj ect defineVari abl eval ue (Bui | dSet b, String nanme,bj ect val ue, Type cl ass)
Defines a constant value have the given name and type. Returns the defined value.

Obj ect defi neFi nal Vari abl eVal ue (Buil dSet b, String nanme, Object value, Type
cl ass)
Defines a constant final value have the given name and type. Returns the defined value.

63



Draft The Build Unit Draft

Iterator<URI > getPathlterator ()
Returnsan | t er at or <URI > that iterates over all URI referencesin the Bui | dSet .

(bj ect getVal ue (BuildSet b, String name) throws B3Engi neException
Returns the value of the value/variable with the given name. Throws B3Engi neExcept i on
(B3NoSuchVari abl eExcept i on) if the value was not defined.

Bui | dSet nerge (Buil dSet b, Buil dSet mergedSet)
Merges (adds) al the URI references and values from the mer gedSet into b. Returnsb.

Unit & Builder Concern

Asalready showninthe section called “ Concern” aconcernisan aspect oriented programming concept
which groups a set of advice that is dynamically woven into the fabric of the logic. Concerns have
content that have an effect on everything, or on something in a specified context. One such context is
shown in the section called “Function concern context”, where it is explained how functions can be
adviced. In this section we focus on how build units and builders can be advised.

Advising build units is done in a unit context, and builders are advised in a builder context. Both
of these have queries/predicates that define which units/builders to advise, and then a series of +/-
expressions that add or remove features.

Builderscan also beintroduced directly inaconcern for the purpose of adding or overriding an existing
builder.

Adding or overriding builders

Builders can be added directly in a concern. Such a builder can override an existing builder with the
same signatureif the existing builder is not marked to befinal. A builder defined thisway in aconcern
has the same syntax as when defining a builder inside a build unit (as shown in the section called
“Builders”), with one difference — the builder must be declared with parameters, and have a first
parameter called uni t which must be of atype that implements or extends the Bui | duni t interface.
Hereisan example:

concern FruitProcessing {
bui | der waste(Fruit unit) {
input { unit#peel; unit#seeds; }
}
}

In this example, abuilder called wast e is added. When the concern Fr ui t Pr ocess isin effect, it is
possible to invoke wast e on any build unit that implements the interface Fr ui t . When invoked, the
builder will merge the result of getting the peels and seeds from the unit.

Unit Concern

The unit concern context has the following syntax:

Uni t Concer nCont ext :

«DOCUMENTATI ON»?

context unit

«Uni t Query» {

( «Bui | der»

| «Bui | der Concer nCont ext »
| (+ requires { («RequiredCapability» ;)+ })
| (+ requires «RequiredCapability» ;)
| (- «RequiresPredicate» ;)
| (+ provides { («ProvidedCapability» ;)+ })
| (+ provides «ProvidedCapability» ;)
| (- «ProvidesPredicate» ;)
)
(

*

- default properties «PID» (, «PID»)* ;)?




Draft The Build Unit Draft

(+ default properties «PropertySet» )?

«DOCUVENTATI ON»
Java Doc style documentation.

context unit
Declares that thisis advice for build units.

«Uni t Quer y»
The unit query is a predicate expression using &&, | | , !, and () in combination with predicates
for unit name, implements, requires, and provides. Some of these predicates are the same aswhen
advising builders, as explained in the section called “Predicates in concern context”. Here is a
simple example:

~/org\.myorg\..*/
&& inpl emrents osgi.bundle
&& requires osgi.bundl e/ org. myorg. ol d. x

«Bui | der »
Thisisadeclaration of aBuilder as shown in the section called “Builders’.. The declared builder
will be made available for all units that match the Uni t Query.

«Bui | der Concer nCont ext »
This is a builder concern (as described in the section called “Builder Concern”). The builders
matched by this nested concern are restricted to buildersfor unitsthat match the parent unit query.

+ requires ...
Adds one, or several required capabilities to the unit. A required capability is entered the same
way as when declared for a build unit directly.

- «Requi resPredi cat e»
Removes required capabilitiesdeclared for matching units. Removal of requirementsis performed
before requirements are added, so to replace arequirement use a-/+ combination. The syntax for
the predicate is shown in the section called “ Predicates in concern context”.

+ provides ...
Adds one, or several provided capabilities to the unit. A provided capability is entered the same
way as when declared for abuild unit directly.

- «Provi desPredi cat e»
Removes provided capabilities declared for matching units. Remova of requirements is per-
formed before requirements are added, so to replace a requirement use a -/+ combination. The
syntax for the predicate is shown in the section called “ Predicates in concern context”.

- default properties «PID» (, «PlD»)*
Removes the listed properties from the unit’s set of default properties.

+ default properties «PropertySet»
Adds a property set to the default properties specified for the unit. The property set has the same
syntax as described in the section called “Properties’..

Builder Concern

The builder concern context has the following syntax:

Bui | der Concer nCont ext :
«DOCUMENTATI ON»  ?
context builder (( «ParameterQuery» ) )?
Bui | der Query {
( (- provides «ProvidesPredi cate» ;)

65



Draft

The Build Unit Draft

| (+ provides «ProvidedCapability» ;)
)*

precondition ; )?

precondition ((: «Expression» ; )| ( «Bl ockExpression»)))?
postinputcondition ;)?

postinputcondition ((: «Expression» ; )|( «Bl ockExpression»)))?
postcondition ;)?

postcondition ((: «Expression» ; )| ( «Bl ockExpression»)))?
default properties «PID» (, «PID»)* ;)?

default properties «PropertySet» )?

et e e
+ 0 4+ 0 4 4

(+ input «Prerequisite»)
(- «lnputPredicate» ;)

(
I
)

*

( (+ source «Conditional URlI Vect or »)
| (- source «SourcePredicate» ;)
)

*

(- annotations source «PID» (, «PID»w)* ;)?
(+ annotations source «PropertySet» )?

( (+ output «Conditional URlI Vect or»)

| (- output «QutputPredicate» ;)

)*

(- annotations output «PID» (, «PID»w)* ;)?
(+ annot ati ons output «PropertySet» )?

«Expressi onLi st »?

}

/@D Note
A builder concern context can appear in a concern, or inside a unit context. A builder
concern context wrapped in a unit concern context will only affect builders that are ap-
plicable to the units matched in the unit context.

«DOCUVENTATI ON»>
Java Doc style documentation.

cont ext buil der
Declares that thisis advice for a builder.

«Bui | der Query»
Thebuilder query isapredicate expressionusing &, | | ,!,and () incombinationwith predicates
for builder name, builder parameters, requires (in input), and provides. Some of these predicates
are the same as when advising units, as explained in the section called “Predicates in concern
context”. Hereis asimple example:

gener at edDocs provi des doc. doct ype. ext ensi onref/ _

( «Par anet er Query» )
An optional parameter query can be specified in parentheses to restrict the affected builders to
those matching the parameter query. The parameter query is the same as when advising function
as shown in the section called “ Function concern context”.

/ém Note
If a parameter query is used, the first parameter for uni t must be included in the
query or there will be no matches. Thisis also true when acont ext bui | der is
used inside acont ext uni t since the surrounding unit query can match units of
different type.

66



Draft

The Build Unit Draft

provides ...
Adds one, or several provided capabilities to the builder. A provided capability is entered the
same way as when declared for a builder directly (as shown in the section called “Builders’.

«Provi desPredi cat e»
Removes provided capabilities declared for matching builders. Removal of requirementsis per-
formed before requirements are added, so to replace a requirement use a -/+ combination. The
syntax for the predicate is shown in the section called “ Predicates in concern context”.

precondi tion
Removes all precondition expressions.

precondition ...
Appends one expression, or ablock of expressionsto the builder’ s existing pre-conditions (which
may be empty).

posti nput condition
Removes all post-input-condition expressions.

postinputcondition ...
Appends one expression, or ablock of expressions to the builder’ s existing post-input-conditions
(which may be empty).

postcondi ti on
Removes all post-condition expressions.

postcondition ...
Appends one expression, or ablock of expressionsto the builder’ sexisting post-conditions (which
may be empty).

default properties PID (, PID)*
Removes the listed properties from the builder’s set of default properties.

default properties «PropertySet»
Adds a property set to the default properties specified for the builder. The property set has the
same syntax as described in the section called “ Properties’.

i nput «Prerequisite»
Adds a prerequisite (which may be compound) to the builder’ sinput. The prerequisite is entered
the same way as for regular input as described in the section called “Input”.

i nput «l nput Predi cat e»
Removes aprerequisite from theinput. The syntax for the predicateis shown in the section called
“Predicates in concern context”.

source «Condi ti onal URI Vect or »
Adds a source vector (which may be conditional and compound) to the builder’s source. The ve
isctor entered the same way as for regular source as described in the section called “ Source”.

source «SourcePredi cat e»
Removes an URI from the source. The syntax for the predicate is shown in the section called
“Predicates in concern context”.

annot ati ons source «PID» (, «PlD»)*
Removes the listed properties from the source annotations.

annot ati ons source «PropertySet»
Adds a property set to the default annotations specified for the source. The property set has the
same syntax as described in the section called “ Properties’.

67



Draft

The Build Unit Draft

+ out put «Condi ti onal URI Vect or «»
Adds an output vector (which may be conditional and compound) to the builder’s output. The
vector is entered the same way as for regular output as described in the section called “Output”.

- out put «Qut put Predi cat e»
Removes a URI from the output. The syntax for the predicate is shown in the section called
“Predicates in concern context”.

- annotations output «PID» (, «PlD»)*
Removes the listed properties from the output annotations.

+ annot ati ons out put «PropertySet»
Adds a property set to the default annotations specified for the output. The property set has the
same syntax as described in the section called “Properties”..

«Expr essi onLi st »
Thelist of expressions is executed instead of a matched builder’s original logic. A proceed ex-
pression may be used to call the advised builder’ slogic. Thisworksthe same way asfor function,
and more details can be found in the section called “ Function concern context”.

Predicates in concern context

This section contains an explanation of the predicates used in build unit and builder concern contexts.

name
A name predicate is used to match aname. The predicateisone of aqualified name, or aqualified
name enclosed in" ", aliteral reqular expression, or awildcard *_’

builder name
A builder name predicate is a name predicate.

unit name
A unit name predicate is a name predicate optionally followed by a/ and aversion range literal.
Example:

org. myorg. nybundl e/[1.0.0, 2.0.0]

implements
An implements predicate is used to match build units that implements a particular interface and
has the syntax i mpl enment s «TypeRef » asin:

i npl ements Gsgi Bundl e

provides
A provides predicate is used to match build units or builders that provides a particular capability.
The syntax ispr ovi des followed by a capability predicate.

requires
A requires predicate is used to match build units that require a particular capability. The syntax
isrequi r es followed by a capability predicate. Matching environment requirements is done by
usingrequires env.

capability predicate
A capability predicate is used in other predicates. It has the following syntax:

«NanmePr edi cate» / «NanePredi cate» ( / «VersionRangelLiteral »)?

Where the first name predicate is for the capability name space, the second for the capability
name. The optional version range literal specifies the range of matched versions.

input
An input predicate is used to match a builder with a paricular input, and to specify removal of
input from a builder. The syntax is:

68



Draft

The Build Unit Draft

(«Capabi lityPredicate» | «UnitNamePredicate» | unit?) # «Buil der NamePredi cat e»

i.e., either afull capability predicate, or a predicate for a unit name, or a reference to a builder
in the same unit (as the matched builder). (The use of the keyword uni t is optional). The name
predicate following the # is a name predicate for the builder name.

source
A source predicate is used to specify removal of a particular source URI. The predicateis a URI
predicate.

output
An output predicate is used to specify removal of a particular output URI. The predicateis a URI
predicate.

URI predicate
An URI predicate is part of a source or output predicate and is written on the form:

(«Path» [ «Path» (,«Path»)* ])
| «Pat h»
| «Literal Regexp»

where Pat h is aURI fragment (which can be entered without quotes if it is a simple path). Here
are three examples of URI predicates:

src/ [a, b]
src/c
"resource:/org. myorg. myproj/src" [a, b]

Concern examples

Adding abuilder to osgi.bundle

i mport org.someorg. Obf uscat or;
concern Obfuscation {
bui | der obfuscatedJars(Osgi Bundl e unit) {
input { unit#jars }
out put { obfuscated/; }
Obf uscat or. obf uscat e(i nput, output);
out put ;

}

If you want to replace a property set with another and override a property you can do asfollows. This
will make all references to the property sett ar get Properti es refer to the the property set defined
in the concern:

/**
* Repairs an issue where sone products have the wong platform nane
* in their property sets. Using a regular expression as there are too
* many products with too many versions to enable themto |ist them
*/
concern FixProperties {
context unit osgi.bundle/~/org\.myorg\.product\..*/ {
properties targetProperties extends super.targetProperties {
$target.platforn"w n32"; // override

}

69



Draft Draft

Versions

Eclipse b3 supports versions and version ranges from different versioning schemes. If you areworking
with Eclipse and 0sGi based components, you are probably already familiar with how they work —
and you can continue to use both versions and version ranges expressed just like they are expressed
everywhere else in the Eclipse user interface. If you however step outside of the 0sGi realm, there are
many different versioning schemesin use. Eclipse b3’ s version handling is based on the omni version
implementation found in Equinox p2.

If you are only developing for Eclipse and 0sGi, you will till benefit from the general overview of
version and version ranges, and the handling of version qualifier substitution. If you are using Maven
you will also need to learn about how to handle these types. Finaly, if you are working on extending
b3, or if you want to use b3 in domains that use unique version formats you need to understand more
about the full omni version scheme.

The really detailed implementation details are found in Appendix D, Omni Version Details.

Omni Version introduction

The omni version isacanonical format. Thereisonly oneimplementation and it is capable of describ-
ing versions in awide range of versioning schemes. Thereis no central registry of version formats —
each version or rangeinstance carriesthe full specification. That each version carriesthefull definition
means that versions can be transmitted between systems without risk of not functioning because of a
missing definition. The fact that there is only one implementation means that there is no risk of not
functioning because a particular implementation is not available in a system.

The omni version’s canonical format is called the raw format, and it is constructed by parsing an
original version string using a format. Since the raw format retains the format and original version
stings, it is possible to recreate the input.

Omni versions always compare version based using the translated raw format. This creates a strict
ordering of all versions across al versioning schemes.

Example 4.1. An OSGi version expressed in raw
raw. 1.0.0.'r1234' /format (n[.n=0;[.n=0;[.S=[a-zA-Z20-9_-]1;]1]1):1.0.0.r1234

In Example4.1,“An OSGi version expressed inraw” you can seewhat the 0sGi version 1. 0. 0. r 1234
looks like in raw format. Luckily, when using b3, you don’t have to use such strings in your input as
you will seein the next section.

b3 and omni version

When specifying versions (and version ranges) in b3 textual form, the format pattern isreferred to via
adefined name. NOT YET IMPLEMENTED: This feaure is not yet implemented. Currently, version
and version range string are passed 'asis' to the respective constructor s/factory methods. In order to
support this, b3 needs extension points that specify the format, and the terminal convertersfor version
and version range needsto interpret and apply the format. See bug 304948 [ https://bugs.eclipse.org/
bugs/show_bug.cgi?id=304948].

70


https://bugs.eclipse.org/bugs/show_bug.cgi?id=304948
https://bugs.eclipse.org/bugs/show_bug.cgi?id=304948
https://bugs.eclipse.org/bugs/show_bug.cgi?id=304948

Draft

Versions Draft

b3’s

Internally the b3 model is based on omni version. The b3 DSL handles conversion of versionand
version range in textual form to omni version instances.

New named formats can be introduced via a b3 extension point. No coding is required, but the exten-
sion must be provided by abundle.

named formats

Eclipse b3 has the following named formats™:

OSGi The  0sGi verson  format on the format
maj or . m nor. micro. qual i fi er where mgjor, minor, and
micro arenumeric, and qualifier isastring. Major must be spec-
ified, but minor and micro defaultsto O if omitted. The qualifier
isoptional.

Triplet A version format used by Maven, and others, which is similar
to 0sGi, but where an empty qualifier compares as larger than
any qualifier.

String A single segment version using string comparison as performed
by Java String.

Timestamp A version format wheretheversionisexpressed asatimestamp
and compared in ascending order.

For more details on the rules, and how these named formats are expressed, please see Appendix D,
Omni Version Details.

Version ranges

Version ranges are expressed using the following syntax:

{'T1'C} «l owner -bounds» [, | «<upper - bounds»]{ 7|}

Description:

e Therange must start with aliteral [ or (, and end with aliteral ] or) .

* «l ower - bounds» isaversion in the specified format

e Theuseof [ at the beginning means that the «| ower - bounds» isincluded in the range.

* Theuser of ( at the beginning means that the «I ower - bounds» is excluded from the range such
that any v > «l ower - bounds» isincluded.

* Similarly, a] or) at the end specifies that the «upper - bounds» is included or excluded from
the range.

* |If the optional upper - bounds is not specified, the value of the «I ower - bounds» is used here as
well (and in this case both ends must be inclusive).

» Therange must be well formed so that «I ower - bounds» <= «upper - bounds».

» A single version «x» can be used where arange is expected — this means any v >= «x»

These formats are compatible with the formats of the same name as used in Eclipse Buckminster.

71



Draft Draft

Part Ill. Examples

In this part we are showing several examples, from the simple Hello World kind, to a full build of a RcP product
and p2 repository. As you probably want to run through these examples live, you should follow the instructions
in Appendix A, Installation, so you can experiment with the examples yourself.




Draft Draft

£S 5
Example 1 - TBD

Placeholder for examples (building POJO, Update Site, RCP, etc.)

73



Draft Draft

Part IV. Appendix




Draft Draft

Table of Contents

F N [ 0 7 = o PSP 76
Installing for EClIPSE SDK ..ovniiiiiiii i e e e e e eeas 76
Installing the Headless PrOAUCE ..........cc.uiiiiiii e 77
10000107 ol (o] £ SO SPPTPPP 79

SUDVEISION (SVN) wtueiiieetiietii e et e et e e e e a e e e s e e e e et s e et e e et e e et aeeaneeaneeeanss 79
o 1T 0 80
ECliPSE tECNNOIOQY . .vvuieiiice e e e e e e e 80
o 1 oGP 80
[ = 10 1 PR 80
Java Development TOOIS (IDT) ovvueerneiiiieeiie e e e e e e e e e e e e e ean s 80
Plugin Development EnVironment (PDE) .......ccuueruniereineeeieeeiieriinessnieesieesnnaanns 80
Rich Client Platform (RCP) ....cccuuiiiiiiii e e e e 81
2 8l
The EClipSe COMPONENT tYPES ..ovuuiiri e e et e e e e e e e e e e aan s 81
Plugins, features and 0SGi buNAIES ..........ooviiiiii i 81
L =0 1= 1 82
[ 00 (1 o £ P 82
THE WOTKSDACE ... ievieii et e e e e e e et e et e e e e e e e eaens 82
The Target Platform ......oouei e e e 83
(=0 o g oo 1o 1= 4 o o [P 83
N A PP 83

O + 2 UUOPOPOPTOUOPPPPOPPIOOR . . . i coocoooe TR E PR TT TP RPRRTPTRPRPTTTORIIN .. oo WETTTTITRTTITE 85
The INStallable UNIt ... et e e e eees 85
NV EC oo o e 00 0] Y/ 86
N 4 U= ot B =001 1 (oY 86
Combined / co-located rEPOSITONIES ... ..vvvueei e e e e e e 86
0] 11 =SSP 86
Y2111 0= 1 = 86
L0 =0 0] 1= R 87
o] 1T 1 o 87
S = |1 o 88

I LTS D S o [ | P 88
The director appliCation ...........couiieiiee e 89
L= o222 4= - = 89
THE EPP WIZAI ...oeiviieecei et 89
The BUCkminster iNStaller .........ooiveuuiiiiee e 89
S 1 oL o 90
ST 1010107/ 91

D. OMNi VErSioN DELAIS ....uuoieeiiieiee e e e e e 92
F g1 (8ot [ o U SPPPTPPPIN 92
2T (0 £ o 92
10T 0111011 1o 93

V2= £ Lo o [P 93
L0 1410 "o o 93
Raw and Original VEersion StHNQ .....oovevieeiieiii e ee e e e e e eenes 94
OMNi VEISION RANGE ...vuiiiieii et e e e e e e e e e e e s e e e e e eeeen 94
Other range fOrMIALS .....vve i e r e e aan s 94
Format SPECITICAIION ......iiiicei e 95
Format Pattern EXPlanalion ...........ooevuiieiiieiii e e e e e e e e e e e e ean s 97
Examples of VEersion FOMMEES .........ovuuiiiiieiii e e e e e e e e e e ea e eanes 99
LI To] 1T TS o] o o A 101
More examples USING “FOrMAL’ ........ovvunieii e r e e e 102
e PP 103
RESOUITES ...ttt ettt et et et e e e et e e a e ena s 105

75



Draft Draft

Appendix A. Installation

This Appendix describes how to install b3 for Eclipse versions 3.6. Asthis draft of the book describes
work in progress, you should consult the b3 wepage for current installation instruction and information
about available versions. W.I.P —INSTRUCTIONSIN THISPART DO NOT HAVE VALID URLs TO
UPDATE STES PLEASE FOLLOW INSTRUCTIONSON THE B3 DOWNLOAD PAGE.

N Tip

~ -

It is possible to develop for older Eclipse versions by using a target platform suitable
for the applications you are building. Using a target platform is the recommended way
of building as ypu can then update the IDE and headless tools independently of your
built applications.

Eclipse b3 comesin two different packagings— for usein the Eclipse SDK (the I DE), and for headless
use.

Warning
O Do NOT install the headless features into your Eclipse SDK! (There is absolutely no
reason to do this, and it will cause instabilities).

,éb Note

The latest download instructions are always found at http://www.eclipse.or g/mod-
eling/lemft/b3/download/ [http://mww.eclipse.org/modeling/emft/b3/download/]. The
information in this appendix describes the instructions for the versions current in March
of 2010.

Installing for Eclipse SDK

1. Check if b3 isalready availablefor install. Ypu may already have access to a repository that

contains Eclipse b3. Check under Help — Install New Software... for the b3 category. If you can’t
find the b3 category, you need to add arepository location.

2. Addrepository location (if needed). Installing intothe Eclipse sbk isdone by adding the repos-
itory you want to install from. Thisis done in Eclipse 3.6 by adding the repository location either

under ‘Help - Install New Software...” or under ‘Eclipse —» Preferences... - Install/Update —
Available Software Stes' and then selecting the wanted features under ‘Help — Install New Soft-

ware... .

Please consult the b3 download page for an up to date list of available repositories, and alternatives
such as downloading afull copy of arepository to facilitate alater local install.

For convenience, here are the current locations — please note that these links are for use with
Eclipse p2 installer, and not for use in aweb browser:

* b3 update site for Eclipse 3.6 (the 'latest fixes ).  http://download.eclipse.org/TBD/TBD
TODO: b3 update site.

» Select features. There are several features available. They are categorized into core and op-
tional. Please note that you are expected to make a choice of what optional categories you need.
Do not select al of them.

76


http://www.eclipse.org/modeling/emft/b3/download/
http://www.eclipse.org/modeling/emft/b3/download/
http://www.eclipse.org/modeling/emft/b3/download/

Draft Installation Draft

Warning
O Eclipseb3’ ssupport for Subversiveand Subclipseare mutually exclusive. DoNOT
install both.

3. Verify. Eclipseb3isnot highly visible in the Eclipse ul, so you may wonder if your installation
was successful. You can naturally try to run one of the examples, but a quick check is to look for

the menu entry File - YYY... TODO: Command to use to verify that b3 isinstalled.

Installing the Headless Product

TODO: The headless packaging of b3 is not yet available.

The Headless Product application is based on the Eclipse Runtime. This product is intended to be
used when b3’ s functionality is wanted, but without using a graphical user interface — e.g., from the
command line, in automated scripting, etc. The headless application contains only the bare minimum
to get aworking headless command line utility. To make it useful, you must install the features you
need into it, and the result can then be shared as necessary.

1. Download thedirector. The (headless) director isacommand line packaging of the p2 director
— aninstaler that is a general purpose installer for software available in p2 repositories. Consult
the b3 download page for the current address.

2. Unpack the zip.  Unpack the zip file to a location where you want the director. Note that the
director application isalso used in many headless use cases— it isnot just for installing the headless
b3, so select alocation that is reachable from your current PATH, or update the PATH to include the
location. (Y ou don’t haveto set the path if you are just installing the headless b3 as you can do this
from the directory where you unzipped the director).

3. Perform theinstall. You perform the installation by running the director with the following
command (type everything as asingle line of input):

director -r «repo-Ilocation»

-d «install-fol der»

-p b3

-i org.eclipse.b3.cndline. product

Where the command line option have the following meaning:

-r «repo-location»
Replace «r epo- | ocat i on» with the URL to the headless b3 repository. The location is cur-
rently htt p: // downl oad. ecl i pse. or g/ TBDY TODO: URI to headlessrepository, but you
should check on the b3 download page for the latest information. Alternatively, download the
entire archived repository as instructed on the download page, and the use the local URI to the
location where you unpacked the repository.

-d «install-fol der»
Replace install-folder with the folder/directory where you want the headless b3 installed.

-p b3
Type-p b3 literaly, thisisthe name of the p2 profile.

-i org.eclipse.b3.cndline. product
Type-i and the entire identity literally, this is a reference to the installable unit you are in-
stalling.

4. Install additional features (at least oneisrequired). Theinstalation in the previous step in-
stalled the basic b3 bootstrap and command line shell, the only useful thing it can perform is to

77



Draft

Installation Draft

install additional features. Y ouwill probably want support for Javaand PDE development, and some
connectors to source repositories. Y ou can use the director as shown in the previous step to install
these features or use the just installed b3 (which has a simpler syntax):

b3install «repository-url»«feature-id»][«version»]

Where «r eposi t ory- ur | » isthe same as in the previous step, and «f eat ur e- i d» is one of the
features listed below. Optionally, a specific version can be installed. Here are the features you can
install:

org. eclipse. b3. core. headl ess. feature
The Core functionality — this feature is required if you want to do anything with b3 except
installing additional features.

org. eclipse. b3. mven. feature
Maven support. (In case you noticed, there is no special headless needed for maven, thisisthe
same feature that is used with the user interface).

org. eclipse. b3. cvs. headl ess. feature
Headless cvs support.

org. ecli pse. b3. pde. headl ess. feature
Headless PDE and JDT support. Required if you are working with Java based components.

If youusethedirectortoinstall, use‘-i «f eat ure-i d». f eature. group’ asthep2 Iu identities
for featureshave a‘f eat ur e. gr oup’ suffix appended to the feature identity.

. Install svN support (if required). If you require support for Subversion (SvN), you must in-

stall this in a separate step as the required plugins have a license that is not compatible with
Eclipse EPL, and they can therefore not be distributed directly from the eclipse.org reposi-
tories. Instead, Cloudsmith Inc. has made them available in a repository located at http://
downl oad. cl oudsni t h. coml b3/ ext er nal .TODO: This update site does not yet exist.

You install either support for subversive or subclipse by issuing the following command (type
everything as asingle line of input):

director -r http://downl oad. cl oudsmi t h. conf b3/ ext er nal
-d «install-fol der»

-p b3

-i «svn-adapter-id»

Where the command line option have the following meaning:

-r http://downl oad. ..
Use the Iliteral location http://downl oad. ecli pse. org/tool s/ TBDY head-
| ess- 3. 6/ URI TBD, but you should check on the b3 download pagefor thelatest information.

-d «install-fol der»
Replace «i nst al | - f ol der » with the folder/directory where you have installed the headless
b3.

-p b3
Type-p b3 literally, thisisthe name of the p2 profile.

-i «svn-adapter-id»
Type -i and then the identity of either the subclipse or the subversive inte-
gration feature. You should use org.eclipse.b3.subclipse for subclipse, and
org. ecl i pse. b3. subver si ve for subversive.

78



Draft Installation Draft

N Tip

~ -

You can prepare afile with the b3 install commands you want to perform, and tell the
initial b3 to execute this file. This saves you work if you are installing the headless b3
on different machines. See REF: Headless b3 Chapter for more information about using
a script.

Connectors

Eclipse b3 can be extended to support many different types of connectors. Here are notes regarding
installation for those that require more than just installing the connector.

Subversion (SVN)

There are different ways to connect to a SvN — the b3 connector distributed from Eclipse is not
enough. Unfortunately, the various svN clients all contain code with licenses that are not allowed for
redistribution from eclipse.org. Cloudsmith Inc. provides these bundles from a special repository, and
you can aso get these bundles directly from the the respective publishers.

Depending on which combination of Eclipse plugins and protocols you select, and which platform
you are running on, the instructions are quite different. On Windows it is particularly complicated to
set up access over svn+ssh with use of certificates as windows does not have any support for this out
of the box (whereas Un*x systems do ).

There are currently two connectors for SN — and you have to make a choice between Subversion
and Subclipse.

Warning
O Do NOT install support for both Subversive and Subclipse in the same environment!

79



Draft

Draft

Appendix B. Eclipse

Thischapter containsabrief overview of selected Eclipsetechnology and how it relatesto b3’ sdomain
of composing component based systems.

An overview of Eclipse concepts such as the workspace, target platform, component types such as
plugins and features, is also found in this chapter.

Eclipse technology

A selection of Eclipse Technology explained.

Equinox

Equinox is the name of the 0sGi runtime underlying the Eclipse IDE. It is a general purpose OSGi
runtime. Equinox is (among many things) responsible for the loading (and unloading) of components.
It functions as the container for the rest of the system.

For more technical information about 0sGi — see http://www.osgi.org/About/Technology.

Platform

The Eclipse Platform providesthe core frameworks and services upon which al plug-in extensionsare
created. It also provides the Equinox runtime in which plug-ins are loaded, integrated, and executed.
The primary purpose of the Platform is to enable other tool developers to easily build and deliver
integrated tools.

Java Development Tools (JDT)

Java Development Tools (JDT) isthe set of tools build on top of the Eclipse platform for developingin
the Java programming language. It includes arich set of functionality for editing, compiling, debug-
ging and running java code.

When used alone, created projects are “plain java’ and management of dependenciesis handled in a
manual fashion and with this comes all the classic javaissues with specifying a class path, and making
sure al the required parts are available when running the code.

Y ouwill find more information about using b3 with “plainjava’ in TBD LINK TO BUILDING PLAIN
JAVA.

Plugin Development Environment (PDE)

The Plugin Development Environment (PDE) is a set of tools built on top of the Eclipse platform
and JoT for developing Eclipse Plugins as well as more general 0sGi bundles. PDE has a rich set of
functionality to work interactively with the additional meta data found in plugins and bundles and
supports all required operation from construction to publication.

The relationships between Eclipse plugins, features, and 0sGi bundlesis further addressed in the sec-
tion called “ The Eclipse component types”.

PDE also includes PDE-build, which consists of generation of ANT scripts that are then used to build
software headlessly.

b3 provides a much more convenient way of invoking the various build actions in PDE than the script
based PDE-build, as b3 does not generate scripts.

80


http://www.osgi.org/About/Technology

Draft Eclipse Draft

Rich Client Platform (RCP)

The Rich Client Platform (RcpP), is the name for the Eclipse technology that makesit possible to write
genera purpose applications based on the Eclipse platform. Theterm “RCP application” is often used
to denote thetop level product such asthe Eclipse IDE. Two well known open source applications built
on RCP are the bittorrent client Vuze (Azureus), and the RsS reader RSS Owl. There are also many
smaller Rcp application in the Eclipse family, such asthe p2 and Buckminster installers, the p2 agent,
i.e., small independently packaged utilities with a user interface.

Many companies build their internal applications using Eclipse RCP.

Eclipse b3 provides support for building complete RcP-products with a minimum of effort.

Equinox p2 is the relatively new provisioning platform (introduced in Eclipse 3.4 Ganymede), de-
signed to be a platform for many different kinds of provisioning solutions, and specifically designed
to be a replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionally
rich and well tested with over ayear of use, and with close to 2000 unit tests having been constructed.
In 3.4 it existed in parallel with the Update Manager, and in 3.5, p2 has replaced it completely.

As p2 is heavily used by b3, and p2 also defines the format of the typical end result (an installable
system, or pluginsto such a system) we have included a somewhat longer descriptionin Appendix C,
p2 as we believe this technology may be new to most users.

The Eclipse component types

The Eclipse system contains several types of “components’; 0sGi bundles, plugins, features, frag-
ments, and products. In this section we present an overview of what they are, and the role they play
in the composition of a software system built on Eclipse.

Plugins, features and osGi bundles

The terms “plugin”, “feature’, and “bundle” (short for osGi bundle) refers to Java components con-
taining meta data information that makes it possible to manage their life cycle. The terms “plugin”
and “feature” are specific to the Eclipse platform, and “bundle” is the generic software component
handled by an osGi runtime. Since Eclipse is built on the Equinox 0sGi runtime, it can make use of
all three types; bundles, plugins, and features.

Bundle

A bundle is the fundamental type. In addition to being the container for the code it has meta data
describing its dependencies on other bundles, and requirements on packages expected to be present
when using the bundle.

Plugin
A plugin, is aso an 0sGi bundle. What makes it special is that it also can contain information that

makes use of the Eclipse extension mechanism — a declarative way to define that a bundle contains
code that extends functionality in some other bundle.

Feature

A feature is a grouping of plugins and other features. It defines a unit of what should be installed
together. The feature is a configuration — a bundle may specify that it requires that a certain java
package must be present, but the bundl e says nothing about where this package should comefrom. This

81



Draft Eclipse Draft

can be specified in the feature. This separation allows a bundle to be used in different configurations
without requiring that the bundle itself needs to be changed.

Fragments

A fragment is a special kind of bundle with what could be called a “reverse dependency” on a host
bundle. Fragments are typically used to implement optional code that is included in a configuration,
often filtered on parameters like installed language, operating system, hardware architecture and user
interface technology. As an example, afragment could contain code that is only needed during testing
or debugging, contain features available only on a particular platform, or for a particular language.

A fragment can also have norma dependencies — these come in effect if the fragment is selected
for inclusion.

Fragments are included in a configuration by requiring them in afeature.

Products

A product is a special grouping mechanism used to define a “top level” product (such as the Eclipse
IDE itself). Unfortunately, the tools that help maintain the group aspect of the product definition are
somewhat lacking (in comparison to the same functionality for features), and we recommend that the
product definition is used only to define the product aspect, and that all grouping isdefined in asingle
feature that is referenced by the product. An examples of how to do thisisfound in 72?2,

When a product definition also acts as a grouping mechanism, it is referred to as a “bundle based
product”, and when it refers to feature(s) (we recommend using only one) it is said to be “feature
based”.

In addition to referring to the feature(s) or bundles being the configuration for the content of the
product, the product also has areference to a“branding bundle” that contains items such as the splash
screen and icon for the product.

The Workspace

The Eclipse Workspace contains projects. These projects can be specializedi.e., plugin project, feature
project etc. When you are looking at content in the Eclipse Navigator, or Package Explorer you are
looking at content in projects.

Y ou can get content into the workspace by:

* creating new projects and importing files manually

* importing a complete projects from somewhere on disk

 importing one or several projects from a source code repository

* linking to content in the correct format somewhere outside of the workspace

 importing from a“team project set” file, which containsalist of projectsto check out from asource
code repository.

* importing from source bundles (thisis primarily used for debugging and patching).

Asyou can see, thereis only one option that is suitable for automation — using the team project set.
Many set up their projects to include such afilein a“meta project” and users begin by checking out
this project and then importing using the team project set.

The pitfallsis that the team project set must be maintained manually. As dependencies are added or
removed, the set of files required in the workspace may differ, and there is no way to control loading
some projects from a branch or atag.

82



Draft Eclipse Draft

Solving this particular problem was actually one of the very first requirements for Eclipse Buckmin-
ster, the precursor to b3 — as you will see later, b3 provides convenient population of the workspace
for the typical case, and it is quite easy to load particular parts from branches and tags.

The Target Platform

The target platform is a definition of the set of features/plugins to use when running the code being
built. Y ou can say that the codeis built for aparticular target platform. By default, the target platform
is defined to be the same as the Eclipse IDE — this means that when you are running your code in the
self hosted environment you will not encounter missing bundles. When however you export and run
the code separately, you will almost certain be hit by surprises.

Prior to Eclipse 3.5 there was no good way of managing atarget platform inthe IDE. A target platform
was simply an Eclipse configuration in a directory.

In 3.5 the functionality to handle management of the target platform has been added. Multiple Target
Definitions can be created. A definition can be saved to file (for later loading). It is also possible to
make one definition be the active target platform. The new Target Definition defines aset of locations.
Each location can be one of:

Directory A directory in the local file system.

Installation Aninstallation (such asan Eclipse SDK) inthelocal file system.
Features One or more features from an installation.

Software Ste Downloads plug-ins from a p2 repository.

The preferred way of handling target platformsin 3.5 is to create one (or several) with the IDE and
then save the definition to afile. Eclipse b3 can use such definitions, and you can also materiaize a
target platform using b3.

Launch configuration

A launch configuration is a definition of how to launch/run/debug something from within Eclipse.
There are multiple classes of launchers for Eclipse covering running plugins, osGi frameworks, tests,
etc. Launch configurations can also launch servers or just run external commands.

Don't confuse launch configuration with target platform. The (eclipse type) launcher launches the
active target platform definition with the configuration specified in the launch configuration. This
makes it possible to switch target platforms, build for that target, and then launch what was built for
testing.

Many devel opersusethe EclipseDE itself asthetarget platform, and then definethe set of features/plu-
gins to run in the launch configuration. In Eclipse 3.5, where target platform management has been
improved, it is better to define an exact target platform and then have a ssmpler launch configuration
that just use what is in the workspace and everything enabled in the target platform. This separation
of concernsisvaluable asthe target platform definitions are reusabl e across many products/launchers,
and makes it easier to migrate components to newer targets.

ANT

Apache ANT is a Java based build tool that is both well known and widely spread. ANT is integrated
with Eclipse, and b3.

The b3 integration consists of :

* Eclipse b3 can call ANT scripts.

83



Draft Eclipse Draft

 Cdling b3 from ANT-scripts.




Draft Draft

Appendix C. p2
An introduction to the Eclipse provisioning platform

Equinox p2istherelatively new provisioning platformintroduced in (Eclipse 3.4 Ganymede) designed
to be a platform for many different kinds of provisioning solutions, and specifically designed to be a
replacement for the Eclipse Update Manager. In Eclipse 3.5 Galileo p2 is both functionally rich and
well tested and it has now replaced Update Manager compl etely.

Equinox p2 is still new technology, and does not yet (in Eclipse 3.5) have an official API, and much
work remainsin utilizing its full potential. Eclipse b3 uses p2 extensively, and as it a so steps outside
of the osGi domain (which is the primary focus in p2 and PDE), and adds new use cases to the “p2
as a replacement of Update Manager” there is close cooperation between the teams behind Eclipse
b3 and p2. Specifically this has resulted in the Omni Version implementation capable of handling
non OSGi versions, and the recent p2 Query Language which enables efficient communication with
remote repositories as well as defining more complex dependencies. The Omni Version is covered
in Appendix D, Omni Version Details. The p2 Query Language is covered in TBD REFERENCE TO
p2QL.

This chapter is only a brief introduction to p2 meant to establish the key concepts.

The Installable Unit

The central concept in p2 is the Installable Unit (1U). It is an entity named in a name-space having a
versioneg., theor g. ecl i pse. equi nox. bundl e namedor g. myor g. hel | owor | d havingversion
1.0.3.

Figure C.1. Anatomy of an IU

Properties
o ) ) -
Provided |
Capabilities ' Required
\ Capabilities
; 19)
(id,m
-)k-**
\‘j ‘ % ¥
Artifacts L JI ™ Actions

Dependencies are handled by declaring required capabilities which are matched with provided capa-
bilities also declared in a1u. Specificaly, al 1us have a declaration that they provide themselvesas a
capability. This makes it possible for one U to require another. The dependency mechanism is very
flexible as it allows addition of new capability types. Capability types for Eclipse related types (i.e.,
plugins, bundles, features, java packages, etc.) have already been defined and are used by p2.

An IU’s artifacts — i.e., the content the 1U is describing, is referenced via name and type, and when
the artifacts are needed, they are looked up in ap2 artifact repository.

The 1U also contains touchpoint instruction; actions that are invoked in specified phases of a provi-
sioning job e.g., when installing of uninstalling. The instructions can be things like copying files, un-
ziping an archive, changing startup parameters etc.

85



Draft

p2 Draft

If an 1u requires special installation instructions these must naturally be installed before an attempt
ismade to install the 1u itself. A mechanism called meta requirements allows an 1U to declare these,
and can then trust p2 to handle resolution and installation of these when an installation of the 1u itself
is requested.

Metadata repository

The meta data describing components — i.e. the Ius, are stored in a p2 meta data repository. Techni-
cally, ameta datarepository is an interface and there are several implementations delivered with p2.

» A simple meta data repository stored in afile system directory
» A composite meta data repository that references other meta data repositories
» An Update Site based repository (i.e., the structure used by the older Eclipse Update Manager)

 Specialized repositories that enable the current installation (among other things) to be used as the
meta data repository.

Artifact repository

An artifact repository contains the contents of 1Us such afiles, zip archives, jar files, etc. Technicaly
an artifact repository is an interface and there are several implementations delivered with p2. The
available repository implementations are similar to the metadata repositories (i.e., simple, composite,
update manager based, and special).

There are many advanced options such as controlling how artifacts are physically stored and sent over
the wire; verbatim, packed, or as a delta.

Combined / co-located repositories

Although p2 is capable of handling that meta data and artifact repositories are stored in completely
different locations (anywhere addressable by a URI), the most common set up (and the only one sup-
ported from the Eclipse SDK’ s user interface) is a combined (or co-located) repository where a meta
data repository and an artifact repository is addressed viaasingle URI.

Profile

The p2 profileis acentral concept — an installation of a product is described by a profile. It contains
the meta data for everything that is currently installed. Thus, installation always takes place into a
p2 profile.

A profile maintains a history, and it is possible to roll back to a previous configuration. As you may
guess, a profile can also function as arepository, making it possible to “copy” parts of an installation
from one profile to another.

p2 internals

Internally, the provisioning work is divided up between p2's major parts. The director handles provi-
sioning requests such as installing or uninstalling one or several 1Us. The director performs the work
by using the meta data available in a profile, combined with the meta data in associated meta data
repositories (those that have been used to install components from, or repository referencesjust about
to be added to the profile). This information is then fed to the planner which is responsible for re-
solving all requirements (dependencies). The resulting plan is fed to p2's engine which executes the
work in phases (in simple terms — it collects items, downloads/mirrors artifacts, installs, and then
configures them).

86



Draft p2 Draft

Figure C.2. p2in action

71

A

Data transfer

Metadata fetched
Director and constraints Transports
analyzed Http/Https
File system
Volume
Mirroring
Provisioning
operation Repositories
requested p2
Update Site

IU install, uninstall,
update operations

Engine Artifact availability
and mirroring
Eclipse/OSGi
Native/OS

IUs configured
into runtimes

% e .
Runtimes %* /  Profiles

Profile updated

The planner uses saT4J to handle the complicated NP-complete problem of resolving requirements. It
isinteresting to note that thereisaguaranteethat if thereisasolution, it will befound, and it will bean
optimal solution (i.e., optimal in the sense of adefined set of weights such as“later version is better”).
The use of saTayisamajor leap forward compared to the old Update Manager (may it rest in peace).

Categories

From an end user perspective, an important part of p2 is the handling of categories. They are used to
group related features and arrange them in a structure that makes sense for ahuman installing software.
Thefeatures (although onelevel up abovethe (to auser) amost incomprehensiblevery technical plugin
names) are still often quite technical in naming, and it can be very difficult for auser to understand the
purpose of a particular feature. Y ou have probably already seen the use of categories, as they enable
you to browse the content under labels like “java development”, and “modeling” as opposed to just
seeing along alphabetical list with project names.

Prior to Eclipse 3.5, categories were authored in the Update Manager’s si t e. xm file stored in an
updatesite. Such category informationisread by p2 when it readsan older update site. When producing
new p2 repositories however, the category information needs to be authored differently. In Eclipse
3.5 there are three ways; use the new Category Editor which creates a file that PDE makes use of
when exporting to a p2 repository, use the (provisional) p2 publishing advice which is stored in a
p2.inf filein the component being published, or use Buckminster or b3 which supports definition
of categoriesin build properties.

Publishing

The act of making components available for consumption by p2 is referred to as “publishing”. It is
an area that overlaps with three key technologies; p2, PDE, and the Eclipse platform, and if you look
under the covers, you will see that they work in close cooperation.

PDE understands the source components, the meta datathat makesthe java projects be plugins, features
or products. These are translated into the p2 form (1us), containing information and instructions that
makes it possible to install them and control the startup of the equinox environment.

87



Draft p2 Draft

Publishing components as p2 repositories does not require any additional authoring of p2 specific
artifacts. More specifically, you do not need to author the ius — this is done by the PDE specific
publisher.

Prior to Eclipse 3.5, publishing was done by first producing an update site, and then generating the p2
combined repository from the output. Thisis basically what p2 does when it encounters an old style
Update Manager site— “publishing” if you like, the update site on the fly. Although thisinterpretation
of update sites is still supported, the recommended way of publishing is via the p2 publisher as it
has more information available. (As you will see later, b3 provides a very convenient mechanism to
execute p2 publishing of both PDE based projects, but also for those that are not based on Eclipse
technology).

Installing

Installing from p2 repositories (or update sites adapted by p2) can be done by auser of the Eclipse SDk
directly inthe sDk’s*"install new software” dialog. With update manager, thiswasthe only (managed)
choice— most experienced users simply dropped the required filesinto the Eclipse install ation fol der
structure (and this worked most of the time). Now, with p2, an install is fully managed to ensure
that all requirements are met and that needed actions such as setting startup levels, and modifying
initialization parameters take place during installation. This ensuresthat things actually have a chance
of working, be updated, and eventually uninstalled.

With p2, the options are many, especially since p2 does not require that the system being installed
into is active when performing the install — it can be done by an external p2 “agent” (thereisautility
application called the “p2 agent” which is one example of such an agent. The“p2 installer” is another
such example, and the sDK itself also has such an agent).

,éb Note
Thevariousagentsall sharethe samep2 code— thedifferenceisthat they aredesignedto
be used in different situations, and thus they expose only information required to support
the particular task they were design to handle.

Since users have become accustomed to “dropping in” things that should be installed, this is also
supported in p2, but the plugins and features are now dropped in a special folder that is monitored
by p2. When it encounters new material in this folder, p2 will perform the same type of managed
installation as when installing from repositories. There are several caveats when using drop-ins to
install, and it is not the recommended approach as the higher quality meta data provided by publishing
is unavailable.

The SDK agent

The p2 sbK agent manages installations into the SDk when used from the user interface. But the func-
tionality of this agent can also be accessed from the command line to perform installation as an exter-
nal agent. Thisisreferred to as “running the embedded director app”.

Users of Eclipsewill typically not use this embedded agent, and instead perform installation work via
the user interface. The user interface and backing functionality can also be used in RCP applications,
and there are many configuration option available to cater to different installation and update policies
(on demand, automatically on startup, completely hidden from the user, update only (no new install,
no uninstall), lock down of used repositories, etc.

The sbk agent allows the user to add and remove repositories (under Eclipse — Preferences), or
directly in the “install new software” dialog. The user can see what is installed, select new features to
install from selected repositories, perform the installation, and much more.

Since the sDK agent is designed to install into the running sbk itself, many of the advanced features,
suchasinstalling into an arbitrary profile, control advanced repository layout through the use of bundle

88



Draft p2 Draft

pooling and shared installs are not present in the user interface. One of the other agents should be
used for this purpose.

The director application

The director application is part of every Eclipse sbk and can be invoked from the command line. The
director app is also packaged as a separate headless product with a reduced footprint. The headless
director application is maintained by the Buckminster project. (See Appendix A, Installation, for how
toobtainit). ISTHISTRUE - ORISIT NOW PART OF P2?

The director application makes it possible to control the more advanced features in p2, while till
having convenient command line options available for the most common operations.

We will shown examples where the headless separate director application is used and how to get it is
explained in the section called “Installing the Headless Product”.

The p2 Installer

The p2 installer should be seen as an exemplary implementation of an installer, its user interface is
quite unsophisticated, and it lacks many production grade qualities such as detailed progressinforma-
tion, and error reporting. That said, it is still avery useful utility when a user interface based installer
is wanted.

The p2 installer inits default configuration is designed to install the Eclipse sDK. It is pre-configured
with all the parameters, and when invoked after downloading, all that is required by the user isto tell
theinstaller where it should install the SDK.

It is however possible to feed the p2 installer a different set of parameters by providing a properties
file with the information regarding what to install from where, and then modifying the startup of the
installer to override the built in default. This requires far less effort than creating a custom installer
and may be sufficient for many smaller applications.

The p2 installer is used in one of the examplesto install a RCP application — see 7772.

The EPP wizard

Finally, the Eclipse Packaging Project (EPP) has written an application called the EPP-wizard, a RCP
application with a RAP user interface which is driven by meta data to allow a user to select between
high level EPp packages such as “Eclipse classic”, or "Web development”, and then add support for
optional technologies.

At the end of the process, the EPP-wizard provides the user with a configured p2 installer, that when
downloaded and invoked will install exactly what the user picked from the available options.

The Buckminster installer

The Buckminster project also provides an experimental installer. It is designed to be started via Java
Web Start or via a Java applet and it getsitsinitial parameters indirectly via a URL. Originally this
installer used Buckminster's provisioning capabilities and before p2 this was one of very few options
available when an external, web startable installer was wanted.

The Buckminster installer also includes a JsoN client, and is capable of engaging in adialog with an
smart repository and thereby present more information about what is being installed, manage a sign-
in dialog, branding, and much more.

The Buckminster installer is however not yet considered released — its APl may need further changes
to be suited for general use, and testing is limited. Using this installer requires setting up the server
side correctly and this part is not included in the installer, and no documentation is provided.

89



Draft p2 Draft

Shipping

By shipping we mean making the published material available to the intended consumers. Y ou may
think of thisas“publishing” (i.e., making something publicly available), but thistermis already used
to mean making the internal meta data found inside projects public to the outside world in the form
of p2 repositories.

Infact, thereisno support in Eclipse to handl e the steps required once such publishing has taken place.
Theresulting folder structure with filesin them are simply written to disk, and there everything ends.

The most common way of shipping is making the published result available on a web site. And in
cases when what is shipped is supposed to be installed into the Eclipse sDk, or consists of plugins for
some other RCP application, thisis as simple asjust copying the result written to disk by the publisher
to the appropriate directory where aweb server picksit up.

If creating a complete application however there are more to consider. Users will typically not have
the application installed to begin with, so user must start by downloading something. As seen in the
section called “Installing” there are several installers available that can serve as a starting point —
from the headless director application, to the interactive Buckminster installer. The benefit of using
theseisthat thereis no need to ship the complete application pre-configured for different platforms —
asthisishandled by theinstaller. Unfortunately, asthe variousinstallerswere al created for a specific
purpose, and some being more “exemplary”, you may find that they may not suffice if you are going
to ship amore high profile application, and you may want to write your own installer.

Y our options for shipping includes:

» Pre-configured installations per platform. To do this, you typically run the headless director app (or
use b3 to do it) — telling it to install for one particular configuration (operating system, window
system, architecture, language, etc.) into alocation on disk. The result is then zipped-and-shipped.

» Aninstaller configured to install the application from a remote repository. This has advantages as
the initial download is small, and the bulk of the installation is performed by p2 which supports
parallel downloading, selection of mirrors, and compressed artifacts. It is also very simple to add
download of newer versions as everything is stored in a central repository.

» Zipping up a p2 repository with everything and a configured installer. The benefit is that the user
will download everything that is needed to local disk, and can perform the install while not being
connected to the Internet. The downside is that the repository contains components that are never
used on the platform where it isinstalled.

Thisform is suitable if you are shipping on a cb/DVD.

 Deélivering application via a Linux package manager such as RPM creating a read only and shared
installation that is then extended via an embedded p2 agent.

» Hybrid form, where the basic application is downloaded using one of the above mechanisms, but
where bulky extras areinstalled via a p2 agent embedded in your application (like the Eclipse SDK
p2 agent), or via an external installer.

In addition to deciding on how to ship — you must also decide on how you want to compose the
required repositories. Y our options include;

 Creating a composite repository with areference to the main Eclipse repository for everything that
is used from the Eclipse platform. This has the advantage that “your site” is always up to date with
the latest repository content, and you do not have to store copies of everything in your repository.

 Creating an aggregated meta data repository that contains the meta data from the Eclipse main
repository as well as your site(s), but uses the existing artifact repositories via a composite artifact
repository. This has the advantage over the simplest form in that all of the meta data is obtained

90



Draft p2 Draft

in a single download, and since you are reconstructing the meta data, you also have more control
over the categorization of features.

» Mirror everything you need to your repository and then deliver everything from your servers. The
benefit is that you have full control, but you do not make use of the Eclipse mirrors, and you must
periodically update your mirrors.

Eclipse b3 has support for aggregating sites — this functionality has been used in the Eclipse 3.5
Galileo release to compose the final Galileo repository. See TBD - LINK TO AGGREGATOR CHAP-
TER.

Summary

Equinox p2, is aprovisioning platform and as such has arich and flexible feature set. Being rich and
flexiblealso meansthat itiscomplex. Itiscomplexinitself asit issolving avery difficult problem, and
it isdoing so with 0sGi technology that under the covers need to perform complex tasks so developers
can focuson the functionality instead of the mechanics of configuring adynamic system — all in order
to provide consumers of the resulting software with a high quality software provisioning experience
— simply click install, and run automatic updates.

In the following chapters we will show how b3, p2 and PDE work together, and how you can used b3
to handle some of the complexities.

91



Draft

Draft

Appendix D. Omni Version Details

Introduction

This appendix describes the Omni Version implementation handling instances of version and version
ranges. The omni version implementation resides in equinox p2, and is aso used in b3. The omni
version was created because of the need to have aversion format capable of describing versions using
another versioning scheme than osGi (which was the only versioning scheme supported by p2 prior
to Eclipse 3.5 and omni version).

With the omni version contribution to p2 — which fully describes aformat, a canonical version com-
parable against versions with different formats, as well as containing the original version string, it is
possible to use p2 for provisioning also for non 0sGi based components.

Background

There are other versioning schemes in wide use that are not compatible with 0sGi version and version
ranges. The problem is both syntactic and semantic.

Many open source projectsdo their versioning in afashion similar to 0sGi but with onevery significant
difference. For two versionsthat are otherwise equal, alack of qualifier signifiesahigher version then
when aqudifier is present —i.e.,

The 1.0.0 is the final release. The qualifier happens to be in alphabetical order here but that’s not
alwaystrue.

MozillaToolkit versioning has many rules and each segment has 4 (optional) slots; nuneri ¢, st ri ng,
nuneri c, and st ri ng where each slot has a default value set to 0 or max string respectively for the
numeric and string slotsif aparticular slot is missing).

1.2a3b. // yes, atrailing . is allowed and neans .0
1. a2

Mozilla also allows bumping the version (using an older Mozilla scheme)

1.0+

Thismeans 1. 1pr e in Mozilla.

Example of syntax issue

Here are some examples of versions used in Red Had Fedora distributions.
KDE Admin version 7:4.0.3-3.fc9

Conpat |ibstdc version 33-3.2.3-63
Aut omeke 1. 4p6-15.fc7

And here are some Mozillatoolkit versions:

1.*.1

1.0+

1.-1 // negative integer version nunbers are allowed, the '-' is not a delimter

1.2a3b. a

These are not syntactically compatible with 0SGi versions.

92



Draft Omni Version Details Draft

Implementation

The current implementation in p2 uses the omni versions throughout. This means that p2 can creste
aplan including units that have non 0sGi versioning scheme.

One implementation

Equinox p2 has one implementation of Ver si on and one of Ver si onRange that are capable of cap-
turing the semantics of various version formats. The advantages are that there is no need to dynami-
cally plugin new implementations, and new formats can be easily be introduced.

One canonical format

The omni version and omni version range are “universal” — all instances of version should be com-
parable against each other with afully defined (non ambiguous) ordering. The APl is (astoday) based
on asingle string fully describing a version or version range.

The canonical string format is called “raw” and it is explained in more detail below. To ensure back-
ward compatibility, as well as providing ease of usein an 0SGi environment, version strings that are
not prefixed with the omni version keyword r aw have the same format and semantics as the current
0sGi version format.

Ad an example the following two version strings are both valid input, and express exactly the same
version:

1.0.0.r1234
raw. 1. 0.0.'r1234'

Version

The omni version implementation uses an vector to store version-segments in order of descend-
ing significance. A segment is an instance of I nt eger, Stri ng, Conpar abl e[ ], Maxl nt eger,
MaxSt ri ng, or M n.

Comparison

Comparison is done by iterating over segments from 0 to n.

* If segmentsare of different typetherule MaxI nt eger >1 nt eger >Conpar abl e[ ] >MaxStri ng
> St ri ng isused — the comparison isdone and the version with the greater segment typeisreported
as greater.

* If segments are of equal type — they are compared — if oneis greater the comparison is done and
the version with the greater segment is reported as greater.

 All versions are by default padded with - M (absolute min segment) to “infinity”. A version may
have an explicit pad element which is used instead of the defaullt.

» A shorter version is compared to a longer by comparing the extra segments in the longer version
against the shorter version’s pad segment.

« If all segments are equal up to end of the longest segment array, the pad segments are compared,
and the version with the greater pad segment is reported as greater.

* If pad segments are also equal the two versions are reported as equal.

» Asaconsequence of not including delimitersin the canonical format; two versionsare equal if they
only differ on delimiters.

Asan example — hereisacomparison of versions (expressed in the raw format introduced further on
inthetext — ‘p’ means that a pad element follows, and ‘- M the absolute min segment):

93



Draft

Omni Version Details Draft

1p-M< 1.0.0 < 1.0.0p0 == 1p0 < 1.1 < 1.1.1 < 1pl1 == 1.1pl < 1pM

Raw and Original Version String

Omni

The original version can be kept when the raw version format isused, but it is not an absolute require-
ment as simple raw based forms such as raw:1.2.3.4.5 could certainly be used directly by humans.
Someone (who for some reason does not want to use 0sGi or some other known version scheme),
could elect to use the raw format as their native format.

A version string with raw and original iswritten on the form:
"raw ':' rawformat-string '/' format(...):original-format-string

The p2 Engine compl etely ignoresthe original part — only theraw part isused, and the original format
is only used for human consumption.

Example using a Mozillaversion string (as it has the most complex format encountered to date)l.
raw. <1.m 0. n».<20.'a'.3."'b' >p<0. m 0. n»

[ for mat ((<n=0; ?s=m ?n=0; ?s=m ?>(. <n=0; ?s=m ?n=0; ?s=m ?>) *) =p<0. m 0. n»; )
:1.20a3b. a

An origina version string can be included with unknown format:

raw. <1.m 0. n».<20."'a'.3."'b' >p<0. m 0. n»/: 1. 20a3b. a

See below for full explanation of the raw format.

Version Range

The version range holds two version instances (lower and upper bound). A version range string uses
the delimiters[], () and, . If these characters are used in the lower or upper bound version strings,
these occurrences must be escaped with\ and occurrences of \ must also be escaped.

Theversionrangeiseither an 0sGi version range (if raw prefix isnot used), or araw range. The format
of theraw rangeis:

"raw "' ('"[" ] "(" ) rawformat-string ',' rawformat-string ( ']" | ')' )
The raw-range can be followed by the original range:
rawrange '/' 'format' '(' format-string ')’
('[" ] "(" ) original-format-string '
original -format-string ( ']'" | '")' )
An origina version range can be included with unknown format:

raw. [<1.m 0. np.<20. m 0. n>p<0. m 0. nP,
<1.mO0.n,.<20."a'.3."'b" >p<0. m 0. nP]
/:[1.20,1.20a3b. a]

The p2 Engine compl etely ignoresthe original part — only theraw part isused, and the original format
is only used for human consumption.

See below for full explanation of the raw format.

Other range formats

Note that some version schemes have range concepts where the notion of inclusive or exclusive does
not exist, and instead use symbolic markers such as “next larger”, “next smaller”, or use wild-cards
to define ranges. In these cases, the trandator of the origina version string must use discrete versions

and the inclusive/exclusive notation to define the same range.

Some range specifications allows the specification of union, or exclusion of certain versions. This
is not currently supported by p2. If introduced it could be expressed as a series of ranges where

Yine breaks are inserted for readability

94



Draft Omni Version Details Draft

a” before a range negates it. Example [ 0, 1] [ 3, 10] [ 3. 1, 3. 7) which would be equivaent to
[0,10]7(1,3)"[3.1,3.7)

Format Specification

There are two basic formats default 0sGi string format, and raw canonical string format. There are
also two corresponding range formats 0SGi-version-range, and raw-version-range.

The raw format is a string representation of the internally used format — it consists of the keyword
“raw", followed by alist of entries separated by period. An entry can be numerical, quoted al phanu-
merical, or a sub canonical list on the same format. A canonical version (and sub canonical version
arrays) can be padded to infinity with a special padding element. Special entries express the notion
of ‘“max integer’ and ‘max string’.

The osGi string format is the well known format in current use.

Theraw format in BNF:

digit: [0-9];

letter: [a-zA-Z];

nurmeric: digit+;

al pha: letter+;

al pha-nuneric: [0-9a-zA-Z]+;
delimter: ["0-9a-zA-Z];
character: .;

characters . +;

/1 A sequence of charactes quoted with " or ', where ' can
/1 be used in a " quoted string and vice versa
quoted-string: ("[~"]1*")|("[~]*"):

/1 a sequence of any characters but
/[l with'," "]", '")" and '\' escaped with "\’
range-safe-string: TBD;

sq: ['];
dg: ["]:
ver si on:
| osgi-version
| rawversion

0sgi - version:

| nurmeric

| numeric '.' numeric

| numeric '.' nuneric '.' nuneric

| numeric '.' nunmeric '.' numeric '.' .+
raw ver si on:

| "raw ':' raw segnents optional-original-version
optional -origi nal -version:

I

| */" original-version
ver si on-range:

| osgi-version-range

| rawversion-range
rs: (001 ()
re. ("1 1 "))
0sgi - versi on-range:

| rs osgi-version ',' osgi-version re

raw ver si on-range:
| "raw ':' rs rawsegnments ',' raw segnents re
optional -origi nal -range

95



Draft

Omni Version Details

Draft

optional -ori gi nal -range:
I
| */" original-range
raw segnents:
| raw el ements optional - pad- el enent

raw el ement s:
| rawelenments '.' raw el enent
| raw el ement

raw el enent :
| nureric
| quoted-strings // strings are concatenated
| '"<' raw el enents optional - pad-el erent ' >'
/1 subvector of elenents
| 'm /1 synbolic 'maxs' == max string
| "M /1 synbolic 'absolute max'
/] i.e., max > MAX_INT > naxs
| "-M /] synbolic 'absolute mn'

/Il i.e., -M< enpty string < array < int

optional - pad- el enent :

I

| pad-el ement
quot ed- strings:

| quoted-strings quoted-string

| quoted-string
pad- el enent :

| '"p' raw el enent
ori gi nal -version:

| optional-format-definition ':' .*
ori gi nal -range:

| optional-fornat-definition ':' rs range-safe-string

",' range-safe-string re
optional -format-definition:

| fornat-definition

format-definition:
| "format' ' (' pattern ')’

/1 Definition of parsing patterns
/1
pattern:

| pattern pattern-el enent

| pattern-el enent

pattern-el enent:

| pel em optional - processi ng-rul es optional -pattern-range

| "[' pattern ']' processing-rules

opti onal - processi ng-rul es:

| optional- processing-rules '=" processing-rule ';

| '=' processing-rule ';'

optional - pattern-range:
| repeat-range

[ r' ] 'd | 'p | 'a | ‘s | 'S | 'n |
| "(' pattern ')’

96



Draft

Omni Version Details

Draft

| '<' pattern '>'
| delimter

r epeat - r ange:

|t e

| "{' exact '}’

| "{'" at-least ',' '}’

| "{' at-least ',' at-nost '}’

exact: at-least: at-nost: nuneric;

processi ng-rul e:
| raw el ement

pad- el ement
'

I

| !

| "[' char-list "]’

| "[' "~ char-list ']’

| "{' exact '}’ /1 for character count
| "{'" at-least ',' '}’

| "{' at-least ',' at-nost '}’

char-list: TBD; // Sequence of any character but

/Il with "~ "]" and '"\' escaped with '

delimter:
| ['#$%&/ =", .;:-_ 1 I/ Any non-al pha-numt hat
/1 has no special neaning
| quoted-string
| "\'" . /] any escaped character

Examples:

* 0SGi1.0.0.r1234 isexpressedasraw. 1. 0. 0. ' r 1234
» apacheftriplet style 1. 2. 3isexpressedasraw. 1. 2. 3. m
* Mozillastyle1a. 2a3c. can be expressed as

raw.<1.'a'.0.np.<2.'a'.3.'c' >p<0. m 0. n»

Mozilla'sformat is complex — see external links at the end of this appendix, for more information.

Format Pattern Explanation

Here are explanations for the rules in format(pattern).

rule

description

r

raw — matches one raw-element as specified by the r aw format. Ther rule
does not match a pad element — use p for this.

'characters'

guoted delimiter — matches one or several characters — the matched result is
not included in the resulting canonical vector (i.e., it isnot asegment). A\\ is
needed to include asingle\ . The sequence of chars acts as one delimiter.

non- al phanum
character

literal delimiter — matches any non apha-numerical character (including
space) — the matched result is not included in the canonical vector (i.e., itisnot
asegment). A non aphanumerical character acts asadelimiter. Special charac-
ters must be escaped when wanted as delimiters.

auto — a sequence of digits creates anumeric segment, a sequence of al phabet-
ical characters creates a string segment. Segments are delimited by any charac-
ter not having the same character class as the first character in the sequence, or
by the following delimiter. A numerical sequence ignores leading zeros.

delimiter — matches any non apha-numeric character. The matched result is
not included in the resulting canonical vector (i.e., it is not a segment).

97




Draft

Omni Version Details Draft

rule description

s letter-string — a string group matching only alpha characters (i.e., “letters’).
Useprocessing rules=[]; or =[ ~] to definethe set of allowed characters. Itis
possible to allow inclusion of delimiter chars, but not inclusion of digits.

S string — a string group matching any group of characters. Use processing rules
=[]; or =[] to define the set of allowed characters. Care must be taken to
specify exclusion of adelimiter if elements areto follow the S.
anumeric (integer) group with value >= 0. Leading zeros are ignored.

N apossibly negative value numeric (integer) group. Leading zeros are ignored.

p parses an explicit pad-element in the input string as defined by the raw format.
To define an implicit pad as part of the pattern use the processing instruction
=p...; . A pad element can only be last in the overall version string, or last
inasub array.

q smart quoted string — matches a quoted alphanumeric string where the quote
is determined by the first character of the string segment. The quote must be a
non a phanumeric character, and the string must be delimited by the same char-
acter except brackets and parenthesises (i.e., (), {},[], <>) which are handled
as pairs, thus g matches <andr ea- dori a> and produces a single string seg-
ment with the text andr ea- dori a. A non-quoted sequence of characters are
not matched by g.

@) indicates a group

< > array — indicates a group, where the resulting elements of the group is placed
in an array, and the array is one resulting element in the enclosing result

? zero to one occurrence of the preceding rule

* zero to many occurrences of the preceding rule

+ one to many occurrences of the preceding rule

{n} exactly n occurrences of the preceding rule

{n,} at least n occurrences of the preceding rule

{n, m} at least n occurrences of the preceding rule, but not more than m times

[ ] short hand notation for an optional group. Isequivalentto () ?

= processing; an additional processing ruleisapplied to the preceding rule. The pr ocessi ng

part can be:

» araw-element - use this raw-element (as defined by the raw format) as the
default valueif input is missing. The default value does not have to be of the
same type (e.g., s=123; ? produces an integer segment of value 123 if the
optiona s is not matched.

e | —if input is present do not turn it into a segment (i.e., ignore what was
matched)

e [list of chars] —when appliedtoad definesthe set of delimiters. The
characters], ~, and\ must be escaped with\ to be used in the list of chars.
and Exampled=[ +- /] ; Oneor severa ranges of characterssuch asa- z can
also be used. Exampled=[ a- zA-Z0-9_-1;

* [~ist of chars] — when applied to ad defines the set of delimiters
to be all non alpha numeric except the listed characters. The characters] , »,
and\ must be escaped with \ to be used in the list of chars. One or severa
ranges of characters such asa- z can also be used. Example d=[ $] ;

98



Draft Omni Version Details Draft

rule description

e praw el ement — defines* padding to infinity with specified raw-element”
when applied to an array, or a group enclosing the entire format. Example
format ((n.s)=pM) The pad processing rule is only applied to a parsed
array, not to a default value for an array. If padding is wanted in the default
array value, it can be expressed explicitly in the default value.

e {n} {n,} {n,n character ranges — with the same meaning as the rules
with the same syntax, but limits the range in characters matched in the pre-
cedings, S, n, N, g, or a rules. For q the quotes does not count.

\ escape removes the special meaning of acharacter and must be used if aspecial
character iswanted asadelimiter. A\ \ isneededtoincludeasingle\ . Escaping
anon special character is superfluous but allowed.

Additional rules;

« if arule produces anull segment, it is not placed in the result vector

eg., fornmat (ndddn): 10-/-12 - raw 10. 12

 Processing (i.e., default values) applied to agroup has higher precedence than individual processing
inside the group if the entire group was not successfully matched.

e Pasing is greedy — format(n(.n)*(.s)*) will interpret 1.2.3.hello as
raw. 1.2.3." hello' (as opposed to being reluctant which would produce
raw. 1.'2'.'3"." hello")

» When combining N with ={. . .}; and the input has a negative number, the ‘-’ character is not
included in the count — f or mat (N{ 3} N{ 2} ) : - 1234 resultsinr aw: - 123. 4

* When combining n or N with ={. ..} and input has leading zeros — these are included in the
character count.

* Anempty version stringsis always considered to be an error.
» A format that produces no segments is always considered to be an error.
Note about white space in the raw format:
 white space is accepted inside quoted strings—i.e,, 1. ' a string' isalowed, butnot1. 2
* white space is accepted between version range delimiters and version strings
i.e,[ 1.0, 2.0 ] isalowed.

Note about timestamps Versions based on a timestamp should use s or n and ensure comparability
by using afixed number of characters when choosing s format.

Examples of Version Formats

Here are examples of various version formats expressed as using the format pattern notation.

type name pattern comment
oSy n[.n=0;[.n=0;[.S=[a-zA-Z0-9_-];]]] |Example: the following are equivalent:

 format(n[.n=0;[.n=0;[.S=[a-ZA-
Z0-9_-];]11):1.0.0.r1234

e raw:1.0.0.r1234'

e 0sgi:1.0.0.r1234

99



Draft

Omni Version Details

Draft

type name

pattern

comment

* 1.0.0.r1234

triplet

n[.n=0;[.n=0;[.S=m;]]]

A variation on 0sGi, with the same syn-
tax, but where the alack of qualifier >
any qualifier, and thequalifier may con-
tain any character. Thefollowing areall
equivalent;

 format(n[.n=0;[.n=0;
[.S=m;]]]):1.0.0

¢ raw:1.0.0.M

* triplet:1.0.0

jsr277

n(.n=0;){ 0,3} [-S=m;]

As defined by JsrR 277 — but is pro-
visional and subject to change as it is
expected that compatibility with OsGi
will be solved (they are now incompat-
ible because of the fourth numeric field
with default value 0). The jsr277 for-
mat is similar to triplet, but with 4 nu-
meric segmentsand a ‘-’ separating the
qualifier to allow input of “1-qualifier”
tomean “1.0.0.0-qualifier”. Asintriplet
the a lack of qualifier > any qualifier.
Thefollowing are al equivalent:

o format(n(.n=0;){ 1,3} [-S=m;]):1.0.0
e raw:1.0.0.0.M

e jsr277:1.0.0

tripletSnapshot

n[.n=0;[.n=0;[-n=M;.S=m;]]]

Format used when maven transforms
versions like 1.2.3-SNAPSHOT in-
to 1.2.3-<buildnumber>.<timestamp>
ensuring that it is compatible
with triplet format if missing
<buildnumber>.<timestamp> at theend
(format produces max, max-string if
they are missing).

Example: the following are equivalent:

 format(n[.n=0;[.n=0;[-
n=M;.S=m;]]]):1.2.3-45.20081213:17

* raw:1.2.3.45.'20081213:1233'

* tripletSnap-
shot:1.2.3-45.20081213:1233

rpm

<[n:]Ja(d?a)*>[-n[dS=1]]

RPM format matches
[EPOCH:]VERSION-STRING]-

PACKAGE-VERSION], where epoch
is optional and numeric, version-string
isauto matched to arbitrary depth >=1,
followed by a package-version, which
consists of a build number separated

100

P33



Draft

Omni Version Details Draft

type name pattern comment

by any separator from trailing platform
specification, or the string ‘src’ to indi-
cate that the package is a source pack-
age. This format allows the platform
and src part to be included in the ver-
sionstring, but if presentitisnot usedin
the comparisons. The platform type vs
source is expected to be encoded else-
where in such an IU. Everything ex-
cept the build-numberisplacedinan ar-
ray as build number isonly compared if
thereisatie.

An example of equivalent expressions:

« format(<[n:]a(d?a)*>[-
n[dS=!;]1):33:1.2.3a-23/i386

e raw:<33.1.2.3.'d>.23

mozilla (<n=0;?s=m;?n=0;7?s=m;?>(.<n=0;? |Mozillaversionsare somewhat compli-
s=m;?n=0;?7s=m;?>)*)=p<0.m.0.m>; |cated, it consistsof 1 or more parts sep-
arated by period. Each part consists of
4 optiona ‘fragments' (numeric, string,
numeric,string), where numeric frag-
ments are 0 if missing, and string frag-
ments are MAX-STRING if missing.
The versions use padding so that 1 ==
1.0==1.0.0==1.0.0.0 etc.

string S asingle string
auto a(d?a)* serveslikea“catch al”.

Tooling Support

The omni version implementation is not designed to be extended. An earlier ideawasthat it should be
possible to define named aliases for common formats and that these formats should be parseable by
the omni version parser. The reasons for introducing alias was to make it possible for users to enter
something liket ri pl et : 1. 0. 0 instead of entering the more complicated format. This did however
raise alot of questions: Who can define an alias, what if the definition of the alias is changed, where
are the adlias definitions found. Isit possible to work at all with aversion that isusing only an alias—
what if | want to modify arange and do not have access to the alias?

Instead, the aliashandling isatooling concern. Tooling should keep aregistry of known formats. When
aversion is to be presented, the format string is “reverse looked up” in the registry — and the alias
name can be presented instead of the actual format. This way, the version is aways self describing.
Thereisstill the need to get “well known formats” and make them available in order to make it easier
to use non OsGi versions in publishing tools — but there is no absolute requirement to support this
in al publishing tools (some may even operate in a domain where version format is implied by the
domain) — and thereis no “breakage” because an aliasis missing.

Tooling support can be as simple asjust having preferences where formats are associated with names
— the user can enter new formats and aliases. Some import mechanism is probably aso nice to have.
Further ideas could be that aliases can be published as1u’sand installed (i.e install a preference).

Existing Tooling should naturally use the new omni version implementation to parse strings — thus
enabling a user to enter aversion in raw or format() form. An implementation can choose to present
the full version string (i.e., Ver si on. t oSt ri ng() ), or only the original version.

101



Draft Omni Version Details Draft

More examples using ‘format’

A version range with format equivalent to OSGi

format (n[.n=0;[.n=0;[.S=[a-zA-Z20-9_-];]]1])
:[1.0.0.r12345, 2.0.0]

At least one string, and max 5 strings

format (S=[~.][.S=[".];[.S=[".]1[.S=[*.1[.S=[".11111)
:vival di.opus. spring.bar5

format (S=[".]1(.S=[".1){0,4}):vivaldi.opus.spring.bar5
=> 'vivaldi'."'opus'."'spring'."'bar5

At least one alpha or numerical with auto format and delimiter

format (a(d?a)*):vival di:opus23-spring. bar5
=> 'vivaldi'."'opus'.23."'spring' ."bar'.5

Thetexts ‘opus and ‘bar’ should not be included:

format (s[.' opus'n[."'bar'n]]):vivaldi.opus23. bar8
=> "vivaldi'.23.8

The first string segment should be ignored — it is a marketing name:

format(s=!;.n(.n)*):vivaldi.1.5.3

Classic scCcs/iRcs style:

format(n(.n)*):1.1.1.1.1.1.1.4.5.6.7.8

Max depth 8 of numerical segments (limited classic SCCS/RCS type versions):

format(n(.n){0,7}):1.1.1.1.1.1.1. 4

Numeric to optional depth 8, wheremissing input is set to 0, followed by optional string where ‘ empty
> any’

format (n(d?n=0;){0,7}[a=M]):1.1.1.4:beta
=>1.1.1.4.0.0.0.0."beta

format (n(d?n=0;){0,7}[a=M]):1.1.1.4
=>1.1.1.4.0.0.0.0. M

Single string range

format (S):[andrea doria,titanic]

Range examples
Examples:
e raw [1.2.3.'r1234",2.0.0]
e [1.2.3.r1234,2.0.0]
e format (a+): [ nonkey. fred. at e. 5. bananas, nonkey. fred. at e. 10. or anges]
* [1.0.0,2.0.0] equal toosgi:[1.0.0,2.0.0]
e format (S):[andrea doria,titanic]

e rpm[7:4.0.3-3.fc9, 8:1] - anexample KDE Adminversion7: 4.0.3-3.fc9t08: 1

triplet:[1.0.0.RC1,1.0.0]

102



Draft Omni Version Details Draft

FAQ

I sinternationalization supported? Alphanumerical segments use vanilla string comparison asinter-
nationalization (lexical ordering/collation) would produce different results for different users.

Areusersjust using Eclipse and 0sGi bundles affected? No, users that only deal within the 0sGi
domain can continue to use version strings like before, there is no need to specify version formats.

How does a user of something know which version type to use? This seems very complicated...
To use some non-0sGi component with p2, that component must have been made available in a p2
repository. When it was made available, the publisher must have made it available with a specified
version format. The publisher must understand the component’ s version semantics. A consumer that
only wants to install the component does not really need to understand the format, and the original
version string is probably sufficient. In scenarios where the consumer needs to know more — what
to present is domain specific — some tool could show all non 0SGi version strings as “non-0sGi” or
“formatted” with drill down into the actual pattern (or if there is an alias registry available, it could
reverse lookup the format).

Will open (0sGi) ranges produce lots of false positives? Very unlikely. One decision to minimize
the risk was to specify that integer segments are considered to be later than array and string segments.
(Wealsofelt that version segments specified with integers are more precise). Note that to be included
in the range, the required capability would still need to be in a matching name space, and have a
matching name. To introduce a false positive, the publisher of the false positive would need to a)
publish something already known to others (namespace and name) b) misinterpret how its versioning
scheme works, and publishing it with a format of n.n.n.n (or n.n.n.s.<something>), ¢) having first
learned how to actually specify such a format and how to publish it to a p2 repository and d) then
persuaded users to use the repository.

What happens when a capability is available with several versioning schemes? A typical case
would be somejavapackagethat isversioned at the source using tripl et notation, and the same package
is also made available using 0sGi notation (which btw. is a mistake).

As an example, the following capabilities are found:
 org.demo.shipstriplet:2.0.0
 org.demo.shipstriplet:2.0.0.RC1

* org.demo.ships 0sgi:2.0.0

* org.demo.ships 0sgi:2.0.0.RC1

(Reminder: in triplet notation 2.0.0.RC1 is older than 2.0.0).

The raw versions will then look like this:

* 2.0.0.m

* 2.0.0.' RCY
* 2.0.0

e 2.0.0."'RCY

And the newest is 2.0.0.m (which is correct for both osGi, and triplet). When specifying arange, the
outcome may depend on if the range is specified with osgi or triplet notation.

* 0s0i:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches the 0sgi:2.0.0 version only

o triplet:[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] => matches all the versions, and picks 2.0.0.m as it
isthe latest.

103



Draft

Omni Version Details Draft

i.e, result is correct (assuming the bits are identical as different artifacts would be picked)

Now look at the lower boundary, and assume that the following versions are the (only) available:
» org.demo.shipstriplet: 1.0.0 == raw: 1.0.0.m

» org.demo.shipstriplet: 1.0.0.RC1 == raw:1.0.0.'RC1'

 org.demo.ships osgi: 1.0.0 == raw:1.0.0

 org.demo.ships 0sgi:1.0.0.RC1 == raw:1.0.0.'RC1'

When specifying ranges:

* 0s0i:[1.0.0,2.0.0] == raw:[1.0.0, 2.0.0] => matches all the version, and picks 1.0.0.maxs as thisis
the newest

o triplet:[1.0.0,2.0.0] == raw:[1.0.0.m,2.0.0.m] results in 1.0.0.m as it is the only available version
that matches.

i.e., theresult is correct and here the exact same version is picked.

The “worst osai/triplet crime” that can be committed is publishing an unqualified triplet version as
an 0sGi version (if the same version is not also available as atriplet) as this would make that version
older than what it is even when queried using atriplet range.

What if the publisher of acomponent changesver sioning scheme— what happenstoranges? The
order among theversionswill be correct aslong asthe versionsare published using the correct notation.
The only implication is that users must understand that a query for triplet:1.2.3 means raw:1.2.3.m
— eg0., 0sgi:[1.0.0,2.0.0] != triplet:[1.0.0,2.0.0] (0sGi upper range of 2.0.0 would not match triplet
published 2.0.0, and triplet lower range of 1.0.0 would not match 0sGi published 1.0.0).

Why not use regexp instead of the special pattern format? This was first considered, and would
certainly work if the pattern notation was augmented with processing instructions, or if the regexp is
specified as a substitution that produces the raw format. Such specifications would typically be much
longer and more difficult for humans to read than the proposed format, except possibly for regexp
experts ;). Another immediate problem is that regexp breaks the current API requirement. It is not
included in execution environment CDC- 1. 1/ Foundat i on- 1. 1 required by p2.

Patter n parsing looks like it could have performance implications— what ar e the expectations
her e?A mechanism similar to regular expressionsis used — when aformat isfirst seenit is compiled
to aninternal structure. The compiled structure is cached and reused for all subsequent occurrences of
the same format. Once parsed, all comparisons are made using the raw vector, which is comparable
in speed to the current implementation (in many cases it is faster).

Also note that the Engine does not have to parse and apply the format to the original string unless code
explicitly asksfor it, and thisis not the normal case during provisioning.

Why not just let the publisher deal with transforming the version into canonical form? The
proposal allows this — the publisher is not required to make the format available. We think thisis
reasonable in domains where humans are not involved in the authoring (or the consumption).

There are several reasons why it is a good idea to include the origina version string as well as the
format:

« the original version strings needs to be kept as users would probably not understand the canonical
representation in many cases.

« if the transformation pattern is not available a user would not be able to create a request without
hand coding the canonical form

104



Draft

Omni Version Details Draft

» making the transformation logic used by one publisher available to others would mean that all
publishers must have extensions that allow plugging in such logic, and the plugins must be made
available

Would it be possible to use the 0sGi implementation of version asthe canonical form? The long
answer is: To be general, the encoding would need to be made in the qualifier string part of the OSGi
version. An upper length for segments must be imposed, numerical sections must be |eft padded with
“0” to that length, and string segments must be right padded with space (el se string segment parts may
overlap integer segments parts). The selected segment length would need to be big enough to allow
the longest anticipated string segment. A fixed length string representation of MAX must be invented.
A different implementation would still be needed to be able to keep the original version strings. The
short answer is: no (and thisis the reason for implementing the omni version in the first place).

Why not use an escapein string segmentsto be ableto have stringswith a mix of quotes? There
are severa reasons.

« thiswould mean that the version string would need to be preprocessed as it would not have \ em-
bedded from the start

« al version strings that use \ as a delimiter would need to be pre-processed to escape the \

* to date, we [...the authors of this proposal] have not seen a version format that requires a mix of
quotes

 Intheunlikely event that such strings are present it is possible to concatenate several stringsin the
raw format.

 parsing performance is affected

Which format should | use? If you have the opportunity to select a versioning scheme — stick with
OSGi.

Resources

» mozillatoolkit version format [https://developer.mozilla.org/En/Toolkit_version_format]
* rpm version comparison [http://linux.duke.edu/~mstenner/docs/rpm-version-cmp]

* sun spec version format [http://java.sun.com/j2se/1.5.0/docs/gui de/depl oyment/depl oyment-guide/
version-format.html]

105


https://developer.mozilla.org/En/Toolkit_version_format
https://developer.mozilla.org/En/Toolkit_version_format
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://linux.duke.edu/~mstenner/docs/rpm-version-cmp
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html
http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/version-format.html

Draft Draft

Colophon

How to print this book. This book was produced by using the following specifications and tools:
* DocBook 4.5 schema

* Serna 4.l free— for editing

» Apache Fop 0.95 — for producing PDF output

» Doc Book XsLT style sheets 1.75.1

Parameter settings are required to set the font size for monospaced verbatim areas as code examples otherwise
would be truncated. A size of 8pt isrequired.

Parameters al so needs to be set to produce PDF “bookmarks” (i.e., a PDF TOC). Thisis done on the command line
asadirectivetoxsl t proc.

Tools used. This book was authored by using the following tools:
» Serna 4.1 free— for DocBook editing

* InkScape 0.46 — for vector graphics

» LineForm 1.5 — for vector graphics

 graphviz 2.24 — for graph generation

106



	Eclipse b3
	Table of Contents
	Preface
	Why use b3?
	Why read this book
	This book’s audience
	Conventions used in this book
	Getting examples from this book
	Request for comment
	Acknowledgements

	Part I. Introduction
	Chapter 1. Introduction to b3
	Functional Overview
	Getting Components
	The Build Unit
	Builders
	Builder source, input and output
	More about builders
	Builder functions
	Turning something into a build unit
	Advising units

	Summary


	Part II. b3 reference
	Chapter 2. The b3 expression language
	Intro
	General information
	Files
	Structure
	Comments and documentation
	Types
	Literals
	Numbers
	Strings
	Regular expressions
	Literal list and map
	Empty list or map

	Literal functions
	Other special literals
	null
	unit
	source, input, output
	Wildcard ('_')

	Identifiers


	Importing
	What can be imported

	Functions
	Defining a function
	Function examples

	Expressions
	Expression and Expression Block
	Operators - precedence
	The ‘.’ operator — feature access
	The [ ] operator - indexed/keyed access
	Call expression
	Calling static Java methods
	Lambda parameter shorthand

	Increment and Decrement
	Not operator
	New expression
	Sequence operator
	*, % and /
	+ and -
	Relational operators
	Matches operator
	instanceof operator
	Logical connectives && and ||
	Variables and Constants
	Assignment operations
	If expression
	Switch expression
	Try expression
	Throw expression
	Cache expression
	Typecast
	With context expression
	Bitwise operations

	Properties
	Property sets
	Loading properties from files
	Property sets are concerns
	Accessing properties

	Concern
	Function concern context
	Proceed expression
	With expression

	Type system
	System functions
	Evaluation
	Looping functions
	Set functions
	Currying

	Assert function


	Chapter 3. The Build Unit
	Build Unit
	Unit body overview
	Capabilities
	Provided capabilities
	Unit required capabilities

	Repositories
	Declaring repositories
	Repositories examples

	Containers
	Synchronization

	Builders
	Input
	Input examples
	Input examples using ‘when’
	Input examples using ‘with’
	Input examples using 'as ID'
	Using parameterized builders

	Source
	Output
	Annotations in input, source and output
	The builder’s logic

	The BuildSet
	Unit & Builder Concern
	Adding or overriding builders
	Unit Concern
	Builder Concern
	Predicates in concern context
	Concern examples


	Chapter 4. Versions
	Omni Version introduction
	b3 and omni version
	b3’s named formats
	Version ranges


	Part III. Examples
	Chapter 5. Example 1 - TBD

	Part IV. Appendix
	Appendix A. Installation
	Installing for Eclipse SDK
	Installing the Headless Product
	Connectors
	Subversion (SVN)


	Appendix B. Eclipse
	Eclipse technology
	Equinox
	Platform
	Java Development Tools (JDT)
	Plugin Development Environment (PDE)
	Rich Client Platform (RCP)
	p2

	The Eclipse component types
	Plugins, features and OSGi bundles
	Bundle
	Plugin
	Feature

	Fragments
	Products

	The Workspace
	The Target Platform
	Launch configuration
	ANT

	Appendix C. p2
	The Installable Unit
	Metadata repository
	Artifact repository
	Combined / co-located repositories
	Profile
	p2 internals
	Categories
	Publishing
	Installing
	The SDK agent
	The director application
	The p2 Installer
	The EPP wizard
	The Buckminster installer

	Shipping
	Summary

	Appendix D. Omni Version Details
	Introduction
	Background
	Implementation
	Version
	Comparison
	Raw and Original Version String
	Omni Version Range
	Other range formats

	Format Specification
	Format Pattern Explanation
	Examples of Version Formats
	Tooling Support
	More examples using ‘format’
	FAQ
	Resources



