
 Welcome to Eclipse
Lab User

Table of Contents
Platform Plug−in Developer Guide...1

Guide..2

 Welcome to Eclipse..7
 Notices..7

About This Content...7
License...7
Contributions...7

 Who needs a platform?..7
 End users...8
 Software developers..8

 The holy grail...8
 What is Eclipse?...9

 Open architecture..9
 Platform structure..9
 Out of the box...11

Platform architecture...12
 Platform SDK roadmap...13

Runtime core...13
 Resource management..13
 Workbench UI..13
Team support...14
Debug support...14
 Help System...14
 Java Development Tools (JDT)..14
 Plug−in Development Environment (PDE)..14

 Team support...15
Repository providers..16

Extension point..16
Implementing a RepositoryProvider...16
 Configuring a project..17
 Finding a provider..18
Repository Providers and Capabilities..18
Resource modification hooks..19

 Resource properties...20
 Resource modification hooks..21

 Resource move/delete hooks..23
 File modification validators..25

Repository resource management..25
Ignored files...25
File Types..27
Team and linked resources..28
Team private resources..28
Project sets...29

Linked resources..30

 Welcome to Eclipse

i

Table of Contents
 Team support

Path variables..32
Broken links..32
Compatibility with installed plug−ins...35
Linked resources in code...37

 Project natures...38
 Defining a nature..38
 Associating the nature with a project...39
 Nature descriptors...39

Synchronization Support..40
Terminology..41
The Basics − SyncInfo..41
Managing the synchronization state..42
Displaying the synchronizations state in the UI..43

Local History Example..44
Defining the variants for local history...50
Creating the Subscriber...52
Adding a Local History Synchronize Participant..53
Conclusion...53

Beyond the Basics..54
Implementing a Subscriber From Scratch...55
ThreeWaySubscriber...56
ThreeWaySynchronizer...58
ThreeWayRemoteTree..60
CachedResourceVariant..61
Building on Top of Existing Workspace Synchronization..63

Team Repository Provider...64

Configuration Wizards...66

Move/Delete Hook...66

Ignore...66

File Types...66

Project Natures..67

Team Hook..67

Project Sets..67

Synchronize Participant Creation Wizards..67

 Program debug and launch support..69

 Welcome to Eclipse

ii

Table of Contents
 Plugging in help..70

Table of Contents (TOC)..71

 Plug it in: Hello World meets the workbench...77
 A minimal plug−in..77

 Hello world view..78
 Creating the plug−in project...78

Creating your plug−in project...78
 The Hello World view..80
 The Hello World manifest..80
 Running the plug−in...81

Launching the workbench...81
Running Hello World..82

 Beyond the basics...85
 Basic workbench extension points..89

 Installing examples via the Update Manager...89
 Installing examples manually...91

 Example − Readme Tool..91
 Introduction..91
 Running the example..91
 Details...91
 Notices..92

 Workbench menu contributions..93

Views..94

 Installing the examples..94

 Advanced workbench concepts...96

 Plugging into the workbench..97
 Quick tour of the workbench..97

 Views..98
 Editors..98

JFace: UI framework for plug−ins..99
 JFace and the workbench..99
JFace and SWT..99

 Standard Widget Toolkit...100
 Portability and platform integration..100
 Consistency with the platform..100

 Resources overview..102
 Workbench wizard extension points...102

Platform runtime..104
Workspace...104

 Welcome to Eclipse

iii

Table of Contents
 Resources overview

Platform text..104
Workbench..104
Team..104
Debug..105
Help...105
Other..106

Platform Extension Points..106

Adapters...107

Applications...110

Content Types..113

Preferences...118

Products...121

Incremental Project Builders...126

File Modification Validator..129

Resource Markers...131

Auto−refresh providers..134

Annotation Model Creation...136

Document Creation...138

Document Setup..140

Annotation Types..142

Document Providers...144

Marker Annotation Specification..147

Marker Updaters..150

Editor Template..153

Reference Provider...156

 Welcome to Eclipse

iv

Table of Contents
Accelerator Configurations..159

Commands...162

Action Sets...169

Accelerator Scopes..185

Accelerator Sets...188

Action Definitions..192

Action Set Part Associations..195

Activities...197

Cheat Sheet Content...203

Cheat Sheet Content File XML Format..207
cheatsheet...207
intro..207
description..207
item..208
subitem...209
conditional−subitem...209
repeated−subitem...210
action..211
perform−when..211
Example...212

Cheat Sheet Item Extension...214

Contexts...217

Decorators..219

Drop Actions..227

Editor Menus, Toolbars and Actions..230

Internal and External Editors..243

Element Factories..247

Export Wizards...249

 Welcome to Eclipse

v

Table of Contents
Font Definitions...252

HelpSupport..255

Marker Help..257

Marker Image Providers..260

Marker Resolutions..263

Project Nature Images..266

Resource Filters...268

Import Wizards...270

Intro Part...273

Intro Part Configuration..276

Intro Content File XML Format...281
introContent...281
page..281
group..282
link...283
html..285
title...286
text...286
include..287
head..287
img...288
extensionContent...288
anchor...289

Intro Part Configuration Extension..290

Creation Wizards..294

Perspective Extensions..299

Perspectives...304

Pop−up Menus...307

Preference Pages...327

 Welcome to Eclipse

vi

Table of Contents
Presentation Factories..330

Property Pages..332

Startup...336

System Summary Sections...338

Themes...340

View Menus,Toolbars and Actions..352

Working Sets...365

Synchronize Participants..368

Breakpoints..371

Launch Configuration Comparators..373

Launch Configuration Types...375

Launch Delegates..378

Launcher (Obsolete)...381

Launch Modes...384

Logical Structure Types...386

Process Factories...389

Source Container Types...391

Source Locators...393

Source Path Computers..395

Status Handlers...397

watchExpressionDelegates...399

Console Color Providers...401

Console Line Trackers..403

 Welcome to Eclipse

vii

Table of Contents
Context View Bindings...405

Debug Model Context Bindings...408

Debug Model Presentation...410

Launch Configuration Tab Groups..412

Launch Configuration Type Images...415

Launch Groups..417

Launch Shortcuts..420

Source Container Presentations..428

String Variable Presentations..431

Help Content Producer...433

Contexts...436

Browser..439

Lucene Analyzer..442

Ant Properties...445

Ant Tasks...448

Ant Types...450

Extra Ant Classpath Entries..452

ContentMerge Viewers...454

Content Viewers..456

Stream Merger..458

Structure Creators..461

StructureMerge Viewers..463

Property Testers..465

 Welcome to Eclipse

viii

Table of Contents
Dynamic Stirng Substitution Variables..468

Value Variables...470

Search Pages..473

Result Sorters..477

Search Result View Pages..480

Configuration Duplication Maps...482

Feature Type Factory...484

Global Install Handlers..486

Site Type Factory..488

 Runtime overview..490
 The runtime plug−in model..490

 Plug−ins and bundles...490
 org.osgi.framework Interface BundleContext..492

 getProperty...494
 getBundle..495
 installBundle...495
 installBundle...496
 getBundle..497
 getBundles..497
 addServiceListener...497
 addServiceListener...498
 removeServiceListener...498
 addBundleListener..498
 removeBundleListener...499
 addFrameworkListener...499
 removeFrameworkListener..499
 registerService..500
 registerService..501
 getServiceReferences...501
 getServiceReference...502
 getService...503
 ungetService...504
 getDataFile...504
 createFilter..505

 org.osgi.framework Class BundleEvent..505
 INSTALLED..507
 STARTED..507
 STOPPED...508
 UPDATED...508

 Welcome to Eclipse

ix

Table of Contents
 Runtime overview

 UNINSTALLED..508
 RESOLVED...508
 UNRESOLVED...508
 BundleEvent...509
 getBundle..509
 getType...509

 org.osgi.framework Interface BundleActivator...510
 start...511
 stop...511

 org.osgi.framework Interface Bundle..512
 UNINSTALLED..514
 INSTALLED..514
 RESOLVED...515
 STARTING..515
 STOPPING...515
 ACTIVE...516
 getState...516
 start...516
 stop...517
 update...518
 update...519
 uninstall..520
 getHeaders..520
 getBundleId..521
 getLocation...522
 getRegisteredServices..522
 getServicesInUse..522
 hasPermission...523
 getResource..523
 getHeaders..524
 getSymbolicName..524
 loadClass..525
 getEntryPaths..525
 getEntry..526
 Extension points and the registry...526

 Runtime preferences...527
 Preference scopes...528
 Using scopes and nodes..529
 Extending the scopes..529

Products and features...529
Products extension point...531
Customizing a product...532
About dialogs..532
Window images...533
Welcome page...533
Preferences defaults...533
Splash screens..533

 Welcome to Eclipse

x

Table of Contents
 Runtime overview

 Intro support...534
Features...539
Primary feature..541

 Project−scoped preferences..542
Specifying the scope..547
Project−scoped preference nodes..554

 Content types..555
Defining and describing content..555
Finding out about content types..555

 Concurrency infrastructure...556
Jobs..556
Common job operations..557
Job states..558
Job change listeners...558
The job manager..559
Job families..559
 Reporting progress...560
Progress monitors and the UI..560
Progress groups...560

 Workbench concurrency support..561
Progress service...562
Showing that a part is busy..562
Progress Properties for Jobs..563
Workbench jobs...564

 Long−running operations..565
Runnables and progress...566
Modal operations...566
IProgressService..566

 Threading issues..566
 Native event dispatching..567
 Toolkit UI threads..567
 SWT UI thread...567
 Executing code from a non−UI thread...567
 The workbench and threads..568
 Job scheduling..568
 Scheduling rules...569
Making your own rules..570
Rule hierarchies...570
 Locks..572

 Workbench under the covers..574
 Workbench...574
 Page..575
 Perspectives..576
 Views and editors...576
 org.eclipse.ui.views..577

 Viewers...578
 Standard viewers..578

 Welcome to Eclipse

xi

Table of Contents
 Runtime overview

 Viewer architecture..579
 Viewers and the workbench...581
 org.eclipse.ui.viewActions...582
 org.eclipse.ui.editors...583
Contributing new retargetable actions...584

 Content outliners...584
Text editors and platform text..585

 org.eclipse.ui.editorActions..588
 org.eclipse.ui.popupMenus...588
 org.eclipse.ui.actionSets...590

 Application dialogs...591
 Preference pages...592

Contributing a preference page...595
Implementing a preference page...598
 Field editors..600

 The plug−in class..600
 Plug−in definition...602
 AbstractUIPlugin..605

 Feature Archives..606

Eclipse platform plug−in manifest..606

 Eclipse platform feature manifest..606

Dialogs and wizards..608
 Standard dialogs..608
 Dialog settings..608
 Wizards...609

 Wizard dialog...610
 Wizard..610
 Wizard page..610
 org.eclipse.ui.newWizards...610
 org.eclipse.ui.importWizards...615
 org.eclipse.ui.exportWizards..616

 Wizard dialogs..617
 Multi−page wizards..618

 Validation and page control...618
 Actions and contributions...619

 Actions..619
 Contribution items..620
 Contribution managers...620

 User interface resources..620
 Image descriptors and the registry..621
 Plug−in patterns for using images..622
 Font registry...623
 JFaceResources..623

 Welcome to Eclipse

xii

Table of Contents
Dialogs and wizards

 Widgets...624
 Widget application structure..624
 Widget life cycle..625
Running the example...626

SWT standalone example − Hello World..627
SWT standalone examples setup...627

Importing example source...627
Running the Example..628
Examples Overview..629

SWT standalone example − Address Book...629
Running the example...629
 Notices..630

SWT standalone example − Clipboard..630
Running the example...630

SWT standalone example − File Viewer...630
Running the example...630

SWT standalone example − Hover Help...630
Running the example...631

SWT standalone example − Image Analyzer..631
Running the example...631

SWT standalone example − Java Syntax Viewer..632
Running the example...632

SWT standalone example − Text Editor..632
Running the example...632
 Controls..632
 Events...635
 Custom widgets..637

 Layouts..641
 FillLayout...642
 RowLayout...642
 FormLayout..643
 GridLayout...645
 StackLayout..646
 Custom layouts...647

 Error handling...647
 IllegalArgumentException...648
 SWTException...648
 SWTError...648

 Graphics..648
 Graphics context...648
 Fonts...649
 Colors...649
 Images..649
 Graphics object lifecycle..650

 Resources and the workspace...651
 A sample resource tree...651

 Resources and the local file system..652

 Welcome to Eclipse

xiii

Table of Contents
Dialogs and wizards

 Our sample tree on disk..652
 Our sample tree in code..653
 Mapping resources to disk locations..655
 Resource API and the file system...655

 Refresh providers..656
 File encoding and content types..656

 Setting a character set...656
 Querying the character set..657

 Resource markers..657
 Marker operations...658
 Extending the platform with new marker types...660

 Modifying the workspace...661
 Batching resource changes...662
 Tracking resource changes...664
Concurrency and the workspace..667

 Incremental project builders...668
 Invoking a build..669
 Defining an incremental project builder...670
 Associating an incremental project builder with a project...672

Derived resources...672
Team private resources..673

 Workspace save participation...673
 Implementing a save participant...673
 Using previously saved state..676

 Menu and toolbar paths...677
 Menu paths...677
Tool bar paths..680
Using paths from another plug−in...682

 Action set part associations...682
 Boolean expressions and action filters..683

 Boolean expressions...683
Using objectState with content types..685

Retargetable actions...685
Setting a global action handler..687

 Perspectives...692
 Workbench part layout...693
 Linking views and editors with "show−in"..693
 org.eclipse.ui.perspectives..694
 org.eclipse.ui.perspectiveExtensions..695
 Decorators..696

Workbench key bindings...698
Commands...699
Key bindings..701
Key configurations..702
Contexts and key bindings..703
 Contexts..704
Element factories...705

 Welcome to Eclipse

xiv

Table of Contents
Dialogs and wizards

Accessible user interfaces..707
Assistive technology..707
Accessibility resources..708
SWT and accessibility...708

Tips for making user interfaces accessible...709
Honoring single click support..710

Single click in JFace viewers..711
Single click in SWT controls...711
Activating editors on open..711

Working sets..711
Adding new working set types..712
 Contributing resource filters...713

 Filtering large user interfaces..715
 Activities..715
Activities vs. perspectives...715

 Guiding the user through tasks...719
 Cheat sheets..719

 Workbench resource support..723
Contributing a property page...723
Implementing a property page...725
Marker help and resolution..726
Text file encoding..729

Editors..731
 Workbench editors..732

 Editor parts and their inputs...732
 Resetting the editor input...732
 Navigating the editor input ..732

Documents and partitions..732
Document providers and documents...733

Syntax coloring..735
Damage, repair, and reconciling..735

Configuring a source viewer..737
Source viewers and annotations...738

Annotations and rulers...738
Text and ruler hover...742

Text hover..742
Ruler hover..743

Content assist...744
Content assist processors...745
Content assist configuration..746

Registering editor actions..747
Editor menu bar actions...747
Editor context menus...748
Menu ids..749

Other text editor responsibilities..750

 Welcome to Eclipse

xv

Table of Contents
Editors

Preference handling...750
Key bindings..750

 Building a help plug−in..751
 Table of contents (toc) files..752
 Help server and file locations...753
 Completing the plug−in manifest...754
Building nested documentation structures..756
Dynamic help..757

 Infopops..758
 Declaring a context id...758
 Describing and packaging infopop content..759

 Active help..760
 Writing the help action...760
 Invoking the action from HTML..761
Tips for debugging active help..762

 Search support...764
 Contributing a search page..764

Implementing the search page...765
 Contributing a search result page..765

 Compare support...766
Compare viewers...766
 Implementing a content viewer...766

 Simple content viewers..766
Content merge viewers..767

 Implementing a structure viewer..768
Tree−like structure viewers...768
Other hierarchical structure viewers..769

 Merging multiple streams...770
 Advanced compare techniques...771

Writing compare operations..771
Compare functionality outside of compare editors...771

Rich Team Integration...772
Getting started...774
Enhancing resource views...774
Handling user editing and changes to resources...774
Streamlining repository−related tasks...775
 Enhancing platform integration..775
 Adding team actions...775
Team decorators..777
Team and linked resources..778
Project sets...779
File types...781
Adding preferences and properties..783

Launching a program...785
Adding launchers to the platform..785

 Welcome to Eclipse

xvi

Table of Contents
 Compare support

Handling errors from a launched program..787
Launch configuration dialog...787
Launch configuration type images..789
Launch shortcuts..790

Debugging a program..790
Platform debug model...790
Breakpoints..792
Expressions..793
Debug model presentation...793
Debug UI utility classes..794

Platform Ant support...795
 Running Ant buildfiles programmatically..795

 Special care for native libraries if build occurs within the same JRE as the workspace..............795
 Ant tasks provided by the platform...796

 eclipse.refreshLocal..796
 eclipse.incrementalBuild..796
 eclipse.convertPath...796

 Contributing tasks and types...796
 Progress Monitors...797
 Important rules when contributing tasks and types..797
Why a separate JAR for tasks and types?..797

 Developing Ant tasks and types within Eclipse..798
 Expanding the Ant classpath...798

Customizing a primary feature..799
About dialogs..799
Window images...800
Welcome page...800
Splash screens..801
Preferences defaults...801
Defining NL fragments...801

 Packaging and delivering Eclipse based products..802

About.ini File Format...803
Locale specific files...804
Plug−ins and fragments...805

 Plug−in Archives..806
Product installation guidelines...806

Multi−user issues...807
Uninstall issues..808
Reinstalling the product...808

How to write an Eclipse installer...809
Product installer creation script...809

Uninstaller behavior..813

 Welcome to Eclipse

xvii

Table of Contents
How to write an Eclipse installer

Installer behavior when product already installed...813
Associating a JRE installed elsewhere..814

Extension installer creation script..814
Uninstaller behavior..816
Installer behavior when extension already installed..817

Product extensions...817
Installing and uninstalling extensions...818

Updating a product or extension..819
Feature and plug−in packaging...819
Update server layout..819
 Site Map...821
 Default Site Layout..821
 Controlling Access...823

 Update server site map..824

Building a Rich Client Platform application..825

Eclipse Platform Map of Platform Plug−ins..826
 The browser example..829
 Defining a rich client application..831
 Customizing the workbench...832

The workbench life−cycle...832
 Defining the actions..833

 Making UI contributions...835
 Adding the perspective...835
 Adding views..836

Reference...837
 OSGi Service Platform Specification Release 3 API...837

 Other Reference Information ...839
Basic platform information..839
User interface information...839
Help information..839
Product install and configuration information...839
Eclipse.org articles index...839

The Eclipse runtime options..840
Command line arguments..840

Obsolete command line arguments...841
Others..842

System properties...842
Locations..845

More detail..846

 Welcome to Eclipse

xviii

Table of Contents
Starting Eclipse from Java...848

 Eclipse platform API rules of engagement..849
 What it means to be API...849
 How to tell API from non−API...849
 General rules...850
 Calling public API methods..850
 Instantiating platform API classes..851
 Subclassing platform API classes...851
 Calling protected API methods...851
 Overriding API methods...851
 Implementing platform API interfaces...852
 Implementing public API methods...852
 Accessing fields in API classes and interfaces...852
 Casting objects of a known API type..852
 Not following the rules...853

 Eclipse Platform Naming Conventions..854
 Java Packages..854
 Classes and Interfaces...855
 Methods..856
 Variables...856
 Constants...857
 Plug−ins and Extension Points...857

...858

 Glossary of terms...859

 The project description file...860

Pre−built documentation index...863
Building an index for a product...863
Packaging and Installation of pre−built index...863

Installing the stand−alone help system...865
Installation/packaging..865
How to call the help classes from Java..865
How to call the help from command line...866
[Optional] Installing a minimal set of plug−ins...866

Help System Preferences..868
 org.eclipse.help plug−in:...868
 org.eclipse.help.base plug−in:..868
 org.eclipse.help.appserver plug−in:..870
 org.eclipse.tomcat plug−in:...870

 Welcome to Eclipse

xix

Table of Contents
Installing the help system as an infocenter...871

Installation/packaging..871
How to start or stop infocenter from command line..872
Using the infocenter...872
How to start or stop infocenter from Java..872
Making infocenter available on the web..872
Running multiple instance of infocenter..873
[Optional] Installing a minimal set of plug−ins...873

Eclipse Update Policy Control...874
2. Update policy to the rescue..874

2.1 Support for creating local (proxy) update sites...874
2.2 Common update policy control...874
2.3 Automatic discovery of updates..876

3. Summary..876
1. Plug−in manifest version...877
2. Restructuring of Platform UI plug−ins..880
3. Restructuring of Platform Core Runtime plug−ins...881
4. Removal of Xerces plug−in...882
5. Eclipse 3.0 is more concurrent..884
6. Opening editors on IFiles..884
7. Editor goto marker...885
8. Editor launcher..886
9. Editor registry..887
10. Workbench marker help registry...887
11. Text editor document providers..888
12. Text editors..889
13. Headless annotation support..889
 14. Console view..890
15. Java breakpoint listeners...890
16. Clipboard access in UI thread...891
17. Key down events...891
18. Tab traversal of custom controls...893
19. Selection event order in SWT table and tree widgets...893
20. New severity level in status objects..893
21. Build−related resource change notifications...894
22. Intermediate notifications during workspace operations...894
23. URL stream handler extensions..894
24. Class load order...894
25. Class loader protection domain not set..895
26. PluginModel object casting...895
27. ILibrary implementation incomplete...896
28 Invalid assumptions regarding form of URLs..896
29. BootLoader methods moved/deleted...897
30. Plug−in export does not include the plug−in's JARs automatically..897
31. Re−exporting runtime API..898
32. Plug−in parsing methods on Platform...898
33. Plug−in libraries supplied by fragments..898

 Welcome to Eclipse

xx

Table of Contents
Eclipse Update Policy Control

34. Changes to build scripts..899
35. Changes to PDE build Ant task...899
36. Changes to eclipse.build Ant task...899
37. Changes to eclipse.fetch Ant task..899
38. Replacement of install.ini..900

Changes required when adopting 3.0 mechanisms and APIs..900
Getting off of org.eclipse.core.runtime.compatibility...901
NL fragment structure...901
API changes overview...901

Running update manager from command line..902

Migration ...902

Eclipse 3.0 Plug−in Migration Guide..902

Eclipse 3.0 Plug−in Migration FAQ..905

Incompatibilities between Eclipse 2.1 and 3.0..905

Examples..921
SWT Example Launcher..921

Running the Example Launcher..922
 Notices..922

SWT example − Browser...922
Running the example...922
 Notices..922

SWT example − Controls..922
Running the example...922
 Notices..923

SWT example − Custom Controls...923
Running the example...923

SWT example − Layouts...923
Running the example...923
 Notices..923

SWT example − OLE Web Browser...924
Running the example...924
 Notices..924

SWT example − Paint Tool...924
Running the example...924
 Notices..924

 Example − Java Editor..925
 Introduction..925
 Features demonstrated in the example editor...925
 Features not demonstrated..925
 Running the example editor...925
 Principles for creating custom text editors...926

 Welcome to Eclipse

xxi

Table of Contents
Examples

 Code organization of the example..927
 Notices..927

 Example − Template Editor..927
 Introduction..927
 Features demonstrated in the template editor...927
 Features not demonstrated..928
 Code organization of the template editor example...928

 Example − Multi−page Editor..928
 Introduction..928
 Running the example..928
 Details...929
 Notices..929

 Example − Property Sheet..929
 Introduction..929
 Running the example..929
 Details...929
 Notices..930

Help..930
Introduction...930
Running the example...930
Details..930
 Notices..930

Team − File System Repository Provider Example...930
Introduction...930
Running the example...931
 Notices..931

Team − Local History Synchronize Participant Example...931
Introduction...931
Running the example...932

Compare Example − Structural Compare for Key/Value Pairs...932
Introduction...932
 Running the example..932
Code organization of the example...932
 Notices..933

IBM Eclipse Platform XML Compare..934
Installing the plugin...934
Using the plugin...934

ID Mapping Schemes..934
Ordered entries..934
Defining ID Mapping Schemes and Ordered entries..935

 Extension Points...936

Tutorial and Examples...937
 General Matching vs. ID Mapping Schemes:How to create an ID Mapping Scheme to improve
 compare results...937

 Welcome to Eclipse

xxii

Table of Contents
Tutorial and Examples

Adding Ordered entries..939
 Notices..941
Getting started...942
Core runtime..954
Resources...954
New file types in the UI..954
Workbench UI...954
Installation and upgrade..954

 idMapping...954

 Platform questions index...955

 Welcome to Eclipse

xxiii

Platform Plug−in Developer Guide
Programmer's Guide•
Reference•
3.0 Plug−in Migration Guide•
Examples Guide•
Questions Index•
Legal•

Platform Plug−in Developer Guide 1

Guide
Welcome to Eclipse

Who needs a platform?♦
The holy grail♦
What is Eclipse?♦
Go to eclipse.org♦

•

Platform architecture
Platform SDK roadmap♦

•

Simple plug−in example
A minimal plug−in♦
Creating the plug−in project♦
The Hello World view♦
The Hello World manifest♦
Running the plug−in♦
Beyond the basics♦

•

Runtime overview
The runtime plug−in model

Plug−ins and bundles◊
Extension points and the registry◊

♦

Runtime preferences♦
Content types♦
Concurrency infrastructure

Reporting progress◊
Job scheduling◊
Scheduling rules◊
Locks◊

♦

•

Plugging into the workbench
Workbench under the covers♦
Basic workbench extension points

org.eclipse.ui.views◊
org.eclipse.ui.viewActions◊
org.eclipse.ui.editors◊
org.eclipse.ui.editorActions◊
org.eclipse.ui.popupMenus◊
org.eclipse.ui.actionSets◊

♦

Preference pages
Contributing a preference page◊
Implementing a preference page◊
Field editors◊

♦

The plug−in class♦

•

Dialogs and wizards
Standard dialogs♦
Application dialogs♦
Dialog settings♦
Wizards♦
Workbench wizard extension points

org.eclipse.ui.newWizards◊
org.eclipse.ui.importWizards◊
org.eclipse.ui.exportWizards◊

♦

•

Guide 2

http://www.eclipse.org

Wizard dialogs♦
Multi−page wizards♦

JFace UI framework
Viewers♦
Actions and contributions♦
User interface resources♦
Long−running operations♦

•

Standard Widget Toolkit
Widgets

Controls◊
Events◊
Custom widgets◊

♦

Layouts
FillLayout◊
RowLayout◊
FormLayout◊
GridLayout◊
StackLayout◊
Custom Layouts◊

♦

Threading issues♦
Error handling♦
Graphics♦

•

Resources overview
Resources and the workspace♦
Resources and the local file system♦
Resource properties♦
Project−scoped preferences♦
File encoding and content types♦
Linked resources♦
Resource markers♦
Modifying the workspace

Batching resource changes◊
Tracking resource changes◊
Concurrency and the workspace◊

♦

Incremental project builders♦
Derived resources♦
Workspace save participation♦
Project natures♦
Resource modification hooks♦
Refresh providers♦

•

Advanced Workbench Concepts
Workbench menu contributions♦
Menu and toolbar paths♦
Action set part associations♦
Boolean expressions and action filters♦
Retargetable actions

Setting a global action handler◊
Contributing new retargetable actions

Retargetable editor actions⋅
Retargetable action set actions⋅

◊

♦

Perspectives♦

•

 Welcome to Eclipse

Guide 3

org.eclipse.ui.perspectives◊
org.eclipse.ui.perspectiveExtensions◊

Decorators♦
Workbench key bindings

Commands◊
Key bindings◊
Key configurations◊
Contexts and key bindings◊

♦

Element factories♦
Accessible user interfaces♦
Honoring single click support♦
Working sets♦
Filtering large user interfaces

Activities◊
Contexts◊

♦

Guiding the user through tasks
Cheat sheets◊
Intro support◊

♦

Workbench concurrency support♦
Workbench resource support

Contributing a property page◊
Implementing a property page◊
Marker help and resolution

Contributing marker help⋅
Contributing marker resolution⋅

◊

Contributing resource filters◊
Text file encoding◊

♦

Editors
Workbench editors♦
Text editors and platform text♦
Documents and partitions♦
Source viewers and annotations♦
Configuring a source viewer♦
Text and ruler hover♦
Syntax coloring♦
Content assist♦
Registering editor actions♦
Other text editor responsibilities♦
Content outliners♦

•

Plugging in help
Building a help plug−in

Table of contents (toc) files◊
Help server and file locations◊
Completing the plug−in manifest◊
Building nested documentation structures◊
Dynamic help◊

♦

Infopops
Declaring a context id◊
Describing and packaging infopop content◊

♦

Active help
Writing the help action◊

♦

•

 Welcome to Eclipse

Guide 4

Invoking the action from HTML◊
Tips for debugging active help◊

Search support
Contributing a search page♦
Contributing a search result page♦

•

Compare support
Merging multiple streams♦
Implementing a content viewer♦
Implementing a structure viewer♦
Advanced compare techniques♦

•

Team support
Repository providers♦
Resource management♦
Synchronization Support

Local History Synchronization Example◊
Beyond the basics◊

♦

Rich Team Integration
Adding team actions◊
Team decorators◊
Adding preferences and properties◊

♦

•

Program debug and launch support
Launching a program

Adding launchers to the platform◊
Handling errors from a launched program◊
Launch configuration dialog◊
Launch configuration type images◊
Launch shortcuts◊

♦

Debugging a program
Platform debug model◊
Breakpoints◊
Expressions◊
Debug model presentation◊
Debug UI utility classes◊

♦

•

Platform Ant support
Running Ant buildfiles programmatically♦
Ant tasks provided by the platform♦
Contributing tasks and types♦
Developing Ant tasks and types within Eclipse♦
Expanding the Ant classpath♦

•

Packaging and delivering Eclipse based products
Defining a Product

The products extension point◊
Customizing a product◊
Products as primary features◊
Customizing a primary feature◊

♦

Features♦
Plug−ins and fragments♦
Locale specific files♦
Product installation guidelines♦
Product extensions♦
Updating a product or extension♦

•

 Welcome to Eclipse

Guide 5

Building a Rich Client Platform application
The browser example♦
Defining a rich client application♦
Customizing the workbench♦
Making UI contributions

Adding the perspective◊
Adding views◊
Defining the actions◊

♦

•

 Welcome to Eclipse

Guide 6

Welcome to Eclipse
Welcome to the Eclipse platform!

The following sections discuss the issues and problems with building integrated tool suites, and how the
Eclipse tooling platform can help solve these problems.

Notices

The material in this guide is Copyright (c) IBM Corporation and others 2000, 2004.

Terms and conditions regarding the use of this guide.

About This Content

20th June, 2002

License

Eclipse.org makes available all content in this plug−in ("Content"). Unless otherwise indicated below, the
Content is provided to you under the terms and conditions of the Common Public License Version 1.0
("CPL"). A copy of the CPL is available at http://www.eclipse.org/legal/cpl−v10.html. For purposes of the
CPL, "Program" will mean the Content.

Contributions

If this Content is licensed to you under the terms and conditions of the CPL, any Contributions, as defined in
the CPL, uploaded, submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or the
host of Eclipse.org web site, by you that relate to such Content are provided under the terms and conditions of
the CPL and can be made available to others under the terms of the CPL.

If this Content is licensed to you under license terms and conditions other than the CPL ("Other License"),
any modifications, enhancements and/or other code and/or documentation ("Modifications") uploaded,
submitted, or otherwise made available to Eclipse.org, members of Eclipse.org and/or the host of Eclipse.org,
by you that relate to such Content are provided under terms and conditions of the Other License and can be
made available to others under the terms of the Other License. In addition, with regard to Modifications for
which you are the copyright holder, you are also providing the Modifications under the terms and conditions
of the CPL and such Modifications can be made available to others under the terms of the CPL.

Who needs a platform?

On any given day, you can probably find an announcement about a strategic alliance, an open architecture, or
a commercial API that promises to integrate all your tools, seamlessly move your data among applications,
and simplify your programming life.

Down in the trenches, you're trying to apply enough import/export duct tape to let marketing say "suite" with

 Welcome to Eclipse 7

http://www.eclipse.org/legal/cpl-v10.html

a straight face.

Where is all this integration pressure coming from? Why is everyone trying to integrate their products into
suites or build platforms to support open integration? Who needs these platforms?

End users

Let's face it. End users do not call the support line to say, "What I really need is an open tools platform."

But they do ask why your product doesn't integrate with their other tools. They ask for features outside of the
scope of your application because they can't get their data to a tool that would do the job better. They run into
problems importing and exporting between different programs. They wonder why their programs have
completely different user interfaces for doing similar tasks. Doesn't it seem obvious that their web site design
tool should be integrated with their scripting program?

Your users want the freedom to pick the best tool for the task. They don't want to be constrained because your
software only integrates with a few other programs. They have a job to do, and it's not managing the flow of
files and data between their tools. They're busy solving their own problems. It's your job to make the tools
work, and even better if you can make them work together.

Software developers

Meanwhile, you are slaving on your tool implementing the next round of critical features, fixing bugs, and
shipping releases. The last thing you need is another emergency import feature added to your list.

Wouldn't it be nice if you could just publish enough hooks to make integrating with your tool everyone else's
problem? Unfortunately, unless you work for one of the giants, you just don't have enough clout to get away
with that.

The holy grail

What we all want is a level of integration that magically blends separately developed tools into a well
designed suite. And it should be simple enough that existing tools can be moved to the platform without
using a shoehorn or a crowbar.

The platform should be open, so that users can select tools from the best source and know that their supplier
has a voice in the development of the underlying platform.

It should be simple to understand, yet robust enough to support integration without a lot of extra glue.

It should provide tools that help automate mundane tasks. It should be stable enough so that industrial
strength tools can build on top of it. And it should be useful enough that the platform developers can use it to
build itself.

These are all goals of Eclipse. The remainder of this programming guide will help you determine how close
Eclipse has come to delivering on these ideals.

 Welcome to Eclipse

 End users 8

What is Eclipse?

Eclipse is a platform that has been designed from the ground up for building integrated web and application
development tooling. By design, the platform does not provide a great deal of end user functionality by itself.
The value of the platform is what it encourages: rapid development of integrated features based on a plug−in
model.

Eclipse provides a common user interface (UI) model for working with tools. It is designed to run on multiple
operating systems while providing robust integration with each underlying OS. Plug−ins can program to the
Eclipse portable APIs and run unchanged on any of the supported operating systems.

At the core of Eclipse is an architecture for dynamic discovery, loading, and running of plug−ins. The
platform handles the logistics of finding and running the right code. The platform UI provides a standard user
navigation model. Each plug−in can then focus on doing a small number of tasks well. What kinds of tasks?
Defining, testing, animating, publishing, compiling, debugging, diagramming...the only limit is your
imagination.

Open architecture

The Eclipse platform defines an open architecture so that each plug−in development team can focus on their
area of expertise. Let the repository experts build the back ends and the usability experts build the end user
tools. If the platform is designed well, significant new features and levels of integration can be added without
impact to other tools.

The Eclipse platform uses the model of a common workbench to integrate the tools from the end user's point
of view. Tools that you develop can plug into the workbench using well defined hooks called extension
points.

The platform itself is built in layers of plug−ins, each one defining extensions to the extension points of
lower−level plug−ins, and in turn defining their own extension points for further customization. This
extension model allows plug−in developers to add a variety of function to the basic tooling platform. The
artifacts for each tool, such as files and other data, are coordinated by a common platform resource model.

The platform gives the users a common way to work with the tools, and provides integrated management o f
the resources they create with plug−ins.

Plug−in developers also gain from this architecture. The platform manages the complexity of different
runtime environments, such as different operating systems or workgroup server environments. Plug−in
developers can focus on their specific task instead of worrying about these integration issues.

Platform structure

The Eclipse platform itself is structured as subsystems which are implemented in one or more plug−ins. The
subsystems are built on top of a small runtime engine. The figure below depicts a simplified view.

 Welcome to Eclipse

 What is Eclipse? 9

The plug−ins that make up a subsystem define extension points for adding behavior to the platform. The
following table describes the major runtime components of the platform that are implemented as one or more
plug−ins.

Platform runtime

Defines the extension point and plug−in model. It dynamically
discovers plug−ins and maintains information about the plug−ins and
their extension points in a platform registry. Plug−ins are started up
when required according to user operation of the platform. The
runtime is implemented using the OSGi framework.

Resource management
(workspace)

Defines API for creating and managing resources (projects, files, and
folders) that are produced by tools and kept in the file system.

Workbench UI

Implements the user cockpit for navigating the platform. It defines
extension points for adding UI components such as views or menu
actions. It supplies additional toolkits (JFace and SWT) for building
user interfaces. The UI services are structured so that a subset of the
UI plug−ins can be used to build rich client applications that are
independent of the resource management and workspace model.
IDE−centric plug−ins define additional function for navigating and
manipulating resources.

Help system
Defines extension points for plug−ins to provide help or other
documentation as browsable books.

Team support
Defines a team programming model for managing and versioning
resources.

Debug support
Defines a language independent debug model and UI classes for
building debuggers and launchers.

Other utilities
Other utility plug−ins supply function such as searching and
comparing resources, performing builds using XML configuration
files, and dynamically updating the platform from a server.

 Welcome to Eclipse

Platform structure 10

Out of the box

Out of the box − or off the web − the basic platform is an integrated development environment (IDE) for
anything (and nothing in particular).

It's the plug−ins that determine the ultimate functionality of the platform. That's why the Eclipse SDK ships
with additional plug−ins to enhance the functionality of the SDK.

Your plug−ins can provide support for editing and manipulating additional types of resources such as Java
files, C programs, Word documents, HTML pages, and JSP files.

 Welcome to Eclipse

 Out of the box 11

Platform architecture
The Eclipse platform is structured around the concept of plug−ins. Plug−ins are structured bundles of code
and/or data that contribute function to the system. Function can be contributed in the form of code libraries
(Java classes with public API), platform extensions, or even documentation. Plug−ins can define extension
points, well−defined places where other plug−ins can add functionality.

Each subsystem in the platform is itself structured as a set of plug−ins that implement some key function.
Some plug−ins add visible features to the platform using the extension model. Others supply class libraries
that can be used to implement system extensions.

The Eclipse SDK includes the basic platform plus two major tools that are useful for plug−in development.
The Java development tools (JDT) implement a full featured Java development environment. The Plug−in
Developer Environment (PDE) adds specialized tools that streamline the development of plug−ins and
extensions.

These tools not only serve a useful purpose, but also provide a great example of how new tools can be added
to the platform by building plug−ins that extend the system.

Platform architecture 12

Platform SDK roadmap

Runtime core

The platform runtime core implements the runtime engine that starts the platform base and dynamically
discovers and runs plug−ins. A plug−in is a structured component that describes itself to the system using a
manifest (plugin.xml) file. The platform maintains a registry of installed plug−ins and the function they
provide.

A general goal of the runtime is that the end user should not pay a memory or performance penalty for
plug−ins that are installed, but not used. A plug−in can be installed and added to the registry, but the plug−in
will not be activated unless a function provided by the plug−in has been requested according to the user's
activity.

The platform runtime is implemented using the OSGi services model. While implementation details of the
runtime may not be important to many application developers, those already familiar with OSGi will
recognize that an Eclipse plug−in is, in effect, an OSGi bundle.

The best way to get a feel for the runtime system is to build a plug−in. See Plug it in: Hello World meets the
workbench to get started building a plug−in. To understand the nuts and bolts of the runtime system, see
Runtime overview.

Resource management

The resource management plug−in defines a common resource model for managing the artifacts of tool
plug−ins. Plug−ins can create and modify projects, folders, and files. Resource extension points allow
plug−ins to define other their own resource types.

Resources overview provides an overview of the resource management system.

Workbench UI

The workbench UI plug−in implements the workbench UI and defines a number of extension points that allow
other plug−ins to contribute menu and toolbar actions, drag and drop operations, dialogs, wizards, and custom
views and editors.

Plugging into the workbench introduces the workbench UI extension points and API.

Additional UI plug−ins define frameworks that are generally useful for user interface development. These
frameworks were used to develop the workbench itself. Using the frameworks not only eases the
development of a plug−in's user interface, but ensures that plug−ins have a common look and feel and a
consistent level of workbench integration.

The Standard Widget Toolkit (SWT) is a low−level, operating system independent toolkit that supports
platform integration and portable API. It is described in Standard Widget Toolkit.

The JFace UI framework provides higher−level application constructs for supporting dialogs, wizards,
actions, user preferences, and widget management. The functionality in JFace is described in Dialogs and
wizards and JFace: UI framework for plug−ins.

 Welcome to Eclipse

 Platform SDK roadmap 13

Team support

The Team plug−ins allow other plug−ins to define and register implementations for team programming,
repository access, and versioning. The Eclipse SDK includes a CVS plug−in that uses the team support to
provide CVS client support in the SDK.

Team support is described in Team support.

Debug support

The Debug plug−ins allow other plug−ins to implement language specific program launchers and debuggers.

Debug support is described in Program debug and launching support.

Help System

The Help plug−in implements a platform optimized help web server and document integration facility. It
defines extension points that plug−ins can use to contribute help or other plug−in documentation as browsable
books. The documentation web server includes special facilities to allow plug−ins to reference files by using
logical, plug−in based URLs instead of file system URLs.

Additional features are provided for integrating help topics in product level documentation configurations.

The help facility is described in Plugging in help.

Java Development Tools (JDT)

The Java development tools (JDT) plug−ins extend the platform workbench by providing specialized features
for editing, viewing, compiling, debugging, and running Java code.

The JDT is installed as a set of plug−ins that are included in the SDK. The Java Development User Guide
describes how to use the Java tools. The JDT Plug−in Developer Guide describes the structure and API of the
JDT.

Plug−in Development Environment (PDE)

The Plug−in Development Environment (PDE) supplies tools that automate the creation, manipulation,
debugging, and deploying of plug−ins.

The PDE is installed as a set of plug−ins that are included in the SDK. The PDE Guide describes how to use
the environment.

 Welcome to Eclipse

Team support 14

Team support
The Eclipse Team support defines API that allow plug−ins to integrate the function of a versioning and
configuration management repository. The function provided by a repository fundamentally affects the user
workflow, since there are additional steps for retrieving files, comparing their content with local content,
versioning them, and returning updated files to the repository. The goal of the team plug−in API is to be
passive enough to allow repository plug−in providers to define their own workflow so that users familiar with
their product can use the platform in a similar fashion and provide support for worflows that we have found
are useful for team plug−ins.

This goal is accomplished by supplying several building blocks:

Repository Providers

A repository provider allows synchronization of workspace resources with a remote
location. At a minimum it allows pushing resources in the workspace to a remote
location and pulling resources from a remote location into the workspace. A
repository provider is associated with a project and controls the resources in the
project by optionally providing a IFileModificationValidator and IMoveDeleteHook.
There is only one repository provider associated with each project. A user associates
a repository provider with a project by providing a IConfigurationWizard. Repository
providers can also participate in exporting and importing of projects into the
workspace via the team project set feature. To support this a repository provider
should implement a ProjectSetCapability.

•

Resource Management

Allows other plug−ins to indicate special handling of resources with respect to team
operations. The repository provider can mark resources as team−private which
essentially hides the resource from other plug−ins. This is done via the
IResource#setTeamPrivateMember method and is commonly done to hide repository
provider specific metafiles from the user. Also, builders will often mark build output
as derived which is a hint to a repository provider that the resource is transient and
could be ignored by the repository provider. A provider can check this flag on a
resource via the IResource#isDerived method.

In addition, other plug−ins can add provide hints to the repository provider about file
type information via the org.eclipse.team.core.fileTypes extension and about common
files that should be ignored by the repository via the org.eclipse.team.core.ignore
extenstion.

•

Synchronization Support [new in 3.0]

Synchronize support provides classes and interfaces for managing dynamic
collections of synchronization information (SyncInfo, SyncInfoSet). This support
helps you manage information about variants of the resources in the workspace. For
example, with FTP you could store timestamps for the latest remote file and the base
for the currently loaded resource. Synchronization support provides APIs to help
manage and persist resource variants and display synchronization state to the user.

•

 Team support 15

The UI support is also structured passively. Placeholders for team provider actions, preferences, and
properties are defined by the team UI plug−in, but it's up to the team plug−in provider to define these UI
elements. The team UI plug−in also includes a simple, extendable configuration wizard that lets users
associate projects with repositories. Plug−ins can supply content for this wizard that let the user specify
repository specific information.

Multiple repository providers can coexist peacefully within the platform. In fact, it's even possible to have
different client implementations for the same repository installed. For example, one could install a CVS client
designed for experts and a different one for novice users.

Repository providers

A repository provider (RepositoryProvider) is the central class in the implementation of your repository.
This class is responsible for configuring a project for repository management and providing the necessary
hooks for resource modification. Providers are mapped to a project using project persistent properties. The
mechanism for mapping providers to a project is not central to the team API, but you'll need to be aware of it
when filtering out resources in your UI. For the most part, you'll be using team API to work with projects and
associate them to your provider.

To implement a provider, you must define a repository using org.eclipse.team.core.repository and supply a
class derived from RepositoryProvider. We'll use the CVS client as an example to see how this works.

Extension point

The org.eclipse.team.core.repository extension point is used to add a repository definition. Here is the
markup for the CVS client.

<extension
 point="org.eclipse.team.core.repository">
 <repository
 class="org.eclipse.team.internal.ccvs.core.CVSTeamProvider"
 id="org.eclipse.team.cvs.core.cvsprovider">
 </repository>
</extension>

This registers your team provider with the team support plug−in and assigns an id that should be used when
your provider is associated with a project. The specified class for the repository must extend
RepositoryProvider.

Implementing a RepositoryProvider

The class identified in the extension must be a subclass of RepositoryProvider. Its primary responsibilities
are to configure and deconfigure a project for repository support, and supply any necessary resource
modification hooks. The CVS client serves as a good example. Its repository provider is
CVSTeamProvider.

public class CVSTeamProvider extends RepositoryProvider {
...

 Welcome to Eclipse

Repository providers 16

RepositoryProvider defines two abstract methods, configureProject and deconfigure. All providers must
implement these methods.

A project is configured when it is first associated with a particular repository provider. This typically happens
when the user selects a project and uses the team wizards to associate a project with your repository.
Regardless of how the operation is triggered, this is the appropriate time to compute or cache any data about
the project that you'll need to provide your repository function. (Assume that mapping the project to your
provider has already happened. You'll be taking care of this in your configuration wizard.)

The CVS provider simply broadcasts the fact that a project has been configured:

public void configureProject() throws CoreException {
 CVSProviderPlugin.broadcastProjectConfigured(getProject());
}

We won't follow the implementation of the plug−in broadcast mechanism. Suffice to say that any parties that
need to compute or initialize project specific data can do so at this time.

A project is deconfigured when the user no longer wants to associate a team provider with a project. It is up
to your plug−in to implement the user action that causes this to happen (and unmapping the project from your
team provider will happen there). The deconfigure method is the appropriate time to delete any project
related caches or remove any references to the project in the UI. The CVS provider flushes project related
caches kept in its views and broadcasts the fact that the project is deconfigured.

public void deconfigure() throws CoreException {
 ...
 try {
 EclipseSynchronizer.getInstance().flush(getProject(), true, true /*flush deep*/, null);
 } catch(CVSException e) {
 throw new CoreException(e.getStatus());
 } finally {
 CVSProviderPlugin.broadcastProjectDeconfigured(getProject());
 }
}

Configuring a project

Typically, the first step in building a team UI is implementing a wizard page that allows users to configure a
project for your plug−in's team support. This is where your team provider's id will be added to the project's
properties. You participate in project configuration by contributing to the
org.eclipse.team.ui.configurationWizards extension point. This wizard is shown when the user chooses
Team−>Share Project...

We'll look at this in the context of the CVS client implementation. Here is the CVS UI markup for its
configuration wizard:

<extension
 point="org.eclipse.team.ui.configurationWizards">
 <wizard
 name="%SharingWizard.name"
 icon="icons/full/wizards/newconnect_wiz.gif"
 class="org.eclipse.team.internal.ccvs.ui.wizards.SharingWizard"
 id="org.eclipse.team.ccvs.ui.SharingWizard">
 </wizard>
</extension>

 Welcome to Eclipse

 Configuring a project 17

As usual, plug−ins supply a class that implements the extension and a unique id to identify their extension.
The name and icon are shown in the first page of the project configuration wizard if there are multiple
providers to choose from.

Once the user has selected a provider, the next page shows the specific configuration information for your
provider. (If your provider is the only team provider plug−in installed, then the wizard skips directly to your
page.) Your wizard must implement IConfigurationWizard, which initializes the wizard for a specified
workbench and project. The rest of the implementation depends on the design of your wizard. You must
gather up any information needed to associate the project with your team support.

When the wizard is completed, you must map your team provider to the project using
RepositoryProvider.map(IProject, String). Mapping handles the assignment of the correct project
persistent property to your project.

The CVS client does this work in its provider's setSharing method, which is called when its wizard is
finished:

public void setSharing(IProject project, FolderSyncInfo info, IProgressMonitor monitor) throws TeamException {

 // Ensure provided info matches that of the project
 ...
 // Ensure that the provided location is managed
 ...
 // Register the project with Team
 RepositoryProvider.map(project, CVSProviderPlugin.getTypeId());
}

Finding a provider

Static methods in RepositoryProvider make it easy for clients to map projects to providers and to find the
providers associated with a given project.

map(IProject, String) − instantiates a provider of the specified provider id and maps the specified
project to it. This call sets the proper project persistent property on the project.

•

unmap(IProject, String) − removes the association of the specified provider id from the specified
project. Leaves the project unassociated with any team provider.

•

getProvider(IProject) − answers the provider for a given project. Can be used to find any team
provider for a project.

•

getProvider(IProject, String) − answers the provider for a given project with the specified provider
id. Can be used to check whether a particular team provider type is associated with a given project. It
is commonly used by providers to quickly check whether a given project is under their care. This call
is safer for clients since it does not return a provider that does not match the client's id.

•

Repository Providers and Capabilities

If a product chooses to add a Repository plug−in to a capability, it should bind the capability to the repository
id. Here are the two steps to take to enable a RepositoryProvider as a capability:

1. Bind the capability to the repository provider id. This allows the Team plug−in to activate/disable based on
repository provider ids.

<activityPatternBinding

 Welcome to Eclipse

 Finding a provider 18

 activityId="org.eclipse.team.cvs"
 pattern="org\.eclipse\.team\.cvs\.core/.*cvsnature">
</activityPatternBinding>

2. Next bind the capability to all UI packages for the provider:

<activityPatternBinding
 activityId="org.eclipse.team.cvs"
 pattern="org\.eclipse\.team\.cvs\.ui/.*">
</activityPatternBinding>

There are two capability triggers points defined by the Team plug−ins. The first is the Team > Share Project...
wizard which allows filtering of repository providers based on the enabled/disabled state of workbench
capabilities, and the other is the Team plug−in auto−enablement trigger.

Resource modification hooks

Most of the interesting function associated with a repository provider occurs as the user works with resources
in the project that is configured for the provider. In order to be aware of changes the user makes to a resource,
the provider can implement resource modification hooks. The resources plug−in provides these hooks as
extension points. The documentation for IMoveDeleteHook, IFileModificationValidator and
ResourceRuleFactory describe the details for implementing these hooks.

The team plug−in optimizes and simplifies the association of the hook with appropriate resources by
registering generic hooks with the resources plug−in. These generic hooks simply look up the repository
provider for a given resource and obtain its hook. This has the advantage of calling only one provider hook
rather than having each provider implementation register a hook that must first check whether the resource is
managed by the provider.

What this means to your plug−in is that you provide any necessary hooks by overriding methods in
RepositoryProvider. The default implementation of these methods answers null, indicating that no hook is
necessary (except for the resource rule factory, as described below):

getMoveDeleteHook − answers an IMoveDeleteHook appropriate for the provider. This hook
allows providers to control how moves and deletes occur and includes the ability to prevent them
from happening. Implementors can provide alternate implementations for moving or deleting files,
folders, and projects. The CVS client uses this hook to monitor folder deletions and ensure that any
files contained in deleted folders are remembered so that they can later be deleted from the repository
if desired.

•

getFileModificationValidator − answers an IFileModificationValidator appropriate for the
provider. This hook allows providers to pre−check any modifications or saves to files. This hook is
typically needed when a repository provider wants to implement pessimistic versioning. In
pessimistic versioning, a file must be checked out before modifying it, and only one client can check
out a file at any given time. Pessimistic versioning could be implemented by checking out a file (if
not already checked out) whenever a file is edited, and checking the file back in when it is saved.
Since CVS uses an optimistic versioning scheme, it does not implement this hook.

•

getRuleFactory − answers a resource rule factory appropriate for the provider. Providers should
always override this method as the default factory locks the workspace for all operations for
backwards compatibility reasons. Provides should subclass ResourceRuleFactory and override those
rules required to ensure that the proper rules are obtained for operations that invoke the move/delete
hook and file modification validator. The rule methods of particular interest to repository providers
are:

•

 Welcome to Eclipse

Resource modification hooks 19

deleteRule − move/delete hook♦
moveRule −move/delete hook♦
validateEditRule − file modification validator validateEdit♦
modifyRule − file modification validator validateSave♦

Resource properties

Resources have properties that can be used to store meta−information about the resource. Your plug−in can
use these properties to hold information about a resource that is specific to your purpose. Resource properties
are declared, accessed, and maintained by various plug−ins, and are not interpreted by the platform. When a
resource is deleted from the workspace, its properties are also deleted.

There are two kinds of resource properties:

Session properties allow your plug−ins to easily cache information about a resource in key−value
pairs. The values are arbitrary objects. These properties are maintained in memory and lost when a
resource is deleted from the workspace, or when the project or workspace is closed.

•

Persistent properties are used to store resource−specific information on disk. The value of a
persistent property is an arbitrary string. Your plug−in decides how to interpret the string. The strings
are intended to be short (under 2KB). Persistent properties are stored on disk with the platform
metadata and maintained across platform shutdown and restart.

•

If you follow the convention of qualifying property key names with the unique id of your plug−in, you won't
have to worry about your property names colliding with those of other plug−ins.

If your plug−in needs to store persistent information about a project that is much larger than 2 KB, then these
properties should be exposed as resources in their own right, rather than using the persistent properties API.

See IResource for a description of the API for getting and setting the different kinds of resource properties.

 Welcome to Eclipse

 Resource properties 20

Team Repository Provider
Identifier:

org.eclipse.team.core.repository

Since:

2.0

Description:

The Team plugin contains the notion of Repositories. The job of a repository is to provide support for sharing
resources between Team members. Repositories are configured on a per−project basis. Only one repository
can be mapped to a project at a time.

Repositories that extend this extension point can provide implementations for common repository specific
rules for resource modifications, moving and deleting. See the following interfaces for more details
IFileModificationValidator and MoveDeleteHook.

A Repository type can also be specified in order to provide non−project specific funtionality such as a
org.eclipse.team.core.ProjectSetCapability.

Configuration Markup:

<!ELEMENT extension (repository)>

<!ATTLIST extension

point CDATA #REQUIRED>

<!ELEMENT repository EMPTY>

<!ATTLIST repository

id CDATA #IMPLIED

class CDATA #REQUIRED

typeClass CDATA #IMPLIED>

id − an optional identifier of the extension instance•
class − the fully−qualified name of a subclass of
org.eclipse.team.core.RepositoryProvider.

•

typeClass − the fully−qualified name of a subclass of
org.eclipse.team.core.RepositoryProviderType.

•

Team Repository Provider 21

Examples:

<extension point=

"org.eclipse.team.core.repository"

>

<repository class=

"org.eclipse.myprovider.MyRepositoryProvider"

id=

"org.eclipse.myprovider.myProviderID"

>

</repository>

</extension>

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.team.core.RepositoryProvider.

Supplied Implementation:

The provided implementation of RepositoryProvider provides helper methods and common code for mapping
and unmapping providers to projects. The optional RepositoryProviderType provides project set import and
export through a ProjectSetCapability.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Team Repository Provider 22

http://www.eclipse.org/legal/cpl-v10.html

Configuration Wizards
Identifier:

org.eclipse.team.ui.configurationWizards

Description:

This extension point is used to register a method for configuration of a project. Configuration involves the
association of a project with a team provider, including all information necessary to initialize that team
provider, including such things as username, password, and any relevant information necessary to locate the
provider.

Providers may provide an extension for this extension point, and an implementation of
org.eclipse.team.ui.IConfigurationWizard which gathers the necessary information and
configures the projects.

Configuration Markup:

<!ELEMENT extension (wizard?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT wizard EMPTY>

<!ATTLIST wizard

name CDATA #REQUIRED

icon CDATA #REQUIRED

class CDATA #REQUIRED

id CDATA #REQUIRED>

name − The name of the configuration type as it should appear in the configuration wizard. Examples
are "CVS", "WebDAV".

•

icon − the icon to present in the configuration wizard next to the name.•
class − a fully qualified name of the Java class implementing
org.eclipse.team.ui.IConfigurationWizard.

•

id − a unique identifier for this extension.•

Configuration Wizards 23

Examples:

Following is an example of a configuration wizard extension:

<extension point=

"org.eclipse.team.ui.configurationWizards"

>

<wizard name=

"WebDAV"

icon=

"webdav.gif"

class=

"com.xyz.DAVDecorator"

id=

"com.xyz.dav"

>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.team.ui.IConfigurationWizard. This interface supports configuration of a wizard
given a workbench and a project.

Supplied Implementation:

The plug−in org.eclipse.team.provider.examples.ui contains sample implementations of IConfigurationWizard
for the WebDAV and filesystem provider types.

Copyright (c) 2002 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Configuration Wizards 24

http://www.eclipse.org/legal/cpl-v10.html

Resource modification hooks

So far, we've assumed that resource API is being used to modify resources that are located in the user's file
system. This is indeed the fundamental structure of the workspace, but it's also possible that a plug−in adds
capabilities for manipulation of resources that are managed somewhere else. For example, the platform Team
support plug−ins add the ability to work with resources that are under the management of a versioning
repository.

The resource API includes capabilities that have been added specifically to enable the team support plug−ins
and plug−ins that implement repository providers using the team support. The following discussion covers
the generic mechanism for registering resource hooks. See Implementing a repository provider for a
discussion of how team uses these hooks.

Resource move/delete hooks

This hook allows the team plug−in and its providers to control how resource moves and deletes are
implemented. The hook includes the ability to prevent these operations from happening. Implementors can
provide alternate implementations for moving or deleting files, folders, and projects.

The team plug−in uses the org.eclipse.core.resources.moveDeleteHook extension point to register its hook:

<extension point="org.eclipse.core.resources.moveDeleteHook" id="MoveDeleteHook">
 <moveDeleteHook class="org.eclipse.team.internal.core.MoveDeleteManager"/>
</extension>

The supplied class must implement IMoveDeleteHook, which is called by the platform whenever a resource
is moved or deleted. The team plug−in installs a move delete hook manager that can determine which team
provider is managing a resource and invoke its specific hook.

Note: The move delete hook was designed specifically for use by the team core plug−in and
other team repository provider clients. It is not intended for general use. Team providers
should not install the hook using the extension point, but instead implement their hook in their
RepositoryProvider class. See Team resource modification hooks for more information about
using these hooks.

File modification validators

It's also possible that team repository providers will need to prevent or intervene in the editing or saving of a
file. The team plug−in accomplishes this by using the extension point
org.eclipse.core.resources.fileModificationValidator to register a validator that is called whenever a
resource is to be modified.

<extension point="org.eclipse.core.resources.fileModificationValidator" id="FileValidator">
 <fileModificationValidator class="org.eclipse.team.internal.core.FileModificationValidatorManager"/>
</extension>

The supplied class must implement IFileModificationValidator, which is called by the platform whenever a
resource is saved or opened. The team plug−in installs a file modification manager that can determine which
team provider is managing a resource and invoke its specific validator.

 Welcome to Eclipse

 Resource modification hooks 25

Note: The file modification validator hook was designed specifically for use by the team core
plug−in. It is not intended for general use. Team providers should not install the hook using
the extension point, but instead implement their hook in their Repository Provider class. See
Team resource modification hooks for more information about using these hooks.

 Welcome to Eclipse

 Resource modification hooks 26

Move/Delete Hook
Identifier:

org.eclipse.core.resources.moveDeleteHook

Since:

2.0

Description:

For providing an implementation of an IMoveDeleteHook to be used in the IResource.move and
IResource.delete mechanism. This extension point tolerates at most one extension.

Configuration Markup:

<!ELEMENT extension (moveDeleteHook?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT moveDeleteHook EMPTY>

<!ATTLIST moveDeleteHook

class CDATA #REQUIRED>

class − the fully−qualified name of a class which implements
org.eclipse.core.resources.team.IMoveDeleteHook

•

Examples:

The following is an example of using the moveDeleteHook extension point. (in file plugin.xml)

<extension point=

Move/Delete Hook 27

"org.eclipse.core.resources.moveDeleteHook"

>

<moveDeleteHook class=

"org.eclipse.team.internal.MoveDeleteHook"

/>

</extension>

API Information:

The value of the class attribute must represent an implementation of
org.eclipse.core.resources.team.IMoveDeleteHook.

Supplied Implementation:

The Team component will generally provide the implementation of the move/delete hook. The extension point
should not be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Repository resource management

Once you have created a RepositoryProvider, there are other resource management mechanism that should
be understood:

In order to allow other plug−ins to indicate special handling for their projects and files the team
plug−in defines extension points that other providers and other plug−ins can use to register file types
and to declare files that should be ignored by a repository provider.

•

Team providers can also register a class that can be used to persist a set a projects so that references to
the project can be shared across a team, with the actual contents coming from the repository.

•

Repository providers should consider how they will handle linked resources.•
Finally, team providers can mark resources that should be hidden from the user as team private.•

Ignored files

In several cases, it may be unnecessary to keep certain files under repository control. For example, resources
that are derived from existing resources can often be omitted from the repository. For example, compiled
source files, (such as Java ".class" files), can be omitted since their corresponding source (".java") file is in the
repository. It also may be inappropriate to version control metadata files that are generated by repository
providers. The org.eclipse.team.core.ignore extension point allows providers to declare file types that
should be ignored for repository provider operations. For example, the CVS client declares the following:

 Welcome to Eclipse

Move/Delete Hook 28

http://www.eclipse.org/legal/cpl-v10.html

<extension point="org.eclipse.team.core.ignore">
 <ignore pattern = ".#*" selected = "true"/>
</extension>

The markup simply declares a file name pattern that should be ignored and a selected attribute which
declares the default selection value of the file type in the preferences dialog. It is ultimately up to the user to
decide which files should be ignored. The user may select, deselect, add or delete file types from the default
list of ignored files.

File Types

Some repositories implement different handling for text vs. binary files. The org.eclipse.team.core.fileTypes
extension allows plug−ins to declare file types as text or binary files. For example, the Java tooling declares
the following:

<extension point="org.eclipse.team.core.fileTypes">
 <fileTypes extension="java" type="text"/>

 <fileTypes extension="classpath" type="text"/>
 <fileTypes extension="properties" type="text"/>
 <fileTypes extension="class" type="binary"/>

 Welcome to Eclipse

File Types 29

 <fileTypes extension="jar" type="binary"/>
 <fileTypes extension="zip" type="binary"/>
</extension>

The markup lets plug−ins define a file type by extension and assign a type of text or binary. As with ignored
files, it is ultimately up to the user to manage the list of text and binary file types.

Team and linked resources

A project may contain resources that are not located within the project's directory in the local file system.
These resources are referred to as linked resources.

Consequences for Repository Providers

Linked resources can pose particular challenges for repository providers which operate directly against the file
system. This is a consequence of the fact that linked resources by design do not exist in the immediate project
directory tree in the file system.

Providers which exhibit the following characteristics may be affected by linked resources:

Those which call out to an external program that then operates directly against the file system.1.

 Welcome to Eclipse

Team and linked resources 30

Those which are implemented in terms of IResource but assume that all the files/folders in a project
exist as direct descendents of that single rooted directory tree.

2.

In the first case, lets assume the user picks a linked resource and tries to perform a provider operation on it.
Since the provider calls a command line client, we can assume that the provider does something equivalent to
first calling IResource.getLocation().toOSString(), feeding the resulting file system location as an argument
to the command line program. If the resource in question is a linked resource, this will yield a file/folder
outside of the project directory tree. Not all command line clients may expect and be able to handle this case.
In short, if your provider ever gets the file system location of a resource, it will likely require extra work to
handle linked resources.

The second case is quite similar in that there is an implicit assumption that the structure of the project
resources is 1:1 with that of the file system files/folders. In general, a provider could be in trouble if they mix
IResource and java.io.File operations. For example, for links, the parent of IFile is not the same as the
java.io.File's parent and code which assumes these to be the same will fail.

Backwards Compatibility

It was important that the introduction of linked resources did not inadvertantly break existing providers.
Specifically, the concern was for providers that reasonably assumed that the local file system structure
mirrored the project structure. Consequently, by default linked resources can not be added to projects that are
mapped to such a provider. Additionally, projects that contain linked resources can not by default be shared
with that provider.

Strategies for Handling Linked Resources

In order to be "link friendly", a provider should allow projects with linked resources to be version controlled,
but can disallow the version controlling of linked resources themselves.

A considerably more complex solution would be to allow the versioning of the actual linked resources, but
this should be discouraged since it brings with it complex scenarios (e.g. the file may already be version
controlled under a different project tree by another provider). Our recommendation therefore is to support
version controlled projects which contain non−version controlled linked resources.

Technical Details for Being "Link Friendly"

Repository provider implementations can be upgraded to support linked resources by overriding the
RepositoryProvider.canHandleLinkedResources() method to return true. Once this is done, linked
resources will be allowed to exist in projects shared with that repository provider. However, the repository
provider must take steps to ensure that linked resources are handled properly. As mentioned above, it is
strongly suggested that repository providers ignore all linked resources. This means that linked resources (and
their children) should be excluded from the actions supported by the repository provider. Furthermore, the
repository provider should use the default move and delete behavior for linked resources if the repository
provider implementation overrides the default IMoveDeleteHook.

Team providers can use IResource.isLinked() to determine if a resource is a link. However, this method only
returns true for the root of a link. The following code segment can be used to determine if a resource is the
child of a link.

String linkedParentName = resource.getProjectRelativePath().segment(0);
IFolder linkedParent = resource.getProject().getFolder(linkedParentName);

 Welcome to Eclipse

Team and linked resources 31

boolean isLinked = linkedParent.isLinked();

Repository providers should ignore any resource for which the above code evaluates to true.

Team private resources

It is common for repository implementations to use extra files and folders to store information specific about
the repository implementation. Although these files may be needed in the workspace, they are of no interest
to other plug−ins or to the end user.

Team providers may use IResource.setTeamPrivateMember(boolean) to indicate that a resource is private
to the implementation of a team provider. Newly created resources are not private members by default, so this
method must be used to explicitly mark the resource as team private. A common use is to mark a subfolder of
the project as team private when the project is configured for team and the subfolder is created.

Other resource API that enumerates resources (such as resource delta trees) will exclude team private
members unless explicitly requested to include them. This means that most clients will not "see" the team
private resources and they will not be shown to the user. The resource navigator does not show team private
members by default, but users can indicate via Preferences that they would like to see team private resources.

Attempts to mark projects or the workspace root as team private will be ignored.

Project sets

Since the resources inside a project under version control are kept in the repository, it is possible to share
projects with team members by sharing a reference to the repository specific information needed to
reconstruct a project in the workspace. This is done using a special type of file export for team project sets.

 Welcome to Eclipse

Team private resources 32

In 3.0, API was added to ProjectSetCapability to allow repository providers to declare a class that implements
project saving for projects under their control. When the user chooses to export project sets, only the projects
configured with repositories that define project sets are shown as candidates for export. This API replaces the
old project set serialization API (see below).

The project set capability class for a repository provider is obtained from the RepositoryProviderType class
which is registered in the same extension as the repository provider. For example:

<extension point="org.eclipse.team.core.repository">
 <repository
 typeClass="org.eclipse.team.internal.ccvs.core.CVSTeamProviderType"

 class="org.eclipse.team.internal.ccvs.core.CVSTeamProvider"
 id="org.eclipse.team.cvs.core.cvsnature">
 </repository>
</extension>

 Welcome to Eclipse

Team private resources 33

Prior to 3.0, The org.eclipse.team.core.projectSets extension point allowed repository providers to declare a
class that implements project saving for projects under their control. When the user chooses to export project
sets, only the projects configured with repositories that define project sets are shown as candidates for export.

For example, the CVS client declares the following:

<extension point="org.eclipse.team.core.projectSets">
 <projectSets id="org.eclipse.team.cvs.core.cvsnature" class="org.eclipse.team.internal.ccvs.ui.CVSProjectSetSerializer"/>
</extension>

The specified class must implement IProjectSetSerializer. Use of this interface is still supported in 3.0 but
has been deprecated.

 Welcome to Eclipse

Team private resources 34

Ignore
Identifier:

org.eclipse.team.core.ignore

Since:

2.0

Description:

This extension point is used to register information about whether particular resources should be ignored; that
is, excluded from version configuration management operations. Providers may provide an extension for this
extension point. No code beyond the XML extension declaration is required.

Configuration Markup:

<!ELEMENT extension (ignore*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT ignore EMPTY>

<!ATTLIST ignore

pattern CDATA #REQUIRED

enabled (true | false) >

pattern − the pattern against which resources will be compared.•
enabled − one of "true" or "false", determines whether this ignore pattern is enabled.•

Examples:

Following is an example of an ignore extension:

<extension point=

Ignore 35

"org.eclipse.team.core.ignore"

>

<ignore pattern=

"*.class"

enabled=

"true"

/>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Ignore 36

http://www.eclipse.org/legal/cpl-v10.html

File Types
Identifier:

org.eclipse.team.core.fileTypes

Since:

2.0

Description:

This extension point is used to register information about whether particular file types should be considered to
contain text or binary data. This information is important to some repository providers as it affects how the
data is stored, compared and transmitted.

Providers may provide an extension for this extension point. No code beyond the XML extension declaration
is required.

Configuration Markup:

<!ELEMENT extension (fileTypes*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT fileTypes EMPTY>

<!ATTLIST fileTypes

extension CDATA #REQUIRED

type CDATA #REQUIRED>

extension − the file extension being identified by this contribution.•
type − one of either "text" or "binary", identifying the contents of files matching the value of
extension.

•

Examples:

Following is an example of a fileTypes extension:

File Types 37

<extension point=

"org.eclipse.team.core.fileTypes"

>

<fileTypes extension=

"txt"

type=

"text"

/>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

Linked resources

Earlier discussions of resources and the file system (Mapping resources to disk locations) assumed that all
resources in a project are located in the same place in the file system. This is generally true. However, the
concept of linked resources in the workbench is provided so that files and folders inside a project can be
stored in the file system outside of the project's location.

Linked resources must have a project as their parent resource. They can be located virtually anywhere in the
file system. They can reside outside the project location, or even within another project. There are only a few
restrictions on linked resource locations. The method IWorkspace.validateLinkLocation can be used to
ensure that a given location is valid for creating a linked resource.

Linked resources are created using the method IFolder.createLink or IFile.createLink. To determine
programmatically whether a given resource is a linked resource, you can use the method IResource.isLinked.
Note that this method will only return true for linked resources, not for children of linked resources.

Apart from these special methods for creating linked resources and finding out if a resource is linked, you can
use normal workspace API when manipulating linked resources. In most respects, linked resources act exactly
like any other resource in the workspace. However, some restrictions apply when moving, copying, or
deleting linked resources. See IResource and its sub−classes for information on individual operatiosn and
their limitations.

Path variables

Path variables can be used when specifying the location of linked resources. A path variable is a simple
(String −> IPath) mapping that defines a shortcut for a location in the file system. Variables can ease the

 Welcome to Eclipse

Linked resources 38

http://www.eclipse.org/legal/cpl-v10.html

management of linked resources by reducing the number of places where hard−coded, absolute file system
paths are used.

Path variables streamline the management of linked resources for users in several ways:

Allows a single reference to the absolute path when defining several linked resources under a
common root

•

Allows the location of several resources to be redefined by changing a single variable•
Allows users to share projects containing linked resources without updating the paths of each resource
(since the absolute path can vary from one machine to another.)

•

The last item in this list deserves a bit of explanation. When a user creates a linked resource in a project, a
description of the linked resource is added to the project description file (".project") in the project's location.
By using a path variable, users can share a project (by copying the project's content or by using a repository),
and redefine the variable to suit each individual workstation. For example, one user might store external
resources under c:\temp on one system, while another user using Unix might store the same resources in
/home/username/tmp. Defining a path variable on each workspace (TEMP=c:\temp and
TEMP=/home/userb/tmp) allows users to work around this difference and share the projects with linked
resources as is.

IPathVariableManager defines the API for creating, manipulating, and resolving path variables. It also
provides methods for validating variable names and values before creating them, and for installing a listener
to be notified when path variable definitions change. You can obtain an instance of this class using
IWorkspace.getPathVariableManager. See the code examples at the end of this section for more detail.

The method IResource.getRawLocation can be used to find out the unresolved location of a linked resource.
That is, to get the actual path variable name instead of resolving it to its value. If a resource location is not
defined with a path variable, the getRawLocation method acts exactly like the getLocation method.

Broken links

Clients that manipulate resources programmatically need to be aware of the possibility of broken links.
Broken links occur when a linked resource's location does not exist, or is specified relative to an undefined
path variable. The following special cases apply when using IResource protocol:

The copy and move methods will fail when called on broken links.•
Calling refreshLocal on a broken link will not cause the resource to be removed from the workspace,
as it does for normal resources that are missing from the file system.

•

The method getLocation will return null for linked resources whose locations are relative to
undefined path variables.

•

You can still use delete to remove broken links from the workspace.•

Compatibility with installed plug−ins

Some plug−ins may not be able to handle linked resources, so there are a number of mechanisms available for
disabling them. If you are writing a plug−in that absolutely needs all of a project's contents to be located in the
project's default location, you can use these mechanisms to prevent users from creating linked resources
where you don't want them to appear.

 Welcome to Eclipse

Broken links 39

The first mechanism is called the project nature veto. If you define your own project nature, you can specify
in the nature definition that the nature is not compatible with linked resources. Here is an example of a nature
definition that employs the nature veto:

<extension
 id="myNature"
 name="My Nature"
 point="org.eclipse.core.resources.natures">
 <runtime>
 <run class="com.xyz.MyNature"/>
 </runtime>
 <options allowLinking="false"/>
</extension>

The second mechanism for preventing linked resource creation is the team hook. If you define your own
repository implementation, you can make use of the org.eclipse.core.resources.teamHook extension point to
prevent the creation of linked resources in projects that are shared with your repository type. By default,
repository providers do not allow linked resources in projects connected to the repository.

If the repository support is provided by an older plug−in that is not aware of linked resources, you will not be
able to create linked resources in those projects.

Finally, there is a preference setting that can be used to disable linked resources for the entire workspace.
While the previous two veto mechanisms work on a per−project basis, this preference affects all projects in
the workspace. To set this preference programatically, use the preference
ResourcesPlugin.PREF_DISABLE_LINKING. Note that even when set, users or plug−ins can
override this by turning the preference off.

Linked resources in code

Let's go into some examples of using linked resources in code. We'll start by defining a path variable:

 IWorkspace workspace = ResourcesPlugin.getWorkspace();
 IPathVariableManager pathMan = workspace.getPathVariableManager();
 String name = "TEMP";
 IPath value = new Path("c:\\temp");
 if (pathMan.validateName(name).isOK() && pathMan.validateValue(value).isOK()) {
 pathMan.setValue(name, value);
 } else {
 //invalid name or value, throw an exception or warn user
 }

Now we can create a linked resource relative to the defined path variable:

 IProject project = workspace.getProject("Project");//assume this exists
 IFolder link = project.getFolder("Link");
 IPath location = new Path("TEMP/folder");
 if (workspace.validateLinkLocation(location).isOK()) {
 link.createLink(location, IResource.NONE, null);
 } else {
 //invalid location, throw an exception or warn user
 }

That's it! You now have a linked folder in your workspace called "Link" that is located at "c:\temp\folder".

 Welcome to Eclipse

Linked resources in code 40

Let's end with some code snippets on this linked resource to illustrate the behavior other methods related to
linked resources:

 link.getFullPath() ==> "/Project/Link"
 link.getLocation() ==> "c:\temp\folder"
 link.getRawLocation() ==> "TEMP/folder"
 link.isLinked() ==> "true"

 IFile child = link.getFile("abc.txt");
 child.create(...);
 child.getFullPath() ==> "/Project/Link/abc.txt"
 child.getLocation() ==> "c:\temp\folder\abc.txt"
 child.getRawLocation() ==> "c:\temp\folder\abc.txt"
 child.isLinked() ==> "false"

Project natures

Project natures allow a plug−in to tag a project as a specific kind of project. For example, the Java
development tools (JDT) use a "Java nature" to add Java−specific behavior to projects. Project natures are
defined by plug−ins, and are typically added or removed per−project when the user performs some action
defined by the plug−in.

A project can have more than one nature. However, when you define a project nature, you can define special
constraints for the nature:

one−of−nature − specifies that the nature is one of a named set. Natures in a set are mutually
exclusive; that is, only one nature belonging to the set can exist for a project.

•

requires−nature − specifies that the nature depends on another nature and can only be added to a
project that already has the required nature.

•

To implement your own nature, you need to define an extension and supply a class which implements
IProjectNature.

Defining a nature

The org.eclipse.core.resources.natures extension point is used to add a project nature definition. The
following markup adds a nature for the hypothetical com.example.natures plug−in.

 <extension
 point="org.eclipse.core.resources.natures"
 id="myNature"
 name="My Nature">
 <runtime>
 <run class="com.example.natures.MyNature">
 </run>
 </runtime>
 </extension>

The class identified in the extension must implement the platform interface IProjectNature. This class
implements plug−in specific behavior for associating nature−specific information with a project when the
nature is configured.

 Welcome to Eclipse

 Project natures 41

 public class MyNature implements IProjectNature {

 private IProject project;

 public void configure() throws CoreException {
 // Add nature−specific information
 // for the project, such as adding a builder
 // to a project's build spec.
 }
 public void deconfigure() throws CoreException {
 // Remove the nature−specific information here.
 }
 public IProject getProject() {
 return project;
 }
 public void setProject(IProject value) {
 project = value;
 }
 }

The configure() and deconfigure() methods are sent by the platform when natures are added and removed
from a project. You can implement the configure() method to add a builder to a project as discussed in
Builders.

Associating the nature with a project

Defining the nature is not enough to associate it with a project. You must assign a nature to a project by
updating the project's description to include your nature. This usually happens when the user creates a new
project with a specialized new project wizard that assigns the nature. The following snippet shows how to
assign our new nature to a given project.

 try {
 IProjectDescription description = project.getDescription();
 String[] natures = description.getNatureIds();
 String[] newNatures = new String[natures.length + 1];
 System.arraycopy(natures, 0, newNatures, 0, natures.length);
 newNatures[natures.length] = "com.example.natures.myNature";
 description.setNatureIds(newNatures);
 project.setDescription(description, null);
 } catch (CoreException e) {
 // Something went wrong
 }

The natures are not actually assigned to (and configured) for the project until you set the project description
into the project. Also note that the identifier used for the nature is the fully qualified name (plug−in id +
extension id) of the nature extension.

If the nature has been defined with constraints, then workspace API can be used to validate the new nature.
For example, suppose a nature is defined with a prerequisite:

 <extension
 point="org.eclipse.core.resources.natures"

id="myOtherNature"
 name="My Other Nature">
 <runtime>
 <run class="com.example.natures.MyOtherNature">
 </run>

 Welcome to Eclipse

 Associating the nature with a project 42

 </runtime>
 <requires−nature id="com.example.natures.myNature"/>
 </extension>

The new nature is not valid unless the first nature exists for the project. Depending on the design of your
plug−in, you may want to check whether the prerequisite nature has been installed, or you may want to add
the prerequisite nature yourself. Either way, you can check on the validity of proposed combinations of
project natures using workspace API.

 try {
 IProjectDescription description = project.getDescription();
 String[] natures = description.getNatureIds();
 String[] newNatures = new String[natures.length + 1];
 System.arraycopy(natures, 0, newNatures, 0, natures.length);
 newNatures[natures.length] = "com.example.natures.myOtherNature";
 IStatus status = workspace.validateNatureSet(natures);

 // check the status and decide what to do
 if (status.getCode() == IStatus.OK) {
 description.setNatureIds(newNatures);
 project.setDescription(description, null);
 } else {
 // raise a user error
 ...
 }
 } catch (CoreException e) {
 // Something went wrong
 }

Nature descriptors

In addition to working with natures by their id, you can obtain the descriptor (IProjectNatureDescriptor)
which describes a nature, its constraints, and its label. You can query a particular nature for its descriptor, or
get descriptors from the workspace. The following snippet gets the project nature descriptor for our new
nature:

 IProjectNatureDescriptor descriptor = workspace.getNatureDescriptor("com.example.natures.myOtherNature");

You can also get an array of descriptors for all installed natures:

 IProjectNatureDescriptor[] descriptors = workspace.getNatureDescriptors();

 Welcome to Eclipse

 Nature descriptors 43

Project Natures
Identifier:

org.eclipse.core.resources.natures

Description:

The workspace supports the notion of project natures (or "natures" for short"). A nature associates lifecycle
behaviour with a project. Natures are installed on a per−project basis using the setDescription method defined
on org.eclipes.core.resources.IProject. They are configured automatically when a project is
opened and deconfigured when a project is closed. For example, the Java nature might install a Java builder
and do other project configuration when added to a project

The natures extension−point allows nature writers to register their nature implementation under a symbolic
name that is then used from within the workspace to find and configure natures. The symbolic name is id of
the nature extension. When defining a nature extension, users are encouraged to include a human−readable
value fo rth e"name" attribute which identifies their meaning and potentially may be presented to users.

Natures can specify relationship constraints with other natures. The "one−of−nature" constraint specifies that
at most one nature belong to a given set can exist on a project at any given time. This enforces mutual
exclusion between natures that are not compatible with each other. The "requires−nature" constraint specifies
a dependency on another nature. When a nature is added to a project, all required natures must also be added.
The natures are guaranteed to be configured and deconfigured in such a way that their required natures will
always be configured before them and deconfigured after them. For this reason, cyclic dependencies between
natures are not permitted.

Natures cannot be added to or removed from a project if that change would violate any constraints that were
previously satisfied. If a nature is configured on a project, but later finds that its constraints are not satisfied,
that nature and all natures that require it are marked as disabled, but remain on the project. This can happen,
for example, when a required nature goes missing from the install. Natures that are missing from the install,
and natures involved in dependency cycles are also marked as disabled.

Natures can also specify which incremental project builders, if any, are configured by them. With this
information, the workspace will ensure that builders will only run when their corresponding nature is present
and enabled on the project being built. If a nature is removed from a project, but the nature's deconfigure
method fails to remove its corresponding builders, the workspace will remove those builders from the spec
automatically. It is not permitted for two natures to specify the same incremental project builder in their
markup.

Natures also have the ability to disallow the creation of linked resources on projects they are associated with.
By setting the allowLinking attribute to "false", a nature can declare that linked resources should never be
created. This feature is new in release 2.1.

Configuration Markup:

<!ELEMENT extension (runtime , (one−of−nature | requires−nature | builder)* , options?)>

<!ATTLIST extension

point CDATA #REQUIRED

Project Natures 44

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT runtime (run)>

<!ELEMENT run (parameter*)>

<!ATTLIST run

class CDATA #REQUIRED>

class − the fully−qualified name of a class which implements
org.eclipse.core.resources.IProjectNature

•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − the name of this parameter made available to instances of the specified nature class•
value − an arbitrary value associated with the given name and made available to instances of the
specificed nature class

•

<!ELEMENT one−of−nature EMPTY>

<!ATTLIST one−of−nature

id CDATA #REQUIRED>

id − the name of an exclusive project nature category.•

<!ELEMENT requires−nature EMPTY>

 Welcome to Eclipse

Project Natures 45

<!ATTLIST requires−nature

id CDATA #REQUIRED>

id − the fully−qualified id of another nature extension that this nature extension requires.•

<!ELEMENT builder EMPTY>

<!ATTLIST builder

id CDATA #REQUIRED>

id − the fully−qualified id of an incremental project builder extension that this nature controls.•

<!ELEMENT options EMPTY>

<!ATTLIST options

allowLinking (true | false) >

allowLinking − an option to specify whether this nature allows the creation of linked resources. By
default, linking is allowed.

•

Examples:

Following is an example of three nature configurations. The waterNature and fireNature belong to the same
exclusive set, so they cannot co−exist on the same project. The snowNature requires waterNature, so
snowNature will be disabled on a project that is missing waterNature. It naturally follows that snowNature
cannot be enabled on a project with fireNature. The fireNature also doesn't allow the creation of linked
resources.

<extension id=

"fireNature"

name=

"Fire Nature"

point=

"org.eclipse.core.resources.natures"

 Welcome to Eclipse

Project Natures 46

>

<runtime>

<run class=

"com.xyz.natures.Fire"

/>

</runtime>

<one−of−nature id=

"com.xyz.stateSet"

/>

<options allowLinking=

"false"

/>

</extension>

<extension id=

"waterNature"

name=

"Water Nature"

point=

"org.eclipse.core.resources.natures"

>

<runtime>

<run class=

"com.xyz.natures.Water"

/>

</runtime>

<one−of−nature id=

 Welcome to Eclipse

Project Natures 47

"com.xyz.stateSet"

/>

</extension>

<extension id=

"snowNature"

name=

"Snow Nature"

point=

"org.eclipse.core.resources.natures"

>

<runtime>

<run class=

"com.xyz.natures.Snow"

>

<parameter name=

"installBuilder"

value=

"true"

/>

</run>

</runtime>

<requires−nature id=

"com.xyz.coolplugin.waterNature"

/>

<builder id=

"com.xyz.snowMaker"

 Welcome to Eclipse

Project Natures 48

/>

</extension>

If these extensions were defined in a plug−in with id "com.xyz.coolplugin", the fully qualified name of these
natures would be "com.xyz.coolplugin.fireNature", "com.xyz.coolplugin.waterNature" and
"com.xyz.coolplugin.snowNature".

API Information:

The value of the class attribute must represent an implementor of
org.eclipse.core.resources.IProjectNature. Nature definitions can be examined using the
org.eclipse.core.resources.IProjectNatureDescriptor interface. The descriptor objects
can be obtained using the methods getNatureDescriptor(String) and
getNatureDescriptors() on org.eclipse.core.resources.IWorkspace.

Supplied Implementation:

The platform itself does not have any predefined natures. Particular product installs may include natures as
required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Project Natures 49

http://www.eclipse.org/legal/cpl-v10.html

Team Hook
Identifier:

org.eclipse.core.resources.teamHook

Since:

2.1

Description:

For providing an implementation of a TeamHook that is used for mechanisms available only to team
providers. This extension point tolerates at most one extension.

Configuration Markup:

<!ELEMENT extension (teamHook)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT teamHook EMPTY>

<!ATTLIST teamHook

class CDATA #REQUIRED>

class − the fully−qualified name of a class which subclasses
org.eclipse.core.resources.team.TeamHook

•

Examples:

The following is an example of using the teamHook extension point. (in file plugin.xml)

<extension point=

Team Hook 50

"org.eclipse.core.resources.teamHook"

>

<teamHook class=

"org.eclipse.team.internal.TeamHook"

/>

</extension>

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.core.resources.team.TeamHook.

Supplied Implementation:

The Team component will generally provide the implementation of the team hook. The extension point should
not be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Team Hook 51

http://www.eclipse.org/legal/cpl-v10.html

Project Sets
Identifier:

org.eclipse.team.core.projectSets

Since:

2.0

Description:

This extension point is used to register a handler for creating and reading project sets. Project sets are
lightweight, portable method of sharing a particular lineup of team−shared projects in a workspace. A project
set file may be used to provide team memebers with a simple way of creating a workspace with a particular
lineup of projects form one or more team providers. Providers may provide an extension for this extension
point.

deprecated: see RepositoryProvider#getProjectSetCapability.

Configuration Markup:

<!ELEMENT extension (projectSets*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT projectSets EMPTY>

<!ATTLIST projectSets

id CDATA #REQUIRED

class CDATA #REQUIRED>

id − the nature id of the provider for which this handler creates and reads project sets.•
class − the fully qualified name of a class implementing
org.eclipse.team.core.IProjectSerializer.

•

Project Sets 52

Examples:

Following is an example of a projectSets extension:

<extension point=

"org.eclipse.team.core.projectSets"

>

<projectSets id=

"org.eclipse.team.cvs.core.cvsnature"

class=

"org.eclipse.team.cvs.core.CVSProjectSetSerializer"

>

</projectSets>

</extension>

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

Synchronization Support

New in Eclipse 3.0 are APIs for managing and displaying synchronization state between workspace resources
and resources in another location. We refer to a resource outside of the workspace as a variant. Synchronizing
is the act of displaying the changes between resources in different locations and optionally allowing the user
to affect the synchronization state by performing an action. The synchronize APIs are orthogonal to the
RepositoryProvider APIs and can be used without a repository provider. The purpose of the synchronization
API is to ease the task of implementing different ways of presenting the synchronization state of resources. As
such, the API requires a means to query the synchronization state of resources but does not require a means to
affect the state. The means of affecting the state is left to the implementer (although the UI does provide
hooks for adding provider specific menu items to menus).

Terminology

Before the synchronization API is described, it is helpful to present some of the terminology and concepts that
apply when discussing workspace synchronization.

Resource Variant: A local resource that is mapped to a resource that exists at another location

 Welcome to Eclipse

Project Sets 53

http://www.eclipse.org/legal/cpl-v10.html

can be referred to as a variant of that resource. That is, the resources are usually very similar
but may differ slightly (either due to modifications to the local resource or changes made the
remote copy by other users). We take a local workspace centric view of this, referring to the
local copy as the resource and any remote copy as resource variants.

Synchronize: We refer to synchronize as the action of displaying to the user the differences
between resource variants. Synchronizing doesn't affect the state of the variants, but instead
provides a view to help the user understand the differences between different sets of variants.
It is common however to allow users to affect the states of the variants (e.g. allowing to
check−in, or revert) while synchronizing.

Two−way vs. Three−way Synchronization: There are two basic types of synchronization state
determination: two−way and three−way. A two−way comparison only considers the local
resource and a single resource variant, referred to as the remote resource variant. This type of
comparison can only show the differences between the two resources but cannot offer hints as
to how the changes interrelate. Most code repository systems support a three−way
comparison for synchronization state determination. This type of comparison involves the
local resource, a remote resource variant and a base resource variant. The base resource
variant represents a common ancestor for the local and remote resources. This allows for
more sophisticated synchronization states that indicate the direction of the change.

Table 1: The synchronization states

Two−Way Three−Way

Changed
Deleted
Added

Outgoing Change
Incoming Change
Outgoing Deletion
Incoming Deletion
Outgoing Addition
Incoming Addition
Conflicting Change
Conflicting Deletion
Conflicting Addition

The Basics − SyncInfo

The classes in the org.eclipse.team.core.synchronize are used to describe the synchronization state. The most
important class is SyncInfo because it is the class that actually defines the synchronization state. It can be used
as follows:

SyncInfo info = getSyncInfo(resource); // this is a simulated method of obtaining the sync info for a resource
int changekind = info.getKind();
if(info.getResourceComparator().isThreeWay()) {
 if((changeKind & SyncInfo.DIRECTION_MASK) == SyncInfo.INCOMING) {
 // do something
 }
} else if(changeKind == SyncInfo.CHANGE) {
 // do something else
}

The SyncInfo class provides both the two−way and three−way comparison algorithms, a client must provide

 Welcome to Eclipse

The Basics − SyncInfo 54

the resources and a class that can compare the resources (IResourceVariantComparator). Here is an example
variant comparator:

public class TimestampVariantComparator implements IResourceVariantComparator {
 protected boolean compare(IResourceVariant e1, IResourceVariant e2) {
 if(e1.isContainer()) {
 if(e2.isContainer()) {
 return true;
 }
 return false;
 }
 if(e1 instanceof MyResourceVariant && e2 instanceof MyResourceVariant) {
 MyResourceVariant myE1 = (MyResourceVariant)e1;
 MyResourceVariant myE2 = (MyResourceVariant)e2;
 return myE1.getTimestamp().equals(myE2.getTimestamp());
 }
 return false;
 }
 protected boolean compare(IResource e1, IResourceVariant e2) {

 }
 public boolean isThreeWay() {
 return true;
 }
}

SyncInfo info = new SyncInfo(resource, variant1, variant2, new TimestampComparator());
info.init(); // calculate the sync info

This package also contains collections specifically designed to contain SyncInfo and filters that can be applied
to SyncInfo instances.

Managing the synchronization state

As we have seen in the examples above, SyncInfo and IResourceVariantComparator classes provide access to
the synchronization state of resources. But what we haven't seen yet is how the state is managed. A Subscriber
provides access to the synchronization state between the resources in the local workspace and a set of resource
variants for these resources using either a two−way or three−way comparison, depending on the nature of the
subscriber. A subscriber provides the following capabilities:

local workspace traversal: a subscriber supports the traversal of the local workspace resources that are
supervised by the subscriber. As such, the subscriber has a set of root resources that define the
workspace subtrees under the subscriber's control, as well as a members method that returns the
supervised members of a workspace resource. This traversal differs from the usual workspace
resource traversal in that the resources being traversed may include resources that do not exist locally,
either because they have been deleted by the user locally or created by a 3rd party.

•

resource synchronization state determination: For supervised resources, the subscriber provides access
to the synchronization state of the resource, including access to the variants of the resource. For each
supervised resource, the subscriber provides a SyncInfo object that contains the synchronization state
and the variants used to determine the state.The subscriber also provides an
IResourceVariantComparator which determines whether two−way or three−way comparison is to be
used and provides the logic used by the SyncInfo to comparing resource variants when determining
the synchronization state.

•

refresh of synchronization state and change notification: Clients can react to changes that happen to
local resources by listening to the Core resource deltas. When a local resource is changed, the

•

 Welcome to Eclipse

Managing the synchronization state 55

synchronization state of the resource can then be re−obtained from the subscriber. However, clients
must explicitly query the server to know if there are changes to the resource variants. For subscribers,
this process is broken up into two parts. A client can explicitly refresh a subscriber. In response the
subscriber will obtain the latest state of the resource variants from the remote location and fire
synchronization state change events for any resource variants that have changed. The change
notification is separate from the refresh since there may be other operations that contact the remote
location and obtain the latest remote state.

The APIs do not not define how a Subscriber is created, this is left to the specific implementations. For
example the CVS plugin creates a Subscriber when a merge is performed, another for a comparison, and
another when synchronizing the local workspace with the current branch.

So let's revisit our first example of using SyncInfo and see how a Subscriber could be used to access
SyncInfo.

// Create a file system subscriber and specificy that the
// subscriber will synchronize with the provided file system location
Subscriber subscriber = new FileSystemSubscriber("c:\temp\repo");

// Allow the subscriber to refresh its state
subscriber.refresh(subscriber.roots(), IResource.DEPTH_INFINITE, monitor);

// Collect all the synchronization states and print
IResource[] children = subscriber.roots();
for(int i=0; i < children.length; i++) {
 printSyncState(children[i]);
}

...

void printSyncState(Subscriber subscriber, IResource resource) {
 System.out.println(subscriber.getSyncInfo(resource).toString());
 IResource[] children = subscriber.members(resource);
 for(int i=0; i < children.length; i++) {
 IResource child = children[i];
 if(! child.exists()) {
 System.out.println(resource.getFullPath() + " doesn't exist in the workspace");
 }
 printSyncState(subscriber, children[i]);
 }
}

The important point to remember is that the Subscriber knows about resources that do not exist in the
workspace and non−existing resources can be returned from the Subscriber#members() and
SyncInfo#getLocal().

Displaying the synchronizations state in the UI

We could spend more time explaining how to manage synchronization state but instead let's see how to
actually get the state shown to the user. A ISynchronizeParticipant is the user interface component that
displays synchronization state and allows the user to affect its state. The Synchronize View displays
synchronize participants, but it is also possible to show these in dialogs and wizards. In order to provide
support for users to show any type of synchronization state to the user, even those not based on SyncInfo and
Subscribers, a participant is a very generic component.

 Welcome to Eclipse

Displaying the synchronizations state in the UI 56

There is also an extension point called org.eclipse.team.ui.synchronizeWizards to add a synchronization
creation wizard. This will put your wizard in the global synchronize action and in the Synchronize View, so
that users can easily create a synchronization of your type.

However, if you have implemented a Subscriber you can benefit from a concrete participant called
SubscriberParticipant which will provide the following functionality:

Collects SyncInfo from a Subscriber in the background.•
Listens to changes in the workspace and those found when a Subscriber is refreshed and keeps the
synchronization state updated dynamically.

•

Provides the user interface that support modes for filtering the changes, and layouts.•
Support scheduling a refresh with the Subscriber so that the synchronization states are kept
up−to−date.

•

Supports refreshing a Subscriber in the background.•
Supports navigation of the changes and showing the differences between the files.•
Supports configuration of the actions, toolbars, and decorators by subclasses.•

The best way to explain these concepts are to see them used in the context of a simple example. Go to the
local history synchronization example to see how all of these pieces can be used together. Or if you want
pointers on how to use the more advanced APIs, go to Beyond The Basics.

 Welcome to Eclipse

Displaying the synchronizations state in the UI 57

Synchronize Participant Creation Wizards
Identifier:

org.eclipse.team.ui.synchronizeWizards

Since:

3.0

Description:

This extension point is used to register a synchronize participant creation wizard. These wizards are used to
create synchronize participants that will appear in the Synchronize View. A provider will typically create a
creation wizard to allow the user to perform and manage a particular type of synchronize participant.
Providers may provide an extension for this extension point, and an implementation of
org.eclipse.jface.wizard.IWizard.

Configuration Markup:

<!ELEMENT extension (wizard?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT wizard EMPTY>

<!ATTLIST wizard

name CDATA #REQUIRED

description CDATA #REQUIRED

icon CDATA #REQUIRED

class CDATA #REQUIRED

id CDATA #REQUIRED>

name − The name of the synchronize participant creation type. Examples are "CVS", "CVS Merge",
"WebDAV".

•

description − The description for the creation wizard.•
icon − The icon to be shown when this wizard type is shown to the user.•

Synchronize Participant Creation Wizards 58

class − A fully qualified name of the Java class implementing
org.eclipse.jface.wizard.IWizard.

•

id − A unique identifier for this extension.•

Examples:

Following is an example of a synchronize participant creation wizard extension:

<extension point=

"org.eclipse.team.ui.synchronizeWizards"

>

<wizard name=

"WebDAV"

description=

"Create a WebDAV participant to view changes between workspace resources and their remote WebDAV
location"

icon=

"webdav.gif"

class=

"com.xyz.DAVWizard"

id=

"com.xyz.dav.synchronizeWizard"

>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.jface.wizard.IWizard.

 Welcome to Eclipse

Synchronize Participant Creation Wizards 59

Supplied Implementation:

The plug−in org.eclipse.team.cvs.ui contains example definitions of synchronizeWizards extension point.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

Local History Example

The best way to understand the Synchronize APIs is to create a simple example that actually works. In this
example we will be creating a page in the Synchronize View that will display the latest local history state for
all files in the workspace. The local history synchronization will update automatically when changes are made
to the workspace, and a compare editor can open to browse, merge, then changes. We will also add a custom
decorator to show the last timestamp of the local history element and an action to revert the workspace files to
their latest saved local history state. This is an excellent example because we already have a store of resource
variants available and we don't have to manage it.

For the remainder of this example we will make use of a running example. Much, but not all, of the source
code will be included on this page. The full source code can be found in the local history package of the
org.eclipse.team.examples.filesystem plug−in. You can check the project out from the CVS repository and use
it as a reference while you are reading this tutorial. Disclaimer: The source code in the example plugin may
change over time. To get a copy that matches what is used in this example, you can check out the project
using the 3.0 version tag (most likely R3_0) or a date tag of June 28, 2004.

 Welcome to Eclipse

Synchronize Participant Creation Wizards 60

http://www.eclipse.org/legal/cpl-v10.html
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/

This screen shot shows the local history synchronization in the Synchronize View. With it you can browse the
changes between the local resource and the latest state in history. It has a custom decorator for displaying the
timestamp associated with the local history entry and a custom action to revert your file to the contents in the
local history. Notice also that the standard Synchronize View presentation is used which provide problem
annotations, compressed folder layout, and navigation buttons.

Defining the variants for local history

The first step is to define a variant to represent the elements from local history. This will allow the
synchronize APIs to access the contents from the local history so it can be compared with the current contents
and displayed to the user.

public class LocalHistoryVariant implements IResourceVariant {
 private final IFileState state;

 public LocalHistoryVariant(IFileState state) {
 this.state = state;
 }

 public String getName() {
 return state.getName();
 }

 Welcome to Eclipse

Defining the variants for local history 61

 public boolean isContainer() {
 return false;
 }

 public IStorage getStorage(IProgressMonitor monitor) throws TeamException {
 return state;
 }

 public String getContentIdentifier() {
 return Long.toString(state.getModificationTime());
 }

 public byte[] asBytes() {
 return null;
 }
}

Since the IFileState interface already provides access to the contents of the file from local history (i.e.
implements the IStorage interface), this was easy. Generally, when creating a variant you have to provide a
way of accessing the content, a content identifier that will be displayed to the user to identify this variant, and
a name. The asBytes() method is only required if persisting the variant between sessions.

Next, let's create a variant comparator that allows the SyncInfo calculation to compare local resources with
their variants. Again, this is easy because the existence of a local history state implies that the content of the
local history state differs from the current contents of the file. This is because the specification for local
history says that it won't create a local history state if the file hasn't changed.

public class LocalHistoryVariantComparator implements IResourceVariantComparator {
 public boolean compare(IResource local, IResourceVariant remote) {
 return false;
 }

 public boolean compare(IResourceVariant base, IResourceVariant remote) {
 return false;
 }

 public boolean isThreeWay() {
 return false;
 }
}

Because we know that the existence of the local history state implies that it is different from the local, we can
simply return false when comparing the file to it's local history state. Also, synchronization with the local
history is only two−way because we don't have access to a base resource so the method for comparing two
resource variants is not used.

Note that the synchronize calculation won't call the compare method of the comparator if the variant doesn't
exist (i.e. is null). It is only called if both elements exist. In our example, this would occur both for files that
don't have a local history and for all folders (which never have a local history). To deal with this, we need to
define our own subclass of SyncInfo in order to modify the calculated synchronization state for these cases.

public class LocalHistorySyncInfo extends SyncInfo {
 public LocalHistorySyncInfo(IResource local, IResourceVariant remote, IResourceVariantComparator comparator) {
 super(local, null, remote, comparator);
 }

 Welcome to Eclipse

Defining the variants for local history 62

 protected int calculateKind() throws TeamException {
 if (getRemote() == null)
 return IN_SYNC;
 else
 return super.calculateKind();
 }
}

We have overridden the constructor to always provide a base that is null (since we are only using two−way
comparison) and we have modified the synchronization kind calculation to return IN_SYNC if there is no
remote (since we only care about the cases where there is a local file and a file state in the local history.

Creating the Subscriber

Now we will create a Subscriber that will provide access to the resource variants in the local history. Since
local history can be saved for any file in the workspace, the local history Subscriber will supervise every
resource and the set of roots will be all projects in the workspace. Also, there is no need to provide the ability
to refresh the subscriber since the local history changes only when the contents of a local file changes.
Therefore, we can update our state whenever a resource delta occurs. That leaves only two interesting method
on our local history subscriber: obtaining a SyncInfo and traversing the workspace.

public SyncInfo getSyncInfo(IResource resource) throws TeamException {
 try {
 IResourceVariant variant = null;
 if(resource.getType() == IResource.FILE) {
 IFile file = (IFile)resource;
 IFileState[] states = file.getHistory(null);
 if(states.length > 0) {
 // last state only
 variant = new LocalHistoryVariant(states[0]);
 }
 }
 SyncInfo info = new LocalHistorySyncInfo(resource, variant, comparator);
 info.init();
 return info;
 } catch (CoreException e) {
 throw TeamException.asTeamException(e);
 }
}

The Subscriber will return a new SyncInfo instance that will contain the latest state of the file in local history.
The SyncInfo is created with a local history variant for the remote element. For projects, folders and files with
no local history, no remote resource variant is provided, which will result in the resource being considered
in−sync due to the calculateKind method in our LocalHistorySyncInfo.

The remaining code in the local history subscriber is the implementation of the members method:

public IResource[] members(IResource resource) throws TeamException {
 try {
 if(resource.getType() == IResource.FILE)
 return new IResource[0];
 IContainer container = (IContainer)resource;
 List existingChildren = new ArrayList(Arrays.asList(container.members()));
 existingChildren.addAll(
 Arrays.asList(container.findDeletedMembersWithHistory(IResource.DEPTH_INFINITE, null)));
 return (IResource[]) existingChildren.toArray(new IResource[existingChildren.size()]);
 } catch (CoreException e) {

 Welcome to Eclipse

Creating the Subscriber 63

 throw TeamException.asTeamException(e);
 }
}

The interesting detail of this method is that it will return non−existing children if a deleted resource has local
history. This will allow our Subscriber to return SyncInfo for elements that only exist in local history and are
no longer in the workspace.

Adding a Local History Synchronize Participant

So far we have created the classes which provide access to SyncInfo for elements in local history. Next, we
will create the UI elements that will allow us to have a page in the Synchronize View to display the last
history state for every element in local history. Since we have a Subscriber, adding this to the Synchronize
View is easy. Let's start by adding an synchronize participant extension point:

<extension
point="org.eclipse.team.ui.synchronizeParticipants">

 <participant
 persistent="false"
 icon="synced.gif"
 class="org.eclipse.team.synchronize.example.LocalHistoryParticipant"
 name="Latest From Local History"
 id="org.eclipse.team.synchronize.example"/>
 </extension>

Next we have to implement the LocalHistoryParticipant. It will subclass SubscriberParticipant which will
provide all the default behavior for collecting SyncInfo from the subscriber and updating sync states when
workspace changes occur. In addition, we will add an action to revert the workspace resources to the latest in
local history.

First, we will look at how a custom action is added to the participant.

public static final String CONTEXT_MENU_CONTRIBUTION_GROUP = "context_group_1"; //$NON−NLS−1$

private class LocalHistoryActionContribution extends SynchronizePageActionGroup {
 public void initialize(ISynchronizePageConfiguration configuration) {
 super.initialize(configuration);
 appendToGroup(
 ISynchronizePageConfiguration.P_CONTEXT_MENU, CONTEXT_MENU_CONTRIBUTION_GROUP,
 new SynchronizeModelAction("Revert to latest in local history", configuration) { //$NON−NLS−1$
 protected SynchronizeModelOperation getSubscriberOperation(ISynchronizePageConfiguration configuration, IDiffElement[] elements) {
 return new RevertAllOperation(configuration, elements);
 }
 });
 }
}

Here we are adding a specific SynchronizeMoidelAction and operation. The behavior we get for free here is
the ability to run in the background and show busy status for the nodes that are being worked on. The action
reverts all resources in the workspace to their latest state in local history. The action is added by adding an
action contribution to the participants configuration. The configuration is used to describe the properties used
to build the participant page that will display the actual synchronize UI.

The participant will initialize the configuration as follows in order to add the local history action group to the
context menu:

 Welcome to Eclipse

Adding a Local History Synchronize Participant 64

protected void initializeConfiguration(ISynchronizePageConfiguration configuration) {
 super.initializeConfiguration(configuration);
 configuration.addMenuGroup(
 ISynchronizePageConfiguration.P_CONTEXT_MENU,
 CONTEXT_MENU_CONTRIBUTION_GROUP);
 configuration.addActionContribution(new LocalHistoryActionContribution());
 configuration.addLabelDecorator(new LocalHistoryDecorator());
}

Now lets look at how we can provide a custom decoration. The last line of the above method registers the
following decorator with the page's configuration.

public class LocalHistoryDecorator extends LabelProvider implements ILabelDecorator {
 public String decorateText(String text, Object element) {
 if(element instanceof ISynchronizeModelElement) {
 ISynchronizeModelElement node = (ISynchronizeModelElement)element;
 if(node instanceof IAdaptable) {
 SyncInfo info = (SyncInfo)((IAdaptable)node).getAdapter(SyncInfo.class);
 if(info != null) {
 LocalHistoryVariant state = (LocalHistoryVariant)info.getRemote();
 return text+ " ("+ state.getContentIdentifier() + ")";
 }
 }
 }
 return text;
 }

 public Image decorateImage(Image image, Object element) {
 return null;
 }
}

The decorator extracts the resource from the model element that appears in the synchronize view and appends
the content identifier of the local history resource variant to the text label that appears in the view.

The last and final piece is to provide a wizard that will create the local history participant. The Team
Synchronizing perspective defines a global synchronize action that allows users to quickly create a
synchronization. In addition, the ability to create synchronizations in available from the Synchronize view
toolbar. To start, create a synchronizeWizards extension point:

<extension
 point="org.eclipse.team.ui.synchronizeWizards">
 <wizard
 class="org.eclipse.team.synchronize.example.LocalHistorySynchronizeWizard"
 icon="synced.gif"
 description="Creates a synchronization against the latest local history state of all resources in the workspace"
 name="Latest From Local History Synchronize"
 id="ExampleSynchronizeSupport.wizard1"/>
</extension>

This will add our wizard to the list and in the wizards finish() method we will simply create our participant
and add it to the synchronize manager.

LocalHistoryPartipant participant = new LocalHistoryPartipant();
ISynchronizeManager manager = TeamUI.getSynchronizeManager();
manager.addSynchronizeParticipants(new ISynchronizeParticipant[] {participant});
ISynchronizeView view = manager.showSynchronizeViewInActivePage();
view.display(participant);

 Welcome to Eclipse

Adding a Local History Synchronize Participant 65

Conclusion

This is a simple example of using the synchronize APIs and we have glossed over some of the details in order
to make the example easier to understand. Writing responsive and accurate synchronization support is
non−trivial, the hardest part being the management of synchronization information and the notification of
synchronization state changes. The user interface, if the one associated with SubscriberParticipants is
adequate, is the easy part once the Subscriber implementation is complete. For more examples please refer to
the org.eclipse.team.example.filesystem plugin and browse the subclasses in the workspace of Subscriber and
ISynchronizeParticipant.

The next section describes some class and interfaces that can help you write a Subscriber from scratch
including how to cache synchronization states between workbench sessions.

Beyond the Basics

If you plan on providing synchronization support and don't have an existing mechanism for managing
synchronization state, this section explains how to implementing a Subscriber from scratch. This means that
there is no existing synchronization infrastructure and illustrates how to use some API that is provided to
maintain the synchronization state.

For the remainder of this example we will make use of a running example. The source code can be found in
the file system provider package of the org.eclipse.team.examples.filesystem plug−in. You should check the
project out from the CVS repository and use as a reference while you are reading this tutorial.

Implementing a Subscriber From Scratch

This first example assumes that there is no existing infrastructure for maintaining the synchronization state of
the local workspace. When implementing a subscriber from scratch, you can make use of some additional API
provided in the org.eclipse.team.core plugin. The org.eclipse.team.core.variants package contains two
subclasses of Subscriber which can be used to simplify implementation. The first is
ResourceVariantTreeSubscriber which will be discussed in the second example below. The second is a
subclass of the first: ThreeWaySubscriber. This subscriber implementation provides several helpful classes for
managing the synchronization state of a local workspace. If you do not have any existing infrastructure, this is
a good place to start.

Implementing a subscriber from scratch will be illustrated using the file system example available in the
org.eclipse.team.examples.filesystem plugin. The code in the following description is kept to a minimum
since it is available from the Eclipse CVS repository. Although not technically a three−way subscriber, the
file system example can still make good use of this infrastructure. The FTP and WebDav plugins also are built
using this infrastructure.

ThreeWaySubscriber

For the file system example, we already had an implementation of a RepositoryProvider that associated a local
project with a file system location where the local contents were mirrored. FileSystemSubscriber was created
as a subclass of ThreeWaySubscriber in order to make use of a ThreeWaySynchronizer to manage workspace
synchronization state. Subclasses of this class must do the following:

 Welcome to Eclipse

Conclusion 66

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/
http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.team.examples.filesystem/

create a ThreeWaySynchronizer instance to manage the local workspace synchronization state.•
create an instance of a ThreeWayRemoteTree subclass to provide remote tree refresh.•

The class FileSystemRemoteTree was defined for this purpose♦
implement a method to create the resource variant handles used to calculate the synchronization state.

The class FileSystemResourceVariant (a subclass of CachedResourceVariant) was defined for
this

♦
•

implement the roots method.
The roots for the subscriber are all the projects mapped to the FileSystemProvider. Callbacks
were added to FileSystemProvider in order to allow the FileSystemSubscriber to generate
change events when projects are mapped and unmapped.

♦
•

In addition to the subscriber implementation, the get and put operations for the file system provider were
modified to update the synchronization state in the ThreeWaySynchronizer. The operations are implemented
in the class org.eclipse.team.examples.filesystem.FileSystemOperations.

ThreeWaySynchronizer

ThreeWaySynchronizer manages the synchronization state between the local workspace and a remote
location. It caches and persists the local, base and remote timestamps in order to support the efficient
calculation of the synchronization state of a resource. It also fires change notifications to any registered
listeners. The ThreeWaySubscriber translates these change events into the proper format to be sent to listeners
registered with the subscriber.

The ThreeWaySynchronizer makes use of Core scheduling rules and locks to ensure thread safety and provide
change notification batching.

ThreeWayRemoteTree

A ThreeWayRemoteTree is a subclass of ResourceVariantTree that is tailored to the ThreeWaySubscriber. It
must be overridden by clients to provide the mechanism for fetching the remote state from the server.
ResourceVariantTree is discussed in more detail in the next example.

CachedResourceVariant

A CachedResourceVariant is a partial implementation of IResourceVariant that caches any fetched contents
for a period of time (currently 1 hour). This is helpful since the contents may be accessed several times in a
short period of time (for example, to determine the synchronization state and display the contents in a
compare editor). Subclasses must still provide the unique content identifier along with the byte array that can
be persisted in order to recreate the resource variant handle.

Building on Top of Existing Workspace Synchronization

Many repository providers may already have a mechanism for managing their synchronization state (e.g. if
they have existing plugins). The ResourceVariantTreeSubscriber and its related classes provide the ability to
build on top of an existing synchronization infrastructure. For example, this is the superclass of all of the CVS
subscribers.

 Welcome to Eclipse

ThreeWaySynchronizer 67

ResourceVariantTreeSubscriber

As was mentioned in the previous example, the ThreeWaySubscriber is a subclass of
ResourceVariantTreeSubscriber that provides local workspace synchronization using a
ThreeWaySynchronizer. Subclasses of ResourceVariantTreeSubscriber must provide:

Subclasses of ResourceVariantTree (or AbstractResourceVariantTree) that provide the behavior for
traversing and refreshing the remote resource variants and, for subscribers that support three−way
comparisons, the base resource variants.

•

An implementation of IResourceVariantComparator that performs the two−way or three−way
comparison for a local resource and its base and remote resource variants.It is common to also
provide a subclass of SyncInfo in order to customize the synchronization state determination
algorithm.

•

An implementation of the roots method for providing the roots of the subscriber and an
implementation of the isSupervised method for determining what resources are supervised by the
subscriber.

•

The other capabilities of the subscriber are implemented using these facilities.

ResourceVariantTree

ResourceVariantTree is a concrete implementation of IResourceVariantTree that provides the following:

traversal of the resource variant tree•
logic to merge the previous resource variant tree state with the current fetched state.•
caching of the resource variant tree using a ResourceVariantByteStore.•

The following must be implemented by subclasses:

creation of resource variant handles from the cached bytes that represent a resource variant•
fetching of the current remote state from the server•
creation of the byte store instance used to cache the bytes that uniquely identify a resource variant•

Concrete implementations of ResourceVariantByteStore are provided that persist bytes across workbench
invocations (PersistantResourceVariantByteStore) or cached the bytes only for the current session
(SessionResourceVariantByteStore). However, building a subscriber on top of an existing workspace
synchronization infrastructure will typically require the implementation of ResourceVariantByteStore
subclasses that interface with the underlying synchronizer. For example the ThreeWayRemoteTree makes use
of a byte store implementation that stores the remote bytes in the ThreeWaySynchronizer.

The creation of resource variant handles for this example does not differ from the previous example except
that the handles are requested from a resource variant tree instance instead of the subscriber.

 Welcome to Eclipse

Building on Top of Existing Workspace Synchronization 68

Program debug and launch support
The resource plug−ins in the Eclipse platform allow you to manage a set a source files for a program and
compile them using an incremental project builder. Plug−ins can define new builders that handle special
resource types, such as source files for a particular programming language. Once an executable program is
built with your plug−in's builder, how can you make sure that it gets invoked correctly?

The org.eclipse.debug.core plug−in provides the API that allows a program to define a configuration for
launching a program. The program can be launched for regular execution or in debug mode, depending on the
capabilities of your plug−in. The Eclipse Java development tooling (JDT) uses the platform debug support to
launch Java VM's and the Java debugger.

The org.eclipse.debug.ui plug−in includes support for user configuration of launch parameters and utility
classes that ease the implementation of powerful debuggers.

There are some shared concepts in launching and debugging programs that are implemented in the platform
debug support. However, the best way to understand how to use the platform debug support is to study a
robust concrete implementation of launching and debugging, such as the JDT launching and debug tools.
We'll review the major concepts of the platform debug support in order to provide a roadmap for studying a
concrete implementation.

For a detailed explanation of how to define and develop custom launch configurations, see We Have Lift−off:
The Launching Framework in Eclipse.

 Program debug and launch support 69

http://www.eclipse.org/articles/Article-Launch-Framework/launch.html
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html

Plugging in help
The Eclipse platform's help facilities provide you with the raw building blocks to structure and contribute
documentation to the platform. It does not dictate structure or granularity of documentation. You can choose
the tools and structure for your documentation that suits your needs. The help plug−in allows you to describe
your documentation structure to the platform using a table of contents (toc) file.

Your plug−in's online help is contributed using the org.eclipse.help.toc extension point. You can either
contribute the online help as part of your code plug−in or provide it separately in its own documentation
plug−in.

Separating the documentation into a separate plug−in is beneficial in those situations where the code and
documentation teams are different groups or where you want to reduce the coupling between the
documentation and code.

Advanced features of the help system include context−sensitive help with reference links (known as
infopops) and the ability to invoke platform code from the documentation. A help browser lets you view,
print, and search your documentation.

The best way to demonstrate the contribution of help is to create a documentation plug−in.

 Plugging in help 70

Table of Contents (TOC)
Identifier:

org.eclipse.help.toc

Description:

For registering an online help contribution for an individual plug−in.

Each plug−in that contributes help files should in general do the following:

author the html files, zip html files into doc.zip, and store the zip file in the plug−in directory.♦
create TOC files that describe Table of Contents for the help and the necessary topic
interleaving. See the syntax below.

♦

the plugin.xml file should extend the org.eclipse.help.toc extension point and
specify TOC file(s).

♦

Configuration Markup:

<!ELEMENT extension (toc*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT toc EMPTY>

<!ATTLIST toc

file CDATA #REQUIRED

primary (true | false) "false"

extradir CDATA #IMPLIED>

file − the name of the TOC file which contains the table of contents or section for this plug−in's online
help.

Configuration Markup for toc file:

 <!ELEMENT toc (topic | anchor | link)* >
 <!ATTLIST toc link_to CDATA #IMPLIED >
 <!ATTLIST toc label CDATA #REQUIRED >
 <!ATTLIST toc topic CDATA #IMPLIED >

•

Table of Contents (TOC) 71

 <!ELEMENT topic (topic | anchor | link)* >
 <!ATTLIST topic label CDATA #REQUIRED >
 <!ATTLIST topic href CDATA #IMPLIED >

 <!ELEMENT anchor EMPTY >
 <!ATTLIST anchor id ID #REQUIRED >

 <!ELEMENT link EMPTY >
 <!ATTLIST link toc CDATA #REQUIRED >

In general, a plug−in that needs to provide online help will define its own TOC files. In the end, the
help system is configured to be launched as some actions, and the path of the TOC file can be used to
do so.

The topic element

All help topic element are contributed as part of the toc container element. They can have a
hierarchical structure, or can be listed as a flat list.

The topic element is the workhorse of structure of Table of Contents. There are two typical uses for
the topic element:

1. To provide a link to a documentation file − usually an HTML file.
2. To act as a container for other toc, either in the same manifest or another.

1. Topics as links
The simplest use of a topic is as a link to a documentation file.

<topic label="Some concept file" href="concepts/some_file.html" />

The href attribute is relative to the plug−in that the manifest file belongs to. If you need to access a
file in another plug−in, you can use the syntax

<topic label="topic in another plug−in"
href="../other.plugin.id/concepts/some_other_file.html" />

2. Topics as containers
The next most common use of a topic is to use it as a container for other toc. The container topic
itself can always refer to a particular file as well.

<topic label="Integrated Development Environment"
href="concepts/ciover.htm" >
 <topic label="Starting the IDE" href="concepts/blah.htm" />
 ...
</topic>

The link element

The link element allows to link Table of Contents defined in another toc file. All the topics from the
toc file specified in the toc attribute will appear in the table of contents as if they were defined directly
in place of the link element. To include toc from api.xml file you could write

 Welcome to Eclipse

Table of Contents (TOC) 72

<topic label="References" >
 ...
 <link toc="api.xml" />
 ...
</topic>

The anchor element

The anchor element defines a point that will allow linking other toc files to this navigation, and
extending it, without using the link element and referencing other toc files from here. To allow
inserting Table of Contents with more topics after the "ZZZ" document you would define an anchor
as follows:

...
<topic label="zzz" href="zzz.html" />
<anchor id="moreapi" />
...

The toc element

The toc element is a Table of Contents that groups topics and other elements defined in this file. The
label identifies the table of contents to the user, when it is displayed to the user. The optional topic
attribute is the path to a topic file describing the TOC. The optional link_to attribute allows for
linking toc from this file into another toc file being higher in the navigation hierarchy. The value of
the link_to attribute must specify an anchor in another toc file. To link toc from myapi.xml to api.xml
file, specified in another plugin you would use the syntax

<toc link_to="../anotherPlugin/api.xml#moreapi" label="My Tool
API"/>
...
<toc />

where # character separates toc file name from the anchor identifier.

primary − specifies whether the TOC file is a primary table of contents and is meant to be the master
table of contents, or not primary and intended to be integrated into another table of contents.

•

extradir − specifies relative directory name of containing additional documents that are associated
with the table of contents. All help documents in this directory, and all subdirectories, will be indexed,
and accessible through the documentation search, even if topic elements in the TOC file do not
refer to these documents.

•

Examples:

The following is an example of using the toc extension point.

(in file plugin.xml)

 Welcome to Eclipse

Table of Contents (TOC) 73

<extension point=

"org.eclipse.help.toc"

>

<toc file=

"maindocs.html"

primary=

"true"

/>

<toc file=

"task.xml"

/>

<toc file=

"sample.xml"

extradir=

"samples"

/>

</extension>

(in file maindocs.xml)

<toc label="Help System Example">
 <topic label="Introduction" href="intro.html"/>
 <topic label="Tasks">
 <topic label="Creating a Project" href="tasks/task1.html">
 <topic label="Creating a Web Project"
href="tasks/task11.html"/>
 <topic label="Creating a Java Project"
href="tasks/task12.html"/>
 </topic>
 <link toc="task.xml" />
 <topic label="Testing a Project" href="tasks/taskn.html"/>
 </topic>
 <topic label="Samples">
 <topic label="Creating Java Project"
href="samples/sample1.html">

 Welcome to Eclipse

Table of Contents (TOC) 74

 <topic label="Launch a Wizard"
href="samples/sample11.html"/>
 <topic label="Set Options" href="samples/sample12.html"/>
 <topic label="Finish Creating Project"
href="samples/sample13.html"/>
 </topic>
 <anchor id="samples" />
 </topic>
</toc>

(in file tasks.xml)

<toc label="Building a Project">
 <topic label="Building a Project" href="build/building.html">
 <topic label="Building a Web Project"
href="build/web.html"/>
 <topic label="Building a Java Project"
href="build/java.html"/>
 </topic>
</toc>

(in file samples.xml)

<toc link_to="maindocs.xml#samples" label="Using The Compile
Tool">
 <topic label="The Compile Tool Sample"
href="compilesample/example.html">
 <topic label="Step 1" href="compilesample/step1.html"/>
 <topic label="Step 2" href="compilesample/step2.html"/>
 <topic label="Step 3" href="compilesample/step3.html"/>
 <topic label="Step 4" href="compilesample/step4.html"/>
 </topic>
</toc>

Assuming more documents exists with the path starting with "samples", they will not be displayed in the
navigation tree, but be accessible using search. It is due to the presence of "extradir" attribute in the element
<toc file="sample.xml" extradir="samples" /> inside plugin.xml file. For example
searching for "Creating Java Project" could return a document "Other Ways of Creating Java Project", which
path is samples/sample2.html.

Internationalization The TOC XML files can be translated and the resulting copy (with translated labels)
should be placed in nl/<language>/<country> or nl/<language> directory. The <language> and <country>
stand for two letter language and country codes as used in locale codes. For example, Traditional Chinese
translations should be placed in the nl/zh/TW directory. The nl/<language>/<country> directory has a higher
priority than nl/<language>. Only if no file is found in the nl/<language>/<country>, the file residing in
nl/<language> will be used. The the root directory of a plugin will be searched last.

The documentation contained in doc.zip can be localized by creating a doc.zip file with translated version of
documents, and placing doc.zip in

 Welcome to Eclipse

Table of Contents (TOC) 75

nl/<language>/<country> or nl/<language> directory. The help system will look for the files under this
directories before defaulting to plugin directory.

API Information:

No code is required to use this extension point. All that is needed is to supply the appropriate manifest files
mentioned in the plugin.xml file.

Supplied Implementation:

The default implementation of the help system UI supplied with the Eclipse platform fully supports the toc
extension point.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Table of Contents (TOC) 76

http://www.eclipse.org/legal/cpl-v10.html

Plug it in: Hello World meets the workbench
The Eclipse platform is structured as a core runtime engine and a set of additional features that are installed as
platform plug−ins. Plug−ins contribute functionality to the platform by contributing to pre−defined extension
points. The workbench UI is contributed by one such plug−in. When you start up the workbench, you are not
starting up a single Java program. You are activating a platform runtime which can dynamically discover
registered plug−ins and start them as needed.

When you want to provide code that extends the platform, you do this by defining system extensions in your
plug−in. The platform has a well−defined set of extension points − places where you can hook into the
platform and contribute system behavior. From the platform's perspective, your plug−in is no different than
basic plug−ins like the resource management system or the workbench itself.

So how does your code become a plug−in?

Decide how your plug−in will be integrated with the platform.•
Identify the extension points that you need to contribute in order to integrate your plug−in.•
Implement these extensions according to the specification for the extension points.•
Provide a manifest file (plugin.xml) that describes the extensions you are providing and the packaging
of your code.

•

The process for creating a plug−in is best demonstrated by implementing an old classic, "Hello World," as a
plug−in. The intention of this example is to give you a flavor of how plug−in development is different from
Java application development. We'll gloss over a lot of details in order to get the plug−in built and running.
Then we'll look at extension points in more detail, see where they are defined, and learn how plug−ins
describe their implementation of an extension.

A minimal plug−in

We all know what "Hello World" looks like in plain old Java without using any user interface frameworks or
other specialized libraries.

 public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
 }

What happens to this old standard in the context of the Eclipse platform? Instead of thinking of Hello World
as a self−contained program, we recast it as an extension of the platform. Since we want to say hello to the
world, we need to figure out how to extend the workbench to include our greeting.

When we get deeper into the platform user interface components, we'll do an exhaustive review of the ways
that you can extend and customize the workbench UI. For now, let's start with one of the simplest workbench
extensions − a view.

You can think of the workbench window as a frame that presents various visual parts. These parts fall into two
major categories: views and editors. We will look at editors later. Views provide information about some

 Plug it in: Hello World meets the workbench 77

object that the user is working with in the workbench. Views often change their content as the user selects
different objects in the workbench.

Hello world view

For our hello world plug−in, we will implement our own view to greet the user with "Hello World."

The plug−in org.eclipse.ui.workbench defines most of the public interfaces that make up the workbench
API. These interfaces can be found in the package org.eclipse.ui and its sub packages. Many of these
interfaces have default implementation classes that you can extend to provide simple modifications to the
system. In our hello world example, we will extend a workbench view to provide a label that says hello.

The interface of interest is IViewPart, which defines the methods that must be implemented to contribute a
view to the workbench. The class ViewPart provides a default implementation of this interface. In a nutshell,
a view part is responsible for creating the widgets needed to show the view.

The standard views in the workbench often display some information about an object that the user has
selected or is navigating. Views update their contents based on actions that occur in the workbench. In our
case, we are just saying hello, so our view implementation will be quite simple.

Before jumping into the code, we need to make sure our environment is set up for plug−in development...

Creating the plug−in project

You can use any Java IDE you wish to build Eclipse plug−ins, but we'll walk through the steps for building
our plug−in with the Eclipse Java IDE, since this is the typical case. If you are not already familiar with the
Eclipse workbench and the Java IDE, consult the Java Development User Guide for further explanations of
the steps we are taking. For now we are focusing on the code, not the tool. However, there are some IDE
logistics for getting started.

Creating your plug−in project

You will need to create a project that contains your work. We'll take advantage of some of the
code−generation facilities of the Plug−in Development Environment (PDE) to give us a template to start from.
This will set up the project for writing Java code and generate a default plug−in manifest file (explained in a
moment) and class to hold our view.

Open the New Project... wizard (File > New > Project...) and choose Plug−in Project from the
Plug−in Development category and click Next.

1.

On the Plug−in Project page, use com.example.helloworld as the name for your project and check
the box for Create a Java project (this should be the default). Click Next to accept the default Java
project structure.

2.

On the Plug−in Content page, look at the default settings. The wizard sets com.example.helloworld
as the id of the plug−in. The wizard will also generate a plug−in class for your plug−in and allow you
supply additional information about contributing to the UI. These defaults are acceptable, so click
Next.

3.

On the Templates page, check the box for Create a plug−in using one of the templates. Then select
the Plug−in with a view template. Click Next.

4.

 Welcome to Eclipse

 Hello world view 78

We want to create a minimal plug−in, so at this point we need to change the default settings to keep
things as simple as possible. On the Main View Settings page, change the suggested defaults as
follows:

Change the Java Package Name from com.example.helloworld.views to
com.example.helloworld (we don't need a separate package for our view).

♦

Change the View Class Name to HelloWorldView.♦
Change the View Name to Hello View.♦
Leave the default View Category Id as com.example.helloworld.♦
Change the View Category Name to Hello Category.♦
Leave the default viewer type as Table viewer (we will change this in the code to make it
even simpler).

♦

Uncheck the box for Add the view to the resource perspective.♦
Click Next to proceed to the next page.♦

5.

On the View Features page, uncheck all of the boxes so that no extra features are generated for the
plug−in. Click Finish to create the project and the plug−in skeleton.

6.

When asked if you would like to switch to the Plug−in Development perspective, answer Yes.7.
Navigate to your new project and examine its contents.8.

The skeleton project structure includes several files and a Java package. The important files at this stage are
the plugin.xml (manifest) file and the Java source code for your plug−in. We'll start by looking at the
implementation for a view and then examine the manifest file.

 Welcome to Eclipse

 Hello world view 79

The Hello World view

Now that we've created a project, package, and view class for our plug−in, we're ready to study some code.
Here is everything you need in your HelloWorldView. Copy the contents below into the class you created,
replacing the auto−generated content.

 package com.example.helloworld;

 import org.eclipse.swt.widgets.Composite;
 import org.eclipse.swt.widgets.Label;
 import org.eclipse.swt.SWT;
 import org.eclipse.ui.part.ViewPart;

 public class HelloWorldView extends ViewPart {
 Label label;
 public HelloWorldView() {
 }
 public void createPartControl(Composite parent) {
 label = new Label(parent, SWT.WRAP);
 label.setText("Hello World");
 }
 public void setFocus() {
 // set focus to my widget. For a label, this doesn't
 // make much sense, but for more complex sets of widgets
 // you would decide which one gets the focus.
 }
 }

The view part creates the widgets that will represent it in the createPartControl method. In this example, we
create an SWT label and set the "Hello World" text into it. This is about the simplest view that can be created.

The Hello World manifest

Before we run the new view, let's take a look at the manifest file that was generated for us:

<?xml version="1.0" encoding="UTF−8"?>
<?eclipse version="3.0"?>
<plugin
 id="com.example.helloworld"
 name="Helloworld Plug−in"
 version="1.0.0"
 provider−name="EXAMPLE"
 class="com.example.helloworld.HelloworldPlugin">

 <runtime>
 <library name="helloworld.jar">
 <export name="*"/>
 </library>
 </runtime>

 <requires>
 <import plugin="org.eclipse.ui"/>
 <import plugin="org.eclipse.core.runtime"/>
 <import plugin="org.eclipse.core.runtime.compatibility"/>
 </requires>

 Welcome to Eclipse

 The Hello World view 80

<extension
 point="org.eclipse.ui.views">
 <category
 name="Hello Category"
 id="com.example.helloworld">
 </category>
 <view
 name="Hello View"
 icon="icons/sample.gif"
 category="com.example.helloworld"
 class="com.example.helloworld.HelloWorldView"
 id="com.example.helloworld.HelloWorldView">
 </view>
 </extension>

</plugin>

The information about the view that we provided when we created the plug−in project was used to generate a
manifest file with the appropriate mark−up for defining our view extension. In the extension definition, we
define a category for the view, including its name and id. We then define the view itself, including its name
and id, and we associate it with the category using the id we defined for our category. We also specify the
class that implements our view, HelloWorldView.

As you can see, the manifest file wraps up all the information about our extension and how to run it into a
nice, neat package.

Running the plug−in

We have all the pieces needed to run our new plug−in. Now we need to build the plug−in. If your Eclipse
workbench is set up to build automatically, then your new view class should have compiled as soon as you
saved the new content. If not, then select your new project and choose Project>Build Project. The class
should compile without error.

There are two ways to run a plug−in once it has been built.

The plug−in's manifest file and jar file can be installed in the eclipse/plugins directory. When the
workbench is restarted, it will find the new plug−in.

1.

The PDE tool can be used to run another workbench from within your current workbench. This
runtime workbench is handy for testing new plug−ins immediately as you develop them from your
workbench. (For more information about how a runtime workbench works, check the PDE guide.)

2.

For simplicity, we'll run the new plug−in from within the Eclipse workbench.

Launching the workbench

To launch a runtime workbench, choose Run>Run.... This dialog will show you all the different kinds of
ways you can launch a program. Choose Runtime workbench and accept all of the default settings. This will
cause another instance of the Eclipse workbench, the runtime workbench, to start.

 Welcome to Eclipse

 Running the plug−in 81

Running Hello World

So where is our new view? We can see all of the views that have been contributed by plug−ins using the
Window >Show View menu.

This menu shows us what views are available for the current perspective. You can see all of the views that are
contributed to the platform (regardless of perspective) by selecting Other.... This will display a list of view
categories and the views available under each category.

The workbench creates the full list of views by using the extension registry to find all the plug−ins that have
provided extensions for the org.eclipse.ui.views extension point.

 Welcome to Eclipse

Running Hello World 82

There we are! The view called "Hello View" has been added to the Show View window underneath our
category "Hello Category." The labels for our category and view were obtained from the extension point
configuration markup in the plugin.xml.

Up to this point, we still have not run our plug−in code! The declarations we made in the plugin.xml
(which can be seen by other plug−ins using the extension registry) are enough for the workbench to find out
that there is a view called "Hello View" available in the "Hello" category. It even knows what class
implements the view. But none of our code will be run until we decide to show the view.

If we choose the "Hello View" view from the Show View list, the workbench will activate our plug−in,
instantiate and initialize our view class, and show the new view in the workbench along with all of the other
views. Now our code is running.

 Welcome to Eclipse

Running Hello World 83

There it is, our first plug−in! We'll cover more specifics about UI classes and extension points later on.

 Welcome to Eclipse

Running Hello World 84

Views
Identifier:

org.eclipse.ui.views

Description:

This extension point is used to define additional views for the workbench. A view is a visual component
within a workbench page. It is typically used to navigate a hierarchy of information (like the workspace), open
an editor, or display properties for the active editor. The user can make a view visible from the View menu or
close it from the view local title bar.

In order to reduce the visual clutter in the Show View Dialog, views should be grouped using categories.

Configuration Markup:

<!ELEMENT extension (category | view | stickyView)*>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT category EMPTY>

<!ATTLIST category

id CDATA #REQUIRED

name CDATA #REQUIRED

parentCategory CDATA #IMPLIED>

id − a unique name that will be used to identify this category•
name − a translatable name that will be used in the UI for this category•
parentCategory − an optional path composed of category IDs separated by '/'. This attribute provides
for creating category hierarchy.

•

<!ELEMENT view (description?)>

Views 85

<!ATTLIST view

id CDATA #REQUIRED

name CDATA #REQUIRED

category CDATA #IMPLIED

class CDATA #REQUIRED

icon CDATA #IMPLIED

fastViewWidthRatio CDATA #IMPLIED

allowMultiple (true | false) >

id − a unique name that will be used to identify this view•
name − a translatable name that will be used in the UI for this view•
category − an optional attribute that is composed of the category IDs separated by '/'. Each referenced
category must exist prior to being referenced in this attribute.

•

class − a fully qualified name of the class that implements org.eclipse.ui.IViewPart. A
common practice is to subclass org.eclipse.ui.part.ViewPart in order to inherit the
default functionality.

•

icon − a relative name of the icon that will be associated with the view.•
fastViewWidthRatio − the percentage of the width of the workbench that the view will take up as an
active fast view. This must be defined as a floating point value and lie between 0.05 and 0.95. If no
value is supplied, a default ratio will be used.

•

allowMultiple − flag indicating whether this view allows multiple instances to be created using
IWorkbenchPage.showView(String id, String secondaryId). The default is false.

•

<!ELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the view.

<!ELEMENT stickyView EMPTY>

<!ATTLIST stickyView

id CDATA #REQUIRED

location (RIGHT|LEFT|TOP|BOTTOM)

closeable (true | false)

moveable (true | false) >

 Welcome to Eclipse

Views 86

A sticky view is a view that will appear by default across all perspectives in a window once it is opened. Its
initial placement is governemed by the location attribute, but nothing prevents it from being moved or closed
by the user. Use of this element will only cause a placeholder for the view to be created, it will not show the
view. Please note that usage of this element should be done with great care and should only be applied to
views that truely have a need to live across perspectives. Since 3.0

id − the id of the view to be made sticky.•
location − optional attribute that specifies the location of the sticky view relative to the editor area. If
absent, the view will be docked to the right of the editor area.

•

closeable − optional attribute that specifies wether the view should be closeable. If absent it will be
closeable.

•

moveable − optional attribute that specifies wether the view should be moveable. If absent it will be
moveable.

•

Examples:

The following is an example of the extension point:

<extension point=

"org.eclipse.ui.views"

>

<category id=

"com.xyz.views.XYZviews"

name=

"XYZ"

>

</category>

<view id=

"com.xyz.views.XYZView"

name=

"XYZ View"

category=

 Welcome to Eclipse

Views 87

"com.xyz.views.XYZviews"

class=

"com.xyz.views.XYZView"

icon=

"icons/XYZ.gif"

>

</view>

</extension>

The following is an example of a sticky view declaration:

<extension point=

"org.eclipse.ui.views"

>

<stickyView id=

"com.xyz.views.XYZView"

/>

</extension>

API Information:

The value of the class attribute must be a fully qualified name of the class that implements
org.eclipse.ui.IViewPart. It is common practice to subclass
org.eclipse.ui.part.ViewPart when developing a new view.

Supplied Implementation:

The workbench provides a number of standard views including Navigator, Properties, Outline and Tasks.
From the user point of view, these views are no different from any other view provided by the plug−ins. All
the views can be shown from the "Show View" submenu of the "Window" menu. The position of a view is
persistent: it is saved when the view is closed and restored when the view is reopened in a single session. The
position is also persisted between workbench sessions.

Copyright (c) 2002, 2004 IBM Corporation and others.

 Welcome to Eclipse

Views 88

All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

Beyond the basics

Hopefully you've gotten a flavor of how you can contribute code in the form of an extension, and package that
functionality into a plug−in. From here, you can start diving into more detail:

Basic workbench extension points•
Workbench menu contributions•
Advanced workbench concepts•
Workbench wizard extension points•

A complete list of extension points can be found in the Platform Extension Point Reference.

Basic workbench extension points

The workbench defines extension points that allow plug−ins to contribute behaviors to existing views and
editors or to provide implementations for new views and editors. We are going to take a look at the
contributions to these extension points from one of the workbench sample applications, the readme tool.

The readme tool is a plug−in that provides custom editing and navigation for a specific resource , a .readme
file. The example shows many typical (but simplified) ways that extensions can be used to provide specialized
tools.

The readme tool contributes to the menus of the navigator view, adds editor related actions to the workbench
menus and tool bar, defines a custom view and content outliner, and defines markers and marker resolutions.
The figure below shows some of the customized features added to the workbench by the readme tool.

 Welcome to Eclipse

 Beyond the basics 89

http://www.eclipse.org/legal/cpl-v10.html

The readme tool also contributes preference and properties pages to the workbench. Later we'll also look at
some wizard contributions in Dialogs and wizards.

The readme tool is located in the org.eclipse.ui.examples.readmetool package. The readmetool.jar and
plugin.xml can be found in the org.eclipse.ui.examples.readmetool directory underneath the plugins
directory. To follow along, you will need to make sure that you have installed the platform examples. (See
the Examples Guide for more information.)

The readme tool implements many different workbench extensions. We will start with one of the simplest
workbench extension points, a view. We'll continue by looking at additional readme tool extensions.

 Welcome to Eclipse

 Beyond the basics 90

Installing the examples

Installing examples via the Update Manager

The Eclipse SDK examples are found on the Eclipse project update site at http://update.eclipse.org/updates.
To locate and install them into a product:

Open the main update manager by clicking Help > Software Updates > Find and Install. This opens
the Install Wizard.

1.

Select "Search for new features" and click Next.2.
In the sites to search page, add an update site by clicking on Add Update Site button: In the Add
Update Site dialog that opens, give the site the name "Eclipse.org" and URL
"http://update.eclipse.org/updates". Note: this step is not needed if the site is already there.

3.

Click Next and wait for the search results to return all the features found on that site.4.
Select the SDK Examples feature and click Next.5.
Accept the license and click Next.6.
Select the directory into which the example feature is to be installed and hit Next.7.
Click Install to allow the downloading and installing to proceed.8.
Click Yes when asked to exit and restart the workbench for the changes to take effect. The examples
are now installed in the workbench. Note: you can also click on Apply Now to dynamically install the
examples into the current configuration.

9.

Installing examples manually

To install the examples without the Update Manager, download the appropriate Eclipse SDK Example zip file
from the Eclipse project web site at http://www.eclipse.org/downloads.

The workbench should not be running while the examples are being installed. Extract the contents of the zip
file to the root directory of your Eclipse installation.

For example, if you installed the Eclipse Project SDK on d:\eclipse−sdk\ then extract the contents of the
examples zip file to d:\eclipse−sdk\ (the subdirectories named eclipse should line up).

Start the workbench. The workbench will report that updates have been detected; accept them. The examples
are now installed in the workbench.

You can verify that examples have been installed by looking for File > New > Example... in the workbench
menu bar.

Example − Readme Tool

Introduction

The Readme editor shows how to define your own extension points for use by other plugins. It also shows
how to create extensions for resource popup menu entries, new resource wizards, file editors on an extension

 Installing the examples 91

http://update.eclipse.org/updates
http://update.eclipse.org/updates
http://www.eclipse.org/downloads

(.readme), a custom view and property pages.

Running the example

To start using this example create a file with the .readme extension using the file creation wizard or create one
using the example creation wizard. The additional view provided by this example can be seen by selecting
Window > Show View > Other and expanding the Readme section. The view action can be seen by clicking
on the readme icon on the Navigator View.

Creating a new readme file

Create a new file with file extension .readme. From the File menu, select New and then select Other... from
the sub menu. Click on Simple in the wizard, then select File in the list on the left. Click on Next to supply
the file name (make sure the extension is .readme) and the folder in which the file should be contained.

Example creation wizards

From the File menu, select New and from the sub menu select Example... Now select Example Creation
Wizards. Select Readme File. Click Next. Select the folder in which you want the file to be created. Type the
name of the file with a .readme extension. Click Finish.

Readme view extension action

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension.
On the local toolbar of the Navigator View, you will see a button whose hover help says Run Readme View
Extension. Click on this button. A dialog will popup saying View Action executed.

Popup menus

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension.
Select the file to bring up the popup menu. Notice there is a menu item that says Show Readme Action in the
popup menu. Choose this menu item to open a dialog that says Popup Menu Action Executed.

Preference page

From the Window menu, select Preferences. Click on the page called Readme Example. This shows an
example of a preference page.

Property page

In the Navigator View, select a file with extension .readme. If there isn't one create a file with that extension.
Select the file to bring up the popup menu, then select the Properties menu item. Click on the page called
Readme Tool to see an example of a property page.

Readme file editor

The Readme File Editor is the default editor for files of type *.readme. Create a file with extension .readme
and open the file by double clicking on it, or by bringing up the popup menu, selecting Open With, then
selecting Readme File Editor from the sub menu. Notice the editor has an icon with a pencil. This is the
editor that the readme tool uses by default for files of type *.readme.

 Welcome to Eclipse

 Running the example 92

Readme Editor Actions

This demonstrates an example of actions that are applicable only to a particular editor. When a readme file
editor has focus, notice 4 additional tool bar buttons − Run Readme Editor Extension, Readme Editor Action
1, Readme Editor Action 2, Readme Editor Action 3.

A pull down menu named Readme appears when a readme file editor has focus. It contains the actions
previously described: Readme Editor Action 1, Readme Editor Action 2, Readme Editor Action 3.

Readme sections view

To see this Readme Sections view, from the Window menu select Show View, then select Other... from the
sub menu. Expand the Readme item and then select Readme Sections. This will show a list of the sections in
the current *.readme file when a .readme file is selected in the Navigator View. You can also see the structure
of a *.readme file in the Outline view.

A file with extension .readme can be broken down into sections when each section begins with a number. For
example, if the following text were entered into the readme file editor, the readme tool would detect 2
sections. To see how sections are detected in the readme tool, type some text in the readme file editor, save
the file by either typing CTRL−S or selecting File−>Save. Open the Readme Sections view and select the
.readme file in the Navigator View.

Example text:

99.1 This is my first section
This is some text in my first section.

99.1.1 This is a sub section
This is some text in my sub−section.

Drag and Drop

The Drag and Drop functionality can be seen by selecting a section in the Outline View and dragging the
selection over top of a text file. The contents of the selection will be appended to the file.

Help contribution

The readme tool example also demonstrates how to use and implement context help on all of the extensions it
supplies − a view, various actions and a wizard page. To get context help on an action, hover over the menu
item, but do no select it, then hit the F1 key. You can also get context sensitive (F1) help on the Readme
Sections view and the Example Creation Wizards page (in the New wizard).

Details

The Readme Tool example declares one extension point and supplies a number of extensions. The extensions
supplied are quite comprehensive in understanding how the Workbench functions, as it utilizes a number of
the more interesting extension points declared by the workbench. Supplied extensions included in this
example are views and view actions, preference pages, property pages, wizards, editors and editor actions,
popup menus, action sets, help contributions, help contexts, and drop actions.

 Welcome to Eclipse

Running the example 93

This example also supplies an extension point declared in the plug−in.. The class IReadmeFileParser is
required for any plug−in that uses the org.eclipse.ui.examples.readmetool.sectionParser extension that this
example defines. The class DefaultSectionParser is an example implementation of IReadmeFileParser.

The class ReadmeEditor implements IEditorPart and is defined as an editor on files with the extension
.readme in the plugin.xml using the org.eclipse.ui.editors extension point. The class ReadmeSectionsView
implements IViewPart and is defined as a view using the org.eclipse.ui.views extension point. This extension
point also defines a category for the view for use in view selection.

Two types of preference settings are defined in this example, workbench preferences and resource properties.
The workbench preference is defined in class ReadmePreferencePage which implements
IWorkbenchPreferencePage so that it will be added to the Window−>Preferences dialog. The class is defined
in the extension point org.eclipse.ui.preferencePages in the plugin.xml. The two resource properties pages are
ReadmeFilePropertyPage and ReadmeFilePropertyPage2 both of which implement IWorkbenchPropertyPage.
They are both defined to be invoked on the IFile type by the objectClass tag in the plugin.xml in the
org.eclipse.ui.propertyPages extension point.

The class ReadmeCreationWizard implements INewWizard and is defined in the org.eclipse.ui.newWizards
extension point in the plugin.xml. This extension point also defines the category that the wizard that is shown
when the user selects File−>New−>Example....

Several action stubs are added to this example. The action set declares a menu labeled Readme File Editor to
be included in the workbench window menu bar using the extension point org.eclipse.ui.actionSets. It also
defines an action for the workbench toolbar and menu bar using the tags toolbarPath and menubarPath. It uses
the class WindowActionDelegate which implements IWorkbenchWindowActionDelegate to implement the
action. The action for the popup menu is defined as an objectContribution by the class
PopupMenuActionDelegate in the extension point org.eclipse.ui.popupMenus. PopupMenuActionDelegate
implements IObjectActionDelegate and uses the IWorkbenchPart provided to open a message dialog. The
view action ViewActionDelegate is defined in the extension point org.eclipse.ui.viewActions and implements
IViewActionDelegate. The View it appears in is defined by the tag targetID which in this example is
org.eclipse.ui.views.ResourceNavigator. The editor action is defined by the class EditorActionDelegate which
implements IEditorActionDelegate and is added using the org.eclipse.ui.editorActions extension point. The
editor that it is applied to is defined by the tag targetID which in this example is defined on
org.eclipse.ui.examples.readmetool.ReadmeEditor.

The class ReadmeDropActionDelegate implements IDropDelegate. IDropDelegates are informed every time
there is a drop action performed in the workbench . The extension point for this action is
org.eclipse.ui.dropActions.

Notices

(c) Copyright IBM Corp. 2000, 2001. All Rights Reserved.

Workbench menu contributions

We've seen several different extension points that contribute to various menus and toolbars in the workbench.
How do you know which one to use? The following table summarizes the various menu contributions and
their use.

 Welcome to Eclipse

 Notices 94

Extension point name
Location of Actions Details

viewActions
Actions appear in a specific
view's local toolbar and local
pulldown menu.

Contribute an action class that implements
IViewActionDelegate. Specify the id of the
contribution and the id of the target view that
should show the action. The label and image
dictate the appearance of the action in the UI.
The path specifies the location relative to the
view's menu and toolbar items.

editorActions
Actions are associated with an
editor and appear in the
workbench menu and/or tool bar.

Contribute an action class that implements
IEditorActionDelegate. Specify the id of
the contribution and the id of the target editor
that causes the action to be shown. The label
and image specify the appearance of the
action in the UI. Separate menu and toolbar
paths specify the existence and location of
the contribution in the workbench menu and
toolbar.

popupMenus

Actions appear in the popup menu
of an editor or view. Actions
associated with an object type
show up in all popups of views
and editors that show the object
type. Actions associated with a
specific popup menu appear only
in that popup menu.

Object contributions specify the type of
object for which the action should appear in
a popup menu. The action will be shown in
all view and editor popups that contain the
object type. Provide an action class that
implements IObjectActionDelegate.
Viewer contributions specify the id of the
target popup menu in which the menu item
should appear. Provide an action class that
implements IEditorActionDelegate or
IViewActionDelegate.

actionSets

Actions appear in the workbench
main menus and toolbar. Actions
are grouped into action sets. All
actions in an action set will show
up in the workbench menus and
toolbars according to the user's
selection of action sets and the
current perspective shown in the
workbench. May be influenced
by actionSetPartAssociations
(below).

Contribute an action class that implements
IWorkbenchWindowActionDelegate or
IWorkbenchWindowPulldownDelegate.
Specify the name and id of the action set.
Enumerate all of the actions that are defined
for that action set. For each action, separate
menu and toolbar paths specify the existence
and location of the contribution in the
workbench menu and toolbar.

actionSetPartAssociations

Actions sets are shown only when
the specified views or editors are
active. This is ignored if the user
has customized the current
perspective.

Specify an action set by id and followed by
one or more parts (by id) that must be active
in the current perspective in order to show
the action set.

 Welcome to Eclipse

 Notices 95

Advanced workbench concepts
Plugging into the workbench looks at the basic workbench extension points in the context of the readme tool
example. However, there are many more extension points available for contributing to the workbench.

The next topics cover additional workbench extensions and concepts that you will likely encounter once
you've implemented your plug−in and have begun to refine its function. In order to understand the next few
topics, you should already be familiar with

Plugging into the Workbench•
JFace UI framework•
SWT•
Resources overview•

Since the readme tool does not contribute to all of these extension points, we will look at example extensions
that are implemented by the platform workbench, the platform help system, and Java tooling (JDT).

 Advanced workbench concepts 96

Plugging into the workbench
By now, you should be quite familiar with the operation of the workbench and how it uses views and editors
to display information. If not, read the quick tour of the workbench below.

The sections following the quick tour will look at the workbench user interface from an API perspective. We
will show how a plug−in can contribute to the workbench UI.

Quick tour of the workbench

The workbench is the cockpit for navigating all of the function provided by plug−ins. By using the
workbench, we can navigate resources and we can view and edit the content and properties of these resources.

When you open your workbench on a set of projects, it looks something like this.

The workbench is just a frame that can present various visual parts. These parts fall into two major categories:
views and editors.

Editors allow the user to edit something in the workbench. Editors are "document−centric," much
like a file system editor. Like file system editors, they follow an open−save−close lifecycle. Unlike
file system editors, they are tightly integrated into the workbench.

•

 Plugging into the workbench 97

Views provide information about some object that the user is working with in the workbench. Views
often change their content as the user selects different objects in the workbench. Views often support
editors by providing information about the content in the active editor.

•

Views

The workbench provides several standard views that allow the user to navigate or view something of interest.
For example, the resource navigator lets the user navigate the workspace and select resources.

Editors

Editors allow the user to open, edit, and save objects. The workbench provides a standard editor for text
resources.

Additional editors, such as Java code editors or HTML editors, can be supplied by plug−ins

 Welcome to Eclipse

 Views 98

JFace: UI framework for plug−ins
We've seen that the workbench defines extension points for plug−ins to contribute UI function to the platform.
Many of these extension points, particularly wizard extensions, are implemented using classes in the
org.eclipse.jface.* packages. What's the distinction?

JFace is a UI toolkit that provides helper classes for developing UI features that can be tedious to implement.
JFace operates above the level of a raw widget system. It provides classes for handling common UI
programming tasks:

Viewers handle the drudgery of populating, sorting, filtering, and updating widgets.•
Actions and contributions introduce semantics for defining user actions and specifying where to
make them available.

•

Image and font registries provide common patterns for handling UI resources.•
Dialogs and wizards define a framework for building complex interactions with the user.•

JFace frees you up to focus on the implementation of your specific plug−in's function, rather than focusing on
the underlying widget system or solving problems that are common in almost any UI application.

JFace and the workbench

Where does JFace end and the workbench begin? Sometimes the lines aren't so obvious. In general, the JFace
APIs (from the packages org.eclipse.jface.*) are independent of the workbench extension points and APIs.
Conceivably, a JFace program could be written without using any workbench code at all.

The workbench makes use of JFace but attempts to reduce dependencies where possible. For example, the
workbench part model (IWorkbenchPart) is designed to be independent of JFace. We saw earlier that views
and editors can be implemented using SWT widgets directly without using any JFace classes. The workbench
attempts to remain "JFace neutral" wherever possible, allowing programmers to use the parts of JFace they
find useful. In practice, the workbench uses JFace for much of its implementation and there are references to
JFace types in API definitions. (For example, the JFace interfaces for IMenuManager, IToolBarManager,
and IStatusLineManager show up as types in the workbench IActionBar methods.)

JFace and SWT

The lines between SWT and JFace are much cleaner. SWT does not depend on any JFace or platform code at
all. Many of the SWT examples show how you can build a standalone application.

JFace is designed to provide common application UI function on top of the SWT library. JFace does not try to
"hide" SWT or replace its function. It provides classes and interfaces that handle many of the common tasks
associated with programming a dynamic UI using SWT.

The relationship between JFace and SWT is most clearly demonstrated by looking at viewers and their
relationship to SWT widgets.

JFace: UI framework for plug−ins 99

Standard Widget Toolkit
The Standard Widget Toolkit (SWT) is a widget toolkit for Java developers that provides a portable API and
tight integration with the underlying native OS GUI platform.

Many low level UI programming tasks are handled in higher layers of the Eclipse platform. For example, the
plugin.xml markup for UI contributions specifies menu and toolbar content without requiring any SWT
programming. Additionally, JFace viewers and actions provide implementations for the common interactions
between applications and widgets. However, knowledge of the underlying SWT architecture and design
philosophy is important for understanding how the rest of the platform works.

Portability and platform integration

A common issue in widget toolkit design is the tension between portable toolkits and platform integration.
The Java AWT (Abstract Window Toolkit) provides platform integrated widgets for lower level widgets such
as lists, texts, and buttons, but does not provide access to higher level platform components such as trees or
rich text. This forces application developers into a "least common denominator" situation in which they can
only use widgets that are available on all platforms.

The Swing toolkit attempts to address this problem by providing non−native implementations of high level
widgets like trees, tables, and text. This provides a great deal of functionality, but makes applications
developed in Swing stand out as being different. Platform look and feel emulation layers help the applications
look more like the platform, but the user interaction is different enough to be noticed. This makes it difficult
to use emulated toolkits to build applications that compete with shrink−wrapped applications developed
specifically for a particular OS platform.

SWT addresses this problem by defining a common portable API that is provided on all supported platforms,
and implementing the API on each platform using native widgets wherever possible. This allows the toolkit to
immediately reflect any changes in the underlying OS GUI look and feel while maintaining a consistent
programming model on all platforms.

The "least common denominator" problem is solved by SWT in several ways:

Features that are not available on all platforms but are generally useful for the workbench and tooling
plug−ins can be emulated on platforms that provide no native support. For example, the OSF/Motif
2.1 widget toolkit does not contain a tree widget, so SWT provides an emulated tree widget on Motif
2.1 that is API compatible with the Windows native implementation.

•

Features that are not available on all platforms but are not widely used can be omitted from SWT. For
example, Windows provides a widget that implements a calendar, but this is not provided in SWT.

•

Features that are specific to a platform, such as ActiveX integration, are only provided on the relevant
platform. Platform specific features are separated into separate packages that clearly denote the
platform name in the package.

•

Consistency with the platform

Platform integration is not strictly a matter of look and feel. Tight integration includes the ability to interact
with native desktop features such as drag and drop, to integrate with OS desktop applications, and to use
components developed with OS component models like Win32 ActiveX.

 Standard Widget Toolkit 100

SWT ActiveX support is discussed in the article ActiveX Support in SWT.

Consistency is also achieved in the code itself by providing an implementation that looks familiar to the native
OS developer. Rather than hide OS differences in native C code or attempt to build portable and non−portable
layers in the Java implementation, SWT provides separate and distinct implementations in Java for each
platform.

One important implementation rule is that natives in C map one−to−one with calls to the OS. A Windows
programmer will immediately recognize the implementation of the SWT toolkit on Windows, because it uses
natives that directly map to the system calls used in C. None of the "platform magic" is hidden in C code. A
platform developer can eyeball the code and know exactly which platform calls are executed by the toolkit.
This greatly simplifies debugging. If a failure occurs when calling a native method, calling the platform API
with the same parameters from C code will exhibit the same failure. (A complete discussion of this issue can
be found in SWT Implementation Strategy for Java Natives.)

 Welcome to Eclipse

 Standard Widget Toolkit 101

http://www.eclipse.org/articles/Article-ActiveX%20Support%20in%20SWT/ActiveX%20Support%20in%20SWT.html
http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html

Resources overview
An essential plug−in for Eclipse IDE applications is the resources plug−in (named
org.eclipse.core.resources). The resources plug−in provides services for accessing the projects, folders, and
files that a user is working with.

Workbench wizard extension points

The workbench defines extension points for wizards that create new resources, import resources, or export
resources.

When you make selections in the new, import, or export menu, the workbench uses various wizard selection
dialogs to display all the wizards that have been contributed for that particular extension point. The import
wizard dialog is shown below.

Your wizard takes control once it is selected in the list and the Next button is pressed. This is when your first
page becomes visible.

 Resources overview 102

 Welcome to Eclipse

 Resources overview 103

Platform Extension Points
The following extension points can be used to extend the capabilities of the platform infrastructure:

Platform runtime

org.eclipse.core.runtime.adapters•
org.eclipse.core.runtime.applications•
org.eclipse.core.runtime.contentTypes•
org.eclipse.core.runtime.preferences•
org.eclipse.core.runtime.products•

Workspace

org.eclipse.core.resources.builders•
org.eclipse.core.resources.fileModificationValidator•
org.eclipse.core.resources.markers•
org.eclipse.core.resources.moveDeleteHook•
org.eclipse.core.resources.natures•
org.eclipse.core.resources.refreshProviders•
org.eclipse.core.resources.teamHook•

Platform text

org.eclipse.core.filebuffers.annotationModelCreation•
org.eclipse.core.filebuffers.documentCreation•
org.eclipse.core.filebuffers.documentSetup•
org.eclipse.ui.editors.annotationTypes•
org.eclipse.ui.editors.documentProviders•
org.eclipse.ui.editors.markerAnnotationSpecification•
org.eclipse.ui.editors.markerUpdaters•
org.eclipse.ui.editors.templates•
org.eclipse.ui.workbench.texteditor.quickDiffReferenceProvider•

Workbench

org.eclipse.ui.acceleratorConfigurations•
org.eclipse.ui.acceleratorScopes•
org.eclipse.ui.acceleratorSets•
org.eclipse.ui.actionDefinitions•
org.eclipse.ui.actionSetPartAssociations•
org.eclipse.ui.actionSets•
org.eclipse.ui.activities•
org.eclipse.ui.cheatsheets.cheatSheetContent•
org.eclipse.ui.cheatsheets.cheatSheetItemExtension•
org.eclipse.ui.commands•
org.eclipse.ui.contexts•
org.eclipse.ui.decorators•
org.eclipse.ui.dropActions•

Platform Extension Points 104

org.eclipse.ui.editorActions•
org.eclipse.ui.editors•
org.eclipse.ui.elementFactories•
org.eclipse.ui.exportWizards•
org.eclipse.ui.fontDefinitions•
org.eclipse.ui.helpSupport•
org.eclipse.ui.ide.markerHelp•
org.eclipse.ui.ide.markerImageProviders•
org.eclipse.ui.ide.markerResolution•
org.eclipse.ui.ide.projectNatureImages•
org.eclipse.ui.ide.resourceFilters•
org.eclipse.ui.importWizards•
org.eclipse.ui.intro•
org.eclipse.ui.intro.config•
org.eclipse.ui.intro.configExtension•
org.eclipse.ui.newWizards•
org.eclipse.ui.perspectiveExtensions•
org.eclipse.ui.perspectives•
org.eclipse.ui.popupMenus•
org.eclipse.ui.preferencePages•
org.eclipse.ui.presentationFactories•
org.eclipse.ui.propertyPages•
org.eclipse.ui.startup•
org.eclipse.ui.systemSummarySections•
org.eclipse.ui.themes•
org.eclipse.ui.viewActions•
org.eclipse.ui.views•
org.eclipse.ui.workingSets•

Team

org.eclipse.team.core.fileTypes•
org.eclipse.team.core.ignore•
org.eclipse.team.core.projectSets•
org.eclipse.team.core.repository•
org.eclipse.team.ui.configurationWizards•
org.eclipse.team.ui.synchronizeParticipants•
org.eclipse.team.ui.synchronizeWizards•

Debug

org.eclipse.debug.core.breakpoints•
org.eclipse.debug.core.launchConfigurationComparators•
org.eclipse.debug.core.launchConfigurationTypes•
org.eclipse.debug.core.launchDelegates•
org.eclipse.debug.core.launchers•
org.eclipse.debug.core.launchModes•
org.eclipse.debug.core.logicalStructureTypes•
org.eclipse.debug.core.processFactories•
org.eclipse.debug.core.sourceContainerTypes•

 Welcome to Eclipse

Team 105

org.eclipse.debug.core.sourceLocators•
org.eclipse.debug.core.sourcePathComputers•
org.eclipse.debug.core.statusHandlers•
org.eclipse.debug.core.watchExpressionDelegates•
org.eclipse.debug.ui.consoleColorProviders•
org.eclipse.debug.ui.consoleLineTrackers•
org.eclipse.debug.ui.contextViewBindings•
org.eclipse.debug.ui.debugModelContextBindings•
org.eclipse.debug.ui.debugModelPresentations•
org.eclipse.debug.ui.launchConfigurationTabGroups•
org.eclipse.debug.ui.launchConfigurationTypeImages•
org.eclipse.debug.ui.launchGroups•
org.eclipse.debug.ui.launchShortcuts•
org.eclipse.debug.ui.sourceContainerPresentations•
org.eclipse.debug.ui.stringVariablePresentations•

Help

org.eclipse.help.contentProducer•
org.eclipse.help.contexts•
org.eclipse.help.toc•
org.eclipse.help.base.browser•
org.eclipse.help.base.luceneAnalyzer•

Other

org.eclipse.ant.core.antProperties•
org.eclipse.ant.core.antTasks•
org.eclipse.ant.core.antTypes•
org.eclipse.ant.core.extraClasspathEntries•
org.eclipse.compare.contentMergeViewers•
org.eclipse.compare.contentViewers•
org.eclipse.compare.streamMergers•
org.eclipse.compare.structureCreators•
org.eclipse.compare.structureMergeViewers•
org.eclipse.core.expressions.propertyTesters•
org.eclipse.core.variables.dynamicVariables•
org.eclipse.core.variables.valueVariables•
org.eclipse.search.searchPages•
org.eclipse.search.searchResultSorters•
org.eclipse.search.searchResultViewPages•
org.eclipse.ui.externaltools.configurationDuplicationMaps•
org.eclipse.update.core.featureTypes•
org.eclipse.update.core.installHandlers•
org.eclipse.update.core.siteTypes•

 Welcome to Eclipse

Help 106

Adapters
Identifier:

org.eclipse.core.runtime.adapters

Since:

3.0

Description:

The adapters extension point allows plug−ins to declaratively register adapter factories. This information is
used to by the runtime XML expression language to determine existence of adapters without causing plug−ins
to be loaded. Registration of adapter factories via extension point eliminates the need to manually register
adapter factories when a plug−in starts up.

Configuration Markup:

<!ELEMENT extension (factory+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT factory (adapter+)>

<!ATTLIST factory

adaptableType CDATA #REQUIRED

class CDATA #REQUIRED>

adaptableType − The fully qualified name of a class (typically implementing IAdaptable) that this
factory provides adapters for.

•

class − The fully qualified name of the adapter factory class. Must implement
org.eclipse.core.runtime.IAdapterFactory.

•

<!ELEMENT adapter EMPTY>

<!ATTLIST adapter

type CDATA #REQUIRED>

Adapters 107

type − The fully qualified name of a Java class or interface that this factory can adapt to.•

Examples:

Following is an example of an adapter declaration. This example declares that this plug−in will provide an
adapter factory that will adapt objects of type IFile to objects of type MyFile.

<extension point=

"org.eclipse.core.runtime.adapters"

>

<factory class=

"com.xyz.MyFileAdapterFactory"

adaptableType=

"org.eclipse.core.resources.IFile"

>

<adapter type=

"com.xyz.MyFile"

/>

</factory>

</extension>

API Information:

Adapter factories registered using this extension point can be queried using the method
IAdapterManager.hasAdapter, or retrieved using one of the getAdapter methods on
IAdapterFactory. An adapter factory registered with this extension point does not need to be registered
at runtime using IAdapterFactory.registerAdapters.

Supplied Implementation:

Several plug−ins in the platform provide adapters for a number of different IAdaptable objects.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the

 Welcome to Eclipse

Adapters 108

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Adapters 109

http://www.eclipse.org/legal/cpl-v10.html

Applications
Identifier:

org.eclipse.core.runtime.applications

Description:

Platform runtime supports plug−ins which would like to declare main entry points. That is, programs which
would like to run using the platform runtime but yet control all aspects of execution can declare themselves as
an application. Declared applications can be run directly from the main platform launcher by specifying the
−application argument where the parameter is the id of an extension supplied to the applications extension
point described here. This application is instantiated and run by the platform. Platform clients can also use the
platform to lookup and run multiple applications.

Configuration Markup:

<!ELEMENT extension (application)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #REQUIRED

name CDATA #IMPLIED>

<!ELEMENT application (run?)>

<!ELEMENT run (parameter*)>

<!ATTLIST run

class CDATA #REQUIRED>

class − the fully−qualified name of a class which implements
org.eclipse.core.runtime.IPlatformRunnable.

•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

Applications 110

value CDATA #REQUIRED>

name − the name of this parameter made available to instances of the specified application class•
value − the value of this parameter made available to instances of the specified application class•

Examples:

Following is an example of an application declaration:

<extension id=

"coolApplication"

point=

"org.eclipse.core.runtime.applications"

>

<application>

<run class=

"com.xyz.applications.Cool"

>

<parameter name=

"optimize"

value=

"true"

/>

</run>

</application>

</extension>

API Information:

The value of the class attribute must represent an implementor of
org.eclipse.core.runtime.IPlatformRunnable.

 Welcome to Eclipse

Applications 111

Supplied Implementation:

The platform supplies a number of applications including the platform workbench itself.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Applications 112

http://www.eclipse.org/legal/cpl-v10.html

Content Types
Identifier:

org.eclipse.core.runtime.contentTypes

Since:

3.0

Description:

The content types extension point allows plug−ins to contribute to the platform content type catalog. There are
two forms of contributions: content types and file associations.

a content type represents a file format and its naming conventions. Content types can be defined from
scratch, or can inherit from existing ones, specializing them

•

a file association extends an existing content type by associating new file names and/or extensions to
it

•

Configuration Markup:

<!ELEMENT extension (content−type* , file−association*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT content−type (describer?)>

<!ATTLIST content−type

id CDATA #REQUIRED

base−type CDATA #IMPLIED

name CDATA #REQUIRED

file−extensions CDATA #IMPLIED

file−names CDATA #IMPLIED

Content Types 113

priority (low|normal|high) "normal"

default−charset CDATA #IMPLIED>

id − the identifier for this content type (simple id token, unique for content types within the extension
namespace). The token cannot contain dot (.) or whitespace

•

base−type − the fully qualified identifier of this content type's base type. This content type will
inherit its base type's file associations, content describer and default charset, unless they are redefined

•

name − the human−readable name of this content type•
file−extensions − a comma−separated list of file extensions to be associated with this content type•
file−names − a comma−separated list of file names to be associated with this content type•
priority − the priority for this content type. Priorities are used to solve conflicts (when two content
types are associated to the same file name/extension)

•

default−charset − the default charset for this content type, or an empty string, if this content type
should not have a default charset even if the parent has one

•

<!ELEMENT describer (parameter*)>

<!ATTLIST describer

class CDATA #REQUIRED>

class − the fully qualified name of a class that implements
org.eclipse.core.runtime.content.IContentDescriber or
org.eclipse.core.runtime.content.ITextContentDescriber, or an empty string,
if this content type should not have a describer even if the parent has one

•

<!ELEMENT file−association EMPTY>

<!ATTLIST file−association

content−type CDATA #REQUIRED

file−names CDATA #IMPLIED

file−extensions CDATA #IMPLIED>

content−type − the fully qualified identifier for the content type this file association contributes to•
file−names − a comma−separated list of file names to be associated with the target content type•
file−extensions − a comma−separated list of file extensions to be associated with the target content
type

•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

 Welcome to Eclipse

Content Types 114

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − the name of this parameter made available to instances of the specified application class•
value − the value of this parameter made available to instances of the specified application class•

Examples:

Following is an example of a XML−based content type declaration using the
XMLRootElementContentDescriber (a built−in describer):

<extension point=

"org.eclipse.core.runtime.contentTypes"

>

<content−type id=

"ABC"

base−type=

"org.eclipse.core.runtime.xml"

file−extensions=

"a,b,c"

>

<describer class=

"org.eclipse.core.runtime.content.XMLRootElementContentDescriber"

>

<param name=

"element"

value=

"abc"

/>

 Welcome to Eclipse

Content Types 115

</describer>

</content−type>

</extension>

Here is an example of a simple text−based content type that has a specific file extension:

<extension point=

"org.eclipse.core.runtime.contentTypes"

>

<content−type id=

"MyText"

base−type=

"org.eclipse.core.runtime.text"

file−extensions=

"mytxt"

/>

</extension>

In a case like the example above, when we are just trying to associate new file names/extensions to an existing
content type, to contribute a file association is usually the best thing to do:

<extension point=

"org.eclipse.core.runtime.contentTypes"

>

<file−association content−type=

"org.eclipse.core.runtime.text"

file−extensions=

"mytxt"

 Welcome to Eclipse

Content Types 116

/>

</extension>

API Information:

The value of the class attribute in the describer element must represent an implementor of
org.eclipse.core.runtime.content.IContentDescriber or
org.eclipse.core.runtime.content.ITextContentDescriber.

Supplied Implementation:

The org.eclipse.core.runtime plug−in provides the following content types:

org.eclipse.core.runtime.text•
org.eclipse.core.runtime.xml•

Other plug−ins in the platform contribute other content types.

Also, the org.eclipse.core.runtime plug−in provides ready−to−use implementations of content describers:

org.eclipse.core.runtime.content.XMLRootElementContentDescriber•
org.eclipse.core.runtime.content.BinarySignatureDescriber•

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Content Types 117

http://www.eclipse.org/legal/cpl-v10.html

Preferences
Identifier:

org.eclipse.core.runtime.preferences

Since:

3.0

Description:

The preferences extension point allows plug−ins to add new preference scopes to the Eclipse preference
mechanism as well as specify the class to run to initialize default preference values at runtime.

Configuration Markup:

<!ELEMENT extension (scope* , initializer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT scope EMPTY>

<!ATTLIST scope

name CDATA #REQUIRED

class CDATA #REQUIRED>

Element describing a client's definiton of a new preference scope.

name − The name of the scope.•
class − The name of the class.•

<!ELEMENT initializer EMPTY>

<!ATTLIST initializer

class CDATA #REQUIRED>

Preferences 118

Element which defines the class to use for runtime preference initialization.

class − The name of the class.•

Examples:

Following is an example of a preference scope declaration. This example declares that this plug−in will
provide a preference implementation for the scope "foo". It also declares that when the default values are
loaded for this plug−in, the class "MyPreferenceInitializer" contains code to be run to initialize preference
default values at runtime.

<extension point=

"org.eclipse.core.runtime.preferences"

>

<scope name=

"foo"

class=

"com.example.FooPrefs"

/>

<initializer class=

"com.example.MyPreferenceInitializer"

/>

</extension>

API Information:

The preference service (obtained by calling
org.eclipse.core.runtime.Platform.getPreferencesService()) is the hook into the
Eclipse preference mechanism.

Supplied Implementation:

The org.eclipse.core.runtime plug−in provides preference implementations for the "configuration", "instance",
and "default" scopes. The org.eclipse.core.resources plug−in provides an implementation for "project"
preferences.

 Welcome to Eclipse

Preferences 119

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Preferences 120

http://www.eclipse.org/legal/cpl-v10.html

Products
Identifier:

org.eclipse.core.runtime.products

Since:

3.0

Description:

Products are the Eclipse unit of branding. Product extensions are supplied by plug−ins wishing to define one
or more products. There must be one product per extension as the extension id is used in processing and
identifying the product.

There are two possible forms of product extension, static and dynamic. Static product extensions directly
contain all relevant information about the product. Dynamic product extensions identify a class (an
IProductProvider) which is capable of defining one or more products when queried.

Configuration Markup:

<!ELEMENT extension ((product | provider))>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT product (property*)>

<!ATTLIST product

application CDATA #REQUIRED

name CDATA #REQUIRED

description CDATA #IMPLIED>

application − the default application to run when running this product•
name − the human−readable name of this product•
description − the human−readable description of this product•

<!ELEMENT property EMPTY>

Products 121

<!ATTLIST property

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − the key under which this property is stored•
value − the value of this property•

<!ELEMENT provider (run)>

details of a product provider

<!ELEMENT run EMPTY>

<!ATTLIST run

class CDATA #REQUIRED>

class − the fully−qualified name of a class which implements
org.eclipse.core.runtime.IProductProvider.

•

Examples:

Following is an example of static product declaration:

<extension id=

"coolProduct"

point=

"org.eclipse.core.runtime.products"

>

<product name=

"%coolName"

application=

 Welcome to Eclipse

Products 122

"coolApplication"

description=

"%coolDescription"

>

<property name=

"windowImage"

value=

"window.gif"

/>

<property name=

"aboutImage"

value=

"image.gif"

/>

<property name=

"aboutText"

value=

"%aboutText"

/>

<property name=

"appName"

value=

"CoolApp"

/>

<property name=

"welcomePage"

 Welcome to Eclipse

Products 123

value=

"nl/welcome.xml"

/>

<property name=

"preferenceCustomization"

value=

"plugin_customization.ini"

/>

</product>

</extension>

The following is an example of a dynamic product (product provider) declaration: Following is an example of
an application declaration:

<extension id=

"coolProvider"

point=

"org.eclipse.core.runtime.products"

>

<provider>

<run class=

"com.example.productProvider"

/>

</provider>

</extension>

API Information:

Static product extensions provided here are represented at runtime by instances of IProduct. Dynamic
product extensions must identify an implementor of IProductProvider. See

 Welcome to Eclipse

Products 124

org.eclipse.ui.branding.IProductConstants for details of the branding related product
properties defined by the Eclipse UI.

Supplied Implementation:

No implementations of IProductProvider are supplied.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Products 125

http://www.eclipse.org/legal/cpl-v10.html

Incremental Project Builders
Identifier:

org.eclipse.core.resources.builders

Description:

The workspace supports the notion of an incremental project builder (or "builder" for short"). The job of a
builder is to process a set of resource changes (supplied as a resource delta). For example, a Java builder
would recompile changed Java files and produce new class files.

Builders are confgured on a per−project basis and run automatically when resources within their project are
changed. As such, builders should be fast and scale with respect to the amount of change rather than the
number of resources in the project. This typically implies that builders are able to incrementally update their
"built state".

The builders extension−point allows builder writers to register their builder implementation under a symbolic
name that is then used from within the workspace to find and run builders. The symbolic name is the id of the
builder extension. When defining a builder extension, users are encouraged to include a human−readable
value for the "name" attribute which identifies their builder and potentially may be presented to users.

Configuration Markup:

<!ELEMENT extension (builder)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT builder (run?)>

<!ATTLIST builder

hasNature (true | false) >

hasNature − "true" or "false" indicating whether the builder is owned by a project nature. If
"true" and no corresponding nature is found, this builder will not run but will remain in the project's
build spec. If the attribute is not specified, it is assumed to be "false".

•

Incremental Project Builders 126

<!ELEMENT run (parameter*)>

<!ATTLIST run

class CDATA #REQUIRED>

class − the fully−qualified name of a subclass of
org.eclipse.core.resources.IncrementalProjectBuilder.

•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − the name of this parameter made available to instances of the specified builder class•
value − an arbitrary value associated with the given name and made available to instances of the
specified builder class

•

Examples:

Following is an example of a builder configuration:

<extension id=

"coolbuilder"

name=

"Cool Builder"

point=

"org.eclipse.core.resources.builders"

>

<builder hasNature=

"false"

>

 Welcome to Eclipse

Incremental Project Builders 127

<run class=

"com.xyz.builders.Cool"

>

<parameter name=

"optimize"

value=

"true"

/>

<parameter name=

"comment"

value=

"Produced by the Cool Builder"

/>

</run>

</builder>

</extension>

If this extension was defined in a plug−in with id "com.xyz.coolplugin", the fully qualified name of this
builder would be "com.xyz.coolplugin.coolbuilder".

API Information:

The value of the class attribute must represent a subclass of
org.eclipse.core.resources.IncrementalProjectBuilder.

Supplied Implementation:

The platform itself does not have any predefined builders. Particular product installs may include builders as
required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Incremental Project Builders 128

http://www.eclipse.org/legal/cpl-v10.html

File Modification Validator
Identifier:

org.eclipse.core.resources.fileModificationValidator

Description:

For providing an implementation of an IFileModificationValidator to be used in the validate−edit and
validate−save mechanism. This extension point tolerates at most one extension.

Configuration Markup:

<!ELEMENT extension (fileModificationValidator?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT fileModificationValidator EMPTY>

<!ATTLIST fileModificationValidator

class CDATA #REQUIRED>

class − a fully qualified name of a class which implements
org.eclipse.core.resources.IFileModificationValidator.

•

Examples:

The following is an example of using the fileModificationValidator extension point:

<extension point=

"org.eclipse.core.resources.fileModificationValidator"

>

File Modification Validator 129

<fileModificationValidator class=

"org.eclipse.vcm.internal.VCMFileModificationValidator"

/>

</extension>

API Information:

The value of the class attribute must represent an implementation of
org.eclipse.core.resources.IFileModificationValidator.

Supplied Implementation:

The Team component will generally provide the implementation of the file modification validator. The
extension point should be used by any other clients.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

File Modification Validator 130

http://www.eclipse.org/legal/cpl-v10.html

Resource Markers
Identifier:

org.eclipse.core.resources.markers

Description:

The workspace supports the notion of markers on arbitrary resources. A marker is a kind of metadata (similar
to properties) which can be used to tag resources with user information. Markers are optionally persisted by
the workspace whenever a workspace save or snapshot is done.

Users can define and query for markers of a given type. Marker types are defined in a hierarchy which support
multiple−inheritance. Marker type definitions also specify a number attributes which must or may be present
on a marker of that type as well as whether or not markers of that type should be persisted.

The markers extension−point allows marker writers to register their marker types under a symbolic name that
is then used from within the workspace to create and query markers. The symbolic name is the id of the
marker extension. When defining a marker extension, users are encouraged to include a human−readable
value for the "name" attribute which indentifies their marker and potentially may be presented to users.

Configuration Markup:

<!ELEMENT extension (super* , persistent? , attribute*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT super EMPTY>

<!ATTLIST super

type CDATA #REQUIRED>

type − the fully−qualified id of a marker super type (i.e., a marker type defined by another marker
extension)

•

<!ELEMENT persistent EMPTY>

Resource Markers 131

<!ATTLIST persistent

value (true | false) >

value − "true" or "false" indicating whether or not markers of this type should be persisted by the
workspace. If the persistent characteristic is not specified, the marker type is not persisted.

•

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name CDATA #REQUIRED>

name − the name of an attribute which may be present on markers of this type•

Examples:

Following is an example of a marker configuration:

<extension id=

"com.xyz.coolMarker"

point=

"org.eclipse.core.resources.markers"

name=

"Cool Marker"

>

<persistent value=

"true"

/>

<super type=

"org.eclipse.core.resources.problemmarker"

/>

 Welcome to Eclipse

Resource Markers 132

<super type=

"org.eclipse.core.resources.textmarker"

/>

<attribute name=

"owner"

/>

</extension>

API Information:

All markers, regardless of their type, are instances of org.eclipse.core.resources.IMarker.

Supplied Implementation:

The platform itself has a number of pre−defined marker types. Particular product installs may include
additional markers as required.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Resource Markers 133

http://www.eclipse.org/legal/cpl-v10.html

Auto−refresh providers
Identifier:

org.eclipse.core.resources.refreshProviders

Since:

3.0

Description:

The workspace supports a mode where changes that occur in the file system are automatically detected and
reconciled with the workspace in memory. By default, this is accomplished by creating a monitor that polls
the file system and periodically searching for changes. The monitor factories extension point allows clients to
create more efficient monitors, typically by hooking into some native file system facility for change callbacks.

Configuration Markup:

<!ELEMENT extension (refreshProviders)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT refreshProvider EMPTY>

<!ATTLIST refreshProvider

name CDATA #REQUIRED

class CDATA #REQUIRED>

name − A human−readable name for the monitor factory•
class − The fully qualified name of a class implementing
org.eclipse.core.resources.refresh.RefreshProvider.

•

Examples:

Following is an example of an adapter declaration. This example declares that this plug−in will provide an
adapter factory that will adapt objects of type IFile to objects of type MyFile.

Auto−refresh providers 134

API Information:

Refresh provider implementations must subclass the abstract type RefreshProvider in the
org.eclipse.core.resources.refresh package. Refresh requests and failures should be forward
to the provide IRefreshResult. Clients must also provide an implementation of IRefreshMonitor
through which the workspace can request that refresh monitors be uninstalled.

Supplied Implementation:

The org.eclipse.core.resources.win32 fragment provides a native refresh monitor that uses
win32 file system notification callbacks. The workspace also supplies a default naive polling−based monitor
that can be used for file systems that do not have native refresh callbacks available.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Auto−refresh providers 135

http://www.eclipse.org/legal/cpl-v10.html

Annotation Model Creation
Identifier:

org.eclipse.core.filebuffers.annotationModelCreation

Since:

3.0

Description:

This extension point is used to customize the annotation model creation behavior of this plug−in's default text
file buffer manager. It allows to specify which annotation model factory should be used in order to create the
annotation model instance of a text file buffer created for a certain file content type, file extension, or file
name.

Configuration Markup:

<!ELEMENT extension (factory)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT factory EMPTY>

<!ATTLIST factory

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fileNames CDATA #IMPLIED

contentTypeId CDATA #IMPLIED>

The specification of a annotation model factory. In order to find a factory for a given file the attributes of each
factory specification are consulted in the following sequence: contentTypeId, fileNames, extensions. If
multiple, equally specific factory specifications are found for a given file it is not specified which factory is
used.

Annotation Model Creation 136

class − The fully qualified name of the factory implementation class. This class must implement the
org.eclipse.core.filebuffers.IAnnotationModelFactory interface.

•

extensions − A comma separated list of file extensions for which this factory should be used.•
fileNames − A comma separated list of file names for which this factory should be used.•
contentTypeId − The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this factory should be used.

•

Examples:

<extension point=

"org.eclipse.core.filebuffers.annotationModelCreation"

>

<factory extensions=

"xzy"

class=

"org.eclipse.ui.texteditor.ResourceMarkerAnnotationModelFactory"

>

</factory>

</extension>

API Information:

Annotation model factories have to implement org.eclipse.core.filebuffers.IAnnotationModelFactory.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Annotation Model Creation 137

http://www.eclipse.org/legal/cpl-v10.html

Document Creation
Identifier:

org.eclipse.core.filebuffers.documentCreation

Since:

3.0

Description:

This extension point is used to customize the document creation behavior of this plug−in's default text file
buffer manager. It allows to specify which document factory should be used in order to create the document
instance of a text file buffer created for a certain file content type, file extension, or file name.

Configuration Markup:

<!ELEMENT extension (factory)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT factory EMPTY>

<!ATTLIST factory

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fileNames CDATA #IMPLIED

contentTypeId CDATA #IMPLIED>

The specification of a document factory. In order to find a factory for a given file the attributes of each factory
specification are consulted in the following sequence: contentTypeId, fileNames, extensions. If multiple,
equally specific factory specifications are found for a given file it is not specified which factory is used.

class − The fully qualified name of the factory implementation class. This class must implement the
org.eclipse.core.filebuffers.IDocumentFactory interface.

•

extensions − A comma separated list of file extensions for which this factory should be used.•

Document Creation 138

fileNames − A comma separated list of file names for which this factory should be used.•
contentTypeId − The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this factory should be used.

•

Examples:

<extension id=

"org.eclipse.jdt.debug.ui.SnippetDocumentFactory"

name=

"%snippetDocumentFactory.name"

point=

"org.eclipse.core.filebuffers.documentCreation"

>

<factory extensions=

"jpage"

class=

"org.eclipse.jdt.internal.debug.ui.snippeteditor.SnippetDocumentFactory"

>

</factory>

</extension>

API Information:

Document factories have to implement org.eclipse.core.filebuffers.IDocumentFactory.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Document Creation 139

http://www.eclipse.org/legal/cpl-v10.html

Document Setup
Identifier:

org.eclipse.core.filebuffers.documentSetup

Since:

3.0

Description:

This extension point is used to customize the initialization process of a document for a text file buffer
manager by this plug−in's default text file buffer manager. It allows to specify which document setup
participant should be involved in the initialization process for a text file buffer created for a certain file
content type, file extension, or file name.

Configuration Markup:

<!ELEMENT extension (participant)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT participant EMPTY>

<!ATTLIST participant

class CDATA #REQUIRED

extensions CDATA #IMPLIED

fileNames CDATA #IMPLIED

contentTypeId CDATA #IMPLIED>

The specification of a document setup participant. In order find all participants for a given file the attributes of
each participant specification are consulted in the following sequence: contentTypeId, fileNames, extensions.
If multiple participants are found, the sequence in which they are called is not specified.

class − The fully qualified name of the participant implementation class. This class must implement
the org.eclipse.core.filebuffers.IDocumentSetupParticipant interface.

•

Document Setup 140

extensions − A comma separated list of file extensions for which this participant should be used.•
fileNames − A comma separated list of file names for which this participant should be used.•
contentTypeId − The id of a content type as defined by the org.eclipse.core.runtime.contentTypes
extension point for which this participant should be used.

•

Examples:

<extension id=

"JavaDocumentSetupParticipant"

name=

"%javaDocumentSetupParticipant"

point=

"org.eclipse.core.filebuffers.documentSetup"

>

<participant extensions=

"java"

class=

"org.eclipse.jdt.internal.ui.javaeditor.JavaDocumentSetupParticipant"

>

</participant>

</extension>

API Information:

Document setup participants have to implement org.eclipse.core.filebuffers.IDocumentSetupParticipant.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Document Setup 141

http://www.eclipse.org/legal/cpl-v10.html

Annotation Types
Identifier:

org.eclipse.ui.editors.annotationTypes

Since:

3.0

Description:

An Annotation is a piece of information attached to a certain region of a text document. New kinds of
annotations may be defined using this extension point. Annotations are attached to documents via their
annotation model and may be displayed in text editors and views. Annotation types form a hierarchy: an
annotation type may refine another type by specifying it in its super attribute. Some annotations serve as the
UI counterpart of markers (see org.eclipse.core.resources.IMarker), while others exist on their
own without having a persistable form. The mapping between markers and annotation types is defined by the
optional markerType attribute.

Configuration Markup:

<!ELEMENT extension (type)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT type EMPTY>

<!ATTLIST type

name CDATA #REQUIRED

markerType CDATA #IMPLIED

super CDATA #IMPLIED

markerSeverity (0|1|2) >

A marker type definition.

name − The unique name of this annotation type.•

Annotation Types 142

markerType − The marker type that this annotation type corresponds to, if any.•
super − The name of the parent type, if this type is a descendant of another annotation type.•
markerSeverity − The severity of this annotation type, used for ordering. Any out of 1, 2, 3.•

Examples:

This is an excerpt from the plugin.xml for JDT UI, which adds the java compiler error and warning
annotations:

API Information:

See the org.eclipse.jface.text.source.Annotation class and the
org.eclipse.ui.editors.markerAnnotationSpecification extension point.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Annotation Types 143

http://www.eclipse.org/legal/cpl-v10.html

Document Providers
Identifier:

org.eclipse.ui.editors.documentProviders

Since:

3.0 (originally named org.eclipse.ui.documentProviders)

Description:

This extension point is used to define mappings between file types and document providers or between types
of editor inputs and document providers that can be used by editors. Document providers must implement the
interface org.eclipse.ui.texteditor.IDocumentProvider. Editor inputs must be instance of
org.eclipse.ui.IEditorInput.

Configuration Markup:

<!ELEMENT extension (provider*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT provider EMPTY>

<!ATTLIST provider

extensions CDATA #IMPLIED

inputTypes CDATA #IMPLIED

class CDATA #REQUIRED

id CDATA #REQUIRED>

extensions − a comma separated list of file extensions•
inputTypes − a comma separated list of qualified editor input class names•
class − the qualified name of the document provider class•
id − the unique id of this provider•

Document Providers 144

Examples:

<extension point=

"org.eclipse.ui.editors.documentProviders"

>

<provider extensions=

".jav"

class=

"org.eclipse.ui.examples.javaeditor.JavaDocumentProvider"

id=

"org.eclipse.ui.examples.javaeditor.JavaDocumentProvider"

>

</provider>

</extension>

This example registers org.eclipse.ui.examples.javaeditor.JavaDocumentProvider as
the default provider for files with the extension ".jav".

<extension point=

"org.eclipse.ui.editors.documentProviders"

>

<provider inputTypes=

"org.eclipse.ui.IStorageEditorInput"

class=

"org.eclipse.ui.editors.text.FileDocumentProvider"

id=

"org.eclipse.ui.editors.text.FileDocumentProvider"

 Welcome to Eclipse

Document Providers 145

>

</provider>

</extension>

This example registers org.eclipse.ui.editors.text.FileDocumentProvider as the default
provider for all editor inputs that are instance of org.eclipse.ui.IStorageEditorInput.

API Information:

Document providers registered for a file extension have precedence over those registered for input types.
Document providers must implement the interface
org.eclipse.ui.texteditor.IDocumentProvider. Editor inputs must be instance of
org.eclipse.ui.IEditorInput.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Document Providers 146

http://www.eclipse.org/legal/cpl-v10.html

Marker Annotation Specification
Identifier:

org.eclipse.ui.editors.markerAnnotationSpecification

Since:

3.0 (originally named org.eclipse.ui.workbench.texteditor.markerAnnotationSpecification)

Description:

This extension point is used to define presentation properties of markers. Extensions provided for this
extension point can be accessed using
org.eclipse.ui.texteditor.MarkerAnnotationPreferences. Use
org.eclipse.ui.texteditor.AnnotationPreferenceLookup to get the annotation preference
for a given annotation.

Note that an extension will only be returned from
MarkerAnnotationPreferences.getAnnotationPreferences (and thus included in the
preference pages) if it contains the following four attributes in addition to the required annotationType:

colorPreferenceKey•
colorPreferenceValue•
overviewRulerPreferenceKey•
textPreferenceKey•

Annotation preference types that extend another annotation preference are allowed to overwrite attributes
already defined in a parent preference specification, but these will not be accessible from the preference page.

Configuration Markup:

<!ELEMENT extension (specification)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT specification EMPTY>

<!ATTLIST specification

annotationType CDATA #REQUIRED

colorPreferenceKey CDATA #IMPLIED

Marker Annotation Specification 147

overviewRulerPreferenceKey CDATA #IMPLIED

verticalRulerPreferenceKey CDATA #IMPLIED

textPreferenceKey CDATA #IMPLIED

label CDATA #IMPLIED

highlightPreferenceKey CDATA #IMPLIED

colorPreferenceValue CDATA #IMPLIED

presentationLayer CDATA #IMPLIED

overviewRulerPreferenceValue (true | false)

verticalRulerPreferenceValue (true | false)

textPreferenceValue (true | false)

highlightPreferenceValue (true | false)

contributesToHeader (true | false)

showInNextPrevDropdownToolbarActionKey CDATA #IMPLIED

showInNextPrevDropdownToolbarAction (true | false)

isGoToNextNavigationTargetKey CDATA #IMPLIED

isGoToNextNavigationTarget (true | false)

isGoToPreviousNavigationTargetKey CDATA #IMPLIED

isGoToPreviousNavigationTarget (true | false)

icon CDATA #IMPLIED

symbolicIcon (error|warning|info|task|bookmark)

annotationImageProvider CDATA #IMPLIED

textStylePreferenceKey CDATA #IMPLIED

textStylePreferenceValue (SQUIGGLIES|BOX|UNDERLINE|IBEAM|NONE)

includeOnPreferencePage (true | false) "true">

annotationType − The annotation type.•
colorPreferenceKey − The color preference key must be provided, otherwise this annotation type
will not be included in the List returned from

•

 Welcome to Eclipse

Marker Annotation Specification 148

MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.
overviewRulerPreferenceKey − The overview ruler preference key must be provided, otherwise this
annotation type will not be included in the List returned from
MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.

•

verticalRulerPreferenceKey − The preference key for the show in vertical ruler preference. since:
3.0

•

textPreferenceKey − The text preference key must be provided, otherwise this annotation type will
not be included in the List returned from MarkerAnnotationPreferences.getAnnotationPreferences()
and thus not show in the preferences.

•

label −•
highlightPreferenceKey − The preference key for highlighting in text. since: 3.0•
colorPreferenceValue − The color preference value must be provided, otherwise this annotation type
will not be included in the List returned from
MarkerAnnotationPreferences.getAnnotationPreferences() and thus not show in the preferences.

•

presentationLayer −•
overviewRulerPreferenceValue −•
verticalRulerPreferenceValue − The default value for showing in vertical ruler. since: 3.0•
textPreferenceValue −•
highlightPreferenceValue − The default value for highlighting in text. since: 3.0•
contributesToHeader −•
showInNextPrevDropdownToolbarActionKey − The preference key for the visibility in the
next/previous drop down toolbar action. since: 3.0

•

showInNextPrevDropdownToolbarAction − The default value for the visibility in the next/previous
drop down toolbar action. since: 3.0

•

isGoToNextNavigationTargetKey − The preference key for go to next navigation enablement.
since: 3.0

•

isGoToNextNavigationTarget − The default value for go to next navigation enablement. since: 3.0•
isGoToPreviousNavigationTargetKey − The preference key for go to previous navigation
enablement. since: 3.0

•

isGoToPreviousNavigationTarget − The default value for go to previous navigation enablement.
since: 3.0

•

icon − The path to the icon to be drawn for annotations of this annotation type.•
symbolicIcon − The symbolic name of the image that should be drawn to represent annotation of this
annotation type. The image is only used when there is no vertical ruler icon specified for this
annotation type. Possible values are: "error", "warning", "info", "task", "bookmark".

•

annotationImageProvider −•
textStylePreferenceKey − The preference key for the text decoration property. since: 3.0•
textStylePreferenceValue − The default value for the "show in text" decoration style. since: 3.0•
includeOnPreferencePage − Defines whether this annotation type should be configurable via the
standard annotation preference page. Default is true.

•

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Marker Annotation Specification 149

http://www.eclipse.org/legal/cpl-v10.html

Marker Updaters
Identifier:

org.eclipse.ui.editors.markerUpdaters

Since:

3.0 (originally named org.eclipse.ui.markerUpdaters)

Description:

This extension point is used for registering marker update strategies with marker annotation models. A
resource that is opened in a text editor is associated with a marker annotation model. For each marker attached
to the resource this model manages a position that is updated with each change applied to the text in the
editor. If the resource is saved, the text in the editor and the position managed for a marker are passed over to
the registered marker update strategies. These strategies can then update the marker's attributes based on the
text and the position. Marker update strategies are requested to implement the interface
org.eclipse.ui.texteditor.IMarkerUpdater. The update strategies can be registered either for
a particular marker type or all marker types. The latter by omitting any marker type in the extension.

Configuration Markup:

<!ELEMENT extension (updater*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT updater EMPTY>

<!ATTLIST updater

id CDATA #REQUIRED

markerType CDATA #IMPLIED

class CDATA #REQUIRED>

id − the unique id of this provider•
markerType − the name of the marker type•

Marker Updaters 150

class − the qualified name of the marker updater class•

Examples:

<extension point=

"org.eclipse.ui.editors.markerUpdaters"

>

<updater id=

"org.eclipse.jdt.ui.markerUpdaters.JavaSearchMarkerUpdater"

class=

"org.eclipse.jdt.internal.ui.search.JavaSearchMarkerUpdater"

markerType=

"org.eclipse.search.searchmarker"

>

</updater>

</extension>

This example registers org.eclipse.jdt.internal.ui.search.JavaSearchMarkerUpdater
as a marker updater for all markers of the type org.eclipse.search.searchmarker including all its
derived types.

<extension point=

"org.eclipse.ui.editors.markerUpdaters"

>

<updater id=

"org.eclipse.ui.texteditor.BasicMarkerUpdater"

class=

"org.eclipse.ui.texteditor.BasicMarkerUpdater"

>

 Welcome to Eclipse

Marker Updaters 151

</updater>

</extension>

This example registers org.eclipse.ui.texteditor.BasicMarkerUpdater as a marker updater
independent from the type of the marker.

API Information:

Registered marker updaters have to implement the interface
org.eclipse.ui.texteditor.IMarkerUpdater.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Marker Updaters 152

http://www.eclipse.org/legal/cpl-v10.html

Editor Template
Identifier:

org.eclipse.ui.editors.templates

Since:

3.0

Description:

Templates are snippets of text or code which help the user enter reoccurring patterns into a text editor.
Templates may contain variables which are resolved in the context where the template is inserted.

Configuration Markup:

<!ELEMENT extension (template* , resolver* , contextType* , include*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT contextType EMPTY>

<!ATTLIST contextType

id CDATA #REQUIRED

class CDATA #REQUIRED

name CDATA #IMPLIED>

A context type defines a context within which templates are evaluated. A context type uses its resolvers to
resolve a template.

id − Unambiguously identifies this context type. Use of a qualified name is recommended.•
class − A subclass of org.eclipse.jface.text.templates.TemplateContextType.•
name − The display name of this context.•

<!ELEMENT resolver EMPTY>

Editor Template 153

<!ATTLIST resolver

contextTypeId CDATA #REQUIRED

type CDATA #REQUIRED

class CDATA #REQUIRED

description CDATA #IMPLIED

name CDATA #IMPLIED

icon CDATA #IMPLIED>

A template variable resolver can resolve a template variable in a certain context.

contextTypeId − References the context type that this resolver is contributed to.•
type − The type of this variable resolver. This property will be set on the resolver once it gets created.•
class − A subclass of
org.eclipse.jface.text.templates.TemplateVariableResolver.

•

description − The description of this variable resolver. This property will be set on the resolver once
it gets created.

•

name − The display name of this resolver.•
icon − An icon that may be displayed in the user interface.•

<!ELEMENT template (pattern)>

<!ATTLIST template

id CDATA #REQUIRED

contextTypeId CDATA #REQUIRED

name CDATA #REQUIRED

description CDATA #IMPLIED

icon CDATA #IMPLIED>

A template is a snippet of code or text that will be evaluated in a given context. Variables which will be
resolved in that context can be specified using the ${variable_type} notation.

id − Unambiguously identifies this template. Use of a qualified name is recommended.•
contextTypeId − References the context type that this template is contributed to.•

 Welcome to Eclipse

Editor Template 154

name − The internationalizable name of the template which will show up in the UI, such as in
template proposals.

•

description − The description of this template.•
icon − An icon that may be displayed in the UI for this template, for example in content assist
proposals.

•

<!ELEMENT pattern (#CDATA)>

The template pattern.

<!ELEMENT include EMPTY>

<!ATTLIST include

file CDATA #REQUIRED

translations CDATA #IMPLIED>

A collection of templates encoded as XML can be included as a whole via this element.

file − The XML file to import templates from.•
translations − An optional properties file with resources for the templates specified in file.•

Examples:

API Information:

See the org.eclipse.jface.text.templates package in the org.eclipse.text plug−in for
the relevant API.

Supplied Implementation:

See the org.eclipse.jface.text.templates package in the org.eclipse.text plug−in for
the relevant classes.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Editor Template 155

http://www.eclipse.org/legal/cpl-v10.html

Reference Provider
Identifier:

org.eclipse.ui.workbench.texteditor.quickdiffReferenceProvider

Since:

3.0

Description:

Allows contributors to add reference providers for the quick diff display.

Configuration Markup:

<!ELEMENT extension (referenceprovider+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − The fully qualified name of the extension point.•
id − The optional id of this extension.•
name − The optional name of this extension.•

<!ELEMENT referenceprovider EMPTY>

<!ATTLIST referenceprovider

class CDATA #REQUIRED

label CDATA #IMPLIED

id CDATA #REQUIRED

default (true | false) >

The definition of a reference provider for the quick diff display.

class − The class of the reference provider, which must implement
org.eclipse.ui.editors.quickdiff.IQuickDiffReferenceProvider.

•

Reference Provider 156

label − The display label for the provider, which will show up in the menu that allows the user to set
the quick diff reference to this provider.

•

id − A string uniquely identifying this reference provider.•
default − If this flag is set to true, this reference provider will be installed per default the first time
quick diff is enabled for a document. If multiple providers are installed with the flag set are
encountered, the first one is taken.

•

Examples:

The following is an example of a reference provider definition. It contributes a provider that uses the version
of a document saved on disk as a reference.

<extension point=

"quickdiff.referenceprovider"

>

<referenceprovider id=

"default"

name=

"%LastSavedProvider.name"

label=

"%quickdiff.referenceprovider.label"

class=

"org.eclipse.ui.internal.editors.quickdiff.providers.LastSaveReferenceProvider"

>

</referenceprovider>

</extension>

API Information:

There is no additional API for managing reference providers.

 Welcome to Eclipse

Reference Provider 157

Supplied Implementation:

The org.eclipse.ui.editors plugin contributes LastSaveReferenceProvider. See its
implementation as an example.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Reference Provider 158

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Configurations
Identifier:

org.eclipse.ui.acceleratorConfigurations

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the
extension point org.eclipse.ui.commands

This extension point is used to register accelerator configuration extensions. Accelerator configurations are
configurations to which accelerator sets may be registered. The workbench allows the user to select an
accelerator configuration from the Workbench preference page. Only one accelerator configuration may be
active at a time.

An accelerator configuration represents a general style or theme of accelerators for Workbench actions. For
example, the Workbench provides the "Emacs" accelerator configuration. When the "Emacs" accelerator
configuration is active, accelerators belonging to accelerator sets registered to the "Emacs" configuration are
active. These accelerators are defined to mimic the accelerators in Emacs (a popular text editor amongst
developers).

An accelerator set registers with an accelerator configuration by listing the configuration's id as the value of
its "configurationId" attribute (see the Accelerator Sets extension point). Many accelerator sets can be
registered to the same accelerator configuration.

Note the accelerator configuration name presented to the user is the same as the value of the attribute "name"
of the extension element of org.eclipse.ui.acceleratorConfigurations extension point.

Configuration Markup:

<!ELEMENT extension (acceleratorConfiguration*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

Accelerator Configurations 159

<!ELEMENT acceleratorConfiguration EMPTY>

<!ATTLIST acceleratorConfiguration

id CDATA #REQUIRED

name CDATA #REQUIRED

description CDATA #REQUIRED>

id − a unique name that can be used to identify this accelerator configuration.•
name − a translatable name of the accelerator configuration to be presented to the user.•
description − a short description of the accelerator configuration.•

Examples:

Following is an example of an accelerator configuration extension:

<extension point=

"org.eclipse.ui.acceleratorConfigurations"

>

<acceleratorConfiguration id=

"org.eclipse.ui.viAcceleratorConfiguration"

name=

"VI"

description=

"VI style accelerator configuration"

>

</acceleratorConfiguration>

<acceleratorConfiguration id=

"org.eclipse.ui.jonDoeAcceleratorConfiguration"

name=

"Jon Doe"

 Welcome to Eclipse

Accelerator Configurations 160

description=

"Personal accelerator configuration for Jon Doe"

>

</acceleratorConfiguration>

</extension>

Supplied Implementation:

The workbench provides the Default and Emacs accelerator configurations.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Accelerator Configurations 161

http://www.eclipse.org/legal/cpl-v10.html

Commands
Identifier:

org.eclipse.ui.commands

Since:

2.1

Description:

The org.eclipse.ui.commands extension point is used to declare commands and command categories,
using the command and category elements. Through this extension point, one can also assign key
sequences to commands using the keyBinding element. Key sequences are bound to commands based on
key configurations and contexts which are declared here as well, using the keyConfiguration and
context elements.

Configuration Markup:

<!ELEMENT extension (activeKeyConfiguration , category , command , keyBinding , keyConfiguration ,
context)>

<!ATTLIST extension

id CDATA #IMPLIED

name CDATA #IMPLIED

point CDATA #REQUIRED>

id − An optional identifier of the extension instance.•
name − An optional name of the extension instance.•
point − A fully qualified identifier of the target extension point.•

<!ELEMENT activeKeyConfiguration EMPTY>

<!ATTLIST activeKeyConfiguration

value CDATA #IMPLIED

keyConfigurationId CDATA #IMPLIED>

This element is used to define the initial active key configuration for Eclipse. If more than one of these
elements exist, only the last declared element (in order of reading the plugin registry) is considered valid.

value − The unique id (idattribute) of the keyConfiguration element one wishes to be initially active.•

Commands 162

keyConfigurationId − The unique id (idattribute) of the keyConfiguration element one wishes to be
initially active.

•

<!ELEMENT category EMPTY>

<!ATTLIST category

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED>

In the UI, commands are often organized by category to make them more manageable. This element is used to
define these categories. Commands can add themselves to at most one category. If more than one of these
elements exist with the same id attribute, only the last declared element (in order of reading the plugin
registry) is considered valid.

description − A translatable short description of this category for display in the UI.•
id − The unique identifier of this category.•
name − The translatable name of this category for display in the UI.•

<!ELEMENT command EMPTY>

<!ATTLIST command

category CDATA #IMPLIED

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

categoryId CDATA #IMPLIED>

This element is used to define commands. A command represents an request from the user that can be handled
by an action, and should be semantically unique among other commands. Do not define a command if there is
already one defined with the same meaning. If more than one of these elements exist with the same id
attribute, only the last declared element (in order of reading the plugin registry) is considered valid. See the
extension points org.eclipse.ui.actionSets and org.eclipse.ui.editorActions to understand how actions are
connected to commands.

 Welcome to Eclipse

Commands 163

category − The unique id of the category for this command. If this command does not specify a
category, it will still appear in all UI, alongside other specifically categorized commands.
@deprecated Please use "categoryId" instead.

•

description − A translatable short description of this command for display in the UI.•
id − The unique identifier of this command.•
name − The translatable name of this command for display in the UI. Command are typically named
in the form of an imperative verb.

•

categoryId − The unique id of the category for this command. If this command does not specify a
category, it will still appear in all UI, alongside other specifically categorized commands.

•

<!ELEMENT keyBinding EMPTY>

<!ATTLIST keyBinding

configuration CDATA #IMPLIED

command CDATA #IMPLIED

locale CDATA #IMPLIED

platform CDATA #IMPLIED

contextId CDATA #IMPLIED

string CDATA #IMPLIED

scope CDATA #IMPLIED

keyConfigurationId CDATA #IMPLIED

commandId CDATA #IMPLIED

keySequence CDATA #IMPLIED>

This element allows one to assign key sequences to commands.

configuration − The unique id of the key configuration of this key binding. @deprecated Please use
keyConfigurationId instead.

•

command − The unique identifier of the command to which the key sequence specified by this key
binding is assigned. If the value of this attribute is an empty string, the key sequence is assigned to an
internal 'no operation' command. This is useful for 'undefining' key bindings in specific key
configurations and contexts which may have been borrowed from their parents. @deprecate Please
use "commandId" instead.

•

locale − An optional attribute indicating that this key binding is only defined for the specified locale.
Locales are specified according to the format declared in java.util.Locale.

•

platform − An optional attribute indicating that this key binding is only defined for the specified
platform. The possible values of the platform attribute are the set of the possible values returned

•

 Welcome to Eclipse

Commands 164

by org.eclipse.swt.SWT.getPlatform().
contextId − The unique id of the context of this key binding.•
string − The key sequence to assign to the command. Key sequences consist of one or more key
strokes, where a key stroke consists of a key on the keyboard, optionally pressed in combination with
one or more of the following modifiers: Ctrl, Alt, Shift, and Command. Key strokes are separated by
spaces, and modifiers are separated by '+' characters. @deprecate Please user "keySequence" instead.

•

scope − The unique id of the context of this key binding. @deprecated Please use "contextId" instead.•
keyConfigurationId − The unique id of the key configuration of this key binding.•
commandId − The unique identifier of the command to which the key sequence specified by this key
binding is assigned. If the value of this attribute is an empty string, the key sequence is assigned to an
internal 'no operation' command. This is useful for 'undefining' key bindings in specific key
configurations and contexts which may have been borrowed from their parents.

•

keySequence − The key sequence to assign to the command. Key sequences consist of one or more
key strokes, where a key stroke consists of a key on the keyboard, optionally pressed in combination
with one or more of the following modifiers: Ctrl, Alt, Shift, and Command. Key strokes are
separated by spaces, and modifiers are separated by '+' characters.

•

<!ELEMENT keyConfiguration EMPTY>

<!ATTLIST keyConfiguration

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

parent CDATA #IMPLIED

parentId CDATA #IMPLIED>

This element is used to define key configurations. If more than one of these elements exist with the same id
attribute, only the last declared element (in order of reading the plugin registry) is considered valid.

description − A translatable short description of this key configuration for display in the UI.•
id − The unique identifier of this key configuration.•
name − The translatable name of this key configuration for display in the UI. If this key configuration
has a parent, it is not necessary to add "(extends ...)" to the name. This will be automatically added by
the UI where necessary.

•

parent − The unique id of the parent key configuration. If this key configuration has a parent, it will
borrow all key bindings from its parent, in addition to the key bindings defined in its own key
configuration.

•

parentId − The unique id of the parent key configuration. If this key configuration has a parent, it
will borrow all key bindings from its parent, in addition to the key bindings defined in its own key
configuration.

•

 Welcome to Eclipse

Commands 165

<!ELEMENT context EMPTY>

<!ATTLIST context

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

parent CDATA #IMPLIED

parentId CDATA #IMPLIED>

This element is used to define contexts. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the plugin registry) is considered valid.

description − A translatable short description of this context for display in the UI.•
id − The unique identifier of this context.•
name − The translatable name of this context for display in the UI. If this context has a parent, it is
not necessary to add "(extends parent)" to the name. This will be automatically added by the UI where
necessary.

•

parent − The unique id of the parent context. If this context has a parent, it will borrow all key
bindings from its parent, in addition to the key bindings defined in its own context. @deprecated
Please use "parentId" instead.

•

parentId − The unique id of the parent context. If this context has a parent, it will borrow all key
bindings from its parent, in addition to the key bindings defined in its own context.

•

<!ELEMENT handlerSubmission EMPTY>

<!ATTLIST handlerSubmission

commandId CDATA #REQUIRED

handler CDATA #REQUIRED>

This element declares a handler for a command. This handler is then associated with the command with the
given restrictions. This association is done at start−up. Associating a handler does not mean that this handler
will always be the one chosen by the workbench; the actual choice is done by examining the workbench state
and comparing with the various handler submissions.

This particular API should still be considered experimental. While you may use it, you must be willing to
accept that this API may change radically or be removed entirely at some point in the future. We appreciate
feedback on this API to platform−ui−dev@eclipse.org.

 Welcome to Eclipse

Commands 166

mailto:platform-ui-dev@eclipse.org

commandId − The identifier of the command to which this handler should be associated.•
handler − The name of the class of the handler. If the class is an implementation of
IExecutableExtension, then it is possible to pass data into the object. This handler will be proxied
until the handler is queried for information −− at which point the class will be loaded, and an instance
created.

•

<!ELEMENT scope EMPTY>

<!ATTLIST scope

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

parent CDATA #IMPLIED>

This element is used to define scopes. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the plugin registry) is considered valid. @deprecated Please
use the "org.eclipse.ui.contexts" extension point instead.

description − A translatable short description of this scope for display in the UI. @deprecated Please
use the "org.eclipse.ui.contexts" extension point instead.

•

id − The unique identifier of this scope. @deprecated Please use the "org.eclipse.ui.contexts"
extension point instead.

•

name − The translatable name of this scope for display in the UI. If this scope has a parent, it is not
necessary to add "(extends parent)" to the name. This will be automatically added by the UI where
necessary. @deprecated Please use the "org.eclipse.ui.contexts" extension point instead.

•

parent − The unique id of the parent scope. If this scope has a parent, it will borrow all key bindings
from its parent, in addition to the key bindings defined in its own scope. @deprecated Please use the
"org.eclipse.ui.contexts" extension point instead.

•

Examples:

The plugin.xml file in the org.eclipse.ui plugin makes extensive use of the
org.eclipse.ui.commands extension point.

API Information:

This is no public API for declaring commands, categories, key bindings, key configurations, or contexts other
than this extension point. Public API for querying and setting contexts, as well as registering actions to handle
specific commands can be found in org.eclipse.ui.IKeyBindingService.

 Welcome to Eclipse

Commands 167

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Commands 168

http://www.eclipse.org/legal/cpl-v10.html

Action Sets
Identifier:

org.eclipse.ui.actionSets

Description:

This extension point is used to add menus, menu items and toolbar buttons to the common areas in the
Workbench window. These contributions are collectively known as an action set and appear within the
Workbench window by the user customizing a perspective.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enablement
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub−element. In the simplest case, this will be an objectClass, objectState,
pluginState, or systemProperty element. In the more complex case, the and, or, and not elements
can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub−elements.
The not element must contain only 1 sub−element.

Configuration Markup:

<!ELEMENT extension (actionSet+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT actionSet (menu* , action*)>

<!ATTLIST actionSet

id CDATA #REQUIRED

label CDATA #REQUIRED

visible (true | false)

description CDATA #IMPLIED>

Action Sets 169

This element is used to define a group of actions and/or menus.

id − a unique identifier for this action set.•
label − a translatable name used by the Workbench to represent this action set to the user.•
visible − an optional attribute indicating whether the action set is initially visible when a perspective
is open. This option is only honoured when the user opens a perspective which has not been
customized. The user can override this option from the "Customize Perspective Dialog". This attribute
should be used with great care so as not to overwhelm the user with too many actions.

•

description − a translatable description used by the Workbench to represent this action set to the user.•

<!ELEMENT action (selection* | enablement?)>

<!ATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED

accelerator CDATA #IMPLIED

definitionId CDATA #IMPLIED

menubarPath CDATA #IMPLIED

toolbarPath CDATA #IMPLIED

icon CDATA #IMPLIED

disabledIcon CDATA #IMPLIED

hoverIcon CDATA #IMPLIED

tooltip CDATA #IMPLIED

helpContextId CDATA #IMPLIED

style (push|radio|toggle|pulldown) "push"

state (true | false)

pulldown (true | false)

class CDATA #IMPLIED

retarget (true | false)

allowLabelUpdate (true | false)

 Welcome to Eclipse

Action Sets 170

enablesFor CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

id − a unique identifier used as a reference for this action.•
label − a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.

•

accelerator − Deprecated: Use the definitionId attribute instead.•
definitionId − Specifies the command that this action will handle. By specifying and action, the key
binding service can assign a key sequence to this action. See the extension point
org.eclipse.ui.commands for more information.

•

menubarPath − a slash−delimited path ('/') used to specify the location of this action in the menu bar.
Each token in the path, except the last one, must represent a valid identifier of an existing menu in the
hierarchy. The last token represents the named group into which this action will be added. If the path
is omitted, this action will not appear in the menu bar.

•

toolbarPath − a slash−delimited path ('/') that is used to specify the location of this action in the
toolbar. The first token represents the toolbar identifier (with "Normal" being the default toolbar),
while the second token is the named group within the toolbar that this action will be added to. If the
group does not exist in the toolbar, it will be created. If toolbarPath is omitted, the action will not
appear in the toolbar.

•

icon − a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug−in. The icon will appear in toolbars but not in
menus. Enabled actions will be represented in menus by the hoverIcon.

•

disabledIcon − a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug−in. The disabled icon will appear in
toolbars but not in menus. Icons for disabled actions in menus will be supplied by the OS.

•

hoverIcon − a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug−in.

•

tooltip − a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

•

helpContextId − a unique identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

•

style − an attribute to define the user interface style type for the action. If omitted, then it is push by
default. The attribute value will be one of the following:

push − as a regular menu item or tool item.

radio − as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio
set. The initial value is specified by the state attribute.

toggle − as a checked style menu item or as a toggle tool item. The
initial value is specified by the state attribute.

pulldown − as a cascading style menu item or as a drop down menu beside
the tool item.

•

state − an optional attribute indicating the initial state (either true or false). Used only when the
style attribute has the value radio or toggle.

•

pulldown − Deprecated: Use the style attribute with the value pulldown.•

 Welcome to Eclipse

Action Sets 171

class − a fully qualified name of a class which implements
org.eclipse.ui.IWorkbenchWindowActionDelegate or
org.eclipse.ui.IWorkbenchWindowPulldownDelegate. The latter should be
implemented in cases where the style attribute has the value pulldown. This class is the handler
responsible for performing the action. If the retarget attribute is true, this attribute is ignored and
should not be supplied.

•

retarget − an optional attribute to retarget this action. When true, view and editor parts may supply a
handler for this action using the standard mechanism for setting a global action handler on their site
using this action's identifier. If this attribute is true, the class attribute should not be supplied.

•

allowLabelUpdate − optional attribute indicating whether the retarget action allows the handler to
override it's label and tooltip. Only applies if retarget attribute is true.

•

enablesFor − a value indicating the selection count which must be met to enable the action. If
specified and the condition is not met, the action is disabled. If omitted, the action enablement state is
not affected. The following attribute formats are supported:

! − 0 items selected

? − 0 or 1 items selected

+ − 1 or more items selected

multiple, 2+ − 2 or more items selected

n − a precise number of items selected.a precise number of
items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* − any number of items selected

•

<!ELEMENT menu (separator+ , groupMarker*)>

<!ATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

id − a unique identifier that can be used to reference this menu.•
label − a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

•

path − the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

•

 Welcome to Eclipse

Action Sets 172

<!ELEMENT separator EMPTY>

<!ATTLIST separator

name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

name − the name of the menu separator. This name can later be referenced as the last token in a menu
path. Therefore, a separator also serve as named group into which actions and menus can be added.

•

<!ELEMENT groupMarker EMPTY>

<!ATTLIST groupMarker

name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

name − the name of the group marker. This name can later be referenced as the last token in the menu
path. It serves as named group into which actions and menus can be added.

•

<!ELEMENT selection EMPTY>

<!ATTLIST selection

class CDATA #REQUIRED

name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

class − a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

•

name − an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

•

 Welcome to Eclipse

Action Sets 173

<!ELEMENT enablement (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<!ELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<!ELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT not (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub−element expressions.

<!ELEMENT objectClass EMPTY>

<!ATTLIST objectClass

name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object in
the selection implements the specified class or interface, the expression is evaluated as true.

name − a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

•

 Welcome to Eclipse

Action Sets 174

<!ELEMENT objectState EMPTY>

<!ATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in the
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of
expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.IActionFilter interface.

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

<!ELEMENT pluginState EMPTY>

<!ATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug−in. The state of the plug−in may be one of the following:
installed or activated.

id − the identifier of a plug−in which may or may not exist in the plug−in registry.•
value − the required state of the plug−in. The state of the plug−in may be one of the following:
installed or activated.

•

<!ELEMENT systemProperty EMPTY>

<!ATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

 Welcome to Eclipse

Action Sets 175

name − the name of the system property.•
value − the required value of the system property.•

Examples:

The following is an example of an action set (note the sub−elements and the way attributes are used):

<extension point =

"org.eclipse.ui.actionSets"

>

<actionSet id=

"com.xyz.actionSet"

label=

"My Actions"

>

<menu id=

"com.xyz.xyzMenu"

label=

"XYZ Menu"

path=

"additions"

>

<separator name=

"group1"

/>

<separator name=

 Welcome to Eclipse

Action Sets 176

"option1"

/>

</menu>

<action id=

"com.xyz.runXYZ"

label=

"&Run XYZ Tool"

style=

"toggle"

state=

"false"

menubarPath=

"com.xyz.xyzMenu/group1"

icon=

"icons/runXYZ.gif"

tooltip=

"Run XYZ Tool"

helpContextId=

"com.xyz.run_action_context"

class=

"com.xyz.actions.RunXYZ"

enablesFor=

"1"

>

<selection class=

"org.eclipse.core.resources.IFile"

 Welcome to Eclipse

Action Sets 177

name=

"*.java"

/>

</action>

<action id=

"com.xyz.runABC"

label=

"&Run ABC Tool"

style=

"push"

menubarPath=

"com.xyz.xyzMenu/group1"

toolbarPath=

"Normal/XYZ"

icon=

"icons/runABC.gif"

tooltip=

"Run ABC Tool"

helpContextId=

"com.xyz.run_abc_action_context"

retarget=

"true"

allowLabelUpdate=

"true"

>

<enablement>

 Welcome to Eclipse

Action Sets 178

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<not>

<objectState name=

"extension"

value=

"java"

/>

</not>

</and>

</enablement>

</action>

<action id=

"com.xyz.runDEF"

label=

"&Run DEF Tool"

style=

"radio"

state=

"true"

menubarPath=

"com.xyz.xyzMenu/option1"

icon=

"icons/runDEF.gif"

 Welcome to Eclipse

Action Sets 179

tooltip=

"Run DEF Tool"

class=

"com.xyz.actions.RunDEF"

helpContextId=

"com.xyz.run_def_action_context"

>

</action>

<action id=

"com.xyz.runGHI"

label=

"&Run GHI Tool"

style=

"radio"

state=

"false"

menubarPath=

"com.xyz.xyzMenu/option1"

icon=

"icons/runGHI.gif"

tooltip=

"Run GHI Tool"

class=

"com.xyz.actions.RunGHI"

helpContextId=

"com.xyz.run_ghi_action_context"

 Welcome to Eclipse

Action Sets 180

>

</action>

<action id=

"com.xyz.runJKL"

label=

"&Run JKL Tool"

style=

"radio"

state=

"false"

menubarPath=

"com.xyz.xyzMenu/option1"

icon=

"icons/runJKL.gif"

tooltip=

"Run JKL Tool"

class=

"com.xyz.actions.RunJKL"

helpContextId=

"com.xyz.run_jkl_action_context"

>

</action>

</actionSet>

</extension>

In the example above, the specified action set, named "My Actions", is not initially visible within each
perspective because the visible attribute is not specified.

 Welcome to Eclipse

Action Sets 181

The XYZ action will appear as a check box menu item, initially not checked. It is enabled only if the selection
count is 1 and if the selection contains a Java file resource.

The ABC action will appear both in the menu and on the toolbar. It is enabled only if the selection does not
contain any Java file resources. Note also this is a label retarget action therefore it does not supply a class
attribute.

The actions DEF, GHI, and JKL appear as radio button menu items. They are enabled all the time,
independent of the current selection state.

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
org.eclipse.ui.IWorkbenchWindowActionDelegate or
org.eclipse.ui.IWorkbenchWindowPulldownDelegate. The latter should be implemented in
cases where the style attribute has the value pulldown. This class is the handler responsible for
performing the action. If the retarget attribute is true, this attribute is ignored and should not be supplied.
This class is loaded as late as possible to avoid loading the entire plug−in before it is really needed.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the
action enable state directly within its selectionChanged method.

It is important to note that the workbench does not generate menus on a plug−in's behalf. Menu paths must
reference menus that already exist.

Action and menu labels may contain special characters that encode mnemonics using the following rules:

Mnemonics are specified using the ampersand ('&') character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

1.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in the
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug−in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can
replace the selection element using the sub−elements objectClass and objectState. For example,
the following:

<selection class=

"org.eclipse.core.resources.IFile"

name=

"*.java"

>

 Welcome to Eclipse

Action Sets 182

</selection>

can be expressed using:

<enablement>

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<objectState name=

"extension"

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

Plug−ins may use this extension point to add new top level menus. Plug−ins can also define named groups
which allow other plug−ins to contribute their actions into them.

Top level menus are created by using the following values for the path attribute:

additions − represents a group immediately to the left of the Window menu.•

Omitting the path attribute will result in adding the new menu into the additions menu bar group.

The default groups in a workbench window are defined in the IWorkbenchActionConstants interface.
These constants can be used in code for dynamic contribution. The values can also be copied into an XML file
for fine grained integration with the existing workbench menus and toolbar.

Various menu and toolbar items within the workbench window are defined algorithmically. In these cases a
separate mechanism must be used to extend the window. For example, adding a new workbench view results
in a new menu item appearing in the Perspective menu. Import, Export, and New Wizards extensions are also
added automatically to the window.

 Welcome to Eclipse

Action Sets 183

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Action Sets 184

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Scopes
Identifier:

org.eclipse.ui.acceleratorScopes

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the
extension point org.eclipse.ui.commands

This extension point is used to register accelerator scope extensions. Accelerator scopes are scopes for which
accelerator sets may be applicable. For example, if an accelerator set is applicable for the scope entitled "Text
Editor Scope", the accelerators of that accelerator set will only operate if the "Text Editor Scope" or one of its
children is active (in other words, if the active part is a participating text editor).

An accelerator set declares what scope it is applicable for by listing the scope's id as the value of its "scopeId"
attribute (see the Accelerator Sets extension point). Many accelerator sets can be applicable for the same
accelerator scope.

Configuration Markup:

<!ELEMENT extension (acceleratorScope*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT acceleratorScope EMPTY>

<!ATTLIST acceleratorScope

id CDATA #REQUIRED

name CDATA #REQUIRED

Accelerator Scopes 185

description CDATA #REQUIRED

parentScope CDATA #IMPLIED>

id − a unique name that can be used to identify this accelerator scope.•
name − a translatable name of the accelerator scope.•
description − a short description of the accelerator scope.•
parentScope − an optional attribute which represents a scope which is active whenever this scope is
active. For most scopes, org.eclipse.ui.globalScope will be the parent scope

•

Examples:

Following is an example of an accelerator scope extension:

<extension point=

"org.eclipse.ui.acceleratorScopes"

>

<acceleratorScope id=

"org.eclipse.ui.globalScope"

name=

"Global"

description=

"Action accelerator key applicable to all views and editors unless explicitly overridden."

>

</acceleratorScope>

<acceleratorScope id=

"org.eclipse.ui.javaEditorScope"

name=

"Java Editor"

description=

"Action accelerator key applicable only when java editor active."

 Welcome to Eclipse

Accelerator Scopes 186

parentScope=

"org.eclipse.ui.globalScope"

>

</acceleratorScope>

</extension>

API Information:

The method public IKeyBindingService getKeyBindingService() was added to IEditorSite.

Supplied Implementation:

The workbench provides the Global accelerator scope and the Text Editor accelerator scope.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Accelerator Scopes 187

http://www.eclipse.org/legal/cpl-v10.html

Accelerator Sets
Identifier:

org.eclipse.ui.acceleratorSets

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the
extension point org.eclipse.ui.commands

This extension point is used to register accelerator set extensions. Accelerator sets are just what the name
implies, sets of accelerators. An accelerator is an association between one or more sequences of accelerator
keys and a workbench action. An accelerator key sequence may be of length one or greater.

An accelerator set is registered with an accelerator configuration (see the Accelerator Configuration extension
point) and is applicable for an accelerator scope (see the Accelerator Scope extension point).

Configuration Markup:

<!ELEMENT extension (acceleratorSet*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT acceleratorSet (accelerator+)>

<!ATTLIST acceleratorSet

configurationId CDATA #REQUIRED

scopeId CDATA #REQUIRED>

configurationId − a unique name that identifies the accelerator configuration to which this
accelerator set is registered.

•

Accelerator Sets 188

scopeId − a unique name that identifies the accelerator scope for which this accelerator set is
applicable.

•

<!ELEMENT accelerator EMPTY>

<!ATTLIST accelerator

id CDATA #IMPLIED

key CDATA #REQUIRED

locale CDATA #IMPLIED

platform CDATA #IMPLIED>

id − the unique identifier of the action definition of the action associated with this accelerator. If the
id is not specified this accelerator deletes any mappings with the same key. This is used to delete a
key binding for a specific Locale.

•

key − an attribute representing the sequence(s) of accelerator keys used to perform the action
associated with this accelerator. Sequences are separated by '||', and individual keys in a sequence are
separated by a space. A key may be modified by the CTRL, ALT, or SHIFT keys. Depending on
keyboard layout, some keys ('?' for example) may need the SHIFT to be accessed but the accelerator
should be specified without the SHIFT so it will be independent of keyboard layout. E.g. if CTRL+?
is specified as an accelerator, the user may have to press CTRL+SHIFT+? depending on the keyboard
layout.

•

locale − an optional attribute which specifies a locale for which the accelerator is applicable. If this
attribute is not specified, the accelerator is applicable for all locales.

•

platform − an optional attribute which specifies a platform on which the accelerator is applicable. If
this attribute is not specified, the accelerator is applicable on all platforms.

•

Examples:

Following is an example of an accelerator set extension:

<extension point=

"org.eclipse.ui.acceleratorSets"

>

<acceleratorSet configurationId=

"org.eclipse.ui.exampleAcceleratorConfiguration"

scopeId=

 Welcome to Eclipse

Accelerator Sets 189

"org.eclipse.ui.globalScope"

>

<accelerator id=

"org.eclipse.ui.ExampleActionA"

key=

"CTRL+R CTRL+A"

>

</accelerator>

<accelerator id=

"org.eclipse.ui.ExampleActionB"

key=

"CTRL+R CTRL+B"

>

</accelerator>

<accelerator id=

"org.eclipse.ui.ExampleActionC"

key=

"CTRL+R CTRL+C || CTRL+SHIFT+DELETE"

>

</accelerator>

</acceleratorSet>

</extension>

API Information:

More than one accelerator may be specified for the same action in the accelerator set but only one will be
used.

If the locale and/or the platform is specified, the accelerator that better matches the current locale and platform
will be used. The current locale is determined by the API Locale.getDefault() and the platform by the API

 Welcome to Eclipse

Accelerator Sets 190

SWT.getPlatform(). If the platform and/or the locale is specified and it does not match the current locale
and/or platform, the accelerator is discarded. If accelerator A defines only the locale and B defines only the
platform, B is used. If accelerator A defines "ja" as its locale and B defines "ja_JP", B is used in case the
current locale is "ja_JP".

If two accelerators are defined in accelerators sets in different plugins, the chosen accelerator will depend on
the plugins. If plugin A depends on B, the accelerators defined in B is used. If A and B don't depend on each
other, they will be alphabetically sorted by the plugin id.

If two accelerators are defined in different scopes, the accelerator defined in the current scope will be used. If
an accelerator is not defined in the current scope or one of its parents it is discarded. If an accelerator is
defined in a parent and child scope, the one in the child is used.

Supplied Implementation:

The workbench provides accelerator sets for the Default and Emacs accelerator configurations.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Accelerator Sets 191

http://www.eclipse.org/legal/cpl-v10.html

Action Definitions
Identifier:

org.eclipse.ui.actionDefinitions

Since:

Release 2.0

Description:

WARNING: This extension point is DEPRECATED.
Do not use this extension point, it will be removed in future versions of this product. Instead, use the
extension point org.eclipse.ui.commands

This extension point is used to register action definitions. Accelerators (see the Accelerator Sets extension
point) use action definitions to reference actions. An action associates itself with a given accelerator by
registering with that accelerator's associated action definition. An action registers itself with an action
definition by calling the setActionDefinitionId(String id) method and supplying the action definition's id as an
argument.

Configuration Markup:

<!ELEMENT extension (actionDefinition*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT actionDefinition EMPTY>

<!ATTLIST actionDefinition

id CDATA #REQUIRED

name CDATA #IMPLIED

description CDATA #IMPLIED>

id − a unique name that can be used to identify this action.•

Action Definitions 192

name − the name of the action as displayed to the user.•
description − a short description of the action to display to the user.•

Examples:

Following is an example of an action definition extension:

<extension point=

"org.eclipse.ui.actionDefinitions"

>

<actionDefinition id=

"org.eclipse.ui.file.save"

>

</actionDefinition>

<actionDefinition id=

"org.eclipse.ui.file.saveAll"

>

</actionDefinition>

<actionDefinition id=

"org.eclipse.ui.file.close"

>

</actionDefinition>

<actionDefinition id=

"org.eclipse.ui.file.closeAll"

>

</actionDefinition>

<actionDefinition id=

 Welcome to Eclipse

Action Definitions 193

"org.eclipse.ui.file.print"

>

</actionDefinition>

</extension>

API Information:

The methods public void setActionDefinitionId(String id) and public String getActionDefinitionId() have
been added to IAction.

NOTE − other attributes may be added in the future, as needed.

Supplied Implementation:

The workbench provides many action definitions.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Action Definitions 194

http://www.eclipse.org/legal/cpl-v10.html

Action Set Part Associations
Identifier:

org.eclipse.ui.actionSetPartAssociations

Description:

This extension point is used to define an action set which should be added to a perspective when a part (view
or editor) is opened in the perspective. In the case of an editor, the action set will remain visible while the
editor is the current editor. In the case of a view, the action set will be visible when the view is the active part.

Configuration Markup:

<!ELEMENT extension (actionSetPartAssociation*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT actionSetPartAssociation (part*)>

<!ATTLIST actionSetPartAssociation

targetID CDATA #REQUIRED>

targetID − the unique identifier of the action set (as specified in the registry) which is to be
associated with particular workbench views and/or editors.

•

<!ELEMENT part EMPTY>

<!ATTLIST part

id CDATA #REQUIRED>

id − the unique identifier of the part (view or editor) to be associated with the action set.•

Action Set Part Associations 195

Examples:

The following is an example of an action set part association (note the subelement and the way attributes are
used):

<extension point=

"org.eclipse.ui.actionSetPartAssociations"

>

<actionSetPartAssociation targetID=

"org.eclipse.jdt.ui.refactoring.actionSet"

>

<part id=

"org.eclipse.jdt.ui.PackageExplorer"

/>

<part id=

"org.eclipse.jdt.ui.CompilationUnitError"

/>

</actionSetPartAssociation>

</extension>

In the example above, a view or editor are associated with the refactoring action set.

API Information:

The user may override these associations using the customize perspective dialog. Regardless of these
associations, action sets which the user turns off will never appear and action sets which the user turns on will
always be visible.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Action Set Part Associations 196

http://www.eclipse.org/legal/cpl-v10.html

Activities
Identifier:

org.eclipse.ui.activities

Since:

3.0

Description:

The org.eclipse.ui.activities extension point is used to declare activities and associated
elements. Activities are used by the platform to filter certain plugin contributions from the users view until
such a time that they express interest in them. This allows Eclipse to grow dynamically based on the usage
pattern of a user.

Configuration Markup:

<!ELEMENT extension (activity , activityRequirementBinding , activityPatternBinding , category ,
categoryActivityBinding , defaultEnablement)*>

<!ATTLIST extension

id CDATA #IMPLIED

name CDATA #IMPLIED

point CDATA #REQUIRED>

id − an optional identifier of the extension instance•
name − an optional name of the extension instance•
point − a fully qualified identifier of the target extension point•

<!ELEMENT activity EMPTY>

<!ATTLIST activity

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED>

This element is used to define activities. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the registry) is considered valid.

Activities 197

description − a translatable short description of this activity for display in the UI•
id − the unique identifier of this activity•
name − the translatable name of this activity for display in the UI•

<!ELEMENT activityRequirementBinding EMPTY>

<!ATTLIST activityRequirementBinding

requiredActivityId CDATA #REQUIRED

activityId CDATA #REQUIRED>

This element allows one to bind activities to activities. The relationship is such that if the activityId is ever
enabled then the requiredActivityId is enabled as well.

requiredActivityId − the unique identifier of required activity to bind•
activityId − the unique identifier of the activity to bind•

<!ELEMENT activityPatternBinding EMPTY>

<!ATTLIST activityPatternBinding

activityId CDATA #REQUIRED

pattern CDATA #REQUIRED>

This element allows one to bind activities to patterns.

activityId − the unique identifier of the activity to bind•
pattern − the pattern to be bound. Patterns are regular expressions which match unique identifiers.
Please see the Java documentation for java.util.regex.Pattern for further details.

•

<!ELEMENT category EMPTY>

<!ATTLIST category

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED>

 Welcome to Eclipse

Activities 198

This element is used to define categories. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the registry) is considered valid.

description − a translatable short description of this category for display in the UI•
id − the unique identifier of this category•
name − the translatable name of this category for display in the UI•

<!ELEMENT categoryActivityBinding EMPTY>

<!ATTLIST categoryActivityBinding

activityId CDATA #REQUIRED

categoryId CDATA #REQUIRED>

This element allows one to bind categories to activities.

activityId − the unique identifier of the activity to bind•
categoryId − the unique identifier of the category to bind•

<!ELEMENT defaultEnablement EMPTY>

<!ATTLIST defaultEnablement

id CDATA #REQUIRED>

This element allows one to specify that a given activity should be enabled by default.

id − the unique identifier of the activity•

Examples:

The following is an example of several activity and category definitions as well as associated bindings.

<extension point=

"org.eclipse.ui.activities"

 Welcome to Eclipse

Activities 199

>

<activity id=

"com.xyz.Activity"

description=

"Filters contributions from com.xyz"

name=

"My Activity"

/>

<activity id=

"com.xyz.OtherActivity"

description=

"Filters other contributions from com.xyz"

name=

"My Other Activity"

/>

<!−− other activity requires activity −−>

<activityRequirementBinding activityId=

"com.xyz.OtherActivity"

requiredActivityId=

"com.xyz.Activity"

/>

<category id=

"com.xyz.Category"

description=

"com.xyz Activities"

name=

 Welcome to Eclipse

Activities 200

"My Category"

/>

<!−− put the activity in the category −−>

<categoryActivityBinding activityId=

"com.xyz.Activity"

categoryId=

"com.xyz.Category"

/>

<!−− bind all contributions from plugin com.xyz −−>

<activityPatternBinding id=

"com.xyz.Activity"

pattern=

"com\.xyz/.*"

/>

<!−− bind my.contribution from plugin com.xyz.other −−>

<activityPatternBinding id=

"com.xyz.OtherActivity"

pattern=

"com\.xyz\.other/my.contribution"

/>

<!−− our activity should be enabled by default −−>

<defaultEnablement id=

"com.xyz.Activity"

/>

</extension>

 Welcome to Eclipse

Activities 201

API Information:

There is currently no public API for declaring activities or associated elements other than this extension point.
The state of activities in the workbench is accessible via
org.eclipse.ui.IWorkbench.getActivitySupport(). From here you may query and update
the set of currently enabled activities.

Supplied Implementation:

There are no "default activities" provided by the workbench. Activities are intended to be defined at the
product level, such as the Eclipse SDK, so as to tightly integrate all of the (known) components that product
contains.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Activities 202

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Content
Identifier:

org.eclipse.ui.cheatsheets.cheatSheetContent

Since:

3.0

Description:

This extension point is used to register cheat sheet content contributions. Cheat sheets appear as choices from
the "Help" menu or from within the cheat sheet view, and are typically used to aid a user through a series of
comlex tasks to accomplish an overall goal.

The cheat sheets are organized into categories which usually reflect a particular problem domain. For
instance, a Java oriented plug−in may define a category called "Java" which is appropriate for cheat sheets
that would aid a user with any of the Java tools. The categories defined by one plug−in can be referenced by
other plug−ins using the category attribute of a cheatsheet element. Uncategorized cheat sheets, as well as
cheat sheets with invalid category paths, will end up in an "Other" category.

Cheat sheets may optionally specify a description subelement whose body should contain short text about the
cheat sheet.

Configuration Markup:

<!ELEMENT extension (category | cheatsheet)*>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT category EMPTY>

<!ATTLIST category

id CDATA #REQUIRED

name CDATA #REQUIRED

Cheat Sheet Content 203

parentCategory CDATA #IMPLIED>

A category element in the cheatsheetContent extension point creates a new category in the cheat sheet menu.
The cheat sheet menu is available from the help menu in the workbench. If a new category is specified, cheat
sheets may be targeted to that category and will appear under it in the cheat sheet selection dialog.

id − a unique name that can be used to identify this category•
name − a translatable name of the category that will be used in the dialog box•
parentCategory − a path to another category if this category should be added as a child•

<!ELEMENT cheatsheet (description?)>

<!ATTLIST cheatsheet

id CDATA #REQUIRED

name CDATA #REQUIRED

category CDATA #IMPLIED

contentFile CDATA #IMPLIED

listener CDATA #IMPLIED>

A cheatsheet element is put into the cheatsheetContent extension point if there is a cheat sheet to be
contributed to the workbench. A cheat sheet element must specify an id, a translatable name to appear in the
selection options, a category id to specify which category this cheat sheet will be included in, and a content
file. The cheat sheet content file is an XML file that describes the steps and actions that the cheat sheet has.

id − a unique name that can be used to identify this cheat sheet•
name − a translatable name of the cheat sheet that will be used in the help menu and the selection
dialog box

•

category − a slash−delimited path ('/') of category IDs. Each token in the path must represent a valid
category ID previously defined by this or some other plug−in. If omitted, the wizard will be added to
the "Other" category.

•

contentFile − the path of a cheat sheet content file. The content file is an XML file that contains the
specifics of the cheat sheet (cheat sheet content file format specification). The content file is parsed at
run time by the cheat sheet framework. Based on the settings in this file, a certain number of steps,
actions, descriptions, and help links are shown to the user when the cheat sheet is opened. The path is
interpreted as relative to the plug−in that declares the extension; the path may include special
variables. In particular, use "nl" as the first segment of the path to indicate that there are
locale−specific translations of the content file in subdirectories below "nl/". For more detail about the
special variables, you can read the Java API document for Platform.find.

•

listener − listener is a fully qualified name of a Java class which must subclass
org.eclipse.ui.cheatsheets.CheatSheetListener.

•

 Welcome to Eclipse

Cheat Sheet Content 204

<!ELEMENT description (#CDATA)>

a short description of the cheat sheet

Examples:

Here is a sample usage of the cheatSheetContent extension point:

<extension point=

"org.eclipse.ui.cheatsheets.cheatSheetContent"

>

<category name=

"Example category"

id=

"com.example.category"

>

</category>

<cheatsheet name=

"Example cheat sheet"

category=

"com.example.category"

id=

"com.example.cheatSheet"

contentFile=

"ExampleCheatSheet.xml"

>

<description>

 Welcome to Eclipse

Cheat Sheet Content 205

This is a descriptive bit of text for my cheat sheet description.

</description>

</cheatsheet>

</extension>

API Information:

For further details see the spec for the org.eclipse.ui.cheatsheets API package.

Supplied Implementation:

There are no built−in cheat sheets.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Cheat Sheet Content 206

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Content File XML Format
Version 3.0

This document describes the cheat sheet content file structure as a series of DTD fragments (machine readable
XML schema).

cheatsheet

<!ELEMENT cheatsheet (intro, item+)>
<!ATTLIST cheatsheet
 title CDATA #REQUIRED
>

The <cheatsheet> element defines the body of the cheat sheet content file. <cheatsheet> attributes are as
follows:

title − the title of the cheat sheet•

intro

<!ELEMENT intro (description)>
<!ATTLIST intro
 contextId CDATA #IMPLIED
 href CDATA #IMPLIED
>

The <intro> element is used to describe the cheat sheet introduction to be displayed. The <description>
subelement contains the body of the introduction. <intro> attributes are as follows:

contextId − The optional help context id of the documentation for this cheat sheet. If supplied,
context help for the given fully−qualified context id is shown to the user (typically in a small pop−up
window) when they clicks the introduction's help link. If this attribute is supplied, the href attribute
should not be supplied (href will be ignored if both are present).

•

href − The optional help document describing this cheat sheet. If supplied, this help document is
shown to the user (typically in a help browser shown in a separate window) when they clicks the
introduction's help link. If this attribute is supplied, the contextId attribute should not be supplied
(href will be ignored if both are present).

•

description

<!ELEMENT description EMPTY>
<!ATTLIST description
>

The <description> element holds the description of a cheat sheet or of a cheat sheet item. The description
consists of text interspersed with simple formatting tags. The cheat sheet automatically formats and lays out
the text to make it show up reasonably in the UI. Within the text, balanced ... tags cause the enclosed
text to be rendered in a bold font, and the
 element can be used to force a line break. These are the only
formatting tags supported at this time (however, others may be added in the future). Certain characters in the

Cheat Sheet Content File XML Format 207

text have special significance for XML parsers; in particular, to write "<", ">", "&", "'", and """ (quotation
mark) instead write "<", ">", "&", "'", and """ respectively. Whitespace (spaces and
line breaks) is treated as a word separator; adjacent spaces and line breaks are treated as single unit and
rendered as a single space or a line break. Whitespace immediately after the <description> and
 tags is
ignored, as is whitespace immediately before the </description> tag.

item

<!ELEMENT item (description ([action|perform−when] | (subitem|repeated−subitem|conditional−subitem)*))>
<!ATTLIST item
 title CDATA #REQUIRED
 skip ("true" | "false") "false"
 contextId CDATA #IMPLIED
 href CDATA #IMPLIED
>

Each <item> element describes one top−level step in a cheat sheet. The <item> is either simple or composite.
<item> attributes are as follows:

title − The title of the cheat sheet item.•
skip − skip="true" means that the whole step can be skipped; the UI generally shows a button that the
user can press to indicate that they are skipping this step

•

contextId − The optional help context id of the documentation for this cheat sheet step. If supplied,
context help for the given fully−qualified context id is shown to the user (typically in a small pop−up
window) when they clicks the step's help link. If this attribute is supplied, the href attribute should not
be supplied (href will be ignored if both are present).

•

href − The optional help document describing this cheat sheet step. If supplied, this help document is
shown to the user (typically in a help browser shown in a separate window) when they clicks the
step's help link. If this attribute is supplied, the contextId attribute should not be supplied (href will
be ignored if both are present).

•

The org.eclipse.ui.cheatsheets.cheatSheetItemExtension allows additional custom controls for the item to be
displayed in the UI. Contributions to this extension point declare the names of additional, string−valued
attributes that may appear on <item> elements.

Simple items have a description and an optional action. In the typical presentation, the titles of cheat sheet
items are shown to the user most of the time. An item's description is only shown while the step is in the
process of being executed. The presence of an <action> (or <perform−when>) element is typically associated
with a button that the user can press to perform the step's action. If no action is present, the step is one that the
user must carry out manually and then overtly indicate that they have successfully completed the step.

Composite steps are broken down into sub−steps as specified by the <subitem> subelements. Unlike items,
which the user must follow in strict sequence, the sub−items of a given item can be performed in any order.
All sub−items within an item have to be attempted (or skipped) before progressing to the next item. (Which
means actions that must be performed in a required sequence cannot be represented as sub−items.)

A <conditional−subitem> subelement allow a step to tailor the presentation of a sub−step based on cheat sheet
variables whose values are acquired in earlier steps. A <repeated−subitem> subelement allows a step to
include a set of similar sub−steps. Again, the exact set of sub−steps may be based on cheat sheet variables
whose value are acquired in earlier steps.

 Welcome to Eclipse

item 208

subitem

<!ELEMENT subitem ([action|perform−when])>
<!ATTLIST subitem
 label CDATA #REQUIRED
 skip ("true" | "false") "false"
 when CDATA #IMPLIED
>

Each <subitem> element describes a sub−step in a cheat sheet. A <subitem> carries a simple text label, but
has neither a lengthy description nor further sub−items. <subitem> attributes are as follows:

label − The title of the cheat sheet sub−item. If the string contains substring occurrences of the form
"${var}", they are considered references to cheat sheet variables. All such occurrences in the string
value will be replaced by the value of the corresponding variable in the context of the execution of the
cheat sheet, or the empty string for variables that are unbound. The values of the variables are as of
the beginning of the execution of the main step (when the <item> element is elaborated), rather than
when the individual sub−step are run.

•

skip − skip="true" means that the sub−step can be skipped. The UI generally shows a button that the
user can press to indicate that they are skipping this sub−step.

•

when − Indicates this subitem is to be used if and only if the value of the condition attribute of the
containing <conditional−subitem> element matches this string value. This attribute is ignored if the
<subitem> element is not a child of a <conditional−subitem> element.

•

Sub−items have an optional action. The presence of an <action> (or <perform−when>) element is typically
associated with a button that the user can press to perform the sub−step's action. If no action is present, the
sub−step is one that the user must carry out manually and then overtly indicate that they have successfully
completed the step.

Unlike items, which must be followed in strict sequence, the sub−items of a given item can be performed in
any order. All sub−items within an item have to be attempted (or skipped) before progressing to the next item.
(Which means actions that must be performed in a required sequence should not be represented as sub−items.)

conditional−subitem

<!ELEMENT conditional−subitem (subitem+)>
<!ATTLIST conditional−subitem
 condition CDATA #REQUIRED
>

Each <conditional−subitem> element describes a single sub−step whose form can differ based on a condition
known at the time the item is expanded. <conditional−subitem> attributes are as follows:

condition − Arbitrary string value used to select which child <subitem> will be used. If the attribute
string has the form "${var}", it is considered a reference to a cheat sheet variable var, and value of the
condition will be the value of the variable for the cheat sheet at the start of execution of the containing
<item> element (or the empty string if the variable is unbound at that time).

•

The condition attribute on the <conditional−subitem> element provides a string value (invariably this value
comes from a cheat sheet variable). Each of the <subitem> children must carry a when attribute with a distinct
string value. When the item is expanded, the <conditional−subitem> element is replaced by the <subitem>

 Welcome to Eclipse

subitem 209

element with the matching value. It is considered an error if there is no <subitem> element with a matching
value.

For example, if the cheat sheet variable named "v1" has the value "b" when the following item is expanded

<item ...>
 <conditional−subitem condition="${v1}">
 <subitem when="a" label="Step for A." />
 <subitem when="b" label="Step for B." />
 </conditional−subitem>
</item>

then the second sub−item is selected and the item expands to something equivalent to

<item ...>
 <subitem label="Step for B."/>
</item>

repeated−subitem

<!ELEMENT repeated−subitem (subitem)>
<!ATTLIST repeated−subitem
 values CDATA #REQUIRED
>

Each <repeated−subitem> element describes a sub−item that expands into 0, 1, or more similar sub−steps.
<repeated−subitem> attributes are as follows:

values − A string containing a comma−separated list of values. If the attribute string has the form
"${var}", it is considered a reference to a cheat sheet variable var, and value of the condition will be
the value of the variable for the cheat sheet at the start of execution of the containing <item> element
(or the empty string if the variable is unbound at that time).

•

The values attribute provides a list of comma−separated strings; the <subitem> child provide the template.
When the item is expanded, the <repeated−subitem> element is replaced by copies of the <subitem> element
with occurrences of the variable "this" replaced by the corresponding string value.

For example, if the cheat sheet variable named "v1" has the value "1,b,three" when the following item is
expanded

<item ...>
 <repeated−subitem values="${v1}">
 <subitem label="Step ${this}.">
 <action class="com.xyz.myaction" pluginId="com.xyz" param1="${this}"/>
 </subitem>
 </repeated−subitem>
</item>

then the item expands to something equivalent to:

<item ...>
 <subitem label="Step 1.">
 <action class="com.xyz.myaction" pluginId="com.xyz" param1="1"/>
 </subitem>
 <subitem label="Step b.">

 Welcome to Eclipse

repeated−subitem 210

 <action class="com.xyz.myaction" pluginId="com.xyz" param1="b"/>
 </subitem>
 <subitem label="Step three.">
 <action class="com.xyz.myaction" pluginId="com.xyz" param1="three"/>
 </subitem>
</item>

action

<!ELEMENT action EMPTY>
<!ATTLIST action
 class CDATA #REQUIRED
 pluginId CDATA #REQUIRED
 param1 CDATA #IMPLIED
 ...
 param9 CDATA #IMPLIED
 confirm ("true" | "false") "false"
 when CDATA #IMPLIED
>

Each <action> element describes an action in a cheat sheet. <action> attributes are as follows:

class − The fully−qualified name of the Java class implementing
org.eclipse.jface.action.IAction. If this action also implements
org.eclipse.ui.cheatsheets.ICheatSheetAction it will be invoked via its
run(String[],ICheatSheetManager) method and be passed the cheat sheet manager and action
parameters. The pluginId attribute must be present whenever this attribute is present. It is strongly
recommended that actions intended to be invoked from cheat sheets should report success/fail
outcome if running the action might fail (perhaps because the user cancels the action from its dialog).
(See org.eclipse.jface.action.Action.notifyResult(boolean) for details.)

•

pluginId − The id of the plug−in which contains the Java class of the action class. This attribute must
be present whenever the class attribute is present.

•

paramN − For action classes that also implement
org.eclipse.ui.cheatsheets.ICheatSheetAction, the string values of these attributes
are passed to the action when it is invoked. You can pass up to 9 parameters to a cheat sheet action
(param1, param2, etc.). The parameters supplied must start with parameter 1 and be contiguous; that
is, it is illegal to specify param2 without param1 also being present. If the attribute string has the
form "${var}", it is considered a reference to a cheat sheet variable var, and value of the condition
will be the value of the variable for the cheat sheet at the start of execution of the containing <item>
element (or the empty string if the variable is unbound at that time).

•

confirm − "true" indicates this step (or sub−step) requires the user to manually confirm that the action
has been completed.

•

when − Indicates this action is to be used if and only if the value of the condition attribute of the
containing <perform−when> element matches this string value. This attribute is ignored if the
<action> element is not a child of a <perform−when> element.

•

perform−when

<!ELEMENT perform−when (action+)>
<!ATTLIST perform−when
 condition CDATA #REQUIRED
>

 Welcome to Eclipse

action 211

Each <perform−when> element describes an action in a cheat sheet. <perform−when> attributes are as
follows:

condition − Arbitrary string value used to select which child <action> will be performed. If the
attribute string has the form "${var}", it is considered a reference to a cheat sheet variable var, and
value of the condition will be the value of the variable for the cheat sheet at the start of execution of
the containing <item> element (or the empty string if the variable is unbound at that time).

•

The condition attribute on the <conditional−subitem> element provides a string value (invariably this value
comes from a cheat sheet variable). Each of the <subitem> children must carry a when attribute with a distinct
string value. When the item is expanded, the <conditional−subitem> element is replaced by the <subitem>
element with the matching value. It is considered an error if there is no <subitem> element with a matching
value.

For example, if the cheat sheet variable named "v1" has the value "b" when the following item is expanded

<item ...>
 <subitem label="Main step">
 <perform−when condition="${v1}">
 <action when="a" class="com.xyz.action1" pluginId="com.xyz" />
 <action when="b" class="com.xyz.action2" pluginId="com.xyz" />
 </conditional−subitem>
 </subitem>
</item>

then the second action is selected and the item expands to something equivalent to

<item ...>
 <subitem label="Main step">
 <action class="com.xyz.action2" pluginId="com.xyz" />
 </subitem>
</item>

Example

The following is an example of a very simple cheat sheet content file:

<?xml version="1.0" encoding="UTF−8"?>
<cheatsheet title="Example">
 <intro>
 <description>Example cheat sheet with two steps.</description>
 </intro>
 <item title="Step 1">
 <description>This is a step with an action.</description>
 <action class="com.xyz.myaction" pluginId="com.xyz"/>
 </item>
 <item title="Step 2">
 <description>This is a fully manual step.</description>
 </item>
</cheatsheet>

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the

 Welcome to Eclipse

Example 212

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Example 213

http://www.eclipse.org/legal/cpl-v10.html

Cheat Sheet Item Extension
Identifier:

org.eclipse.ui.cheatsheets.cheatSheetItemExtension

Since:

3.0

Description:

This extension point should be used when an extra button needs to be added to a step in the cheat sheet. You
can put a new attribute into the "item" tag in the cheat sheet content file, and when that value is read by the
cheat sheet framework, it will check to see if there is a class registered through this extension point that will
handle this attribute. The attribute name found in the cheat sheet content file is matched against all of the
values found in the "itemAttribute" attribute of all of the registered cheatsheetItemExtension point
implementations. If there is a match, the class specified to handle this item attribute is loaded by the cheat
sheet framework and is called to handle the attribute specified in the cheat sheet content file. After having
parsed the value of the item attribute, the class remains available to the cheat sheets framework. When the
item is rendered for the cheat sheets view, the class is once again called to handle the addition of components
to a Composite. The items that are added to this composite are displayed in the cheat sheet step (currently,
beside the help icon). It is displayed only for the step that is described by the "item" tag that the attribute
appeared in the cheat sheet content file. The suggested use of this extension point is adding a small (16x16)
button with a graphic that opens a dialog box when pressed.

Configuration Markup:

<!ELEMENT extension (itemExtension)*>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT itemExtension EMPTY>

<!ATTLIST itemExtension

itemAttribute CDATA #REQUIRED

class CDATA #REQUIRED>

Cheat Sheet Item Extension 214

Use this item extension to add elements to cheat sheet steps. You can use this extension point to add icons and
buttons (currently, beside the help icon) for a step in the cheat sheet. You specify the name of an attribute that
you will put into the cheat sheet item tag. You also specify a class that will handle the parsing of the attribute
value from the cheat sheet content file when the cheat sheet is loaded. The attribute valuemust be a string. The
specified class must subclass
org.eclipse.ui.cheatsheets.AbstractItemExtensionElement. After the cheat sheet
content file is parsed and loaded, the class specified in the extension point is called again through the interface
to add graphics or buttons to the step in the cheat sheet (currently, next to the help button).

itemAttribute − This attribute value must be the string value of an attribute name that is put into an
item tag in the cheat sheet content file. If this attribute string matches an attribute parsed from the
item tag in the cheat sheet content file, the class specified will be loaded and will be called to parse
the full value of the attribute using the w3 DOM specification. It will later be called to add controls to
a Composite, and the added components (usually graphics or buttons) will appear in the step of the
cheat sheet for the item specified (currently, beside the help icon for that step).

•

class − The fully qualified class name of the class that subclasses
org.eclipse.ui.cheatsheet.AbstractItemExtensionElement to handle unknown
attributes in the cheat sheet content file and extend the steps in the cheat sheet. The class must be
public, and have a public 1−argument constructor that accepts the attribute name (a String).

•

Examples:

Here is an example implementation of this extension point:

<extension point=

"org.eclipse.ui.cheatsheets.cheatSheetItemExtension"

>

<itemExtension itemAttribute=

"xyzButton"

class=

"com.example.HandleParsingAndAddButton"

>

</itemExtension>

</extension>

And here is the item attribute for that extension:

 Welcome to Eclipse

Cheat Sheet Item Extension 215

<item title=

"XYZ Title"

xyzButton=

"/icon/button.gif"

>

Note that the value of the attribute in the item tag can be ANYTHING. It can be anything because the class
that parses that attribute is the class HandleParsingAndAddButton, which in this example parses a string
/icon/button.gif from the attribute. It later will use that info to load the gif and use it as the icon for a new
button.

API Information:

See the Javadoc information for org.eclipse.ui.cheatsheets.AbstractItemExtensionElement for API details.

Supplied Implementation:

There is no supplied implementation at this time.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Cheat Sheet Item Extension 216

http://www.eclipse.org/legal/cpl-v10.html

Contexts
Identifier:

org.eclipse.ui.contexts

Since:

3.0

Description:

The org.eclipse.ui.contexts extension point is used to declare contexts and associated elements.

Configuration Markup:

<!ELEMENT extension (context , contextContextBinding)>

<!ATTLIST extension

id CDATA #IMPLIED

name CDATA #IMPLIED

point CDATA #REQUIRED>

id − An optional identifier of the extension instance.•
name − An optional name of the extension instance.•
point − A fully qualified identifier of the target extension point.•

<!ELEMENT context EMPTY>

<!ATTLIST context

description CDATA #IMPLIED

id CDATA #REQUIRED

name CDATA #REQUIRED

parentId CDATA #IMPLIED>

This element is used to define contexts. If more than one of these elements exist with the same id attribute,
only the last declared element (in order of reading the registry) is considered valid.

description − A translatable short description of this context for display in the UI.•
id − The unique identifier of this context.•

Contexts 217

name − The translatable name of this context for display in the UI.•
parentId − The unique identifier of the parent of this context.•

Examples:

The plugin.xml file in the org.eclipse.ui plugin makes use of the
org.eclipse.ui.contexts extension point.

API Information:

There is currently no public API for declaring contexts or associated elements other than this extension point.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Contexts 218

http://www.eclipse.org/legal/cpl-v10.html

Decorators
Identifier:

org.eclipse.ui.decorators

Since:

Release 2.0

Description:

This extension point is used to add decorators to views that subscribe to a decorator manager. As of 2.1 there
is the concept of a lightweight decorator that will handle the image management for the decorator. It is also
possible to declare a lightweight decorator that simply overlays an icon when enabled that requires no
implementation from the plug−in.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enablement
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub−element. In the simplest case, this will be an objectClass, objectState,
pluginState, or systemProperty element. In the more complex case, the and, or, and not elements
can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub−elements.
The not element must contain only 1 sub−element.

Configuration Markup:

<!ELEMENT extension (decorator*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT decorator (description? , enablement?)>

<!ATTLIST decorator

id CDATA #REQUIRED

Decorators 219

label CDATA #REQUIRED

class CDATA #IMPLIED

objectClass CDATA #IMPLIED

adaptable (true | false)

state (true | false)

lightweight (true|false)

icon CDATA #IMPLIED

location (TOP_LEFT|TOP_RIGHT|BOTTOM_LEFT|BOTTOM_RIGHT|UNDERLAY) >

id − a unique name that will be used to identify this decorator.•
label − a translatable name that will be used in the workbench window menu to represent this
decorator.

•

class − a fully qualified name of a class which implements
org.eclipse.jface.viewers.ILabelDecorator if lightweight is false or
org.eclipse.jface.viewers.ILightweightLabelDecorator if lightweight is true.
The default value is false. If there is no class element it is assumed to be true.

•

objectClass − a fully qualified name of a class which this decorator will be applied to. Deprecated in
2.1. Make this value part of the enablement.

•

adaptable − a flag that indicates if types that adapt to IResource should use this object contribution.
This flag is used only if objectClass adapts to IResource. Default value is false.

•

state − a flag that indicates if the decorator is on by default. Default value is false.•
lightweight − The lightweight flag indicates that the decorator is either declarative or implements
org.eclipse.jface.viewers.ILightweightLabelDecorator.

•

icon − if the decorator is lightweight and the class is not specified this is the path to the overlay image
to apply

•

location − if the decorator is lightweight this is the location to apply the decorator to. Defaults to
BOTTOM_RIGHT.

•

<!ELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the decorator. This
will be shown in the Decorators preference page so it is recommended that this is included. Default value is an
empty String.

<!ELEMENT enablement (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

 Welcome to Eclipse

Decorators 220

<!ELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<!ELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT not (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub−element expressions.

<!ELEMENT objectClass EMPTY>

<!ATTLIST objectClass

name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object in
the selection implements the specified class or interface, the expression is evaluated as true.

name − a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

•

<!ELEMENT objectState EMPTY>

<!ATTLIST objectState

 Welcome to Eclipse

Decorators 221

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in the
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of
expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.IActionFilter interface.

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

<!ELEMENT pluginState EMPTY>

<!ATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug−in. The state of the plug−in may be one of the following:
installed or activated.

id − the identifier of a plug−in which may or may not exist in the plug−in registry.•
value − the required state of the plug−in. The state of the plug−in may be one of the following:
installed or activated.

•

<!ELEMENT systemProperty EMPTY>

<!ATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

name − the name of the system property.•

 Welcome to Eclipse

Decorators 222

value − the required value of the system property.•

Examples:

The following are example of decorators:

A full decorator. The plug−in developer must handle their own image support.

<extension point=

"org.eclipse.ui.decorators"

>

<decorator id=

"com.xyz.decorator"

label=

"XYZ Decorator"

state=

"true"

class=

"com.xyz.DecoratorContributor"

>

<enablement>

<objectClass name=

"org.eclipse.core.resources.IResource"

/>

</enablement>

</decorator>

</extension>

 Welcome to Eclipse

Decorators 223

A lightweight decorator. There is a concrete class but as it is an ILightweightLabelDecorator it only needs to
supply text and an ImageDescriptor and therefore needs no resource handling.

<extension point=

"org.eclipse.ui.decorators"

>

<decorator id=

"com.xyz.lightweight.decorator"

label=

"XYZ Lightweight Decorator"

state=

"false"

class=

"com.xyz.LightweightDecoratorContributor"

lightweight=

"true"

>

<enablement>

<objectClass name=

"org.eclipse.core.resources.IResource"

/>

</enablement>

</decorator>

</extension>

A declarative lightweight decorator. There is no concrete class so it supplies an icon and a quadrant to apply
that icon.

 Welcome to Eclipse

Decorators 224

<extension point=

"org.eclipse.ui.decorators"

>

<decorator id=

"com.xyz.lightweight.declarative.decorator"

label=

"XYZ Lightweight Declarative Decorator"

state=

"false"

lightweight=

"true"

icon=

"icons/full/declarative.gif"

location=

"TOP_LEFT"

>

<enablement>

<objectClass name=

"org.eclipse.core.resources.IResource"

/>

</enablement>

</decorator>

</extension>

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
org.eclipse.jface.viewers.ILabelDecorator (if lightweight is false) or
org.eclipse.jface.viewers.ILightweightLabelDecorator. This class is loaded as late as

 Welcome to Eclipse

Decorators 225

possible to avoid loading the entire plug−in before it is really needed. Declarative decorators do not entail any
plug−in activation and should be used whenever possible. Non−lightweight decorators will eventually be
deprecated.

Supplied Implementation:

Plug−ins may use this extension point to add new decorators to be applied to views that use the decorator
manager as their label decorator. To use the decorator manager, use the result of
IViewPart.getDecoratorManager() as the decorator for an instance of DecoratingLabelProvider. This is
currently in use by the Resource Navigator.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Decorators 226

http://www.eclipse.org/legal/cpl-v10.html

Drop Actions
Identifier:

org.eclipse.ui.dropActions

Description:

This extension point is used to add drop behaviour to views defined by other plugins.

Due to the UI layering imposed by the plugin mechanism, views are often not aware of the content and nature
of other views. This can make drag and drop operations between plugins difficult. For example, one may wish
to provide Java refactoring support whereby the user drags a method from the Java editor's content outliner
into another java file in the resource navigator. Since the resource navigator doesn't know anything about Java
content, it doesn't know how to behave when java methods are dropped onto it. Similarly, an ISV may want to
drop some of their content into one of the Java viewers.

The org.eclipse.ui.dropActions extension point is provided by the Platform to address these
situations. This mechanism delegates the drop behaviour back to the originator of the drag operation. This
behaviour is contained in an action that must implement
org.eclipse.ui.part.IDropActionDelegate. The viewer that is the source of the drag operation
must support the org.eclipse.ui.part.PluginTransfer transfer type, and place a
PluginTransferData object in the drag event. See
org.eclipse.jface.viewers.StructuredViewer#addDragSupport to learn how to add drag support to a viewer.

Configuration Markup:

<!ELEMENT extension (action*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT action EMPTY>

<!ATTLIST action

id CDATA #REQUIRED

class CDATA #REQUIRED>

Drop Actions 227

id − a unique identifier that can be used to reference this action•
class − the name of the fully qualified class that implements
org.eclipse.ui.part.IDropActionDelegate.

•

Examples:

The following is an example of a drop action extension:

<extension point=

"org.eclipse.ui.dropActions"

>

<action id=

"my_drop_action"

class=

"com.xyz.eclipse.TestDropAction"

>

</action>

</extension>

Here is an example of a drag listener that makes use of the drop action defined above.

class MyDragListener extends DragSourceAdapter {
 public void dragSetData(DragSourceEvent event) {
 if (PluginTransfer.getInstance().isSupportedType(event.dataType)) {
 byte[] dataToSend = ...//enter the data to be sent.
 event.data = new PluginTransferData(
 my_drop_action, dataToSend);
 }
 }
}

For a more complete example, see the Platform readme example. In that example, a drop action is defined in
ReadmeDropActionDelegate, and it is used by ReadmeContentOutlineDragListener.

API Information:

The value of the class attribute must be a fully qualified name of a Java class that implements
org.eclipse.ui.part.IDropActionDelegate. This class is loaded as late as possible to avoid
loading the entire plug−in before it is really needed

 Welcome to Eclipse

Drop Actions 228

Supplied Implementation:

The workbench does not provide an implementation for this extension point. Plug−ins can contribute to this
extension point to add drop behavior to views defined by other plugins.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Drop Actions 229

http://www.eclipse.org/legal/cpl-v10.html

Editor Menus, Toolbars and Actions
Identifier:

org.eclipse.ui.editorActions

Description:

This extension point is used to add actions to the menu and toolbar for editors registered by other plug−ins.

The initial contribution set for an editor is defined by another extension point (org.eclipse.ui.editors). One set
of actions is created and shared by all instances of the same editor type. When invoked, these action act upon
the active editor. This extension point follows the same pattern. Each action extension is created and shared
by all instances of the same editor type. The action class is required to implement
org.eclipse.ui.IEditorActionDelegate. The active editor is passed to the delegate by invoking
IEditorActionDelegate.setActiveEditor.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enablement
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub−element. In the simplest case, this will be an objectClass, objectState,
pluginState, or systemProperty element. In the more complex case, the and, or, and not elements
can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub−elements.
The not element must contain only 1 sub−element.

Configuration Markup:

<!ELEMENT extension (editorContribution+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT editorContribution (menu* , action*)>

<!ATTLIST editorContribution

id CDATA #REQUIRED

Editor Menus, Toolbars and Actions 230

targetID CDATA #REQUIRED>

This element is used to define a group of editor actions and/or menus.

id − a unique identifier used to reference this contribution.•
targetID − a unique identifier of a registered editor that is the target of this contribution.•

<!ELEMENT action (selection* | enablement?)>

<!ATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED

accelerator CDATA #IMPLIED

definitionId CDATA #IMPLIED

menubarPath CDATA #IMPLIED

toolbarPath CDATA #IMPLIED

icon CDATA #IMPLIED

disabledIcon CDATA #IMPLIED

hoverIcon CDATA #IMPLIED

tooltip CDATA #IMPLIED

helpContextId CDATA #IMPLIED

style (push|radio|toggle) "push"

state (true | false)

class CDATA #REQUIRED

enablesFor CDATA #IMPLIED

actionID CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 231

id − a unique identifier used as a reference for this action.•
label − a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.

•

accelerator − Deprecated: Use the definitionId attribute instead.•
definitionId − Specifies the command that this action will handle. By specifying and action, the key
binding service can assign a key sequence to this action. See the extension point
org.eclipse.ui.commands for more information.

•

menubarPath − a slash−delimited path ('/') used to specify the location of this action in the menu bar.
Each token in the path, except the last one, must represent a valid identifier of an existing menu in the
hierarchy. The last token represents the named group into which this action will be added. If the path
is omitted, this action will not appear in the menu bar.

•

toolbarPath − a slash−delimited path ('/') that is used to specify the location of this action in the
toolbar. The first token represents the toolbar identifier (with "Normal" being the default toolbar),
while the second token is the named group within the toolbar that this action will be added to. If the
group does not exist in the toolbar, it will be created. If toolbarPath is omitted, the action will not
appear in the toolbar.

•

icon − a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug−in. The icon will appear in toolbars but not in
menus. Enabled actions will be represented in menus by the hoverIcon.

•

disabledIcon − a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug−in. The disabled icon will appear in
toolbars but not in menus. Icons for disabled actions in menus will be supplied by the OS.

•

hoverIcon − a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug−in.

•

tooltip − a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

•

helpContextId − a unique identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

•

style − an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push − as a regular menu item or tool item.

radio − as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio set.
The initial value is specified by the state attribute.

toggle − as a checked style menu item or as a toggle tool item. The initial
value is specified by the state attribute.

•

state − an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.

•

class − the name of the fully qualified class that implements
org.eclipse.ui.IEditorActionDelegate

•

enablesFor − a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:

! − 0 items selected

? − 0 or 1 items selected

•

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 232

+ − 1 or more items selected

multiple, 2+ − 2 or more items selected

n − a precise number of items selected.a precise number of
items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* − any number of items selected
actionID − Internal tag for use by the text editors. Should not be used by plug−in developers.•

<!ELEMENT menu (separator+ , groupMarker*)>

<!ATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

id − a unique identifier that can be used to reference this menu.•
label − a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

•

path − the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

•

<!ELEMENT separator EMPTY>

<!ATTLIST separator

name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

name − the name of the menu separator. This name can later be referenced as the last token in a menu
path. Therefore, a separator also serve as named group into which actions and menus can be added.

•

<!ELEMENT groupMarker EMPTY>

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 233

<!ATTLIST groupMarker

name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

name − the name of the group marker. This name can later be referenced as the last token in the menu
path. It serves as named group into which actions and menus can be added.

•

<!ELEMENT selection EMPTY>

<!ATTLIST selection

class CDATA #REQUIRED

name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

class − a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

•

name − an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

•

<!ELEMENT enablement (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<!ELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<!ELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub−element expressions.

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 234

<!ELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT not (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub−element expressions.

<!ELEMENT objectClass EMPTY>

<!ATTLIST objectClass

name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object in
the selection implements the specified class or interface, the expression is evaluated as true.

name − a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

•

<!ELEMENT objectState EMPTY>

<!ATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in the
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of
expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.IActionFilter interface.

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 235

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

<!ELEMENT pluginState EMPTY>

<!ATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug−in. The state of the plug−in may be one of the following:
installed or activated.

id − the identifier of a plug−in which may or may not exist in the plug−in registry.•
value − the required state of the plug−in. The state of the plug−in may be one of the following:
installed or activated.

•

<!ELEMENT systemProperty EMPTY>

<!ATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

name − the name of the system property.•
value − the required value of the system property.•

Examples:

The following is an example of an editor action extension:

<extension point=

"org.eclipse.ui.editorActions"

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 236

>

<editorContribution id=

"com.xyz.xyzContribution"

targetID=

"com.ibm.XMLEditor"

>

<menu id=

"XYZ"

label=

"&XYZ Menu"

>

<separator name=

"group1"

/>

</menu>

<action id=

"com.xyz.runXYZ"

label=

"&Run XYZ Tool"

menubarPath=

"XYZ/group1"

toolbarPath=

"Normal/additions"

style=

"toggle"

state=

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 237

"true"

icon=

"icons/runXYZ.gif"

tooltip=

"Run XYZ Tool"

helpContextId=

"com.xyz.run_action_context"

class=

"com.xyz.actions.RunXYZ"

>

<selection class=

"org.eclipse.core.resources.IFile"

name=

"*.java"

/>

</action>

</editorContribution>

</extension>

In the example above, the specified action will appear as a check box item in the new top−level menu named
"XYZ Menu", and as a toggle button in the toolbar. The action is enabled if the selection contains only Java
file resources.

The following is an other example of an editor action extension:

<extension point=

"org.eclipse.ui.editorActions"

>

<editorContribution id=

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 238

"com.xyz.xyz2Contribution"

targetID=

"com.ibm.XMLEditor"

>

<menu id=

"XYZ2"

label=

"&XYZ2 Menu"

path=

"edit/additions"

>

<separator name=

"group1"

/>

</menu>

<action id=

"com.xyz.runXYZ2"

label=

"&Run XYZ2 Tool"

menubarPath=

"edit/XYZ2/group1"

style=

"push"

icon=

"icons/runXYZ2.gif"

tooltip=

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 239

"Run XYZ2 Tool"

helpContextId=

"com.xyz.run_action_context2"

class=

"com.xyz.actions.RunXYZ2"

>

<enablement>

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<not>

<objectState name=

"extension"

value=

"java"

/>

</not>

</and>

</enablement>

</action>

</editorContribution>

</extension>

In the example above, the specified action will appear as a menu item in the sub−menu named "XYZ2 Menu"
in the top level "Edit" menu. The action is enabled if the selection contains no Java file resources.

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 240

API Information:

The value of the class attribute must be a fully qualified name of a Java class that implements
org.eclipse.ui.IEditorActionDelegate. This class is loaded as late as possible to avoid loading
the entire plug−in before it is really needed. The method setActiveEditor will be called each time an
editor of the specified type is activated. Only one set of actions and menus will be created for all instances of
the specified editor type, regardless of the number of editor instances currently opened in the Workbench.

This extension point can be used to contribute actions into menus previously created by the target editor. In
addition, menus and actions can be contributed to the Workbench window. The identifiers for actions and
major groups within the Workbench window are defined in
org.eclipse.ui.IWorkbenchActionConstants. These should be used as a reference point for the
addition of new actions. Top level menus are created by using the following values for the path attribute:

additions − represents a named group immediately to the left of the Window menu.•

Omitting the path attribute will result in adding the new menu into the additions menu bar group.

Actions and menus added into these paths will only be shown while the associated editor is active. When the
editor is closed, menus and actions will be removed.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the
action enable state directly within its selectionChanged method.

Action and menu labels may contain special characters that encode mnemonics using the following rules:

Mnemonics are specified using the ampersand ('&') character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

1.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in the
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug−in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can
replace the selection element using the sub−elements objectClass and objectState. For example,
the following:

<selection class=

"org.eclipse.core.resources.IFile"

name=

"*.java"

>

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 241

</selection>

can be expressed using:

<enablement>

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<objectState name=

"extension"

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

The Workbench provides a built−in "Default Text Editor". Plug−ins can contribute into this default editor or
editors provided by other plug−ins.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Editor Menus, Toolbars and Actions 242

http://www.eclipse.org/legal/cpl-v10.html

Internal and External Editors
Identifier:

org.eclipse.ui.editors

Description:

This extension point is used to add new editors to the workbench. A editor is a visual component within a
workbench page. It is typically used to edit or browse a document or input object. To open an editor, the user
will typically invoke "Open" on an IFile. When this action is performed the workbench registry is
consulted to determine an appropriate editor for the file type and then a new instance of the editor type is
created. The actual result depends on the type of the editor. The workbench provides support for the creation
of internal editors, which are tightly integrated into the workbench, and external editors, which are launched
in a separate frame window. There are also various level of integration between these extremes.

In the case of an internal editor tight integration can be achieved between the workbench window and the
editor part. The workbench menu and toolbar are pre−loaded with a number of common actions, such as cut,
copy, and paste. The active part, view or editor, is expected to provide the implementation for these actions.
An internal editor may also define new actions which appear in the workbench window. These actions only
appear when the editor is active.

The integration between the workbench and external editors is more tenuous. In this case the workbench may
launch an editor but after has no way of determining the state of the external editor or collaborating with it by
any means except through the file system.

Configuration Markup:

<!ELEMENT extension (editor*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT editor EMPTY>

<!ATTLIST editor

id CDATA #REQUIRED

name CDATA #REQUIRED

Internal and External Editors 243

icon CDATA #IMPLIED

extensions CDATA #IMPLIED

class CDATA #IMPLIED

command CDATA #IMPLIED

launcher CDATA #IMPLIED

contributorClass CDATA #IMPLIED

default (true | false) "false"

filenames CDATA #IMPLIED

symbolicFontName CDATA #IMPLIED>

id − a unique name that will be used to identify this editor•
name − a translatable name that will be used in the UI for this editor•
icon − a relative name of the icon that will be used for all resources that match the specified
extensions. An icon is not required if you specify a command rather than a class. In that case, the
workbench will use the icon provided by the operating system.

•

extensions − an optional field containing the list of file types understood by the editor. This is a string
containing comma separate file extensions. For instance, an editor which understands hypertext
documents may register for "htm, html".

•

class − the name of a class that implements org.eclipse.ui.IEditorPart. The attributes
class, command, and launcher are mutually exclusive. If this attribute is defined then
contributorClass should also be defined.

•

command − a command to run in order to launch an external editor. The executable command must
be located on the system path or in the plug−in's directory. The attributes class, command, and
launcher are mutually exclusive.

•

launcher − the name of a class which that implements org.eclipse.ui.IEditorLauncher.
A launcher will open an external editor. The attributes class, command, and launcher are
mutually exclusive.

•

contributorClass − the name of a class that implements
org.eclipse.ui.IEditorActionBarContributor. This attribute should only be defined
if the class attribute is defined. This class is used to add new actions to the workbench menu and
tool bar which reflect the features of the editor type.

•

default − if true, this editor will be used as the default editor for the type. This is only relevant in a
case where more than one editor is registered for the same type. If an editor is not the default for the
type, it can still be launched using "Open with..." submenu for the selected resource.

•

filenames − an optional field containing the list of file names understood by the editor. This is a string
containing comma separate file names. For instance, an editor which understands specific hypertext
documents may register for "ejb.htm, ejb.html".

•

symbolicFontName − the symbolic name of a font. The symbolic font name must be the id of a
defined font (see org.eclipse.ui.fontDefinitions). If this attribute is missing or invalid then the font
name is the value of "org.eclipse.jface.textfont" in the editor's preferences store. If there is no
preference store or the key is not defined then the JFace text font will be used. The editor
implementation decides if it uses this symbolic font name to set the font.

•

 Welcome to Eclipse

Internal and External Editors 244

Examples:

The following is an example of an internal editor extension definition:

<extension point=

"org.eclipse.ui.editors"

>

<editor id=

"com.xyz.XMLEditor"

name=

"Fancy XYZ XML editor"

icon=

"./icons/XMLEditor.gif"

extensions=

"xml"

class=

"com.xyz.XMLEditor"

contributorClass=

"com.xyz.XMLEditorContributor"

symbolicFontName=

"org.eclipse.jface.textfont"

default=

"false"

>

</editor>

</extension>

 Welcome to Eclipse

Internal and External Editors 245

API Information:

If the command attribute is used, it will be treated as an external program command line that will be executed
in a platform−dependent manner.

If the launcher attribute is used the editor will also be treated as an external program. In this case the specified
class must implement org.eclipse.ui.IEditorLauncher. The launcher will be instantiated and then
open(IFile file) will be invoked to launch the editor.

If the class attribute is used, the workbench will assume that it is an internal editor and the specified class
must implement org.eclipse.ui.IEditorPart. It is common practice to subclass
org.eclipse.ui.EditorPart when defining a new editor type. It is also necessary to define a
contributorClass attribute. The specified class must implement
org.eclipse.ui.IEditorActionBarContributor, and is used to add new actions to the
workbench menu and tool bar which reflect the features of the editor type.

Within the workbench there may be more than one open editor of a particular type. For instance, there may be
one or more open Java Editors. To avoid the creation of duplicate actions and action images the editor concept
has been split into two. An IEditorActionBarContributor is responsible for the creation of actions.
The editor is responsible for action implementation. Furthermore, the contributor is shared by each open
editor. As a result of this design there is only one set of actions for one or more open editors.

The contributor will add new actions to the workbench menu and toolbar which reflect the editor type. These
actions are shared and, when invoked, act upon the active editor. The active editor is passed to the contributor
by invoking IEditorActionBarContributor.setActiveEditor. The identifiers for actions and
major groups within the workbench window are defined in
org.eclipse.ui.IWorkbenchActionConstants. These should be used as a reference point for the
addition of new actions. Top level menus are created by using the following values for the path attribute:

additions − represents a group to the left of the Window menu.•

Actions and menus added into these paths will only be shown while the associated editor is active. When the
editor is closed, menus and actions will be removed.

Supplied Implementation:

The workbench provides a "Default Text Editor". The end user product may contain other editors as part of
the shipping bundle. In that case, editors will be registered as extensions using the syntax described above.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Internal and External Editors 246

http://www.eclipse.org/legal/cpl-v10.html

Element Factories
Identifier:

org.eclipse.ui.elementFactories

Description:

This extension point is used to add element factories to the workbench. An element factory is used to recreate
IAdaptable objects which are persisted during workbench shutdown.

As an example, the element factory is used to persist editor input. The input for an editor must implement
org.eclipse.ui.EditorInput. The life cycle of an IEditorInput within an editor has a number
of phases.

The initial input for an editor is passed in during editor creation.1.
On shutdown the workbench state is captured. In this process the workbench will create a memento
for each open editor and its input. The input is saved as a two part memento containing a factory ID
and any primitive data required to recreate the element on startup. For more information see the
documentation on org.eclipse.ui.IPersistableElement.

2.

On startup the workbench state is read and the editors from the previous session are recreated. In this
process the workbench will recreate the input element for each open editor. To do this it will map the
original factory ID for the input element to a concrete factory class defined in the registry. If a
mapping exists, and the factory class is valid, an instance of the factory class is created. Then the
workbench asks the factory to recreate the original element from the remaining primitive data within
the memento. The resulting IAdaptable is cast to an IEditorInput and passed to the new
editor.

3.

Configuration Markup:

<!ELEMENT extension (factory*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT factory EMPTY>

<!ATTLIST factory

id CDATA #REQUIRED

Element Factories 247

class CDATA #REQUIRED>

id − a unique name that will be used to identify this factory.•
class − a fully qualified name of a class that implements org.eclipse.ui.IElementFactory•

Examples:

The following is an example of an element factory extension:

<extension point =

"org.eclipse.ui.elementFactories"

>

<factory id =

"com.xyz.ElementFactory"

class=

"com.xyz.ElementFactory"

>

</factory>

</extension>

API Information:

The value of the class attribute must be a fully qualified name of a class that implements
org.eclipse.ui.IElementFactory. An instance of this class must create an IAdaptable object
from a workbench memento.

Supplied Implementation:

The workbench provides an IResource factory. Additional factories should be added to recreate other
IAdaptable types commonly found in other object models, such as the Java Model.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Element Factories 248

http://www.eclipse.org/legal/cpl-v10.html

Export Wizards
Identifier:

org.eclipse.ui.exportWizards

Description:

This extension point is used to register export wizard extensions. Export wizards appear as choices within the
"Export Dialog", and are used to export resources from the workbench.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:

<!ELEMENT extension (wizard*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT wizard (description? , selection*)>

<!ATTLIST wizard

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED>

an element that will be used to create export wizard

id − a unique name that will be used to identify this wizard•
name − a translatable name that will be used in the dialog box to represent this wizard•

Export Wizards 249

class − a fully qualified name of the class that implements org.eclipse.ui.IExportWizard
interface

•

icon − a relative name of the icon that will be used alongside the wizard name in the export engine
listing.

•

<!ELEMENT description (#CDATA)>

an optional subelement whose body should represent a short description of the export engine functionality.

<!ELEMENT selection EMPTY>

<!ATTLIST selection

name CDATA #IMPLIED

class CDATA #REQUIRED>

an optional element that restricts the types and names of objects that can be selected when the wizard is
invoked.

name − an optional name filter. Each object in the workbench selection must match the name filter to
be passed to the wizard.

•

class − a fully qualified class name. If each object in the workbench selection implements this
interface the selection will be passed to the wizard. Otherwise, an empty selection is passed.

•

Examples:

The following is an example of an export extension definition:

<extension point=

"org.eclipse.ui.exportWizards"

>

<wizard id=

"com.xyz.ExportWizard1"

name=

 Welcome to Eclipse

Export Wizards 250

"XYZ Web Exporter"

class=

"com.xyz.exports.ExportWizard1"

icon=

"./icons/import1.gif"

>

<description>

A simple engine that exports Web project

</description>

<selection class=

"org.eclipse.core.resources.IProject"

/>

</wizard>

</extension>

API Information:

The value of the class attribute must be a name of the class that implements
org.eclipse.ui.IExportWizard.

Supplied Implementation:

The workbench comes preloaded with basic export engines for files and directories.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Export Wizards 251

http://www.eclipse.org/legal/cpl-v10.html

Font Definitions
Identifier:

org.eclipse.ui.fontDefinitions

Since:

Release 2.1

Description:

This extension point is used to register fonts with the JFace FontRegistry and with the workbench preference
store for use by the Fonts preference page. This extension point has been deprecated in 3.0. You should now
add fontDefinition elements to org.eclipse.ui.themes.

Configuration Markup:

<!ELEMENT extension (fontDefinition*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT fontDefinition (description?)>

<!ATTLIST fontDefinition

id CDATA #REQUIRED

label CDATA #REQUIRED

value CDATA #IMPLIED

categoryId CDATA #IMPLIED

defaultsTo CDATA #IMPLIED>

id − a unique name that can be used to identify this font definition.•
label − a translatable name of the font to be presented to the user.•

Font Definitions 252

value − the font value. This is in the form: fontname−style−height where fontname is the
name of a font, style is a font style (one of "regular", "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman−bold−36.

Only one (or neither) of value or defaultsTo may be used.

•

categoryId − the optional id of the presentation category this font belongs to.•
defaultsTo − the id of another font definition that is the default setting for the receiver. When there is
no preference for this font the font registry will have the value of defaultsTo set for it in the registry.

Only one or neither of value or defaultsTo may be used.

•

<!ELEMENT description EMPTY>

a short description of the fonts usage

Examples:

Following is an example of an a font definition extension:

<extension point=

"org.eclipse.ui.fontDefinition"

>

<fontDefinition id=

"org.eclipse.examples.textFont"

label=

"Text"

>

<description>

The text font

</description>

</fontDefinition>

 Welcome to Eclipse

Font Definitions 253

<fontDefinition id=

"org.eclipse.examples.userFont"

label=

"User"

defaultsTo=

"org.eclipse.jface.textFont"

>

<description>

The user font

</description>

</fontDefinition>

</extension>

API Information:

The defaultsTo tag is used as a directive by the Workbench to set the value of the font definition to the value
of defaultsTo whenever the defaultsTo fontDefinition is updated. This only occurs if the fontDefinition is at
its default value − once it is set by the user this updates will not occur. The workbench provides 4 fonts:

org.eclipse.jface.bannerfont. The banner font is used in wizard banners.
org.eclipse.jface.dialogfont. The dialog font is the font for widgets in dialogs.
org.eclipse.jface.headerfont. The header font is used for section headers in composite text pages.
org.eclipse.jface.textfont. The text font is used by text editors.

Supplied Implementation:

The workbench provides the font definitions for the text, dialog, banner and header fonts.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Font Definitions 254

http://www.eclipse.org/legal/cpl-v10.html

HelpSupport
Identifier:

org.eclipse.ui.helpSupport

Since:

3.0 (originally named org.eclipse.help.support)

Description:

This extension point is for contributing the help system UI. The platform should be configured with no more
than one help system UI.

Configuration Markup:

<!ELEMENT extension (config?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT config EMPTY>

<!ATTLIST config

class CDATA #REQUIRED>

class − the implementation class for displaying online and context−sensitive help. This class must
implement the org.eclipse.ui.help.AbstractHelpUI interface.

•

Examples:

The following is a sample usage of the help support extension point:

<extension point=

"org.eclipse.ui.helpSupport"

>

HelpSupport 255

<config class=

"com.example.XYZHelpUI"

/>

</extension>

API Information:

The supplied class must implement a subclass of org.eclipse.ui.help.AbstractHelpUI.
Implementation of the abstract methods in that class determine what happens when a user asks for online help
or context−sensitive help. The implementation should access contributed help information using
org.eclipse.help.HelpSystem.

Supplied Implementation:

The org.eclipse.help.ui plug−in contains an implementation of the help system UI.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

HelpSupport 256

http://www.eclipse.org/legal/cpl-v10.html

Marker Help
Identifier:

org.eclipse.ui.ide.markerHelp

Since:

3.0 (originally added in release 2.0 as org.eclipse.ui.markerHelp)

Description:

This extension point is used to associate a help context id with a specific "kind" of marker (a marker of a
certain type or having certain attribute values).

Configuration Markup:

<!ELEMENT extension (markerHelp*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT markerHelp (attribute*)>

<!ATTLIST markerHelp

markerType CDATA #IMPLIED

helpContextId CDATA #REQUIRED>

markerType − the unique type of the marker for which the help context applies.•
helpContextId − the unique id of the help context.•

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name CDATA #REQUIRED

Marker Help 257

value CDATA #REQUIRED>

name − the name of the attribute whose value is being specified.•
value − the specified value of the attribute.•

Examples:

The following is an example of a marker help extension (note the sub−element and the way attributes are
used):

<extension point=

"org.eclipse.ui.ide.markerHelp"

>

<markerHelp markerType=

"org.eclipse.ui.examples.readmetool.readmemarker"

helpContextId=

"org.eclipse.ui.examples.readmetool.marker_example1_context"

>

<attribute name=

"org.eclipse.ui.examples.readmetool.id"

value=

"1234"

/>

</markerHelp>

</extension>

In the example above, a help context id is associated with markers of type
org.eclipse.ui.examples.readmetool.readmemarker whose org.eclipse.ui.examples.readmetool.id attribute has
a value of 1234.

 Welcome to Eclipse

Marker Help 258

API Information:

It is up to the developer to ensure that only a single help context id is supplied for a given marker. If two or
more help context ids are supplied for a given kind of marker, the workbench does not define which will be
returned. However the workbench does define that the "most specific" context id will always be returned for a
given marker. That is, a context id associated with three matching attribute values will be returned before a
context id associated with only two.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Marker Help 259

http://www.eclipse.org/legal/cpl-v10.html

Marker Image Providers
Identifier:

org.eclipse.ui.ide.markerImageProviders

Since:

3.0 (originally added in release 2.1 as org.eclipse.ui.markerImageProviders)

Description:

The markerImageProvider extension point is the point for specifying the images for marker types in the
defining plug−in.

Configuration Markup:

<!ELEMENT extension (imageprovider*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT imageprovider EMPTY>

<!ATTLIST imageprovider

id CDATA #REQUIRED

markertype CDATA #REQUIRED

icon CDATA #IMPLIED

class CDATA #IMPLIED>

id − a unique name that can be used to identify this markerImageProvider.•
markertype − The markertype is the id of the type defined in
org.eclipse.core.resources.IMarker that this definition is applied to.

•

icon − If there is no class defined the icon attribute is used to define the icon that will be applied to
this type of marker.

•

class − The class is the fully qualifed name of the class that will be used to look up an image. This
class must implement IMarkerImageProvider.

•

Marker Image Providers 260

Examples:

The following an example of the two forms of marker image providers. The first one is one where the image
does not change and is declared directly. For the second one the image must be determined by an instance of
IMarkerImageProvider.

<extension point=

"org.eclipse.ui.ide.markerImageProviders"

>

<imageprovider markertype=

"org.eclipse.core.resources.taskmarker"

icon=

"taskicon.gif"

id=

"myPlugin.declarativeMarkerProvider"

>

</imageprovider>

<imageprovider markertype=

"org.eclipse.core.resources.problemmarker"

class=

"myPlugin.MyIMarkerImageProvider"

id=

"myPlugin.implementedMarkerProvider"

>

</imageprovider>

</extension>

 Welcome to Eclipse

Marker Image Providers 261

API Information:

[Enter API information here.]

Supplied Implementation:

[Enter information about supplied implementation of this extension point.]

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Marker Image Providers 262

http://www.eclipse.org/legal/cpl-v10.html

Marker Resolutions
Identifier:

org.eclipse.ui.ide.markerResolution

Since:

3.0 (originally added in release 2.0 as org.eclipse.ui.markerResolution)

Description:

This extension point is used to associate a marker resolution generator with a specific "kind" of marker. (a
marker of a certain type or having certain attribute values).

Configuration Markup:

<!ELEMENT extension (markerResolutionGenerator*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT markerResolutionGenerator (attribute*)>

<!ATTLIST markerResolutionGenerator

class CDATA #REQUIRED

markerType CDATA #IMPLIED>

class − the name of the class implementing IMarkerResolutionGenerator•
markerType − the type of marker for which the help context applies.•

<!ELEMENT attribute EMPTY>

<!ATTLIST attribute

name CDATA #REQUIRED

Marker Resolutions 263

value CDATA #REQUIRED>

name − the name of the attribute whose value is being specified.•
value − the specified value of the attribute.•

Examples:

The following is an example of a marker resolution generator extension (note the sub−element and the way
attributes are used):

<extension point=

"org.eclipse.ui.ide.markerResolution"

>

<markerResolutionGenerator class=

"org.eclipse.ui.examples.readmetool.ReadmeMarkerResolutionGenerator"

markerType=

"org.eclipse.ui.examples.readmetool.readmemarker"

>

<attribute name=

"org.eclipse.ui.examples.readmetool.id"

value=

"1234"

/>

</markerResolutionGenerator>

</extension>

In the example above, a marker resolution generator is associated with markers of type
org.eclipse.ui.examples.readmetool.readmemarker whose org.eclipse.ui.examples.redmetool.id attribute has a
value of 1234.

 Welcome to Eclipse

Marker Resolutions 264

API Information:

More than one marker help generator may be supplied for a given marker.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Marker Resolutions 265

http://www.eclipse.org/legal/cpl-v10.html

Project Nature Images
Identifier:

org.eclipse.ui.ide.projectNatureImages

Since:

3.0 (originally added in release 1.0 as org.eclipse.ui.projectNatureImages)

Description:

This extension point is used to associate an image with a project nature. The supplied image is used to form a
composite image consisting of the standard project image combined with the image of its nature. The supplied
image is drawn over the top right corner of the base image.

Configuration Markup:

<!ELEMENT extension (image*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT image (description?)>

<!ATTLIST image

id CDATA #REQUIRED

natureId CDATA #REQUIRED

icon CDATA #REQUIRED>

id − a unique name that will be used to identify this nature image.•
natureId − the unique name of the nature for which the image is being supplied.•
icon − a relative name of the image that will be associated with this perspective.•

<!ELEMENT description (#CDATA)>

Project Nature Images 266

a short description of what this image represents.

Examples:

The following is an example of a nature image extension:

<extension point=

"org.eclipse.ui.ide.projectNatureImages"

>

<image id=

"org.eclipse.ui.javaNatureImage"

natureId=

"Resource"

icon=

"icons/javaNature.gif"

>

</image>

</extension>

API Information:

The value of the natureId attribute is the nature id as defined by the plugin creating the project.

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Project Nature Images 267

http://www.eclipse.org/legal/cpl-v10.html

Resource Filters
Identifier:

org.eclipse.ui.ide.resourceFilters

Since:

3.0 (originally added in release 1.0 as org.eclipse.ui.resourceFilters)

Description:

This extension point is used to add predefined filters to views which show resources, such as the Navigator
view. These filters can be selected to hide resources whose names match the filter's pattern.

Configuration Markup:

<!ELEMENT extension (filter*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT filter (description?)>

<!ATTLIST filter

pattern CDATA #REQUIRED

selected (true | false) "false">

pattern − the pattern to match. May contain * and ? wildcards.•
selected − "true" if the pattern should be selected by default, "false" or undefined if not.•

<!ELEMENT description (#CDATA)>

the description of the purpose of this filter.

Resource Filters 268

Examples:

The following is an example of a resource filter extension, which filters out class files, and is selected by
default:

<extension point=

"org.eclipse.ui.ide.resourceFilters"

>

<filter pattern=

"*.class"

selected=

"true"

/>

</extension>

Copyright (c) 2002, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Resource Filters 269

http://www.eclipse.org/legal/cpl-v10.html

Import Wizards
Identifier:

org.eclipse.ui.importWizards

Description:

This extension point is used to register import wizard extensions. Import wizards appear as choices within the
"Import Dialog" and are used to import resources into the workbench.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:

<!ELEMENT extension (wizard*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT wizard (description? , selection*)>

<!ATTLIST wizard

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED>

an element that will be used to create import wizard

id − a unique name that will be used to identify this wizard•
name − a translatable name that will be used in the dialog box to represent this wizard•

Import Wizards 270

class − a fully qualified name of the class that implements org.eclipse.ui.IImportWizard
interface

•

icon − a relative name of the icon that will be used alongside the wizard name in the import engine
listing.

•

<!ELEMENT description (#CDATA)>

an optional subelement whose body should represent a short description of the import engine functionality.

<!ELEMENT selection EMPTY>

<!ATTLIST selection

name CDATA #IMPLIED

class CDATA #REQUIRED>

an optional element that restricts the types and names of objects that can be selected when the wizard is
invoked.

name − an optional name filter. Each object in the workbench selection must match the name filter to
be passed to the wizard.

•

class − fully qualified class name. If each object in the workbench selection implements this interface
the selection will be passed to the wizard. Otherwise, an empty selection is passed.

•

Examples:

The following is an example of an import extension definition:

<extension point=

"org.eclipse.ui.importWizards"

>

<wizard id=

"com.xyz.ImportWizard1"

name=

 Welcome to Eclipse

Import Wizards 271

"XYZ Web Scraper"

class=

"com.xyz.imports.ImportWizard1"

icon=

"./icons/import1.gif"

>

<description>

A simple engine that searches the Web and imports files

</description>

<selection class=

"org.eclipse.core.resources.IResource"

/>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a name of the class that implements
org.eclipse.ui.IImportWizard.

Supplied Implementation:

The workbench comes preloaded with the basic import engines for files and directories.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Import Wizards 272

http://www.eclipse.org/legal/cpl-v10.html

Intro Part
Identifier:

org.eclipse.ui.intro

Since:

3.0

Description:

This extension point is used to register implementations of special workbench parts, called intro parts, that are
responsible for introducing a product to new users. An intro part is typically shown the first time a product is
started up. Rules for associating an intro part implementation with particular products are also contributed via
this extension point.

The life cycle is as follows:

The intro area is created on workbench start up. As with editor and view areas, this area is managed
by an intro site (implementing org.eclipse.ui.intro.IIntroSite).

•

The id of the current product (Platform.getProduct()) is used to choose the relevant intro part
implementation.

•

The intro part class (implementing org.eclipse.ui.intro.IIntroPart) is created and
initialized with the intro site.

•

While the intro part is showing to the user, it can transition back and forth between full and standby
mode (either programmatically or explicitly by the user).

•

Eventually the intro part is closed (either programmatically or explicitly by the user). The current
perspective takes over the entire workbench window area.

•

Configuration Markup:

<!ELEMENT extension (intro* , introProductBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT intro EMPTY>

<!ATTLIST intro

Intro Part 273

id CDATA #REQUIRED

icon CDATA #IMPLIED

class CDATA #REQUIRED>

Specifies an introduction. An introduction is a product−specific presentation shown to first−time users on
product start up.

id − a unique identifier for this introduction•
icon − a plug−in−relative file name of the icon that will be associated with this introduction•
class − a fully qualified name of the class implementing the
org.eclipse.ui.intro.IIntroPart interface. A common practice is to subclass
org.eclipse.ui.part.intro.IntroPart in order to inherit the default functionality. This
class implements the introduction.

•

<!ELEMENT introProductBinding EMPTY>

<!ATTLIST introProductBinding

productId CDATA #REQUIRED

introId CDATA #REQUIRED>

Specifies a binding between a product and an introduction. These bindings determine which introduction is
appropriate for the current product (as defined by
org.eclipse.core.runtime.Platform.getProduct()).

productId − unique id of a product•
introId − unique id of an introduction•

Examples:

The following is an example of an intro part extension that contributes an particular introduction and
associates it with a particular product:

<extension point=

"org.eclipse.ui.intro"

>

 Welcome to Eclipse

Intro Part 274

<intro id=

"com.example.xyz.intro.custom"

class=

"com.example.xyz.intro.IntroPart"

/>

<introProductBinding productId=

"com.example.xyz.Product"

introId=

"com.example.xyz.intro.custom"

/>

</extension>

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
theorg.eclipse.ui.intro.IIntroPart interface by subclassing
org.eclipse.ui.part.intro.IntroPart.

Supplied Implementation:

There are no default implementations of the initial user experience. Each Eclipse−based product is responsible
for providing one that is closely matched to its branding and function.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Intro Part 275

http://www.eclipse.org/legal/cpl-v10.html

Intro Part Configuration
Identifier:

org.eclipse.ui.intro.config

Since:

3.0

Description:

This extension point is used to register an intro configuration. This configuration provides presentation
implementations and content for a given intro contribution. An intro appears when the workbench is first
launched and as a choice from the "Help" menu. The intro is typically used to introduce a user to a product
built on Eclipse.

The intros are organized into pages which usually reflect a particular category of introductory material. For
instance, a What's New page may introduce new concepts or functionality since previous versions. The
content defined by one intro configuration can be referenced and extended from other plug−ins using the
org.eclipse.ui.intro.configExtension extension point.

Configuration Markup:

<!ELEMENT extension (config+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT config (presentation)>

<!ATTLIST config

introId CDATA #REQUIRED

id CDATA #REQUIRED

content CDATA #REQUIRED>

Intro Part Configuration 276

A config element can be used to configure a customizable Intro Part. A config element must specify an id, an
introId, and a content file. The intro content file is an XML file that describes the pages, groups and links that
the intro has.

introId − the id of an intro part contribution that this configuration will be associated with.•
id − a unique name that can be used to identify this intro configuration•
content − an intro content file. The content file is an XML file that contains the specifics of the intro
(intro content file format specification). The content file is parsed at run time by the intro framework.
Based on the settings in this file, a certain number of pages, groups, and links are shown to the user
when the intro is opened.

•

<!ELEMENT presentation (implementation+)>

<!ATTLIST presentation

home−page−id CDATA #REQUIRED

standby−page−id CDATA #IMPLIED>

Presentation element that defines all the possible implementations of an intro part's presentation. It can have
one or more implementation defined in it. Only one implementation will be chosen at startup, based the os/ws
attributes of the implementations. Otherwise, the first one with no os/ws attributes defined will be chosen.

home−page−id − the id of the home (root) page, which is the first page of the introduction. This page
can be used as an entry point to the other main pages that make up the intro.

•

standby−page−id − an optional attribute to define the id of the standby page. The standby page will
be shown to the user when the Intro is set to standby.

•

<!ELEMENT implementation (head?)>

<!ATTLIST implementation

kind (swt|html)

style CDATA #IMPLIED

os CDATA #IMPLIED

ws CDATA #IMPLIED>

The presentation of the Platform's out of the box experience has two implementations. One of them is SWT
Browser based, while the other is UI Forms based. The customizable intro part can be configured to pick one
of those two presentations based on the current OS and WS. The type of the implementation can be swt or

 Welcome to Eclipse

Intro Part Configuration 277

html.

kind − Specifies the type of this implementation. The swt kind indicates a UI Forms based
implementation, and the html kind indicates an SWT Browser based implementation

•

style − The shared style that will be applied to all pages presented by this intro presentation
implementation.

•

os − The optional operating system specification used when choosing the presentation's
implementation. It can be any of the os designators defined by Eclipse, e.g., win32, linux, etc (see
Javadoc for org.eclipse.core.runtime.Platform).

•

ws − The optional windowing system specification used when choosing the presentation's
implementation. It can be any of the ws designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform).

•

Examples:

Here is a sample usage of the config extension point.

<extension id=

"intro"

point=

"org.eclipse.ui.intro.config"

>

<config introId=

"com.org.xyz.intro"

id=

"com.org.xyz.introConfig"

content=

"introContent.xml"

>

<presentation home−page−id=

"root"

title=

 Welcome to Eclipse

Intro Part Configuration 278

"%intro.title"

>

<implementation ws=

"win32"

style=

"css/shared.css"

kind=

"html"

os=

"win32"

>

</implementation>

<implementation style=

"css/shared_swt.properties"

kind=

"swt"

>

</implementation>

</presentation>

</config>

</extension>

API Information:

For further details see the spec for the org.eclipse.ui.intro.config API package.

Supplied Implementation:

The intro contributed by the org.eclipse.platform plugin is the only implementation within Eclipse.

 Welcome to Eclipse

Intro Part Configuration 279

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html.

 Welcome to Eclipse

Intro Part Configuration 280

http://www.eclipse.org/legal/cpl-v10.html

Intro Content File XML Format
Version 3.0

This document describes the intro content file structure as a series of DTD fragments (machine readable XML
schema).

introContent

<!ELEMENT introContent (page+ , group* , extensionContent*)>

The introContent element defines the body of the intro content file. The content file is made up of pages,
shared groups that can be included in multiple pages, and extensions to anchor points defined in other
configurations.

page

<!ELEMENT page (group* | link* | text* | head* | img* | include* | html* | title? | anchor*)>

<!ATTLIST page

url CDATA #IMPLIED

id CDATA #REQUIRED

style CDATA #IMPLIED

alt−style CDATA #IMPLIED

filteredFrom (swt|html)

content CDATA #IMPLIED

style−id CDATA #IMPLIED>

This element is used to describe a page to be displayed. The intro can display both dynamic and static pages.

Content for dynamic pages is generated from the subelements of the page, described below. The style or
alt−style will be applied depending on the presentation. The styles can be further enhanced by referencing the
id or class−id.

Static pages allow for the reuse of existing HTML documents within one's introduction, and can be linked to

Intro Content File XML Format 281

from any static or dynamic page. Static pages are not defined in a page element, they are simply html files that
can be linked to by other pages.

The home page, whose id is specified in the presentation element of the intro config extension point, can have
a url indicating that it is a static page. If no url is specified then the home page is assumed to be dynamic. All
other pages described using the page element are dynamic.
Also note that when the SWT presentation is used and a static page is to be displayed, an external brower is
launched and the current page remains visible.

The subelements used in a dynamic page are as follows: A group subelement is used to group related content
and apply style across the grouped content. A link subelement defines a link which can be used to link to a
static or dynamic page and run an intro action/command. A link is normally defined at the page level to
navigate between main pages versus links within a page. A text subelement defines textual content at the page
level. A head subelement is only applicable for the Web based presentation and allows for additional html to
be added to the HTML head section. This is useful for adding java scripts or extra style sheets. An img
subelement defines image content for the page level. An include subelement allows for reuse of any element
other than a page. An html subelement is only applicable for the Web based presentation and allows for the
embedding or inclusion of html into the page's content. Embedding allows for a fully defined html file to be
embeded within an HTML object by referencing the html file. Inclusion allows for including an html snippet
directly from an html file. A title subelement defines the title of the page. An anchor subelement defines a
point where external contributions can be made by an <extensionContent> element.

url − The optional relative path to an HTML file. When using the Web based presentation, this
HTML file will be displayed instead of any content defined for this page. This attribute is only
applicable to the home page, which is identified in the presentation element of the intro config
extension point. It is ignored for all other pages.

•

id − A unique name that can be used to identify this page.•
style − A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

•

alt−style − A relative path to a SWT presentation properies file which is applied to the page only
when using the SWT based presentation.

•

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

content − an optional attribute which can define the location of an introContent.xml file that
represents the content of this page. When this attribute is defined, all children and attributes in this
page element, except id, are ignored. This is because the content of this page is now assumed to reside
in the xml file pointed to by the content file attribute. When resolving to the content of this file, the
page with an id that matches the id defined in this page element is chosen. This seperation of pages
can be used when performance is an issue, as the content of a page is now loaded more lazily.

•

style−id − A means to classifiy the page into a given category so that a common style may be applied.•

group

<!ELEMENT group (group* | link* | text* | img* | include* | html* | anchor*)>

 Welcome to Eclipse

group 282

<!ATTLIST group

id CDATA #REQUIRED

label CDATA #IMPLIED

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

Used to group related content, content that should have similar style applied, or content that will be included
together in other pages.

id − unique identifier of the group•
label − a label or heading for this group•
style−id − A means to classifiy this group into a given category so that a common style may be
applied.

•

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

link

<!ELEMENT link (text? , img?)>

<!ATTLIST link

id CDATA #IMPLIED

label CDATA #IMPLIED

url CDATA #REQUIRED

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

Can link to a static HTML file, an external web site, or can run an Intro URL action.

id − A unique id that can be used to identify this link•
label − The text name of this link•
url − A valid URL to an external web site, a static html file, or an Intro URL that represents an Intro
action. All intro URLs have the following form: http://org.eclipse.ui.intro/<action
name>?param1=value1¶m2=value2 and will be processed by the intro framework.

•

 Welcome to Eclipse

link 283

The predefined actions will be described using this format:

action name − descripton of action
action parameter1 − description of parameter
action parameter2 (optional) − description of parameter
action parameter3 (optional) = ("true" | "false") "false" − description of parameter, choice of either true or
false and "false" is the default

The following predefined actions are included in the intro framework:

close − closes the intro part
no parameters required

navigate − navigate through the intro pages in a given direction or return to the home page
direction = ("backward" | "forward" | "home") − specifies the direction to navigate

openBrowser − open the url in an external browser
url − a valid URL to an external web site or a static HTML file
pluginId (optional) − only required if a static HTML file is specified. This is the id of the plug−in containing
the file.

runAction − runs the specified action
class − the fully qualified class name of the class that implements one of
org.eclipse.ui.intro.config.IIntroAction, org.eclipse.jface.actino.IAction,
or org.eclipse.ui.IActionDelegate
pluginId − The id of the plug−in which contains the class.
standby (optional) = ("true" | "false") "false" − indicate whether to set the intro into standby mode after
executing the action
additional parameters − any additional parameters are passed to actions that implement
org.eclipse.ui.intro.config.IIntroAction

setStandbyMode − sets the state of the intro part
standby = ("true" | "false") − true to put the intro part in its partially visible standy mode, and false to make it
fully visible

showHelp − Open the help system.
no parameters required

showHelpTopic − Open a help topic.
id − the URL of the help resource. (See Javadoc for
org.eclipse.ui.help.WorkbenchHelp.displayHelpResource

showMessage − Displays a message to the user using a standard information dialog.
message − the message to show the user

showStandby − Sets the intro part to standby mode and shows the standbyContentPart with the given input
partId − the id of the standbyContentPart to show
input − the input to set on the standbyContentPart

 Welcome to Eclipse

link 284

showPage − show the intro page with the given id
id − the id of the intro page to show
standby (optional) = ("true" | "false") "false" − indicate whether to set the intro into standby mode after
showing the page

style−id − A means to classifiy this link into a given category so that a common style may be applied.•
filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not appear as
content in the swt implementation.

•

html

<!ELEMENT html (img | text)>

<!ATTLIST html

id CDATA #REQUIRED

src CDATA #REQUIRED

type (inline|embed)

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

direct HTML to include in the page either by embedding the entire document, or inlining a snippet of HTML
in−place. A fallback image or text must be defined for alternative swt presentation rendering.
Embedding allows for a fully defined html file to be embedded within the dynamic page's content. An HTML
object element is created that references the html file.
Inclusion allows for including an html snippet directly from a file into the dynamic html page.

id − unique identifier of this HTML element•
src − relative or absolute URL to a file containing HTML•
type − if 'embed', a valid (full) HTML document will be embedded using HTML 'OBJECT' tag. If
'inline', value of 'src' will be treated as a snippet of HTML to emit 'in−place'. (if type is not specified,
this html object is ignored by the intro configuration).

•

style−id − A means to classifiy this HTML element into a given category so that a common style may
be applied.

•

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

 Welcome to Eclipse

html 285

title

<!ELEMENT title EMPTY>

<!ATTLIST title

id CDATA #IMPLIED

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

a snippet of text that can optionally contain escaped HTML tags. It is only used as a Page Title, and so a given
page can have a maximum of one title element.

id − unique identifier of this title.•
style−id − A means to classifiy this element into a given category so that a common style may be
applied

•

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

text

<!ELEMENT text EMPTY>

<!ATTLIST text

id CDATA #IMPLIED

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

a snippet of text that can optionally contain escaped HTML tags. It can include b and li tags. It can also
contain anchors for urls. If multiple paragraphs are needed, then the text can be divided into multiple sections
each begining and ending with the p tag.

id − unique identifier of this text.•
style−id − A means to classifiy this element into a given category so that a common style may be
applied

•

 Welcome to Eclipse

title 286

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

include

<!ELEMENT include EMPTY>

<!ATTLIST include

configId CDATA #IMPLIED

path CDATA #REQUIRED

merge−style (true | false) >

expands an element targeted by the given path and optional configId attributes. Path should uniquely address
an element within the specified configuration. It could point to a shared group defined at the configuration
level, or any element in a page.

configId − identifier of a configuration where the included element is defined. If specified, it is
assumed that the element to be included is specified in another configuration, and not the enclosing
configuration. In this case, that external config is loaded and the element is resolved from that new
config. If not specified, enclosing (parent) configuration of this include is assumed.

•

path − the path that uniquely represents the target element within the configuration (e.g.
page/group1/group2). It may be a group element, or any element that may be contained in a group.
You can not include a page.

•

merge−style − if true, style belonging to the page that owns the included element will be added to
list of styles of the including page. If false (the default), the including page is responsible for
controlling properties of the included element.

•

head

<!ELEMENT head EMPTY>

<!ATTLIST head

src CDATA #REQUIRED>

Direct HTML to include in a page's HEAD content area. It allows for additional html to be added to the
HTML HEAD section. This is useful for adding java srcipts or extra styles sheets. This markup is only to be
used with an HTML based intro part implementation. It is simply ignored in the case of a UI Forms
implementation. A page can have more than one head element. An implementation can have one and only one
head element (since it is a shared across all pages).

 Welcome to Eclipse

include 287

src − relative or absolute URL to a file containing HTML to include directly into the HTML head
section.

•

img

<!ELEMENT img EMPTY>

<!ATTLIST img

id CDATA #REQUIRED

src CDATA #REQUIRED

alt CDATA #IMPLIED

style−id CDATA #IMPLIED

filteredFrom (swt|html) >

An image that represents intro content and not presentation (as opposed to decoration images defined in
styles).

id − unique identifier of this image•
src − the file to load the image from•
alt − the alternative text to use when the image can not be loaded and as tooltip text for the image.•
style−id − A means to classifiy this image into a given category so that a common style may be
applied.

•

filteredFrom − an optional attribute that allows for filtering a given element out of a specific
implementation. For example, if a group has filteredFrom = swt, it means that this group will not
appear as content in the swt implementation.

•

extensionContent

<!ELEMENT extensionContent (text | group | link | html | include)>

<!ATTLIST extensionContent

style CDATA #IMPLIED

alt−style CDATA #IMPLIED

path CDATA #REQUIRED>

 Welcome to Eclipse

img 288

The content to be added to the target anchor. Only one extensionContent is allowed in a given
configExtension because if this extension could not be resolved (if the config could not be found, or the target
anchor element could not be found) then the pages and/or groups in the extension need to be ingnored.

style − A relative path to a CSS file which is applied to the page only when using the Web based
presentation.

•

alt−style − A relative path to a SWT presentation properies file which is applied to the page only
when using the SWT based presentation.

•

path − the path that uniquely represents the path to an anchor. (e.g. page/group1/group2/anchorId)
within the target configuration to be extended. It can only be an anchor which can be in any page or
group, including shared groups at configuration level

•

anchor

<!ELEMENT anchor EMPTY>

<!ATTLIST anchor

id CDATA #IMPLIED>

an anchor is the element used to declare extensibility. It is a location in the configurtaion that allows for
external contributions. Only anchors are valid target values for the path attribute in an extensionContent

id − unique id to identify this anchor.•

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

anchor 289

http://www.eclipse.org/legal/cpl-v10.html

Intro Part Configuration Extension
Identifier:

org.eclipse.ui.intro.configExtension

Since:

3.0

Description:

This extension point is used to extend an existing intro configuration by providing more content, additional
StandbyContentParts or additional IntroUrl actions.

Configuration Markup:

<!ELEMENT extension (configExtension+ , standbyContentPart* , action*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT configExtension EMPTY>

<!ATTLIST configExtension

configId CDATA #REQUIRED

content CDATA #REQUIRED>

Defines an extension to an intro configuration. Any page or group in an intro part configuration can be
extended, if it has declared extensability by defining anchors.

configId − the id of an intro contribution that will be extended•
content − an intro content file. The content file is an XML file that contains the specifics of the intro
(intro content file format specification). The content file is parsed at run time by the intro framework.
Based on the settings in this file, a certain number of pages, groups, and links are shown to the user
when the intro is opened.

•

Intro Part Configuration Extension 290

<!ELEMENT standbyContentPart EMPTY>

<!ATTLIST standbyContentPart

id CDATA #REQUIRED

pluginId CDATA #REQUIRED

class CDATA #REQUIRED>

standbyContentPart registration. Once registered, standby parts can be launched through an introURL action
of the following format:

http://org.eclipse.ui.intro/showStandby?partId=

<id of standbyContentPart>

id − a unique id that identifies this standbyContentPart.•
pluginId − the name of the plugin that holds the class defined in the "class" attribute.•
class − the fully qualified class name of the class that implements
org.eclipse.ui.intro.config.IStandbyContentPart to handle displaying
alternative standby content, such as a cheat sheet.

•

<!ELEMENT action EMPTY>

<!ATTLIST action

name CDATA #REQUIRED

replaces CDATA #REQUIRED>

custom Intro URL action registration. This can be used to create new Intro URL actions or a shortCut to
predefined actions.

name − a unique name that identifies this action.•
replaces − the macro which replaces the action name in the Intro URL.•

Examples:

Here is an example implementation of this extension point:

 Welcome to Eclipse

Intro Part Configuration Extension 291

<extension point=

"org.eclipse.ui.intro.configExtension"

>

<configExtension configId=

"com.org.xyz.introConfig"

content=

"extensionContent.xml"

/>

<standbyPart id=

"com.org.xyz.myStandbyPart"

class=

"com.org.xyz.internal.MyStandbyContent"

pluginId=

"com.org.xyz"

/>

<action name=

"shortcutAction"

replaces=

"http://org.eclipse.ui.intro/showStandby?partId=com.org.xyz.myStandbyPart"

/>

<action name=

"customAction"

replaces=

"runAction?pluginId=com.org.xyz&class=com.org.xyz.CustomAction&param1=value1"

/>

</extension>

 Welcome to Eclipse

Intro Part Configuration Extension 292

API Information:

For further details see the spec for the org.eclipse.ui.intro.config API package.

Supplied Implementation:

There are three supplied implementations:

org.eclipse.jdt, makes use of configExtension•
org.eclipse.pde, makes use of configExtension•
org.eclipse.platform, makes use of standbyPoint•

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html.

 Welcome to Eclipse

Intro Part Configuration Extension 293

http://www.eclipse.org/legal/cpl-v10.html

Creation Wizards
Identifier:

org.eclipse.ui.newWizards

Description:

This extension point is used to register resource creation wizard extensions. Creation wizards appear as
choices within the "New Dialog", and are typically used to create folders and files.

In the "New Dialog", wizards are organized into categories which usually reflect a particular problem domain.
For instance, a Java oriented plugin may define a category called "Java" which is appropriate for "Class" or
"Package" creation wizards. The categories defined by one plug−in can be referenced by other plug−ins using
the category attribute. Uncategorized wizards, as well as wizards with invalid category paths, will end up in an
"Other" category.

Wizards may optionally specify a description subelement whose body should contain short text about the
wizard.

Configuration Markup:

<!ELEMENT extension (category | wizard | primaryWizard)*>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT category EMPTY>

<!ATTLIST category

id CDATA #REQUIRED

name CDATA #REQUIRED

parentCategory CDATA #IMPLIED>

id − a unique name that can be used to identify this category•
name − a translatable name of the category that will be used in the dialog box•
parentCategory − a path to another category if this category should be added as a child•

Creation Wizards 294

<!ELEMENT wizard (description? , selection*)>

<!ATTLIST wizard

id CDATA #REQUIRED

name CDATA #REQUIRED

icon CDATA #IMPLIED

category CDATA #IMPLIED

class CDATA #REQUIRED

project (true | false)

finalPerspective CDATA #IMPLIED

preferredPerspectives CDATA #IMPLIED

helpHref CDATA #IMPLIED

descriptionImage CDATA #IMPLIED>

id − a unique name that can be used to identify this wizard•
name − a translatable name of the wizard that will be used in the dialog box•
icon − a relative path of an icon that will be used together with the name to represent the wizard as
one of the choices in the creation dialog box.

•

category − a slash−delimited path ('/') of category IDs. Each token in the path must represent a valid
category ID previously defined by this or some other plug−in. If omitted, the wizard will be added to
the "Other" category.

•

class − a fully qualified name of the Java class implementing org.eclipse.ui.INewWizard.•
project − an optional attribute indicating the wizard will create an IProject resource. Also causes the
wizard to appear as a choice within the "New Project Dialog".

•

finalPerspective − an optional attribute which identifies a perspective to activate when IProject
resource creation is finished.

•

preferredPerspectives − an optional attribute specifying a comma−separated list of perspective IDs.
If the current perspective is in this list, then no perspective activation occurs when IProject resource
creation is finished.

•

helpHref − a help url that can describe this wizard in detail.

Since 3.0

•

descriptionImage − a larger image that can help describe this wizard.

Since 3.0

•

<!ELEMENT description (#CDATA)>

 Welcome to Eclipse

Creation Wizards 295

an optional subelement whose body contains a short text describing what the wizard will do when started

<!ELEMENT selection EMPTY>

<!ATTLIST selection

class CDATA #REQUIRED

name CDATA #IMPLIED>

class − a fully qualified class name. If each object in the workbench selection implements this
interface the selection will be passed to the wizard. Otherwise, an empty selection is passed

•

name − an optional name filter. Each object in the workbench selection must match the name filter to
be passed to the wizard

•

<!ELEMENT primaryWizard EMPTY>

<!ATTLIST primaryWizard

id CDATA #REQUIRED>

a means of declaring that a wizard is "primary" in the UI. A primary wizard is emphasized in the new wizard
dialog. Please note that this element is not intended to be used by plug in developers! This element exists so
that product managers may emphasize a set of wizards for their products.

id − the id of a wizard that should be made primary.•

Examples:

Following is an example of creation wizard configuration:

<extension point=

"org.eclipse.ui.newWizards"

>

<category id=

"com.xyz.XYZ"

 Welcome to Eclipse

Creation Wizards 296

name=

"XYZ Wizards"

>

</category>

<category id=

"com.xyz.XYZ.Web"

name=

"Web Wizards"

parentCategory=

"com.xyz.XYZ"

>

</category>

<wizard id=

"com.xyz.wizard1"

name=

"XYZ artifact"

category=

"com.xyz.XYZ/com.xyz.XYZ.Web"

icon=

"./icons/XYZwizard1.gif"

class=

"com.xyz.XYZWizard1"

>

<description>

Create a simple XYZ artifact and set initial content

</description>

 Welcome to Eclipse

Creation Wizards 297

<selection class=

"org.eclipse.core.resources.IResource"

/>

</wizard>

</extension>

API Information:

The value of the class attribute must represent a class that implements org.eclipse.ui.INewWizard.
If the wizard is created from within the New Wizard it will be inserted into the existing wizard. If the wizard
is launched as a shortcut (from the File New menu or a toolbar button) it will appear standalone as a separate
dialog box.

Supplied Implementation:

The workbench comes with wizards for creating empty resources of the following types: project, folder and
file. These wizards are registered using the same mechanism as described above. Additional wizards may also
appear, subject to particular platform installation.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Creation Wizards 298

http://www.eclipse.org/legal/cpl-v10.html

Perspective Extensions
Identifier:

org.eclipse.ui.perspectiveExtensions

Description:

This extension point is used to extend perspectives registered by other plug−ins. A perspective defines the
initial contents of the window action bars (menu and toolbar) and the initial set of views and their layout
within a workbench page. Other plug−ins may contribute actions or views to the perspective which appear
when the perspective is selected. Optional additions by other plug−ins are appended to the initial definition.

Configuration Markup:

<!ELEMENT extension (perspectiveExtension*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT perspectiveExtension (actionSet | viewShortcut | perspectiveShortcut | newWizardShortcut |
view | showInPart)*>

<!ATTLIST perspectiveExtension

targetID CDATA #REQUIRED>

targetID − the unique identifier of the perspective (as specified in the registry) into which the
contribution is made.

•

<!ELEMENT actionSet EMPTY>

<!ATTLIST actionSet

id CDATA #REQUIRED>

id − the unique identifier of the action set which will be added to the perspective.•

Perspective Extensions 299

<!ELEMENT viewShortcut EMPTY>

<!ATTLIST viewShortcut

id CDATA #REQUIRED>

id − the unique identifier of the view which will be added to the perspective's "Show View" submenu
of the "Window" menu.

•

<!ELEMENT perspectiveShortcut EMPTY>

<!ATTLIST perspectiveShortcut

id CDATA #REQUIRED>

id − the unique identifier of the perspective which will be added to the perspective's "Open
Perspective" submenu of the "Window" menu.

•

<!ELEMENT newWizardShortcut EMPTY>

<!ATTLIST newWizardShortcut

id CDATA #REQUIRED>

id − the unique identifier of the new wizard which will be added to the perspective's "New" submenu
of the "File" menu.

•

<!ELEMENT showInPart EMPTY>

<!ATTLIST showInPart

id CDATA #IMPLIED>

id − the unique identifier of the view which will be added to the perspective's "Show In..." prompter
in the Navigate menu.

•

<!ELEMENT view EMPTY>

<!ATTLIST view

id CDATA #REQUIRED

 Welcome to Eclipse

Perspective Extensions 300

relative CDATA #REQUIRED

relationship (stack|left|right|top|bottom|fast)

ratio CDATA #IMPLIED

visible (true | false)

closeable (true | false)

moveable (true | false)

standalone (true | false)

showTitle (true | false) >

id − the unique identifier of the view which will be added to the perspective layout.•
relative − the unique identifier of a view which already exists in the perspective. This will be used as
a reference point for placement of the view. The relationship between these two views is defined by
relationship.

•

relationship − specifies the relationship between id and relative. The following values are
supported:
fast − the view extension will be created as a fast view.
stack − the view extension will be stacked with the relative view in a folder.
left, right, top, bottom − the view extension will be placed beside the relative view. In this case a
ratio must also be defined.

•

ratio − the percentage of area within the relative view which will be donated to the view extension. If
the view extension is a fast view, the ratio is the percentage of the workbench the fast view will cover
when active. This must be defined as a floating point value and lie between 0.05 and 0.95.

•

visible − whether the view is initially visible when the perspective is opened. This attribute should
have a value of "true" or "false" if used. If this attribute is not used, the view will be initially visible
by default.

•

closeable − whether the view is closeable in the target perspective. This attribute should have a value
of "true" or "false" if used. If this attribute is not used, the view will be closeable, unless the
perspective itself is marked as fixed.

•

moveable − whether the view is moveable. A non−moveable view cannot be moved either within the
same folder, or moved between folders in the perspective. This attribute should have a value of "true"
or "false" if used. If this attribute is not used, the view will be moveable, unless the perspective itself
is marked as fixed.

•

standalone − whether the view is a standalone view. A standalone view cannot be docked together
with others in the same folder. This attribute should have a value of "true" or "false" if used. This
attribute is ignored if the relationship attribute is "fast" or "stacked". If this attribute is not used, the
view will be a regular view, not a standalone view (default is "false").

•

showTitle − whether the view's title is shown. This attribute should have a value of "true" or "false" if
used. This attribute only applies to standalone views. If this attribute is not used, the view's title will
be shown (default is "true").

•

 Welcome to Eclipse

Perspective Extensions 301

Examples:

The following is an example of a perspective extension (note the subelements and the way attributes are
used):

<extension point=

"org.eclipse.ui.perspectiveExtensions"

>

<perspectiveExtension targetID=

"org.eclipse.ui.resourcePerspective"

>

<actionSet id=

"org.eclipse.jdt.ui.JavaActionSet"

/>

<viewShortcut id=

"org.eclipse.jdt.ui.PackageExplorer"

/>

<newWizardShortcut id=

"org.eclipse.jdt.ui.wizards.NewProjectCreationWizard"

/>

<perspectiveShortcut id=

"org.eclipse.jdt.ui.JavaPerspective"

/>

<view id=

"org.eclipse.jdt.ui.PackageExplorer"

relative=

"org.eclipse.ui.views.ResourceNavigator"

 Welcome to Eclipse

Perspective Extensions 302

relationship=

"stack"

/>

<view id=

"org.eclipse.jdt.ui.TypeHierarchy"

relative=

"org.eclipse.ui.views.ResourceNavigator"

relationship=

"left"

ratio=

"0.50"

/>

</perspectiveExtension>

</extension>

In the example above, an action set, view shortcut, new wizard shortcut, and perspective shortcut are
contributed to the initial contents of the Resource Perspective. In addition, the Package Explorer view is
stacked on the Resource Navigator and the Type Hierarchy View is added beside the Resource Navigator.

API Information:

The items defined within the perspective extension are contributed to the initial contents of the target
perspective. Following this, the user may remove any contribution or add others to a perspective from within
the workbench user interface.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Perspective Extensions 303

http://www.eclipse.org/legal/cpl-v10.html

Perspectives
Identifier:

org.eclipse.ui.perspective

Description:

This extension point is used to add perspective factories to the workbench. A perspective factory is used to
define the initial layout and visible action sets for a perspective. The user can select a perspective by invoking
the "Open Perspective" submenu of the "Window" menu.

Configuration Markup:

<!ELEMENT extension (perspective*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT perspective (description?)>

<!ATTLIST perspective

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED

fixed (true | false) >

id − a unique name that will be used to identify this perspective.•
name − a translatable name that will be used in the workbench window menu bar to represent this
perspective.

•

class − a fully qualified name of the class that implements
org.eclipse.ui.IPerspectiveFactory interface.

•

icon − a relative name of the icon that will be associated with this perspective.•

Perspectives 304

fixed − indicates whether the layout of the perspective is fixed. If true, then views created by the
perspective factory are not closeable, and cannot be moved. The default is false.

•

<!ELEMENT description (#CDATA)>

an optional subelement whose body should contain text providing a short description of the perspective.

Examples:

The following is an example of a perspective extension:

<extension point=

"org.eclipse.ui.perspectives"

>

<perspective id=

"org.eclipse.ui.resourcePerspective"

name=

"Resource"

class=

"org.eclipse.ui.internal.ResourcePerspective"

icon=

"icons/MyIcon.gif"

>

</perspective>

</extension>

API Information:

The value of the class attribute must be the fully qualified name of a class that implements
org.eclipse.ui.IPerspectiveFactory. The class must supply the initial layout for a perspective
when asked by the workbench.

 Welcome to Eclipse

Perspectives 305

The plugin_customization.ini file is used to define the default perspective. The default perspective
is the first perspective which appears when the product is launched after install. It is also used when the user
opens a page or window with no specified perspective. The default perspective is defined as a property within
the plugin_customization.ini, as shown below. The user may also override this perspective from the
workbench perspectives preference page.

 defaultPerspectiveId = org.eclipse.ui.resourcePerspective

The perspectives which appear in the "Open Perspective" menu are shortcuts for perspective selection. This
set is defined by the active perspective itself, and extensions made through the perspectiveExtensions
extension point.

Supplied Implementation:

The workbench provides a "Resource Perspective". Additional perspectives may be added by plug−ins. They
are selected using the "Open Perspective" submenu of the "Window" menu.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Perspectives 306

http://www.eclipse.org/legal/cpl-v10.html

Pop−up Menus
Identifier:

org.eclipse.ui.popupMenus

Description:

This extension point is used to add new actions to context menus owned by other plug−ins. Action
contribution may be made against a specific object type (objectContribution) or against a specific
context menu of a view or editor part (viewerContribution). When using objectContribution,
the contribution will appear in all view or editor part context menus where objects of the specified type are
selected. In contrast, using viewerContribution, the contribution will only appear in the specified view
or editor part context menu, regardless of the selection.

When selection is heterogeneous, contribution will be applied if registered against a common type of the
selection, if possible. If a direct match is not possible, matching against superclasses and superinterfaces will
be attempted.

Selection can be further constrained through the use of a name filter. If used, all the objects in the selection
must match the filter in order to apply the contribution.

Individual actions in an object contribution can use attribute enablesFor to specify if it should only apply for a
single, multiple, or any other selection type.

If these filtering mechanisms are inadequate an action contribution may use the filter mechanism. In this
case the attributes of the target object are described in a series of name value pairs. The attributes which apply
to the selection are type specific and beyond the domain of the workbench itself, so the workbench will
delegate filtering at this level to the actual selection.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enablement
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub−element. In the simplest case, this will be an objectClass, objectState,
pluginState, or systemProperty element. In the more complex case, the and, or, and not elements
can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub−elements.
The not element must contain only 1 sub−element.

Configuration Markup:

<!ELEMENT extension (objectContribution , viewerContribution)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

Pop−up Menus 307

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT objectContribution (filter* , visibility? , enablement? , menu* , action*)>

<!ATTLIST objectContribution

id CDATA #REQUIRED

objectClass CDATA #REQUIRED

nameFilter CDATA #IMPLIED

adaptable (true | false) "false">

This element is used to define a group of actions and/or menus for any viewer context menus for which the
objects of the specified type are selected.

id − a unique identifier used to reference this contribution•
objectClass − a fully qualified name of the class or interface that all objects in the selection must
subclass or implement.

•

nameFilter − an optional wild card filter for the name that can be applied to all objects in the
selection. No contribution will take place if there is no match.

•

adaptable − a flag that indicates if types that adapt to IResource should use this object contribution.
This flag is used only if objectClass adapts to IResource. Default value is false.

•

<!ELEMENT viewerContribution (visibility? , menu* , action*)>

<!ATTLIST viewerContribution

id CDATA #REQUIRED

targetID CDATA #REQUIRED>

This element is used to define a group of actions and/or menus for a specific view or editor part context menu.

id − a unique identifier used to reference this contribution•
targetID − the unique identifier of a context menu inside a view or editor part.•

<!ELEMENT action (selection* , enablement?)>

 Welcome to Eclipse

Pop−up Menus 308

<!ATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED

definitionId CDATA #IMPLIED

menubarPath CDATA #IMPLIED

icon CDATA #IMPLIED

helpContextId CDATA #IMPLIED

style (push|radio|toggle|pulldown)

state (true | false)

class CDATA #REQUIRED

enablesFor CDATA #IMPLIED

overrideActionId CDATA #IMPLIED

tooltip CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

id − a unique identifier used as a reference for this action.•
label − a translatable name used as the menu item text. The name can include mnenomic information.•
definitionId − This specifies the command that this action is handling. This is used to decide which
key binding to display in the pop−up menu.

•

menubarPath − a slash−delimited path ('/') used to specify the location of this action in the context
menu. Each token in the path, except the last one, must represent a valid identifier of an existing menu
in the hierarchy. The last token represents the named group into which this action will be added. If the
path is omitted, this action will be added to the standard additions group defined by
IWorkbenchActionConstants.MB_ADDITIONS.

•

icon − a relative path of an icon used to visually represent the action in its context. The path is relative
to the location of the plugin.xml file of the contributing plug−in.

•

helpContextId − a unique identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

•

style − an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push − as a regular menu item or tool item.

radio − as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio
set. The initial value is specified by the state attribute.

toggle

•

 Welcome to Eclipse

Pop−up Menus 309

− as a checked style menu item or as a toggle tool item. The
initial value is specified by the state attribute.

pulldown − as a cascading style menu item.
state − an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.

•

class − a name of the fully qualified class that implements
org.eclipse.ui.IObjectActionDelegate (for object contributions),
org.eclipse.ui.IViewActionDelegate (for viewer contributions to a view part), or
org.eclipse.ui.IEditorActionDelegate (for viewer contributions to an editor part). For
backwards compatibility, org.eclipse.ui.IActionDelegate may be implemented for
object contributions.

•

enablesFor − a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:

! − 0 items selected

? − 0 or 1 items selected

+ − 1 or more items selected

multiple, 2+ − 2 or more items selected

n − a precise number of items selected.a precise number of
items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* − any number of items selected
The enablement criteria for an action extension are initially defined by enablesFor, selection
and enablement. However, once the action delegate has been instantiated it may control the action
enable state directly within its selectionChanged method.

•

overrideActionId − an optional attribute that specifies the identifier of an action which this action
overrides. The action represented by this identifier will not be contributed to the context menu. The
action identifier must be from a prerequisite plug−in only. This attribute is only applicable to action
elements of an object contribution.

•

tooltip − a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

•

<!ELEMENT filter EMPTY>

<!ATTLIST filter

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. A match only if each
object in the selection has the specified attribute state. Each object in the selection must implement, or adapt
to, org.eclipse.ui.IActionFilter.

 Welcome to Eclipse

Pop−up Menus 310

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

<!ELEMENT menu (separator+ , groupMarker*)>

<!ATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

path CDATA #IMPLIED>

This element is used to defined a new menu.

id − a unique identifier that can be used to reference this menu.•
label − a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

•

path − the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

•

<!ELEMENT separator EMPTY>

<!ATTLIST separator

name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

name − the name of the menu separator. This name can later be referenced as the last token in a menu
path. Therefore, a separator also serve as named group into which actions and menus can be added.

•

<!ELEMENT groupMarker EMPTY>

<!ATTLIST groupMarker

name CDATA #REQUIRED>

 Welcome to Eclipse

Pop−up Menus 311

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

name − the name of the group marker. This name can later be referenced as the last token in the menu
path. It serves as named group into which actions and menus can be added.

•

<!ELEMENT selection EMPTY>

<!ATTLIST selection

class CDATA #REQUIRED

name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

class − a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

•

name − an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

•

<!ELEMENT enablement (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<!ELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<!ELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub−element expressions.

 Welcome to Eclipse

Pop−up Menus 312

<!ELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT not (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub−element expressions.

<!ELEMENT objectClass EMPTY>

<!ATTLIST objectClass

name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object in
the selection implements the specified class or interface, the expression is evaluated as true.

name − a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

•

<!ELEMENT objectState EMPTY>

<!ATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in the
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of
expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.IActionFilter interface.

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

 Welcome to Eclipse

Pop−up Menus 313

<!ELEMENT pluginState EMPTY>

<!ATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug−in. The state of the plug−in may be one of the following:
installed or activated.

id − the identifier of a plug−in which may or may not exist in the plug−in registry.•
value − the required state of the plug−in. The state of the plug−in may be one of the following:
installed or activated.

•

<!ELEMENT systemProperty EMPTY>

<!ATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

name − the name of the system property.•
value − the required value of the system property.•

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

 Welcome to Eclipse

Pop−up Menus 314

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.•

<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args CDATA #IMPLIED

value CDATA #IMPLIED>

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

 Welcome to Eclipse

Pop−up Menus 315

property − the name of an object's property to test.•
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

•

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦
the string "false" is converted into Boolean.FALSE♦
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦

in all other cases the string is treated as a java.lang.String♦
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦

•

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.•
value − the expected value of the property. The value is interpreted as a string value.•

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

 Welcome to Eclipse

Pop−up Menus 316

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

•

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

•

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

•

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

 Welcome to Eclipse

Pop−up Menus 317

<!ATTLIST resolve

variable CDATA #REQUIRED

args CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

•

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

•

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.•

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

 Welcome to Eclipse

Pop−up Menus 318

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

•

Examples:

The following is an example of a pop−up menu extension point:

<extension point=

"org.eclipse.ui.popupMenus"

>

<objectContribution id=

"com.xyz.C1"

objectClass=

"org.eclipse.core.resources.IFile"

nameFilter=

"*.java"

>

<menu id=

"com.xyz.xyzMenu"

path=

"additions"

label=

"&XYZ Java Tools"

>

<separator name=

"group1"

/>

 Welcome to Eclipse

Pop−up Menus 319

</menu>

<action id=

"com.xyz.runXYZ"

label=

"&Run XYZ Tool"

style=

"push"

menubarPath=

"com.xyz.xyzMenu/group1"

icon=

"icons/runXYZ.gif"

helpContextId=

"com.xyz.run_action_context"

class=

"com.xyz.actions.XYZToolActionDelegate"

enablesFor=

"1"

>

</action>

</objectContribution>

<viewerContribution id=

"com.xyz.C2"

targetID=

"org.eclipse.ui.views.TaskList"

>

<action id=

 Welcome to Eclipse

Pop−up Menus 320

"com.xyz.showXYZ"

label=

"&Show XYZ"

style=

"toggle"

state=

"true"

menubarPath=

"additions"

icon=

"icons/showXYZ.gif"

helpContextId=

"com.xyz.show_action_context"

class=

"com.xyz.actions.XYZShowActionDelegate"

>

</action>

</viewerContribution>

</extension>

In the example above, the specified object contribution action will only enable for a single selection
(enablesFor attribute). In addition, each object in the selection must implement the specified interface
(IFile) and must be a Java file. This action will be added into a submenu previously created. This
contribution will be effective in any view that has the required selection.

In contrast, the viewer contribution above will only appear in the Tasks view context menu, and will not be
affected by the selection in the view.

The following is an example of the filter mechanism. In this case the action will only appear for IMarkers
which are completed and have high priority.

 Welcome to Eclipse

Pop−up Menus 321

<extension point=

"org.eclipse.ui.popupMenus"

>

<objectContribution id=

"com.xyz.C3"

objectClass=

"org.eclipse.core.resources.IMarker"

>

<filter name=

"done"

value=

"true"

/>

<filter name=

"priority"

value=

"2"

/>

<action id=

"com.xyz.runXYZ"

label=

"High Priority Completed Action Tool"

icon=

"icons/runXYZ.gif"

class=

"com.xyz.actions.MarkerActionDelegate"

 Welcome to Eclipse

Pop−up Menus 322

>

</action>

</objectContribution>

</extension>

The following is an other example of using the visibility element:

<extension point=

"org.eclipse.ui.popupMenus"

>

<viewerContribution id=

"com.xyz.C4"

targetID=

"org.eclipse.ui.views.TaskList"

>

<visibility>

<and>

<pluginState id=

"com.xyz"

value=

"activated"

/>

<systemProperty name=

"ADVANCED_MODE"

value=

"true"

/>

 Welcome to Eclipse

Pop−up Menus 323

</and>

</visibility>

<action id=

"com.xyz.showXYZ"

label=

"&Show XYZ"

style=

"push"

menubarPath=

"additions"

icon=

"icons/showXYZ.gif"

helpContextId=

"com.xyz.show_action_context"

class=

"com.xyz.actions.XYZShowActionDelegate"

>

</action>

</viewerContribution>

</extension>

In the example above, the specified action will appear as a menu item in the Task view context menu, but only
if the "com.xyz" plug−in is active and the specified system property is set to true.

API Information:

The value of the action attribute class must be a fully qualified class name of a Java class that implements
org.eclipse.ui.IObjectActionDelegate in the case of object contributions,
org.eclipse.ui.IViewActionDelegate for contributions to context menus that belong to views, or
org.eclipse.ui.IEditorActionDelegate for contributions to context menus that belong to
editors. In all cases, the implementing class is loaded as late as possible to avoid loading the entire plug−in
before it is really needed.

 Welcome to Eclipse

Pop−up Menus 324

Note: For backwards compatibility, org.eclipse.ui.IActionDelegate may be implemented for
object contributions.

Conext menu extension within a part is only possible when the target part publishes a menu for extension.
This is strongly encouraged, as it improves the extensibility of the product. To accomplish this each part
should publish any context menus which are defined by calling
IWorkbenchPartSite.registerContextMenu. Once this has been done the workbench will
automatically insert any action extensions which exist.

A menu id must be provided for each registered menu. For consistency across parts the following strategy
should be adopted by all part implementors.

If the target part has only one context menu it should be registered with id == part id. This can be
done easily by calling registerContextMenu(MenuManager, ISelectionProvider).
Extenders may use the part id itself as the targetID for the action extension.

•

If the target part has more than one context menu a unique id should be defined for each. Prefix each
id with the part id and publish these id's within the javadoc for the target part. Register each menu at
runtime by calling registerContextMenu(String, MenuManager,
ISelectionProvider). Extenders will use the unique menu id as the targetID for the action
extension.

•

Any context menu which is registered with the workbench also should contain a standard insertion point with
id IWorkbenchActionConstants.MB_ADDITIONS. Other plug−ins will use this value as a reference
point for insertion. The insertion point may be defined by adding a GroupMarker to the menu at an
appropriate location for insertion.

An object in the workbench which is the selection in a context menu may define an
org.eclipse.ui.IActionFilter. This is a filtering strategy which can perform type specific
filtering. The workbench will retrieve the filter for the selection by testing to see if it implements
IActionFilter. If that fails, the workbench will ask for a filter through the IAdaptable mechanism.

Action and menu labels may contain special characters that encode mnemonics which are specified using the
ampersand ('&') character in front of a selected character in the translated text. Since ampersand is not allowed
in XML strings, use & character entity.

If two or more actions are contributed to a menu by a single extension the actions will appear in the reverse
order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it was
discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every plug−in
which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can
replace the selection element using the sub−elements objectClass and objectState. For example,
the following:

<selection class=

"org.eclipse.core.resources.IFile"

name=

 Welcome to Eclipse

Pop−up Menus 325

"*.java"

>

</selection>

can be expressed using:

<enablement>

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<objectState name=

"extension"

value=

"java"

/>

</and>

</enablement>

Supplied Implementation:

The workbench views have built−in context menus that already come loaded with a number of actions.
Plug−ins can contribute to these menus. If a viewer has reserved slots for these contributions and they are
made public, slot names can be used as paths. Otherwise, actions and submenus will be added at the end of the
pop−up menu.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Pop−up Menus 326

http://www.eclipse.org/legal/cpl-v10.html

Preference Pages
Identifier:

org.eclipse.ui.preferencePages

Description:

The workbench provides one common dialog box for preferences. The purpose of this extension point is to
allow plug−ins to add pages to the preference dialog box. When preference dialog box is opened (initiated
from the menu bar), pages contributed in this way will be added to the dialog box.

The preference dialog box provides for hierarchical grouping of the pages. For this reason, a page can
optionally specify a category attribute. This attribute represents a path composed of parent page IDs
separated by '/'. If this attribute is omitted or if any of the parent nodes in the path cannot be found, the page
will be added at the root level.

Configuration Markup:

<!ELEMENT extension (page*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT page EMPTY>

<!ATTLIST page

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

category CDATA #IMPLIED>

id − a unique name that will be used to identify this page.•
name − a translatable name that will be used in the UI for this page.•
class − a name of the fully qualified class that implements
org.eclipse.ui.IWorkbenchPreferencePage.

•

Preference Pages 327

category − a path indicating the location of the page in the preference tree. The path may either be a
parent node ID or a sequence of IDs separated by '/', representing the full path from the root node.

•

Examples:

The following is an example for the preference extension point:

<extension point=

"org.eclipse.ui.preferencePages"

>

<page id=

"com.xyz.prefpage1"

name=

"XYZ"

class=

"com.xyz.prefpages.PrefPage1"

>

</page>

<page id=

"com.xyz.prefpage2"

name=

"Keyboard Settings"

class=

"com.xyz.prefpages.PrefPage2"

category=

"com.xyz.prefpage1"

>

 Welcome to Eclipse

Preference Pages 328

</page>

</extension>

API Information:

The value of the attribute class must represent a fully qualified name of the class that implements
org.eclipse.ui.IWorkbenchPreferencePage.

Supplied Implementation:

The workbench adds several pages for setting the preferences of the platform. Pages registered through this
extension will be added after them according to their category information.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Preference Pages 329

http://www.eclipse.org/legal/cpl-v10.html

Presentation Factories
Identifier:

org.eclipse.ui.workbench.presentationFactories

Since:

3.0

Description:

This extension point is used to add presentation factories to the workbench. A presentation factory defines the
overall look and feel of the workbench, including how views and editors are presented.

Configuration Markup:

<!ELEMENT extension (factory*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT factory EMPTY>

<!ATTLIST factory

class CDATA #REQUIRED

id CDATA #REQUIRED

name CDATA #REQUIRED>

class − Specify the fully qualified class to be used for the presentation factory. The specified value
must be a subclass of
org.eclipse.ui.presentations.AbstractPresentationFactory.

•

id − a unique name that will be used to identify this presentation factory•
name − a translatable name that can be used to show this presentation factory in the UI•

Examples:

The following is an example of a presentationFactory extension:

Presentation Factories 330

API Information:

The class specified in the factory element must be a concrete subclass of
org.eclipse.ui.presentations.AbstractPresentationFactory.

Supplied Implementation:

If a presentation factory is not specified or is missing then the implementation in
org.eclipse.ui.presentations.WorkbenchPresentationFactory will be used.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Presentation Factories 331

http://www.eclipse.org/legal/cpl-v10.html

Property Pages
Identifier:

org.eclipse.ui.propertyPages

Description:

This extension point is used to add additional property page for objects of a given type. Once defined, these
property pages will appear in the Properties Dialog for objects of that type.

A property page is a user friendly way to interact with the properties of an object. Unlike the Properties view,
which restricts the space available for editing an object property, a property page may benefit from the
freedom to define larger, more complex controls with labels, icons, etc. Properties which logically go together
may also be clustered in a page, rather than scattered in the property sheet. However, in most applications it
will be appropriate to expose some properties of an object via the property sheet and some via the property
pages.

Property pages are shown in a dialog box that is normally visible when the "Properties" menu item is selected
on a pop−up menu for an object. In addition to the object class, the name filter can optionally be supplied to
register property pages only for specific object types.

If these filtering mechanisms are inadequate a property page may use the filter mechanism. In this case the
attributes of the target object are described in a series of key value pairs. The attributes which apply to the
selection are type specific and beyond the domain of the workbench itself, so the workbench will delegate
filtering at this level to the actual selection.

Configuration Markup:

<!ELEMENT extension (page*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT page (filter*)>

<!ATTLIST page

id CDATA #REQUIRED

Property Pages 332

name CDATA #REQUIRED

icon CDATA #IMPLIED

objectClass CDATA #REQUIRED

class CDATA #REQUIRED

nameFilter CDATA #IMPLIED

adaptable (true | false) >

id − a unique name that will be used to identify this page•
name − a translatable name that will be used in the UI for this page•
icon − a relative path to an icon that will be used in the UI in addition to the page name•
objectClass − a fully qualified name of the class for which the page is registered.•
class − a fully qualified name of the class that implements
org.eclipse.ui.IWorkbenchPropertyPage.

•

nameFilter − an optional attribute that allows registration conditional on wild card match applied to
the target object name.

•

adaptable − a flag that indicates if types that adapt to IResource should use this property page. This
flag is used if objectClass adapts to IResource. Default value is false.

•

<!ELEMENT filter EMPTY>

<!ATTLIST filter

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. A match only if each
object in the selection has the specified attribute state. Each object in the selection must implement, or adapt
to, org.eclipse.ui.IActionFilter.

name − the name of an object attribute.•
value − the value of an object attribute. In combination with the name attribute, the name value pair is
used to define the target object for a property page.

•

Examples:

The following is an example of the property page definition:

 Welcome to Eclipse

Property Pages 333

<extension point=

"org.eclipse.ui.propertyPages"

>

<page id=

"com.xyz.projectPage"

name=

"XYZ Java Properties"

objectClass=

"org.eclipse.core.resources.IFile"

class=

"com.xyz.ppages.JavaPropertyPage"

nameFilter=

"*.java"

>

<filter name=

"readOnly"

value=

"true"

/>

</page>

</extension>

API Information:

The attribute class must specify a fully qualified name of the class that implements
org.eclipse.ui.IWorkbenchPropertyPage.

Supplied Implementation:

Some objects provided by the workbench may have property pages registered. Plug−ins are allowed to add
more property pages for these objects. Property pages are not limited to workbench resources: all objects

 Welcome to Eclipse

Property Pages 334

showing up in the workbench (even domain specific objects created by the plug−ins) may have property pages
and other plug−ins are allowed to register property pages for them.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Property Pages 335

http://www.eclipse.org/legal/cpl-v10.html

Startup
Identifier:

org.eclipse.ui.startup

Since:

Release 2.0

Description:

This extension point is used to register plugins that want to be activated on startup. The plugin class or the
class given as the attribute on the startup element must implement the interface
org.eclipse.ui.IStartup. Once the workbench is started, the method earlyStartup() will be called
from a separate thread. If the startup element has a class attribute, the method earlyStartup() will be called on
this class. Otherwise, this method will be called from the plugin class. These plugins are listed in the
workbench preferences and the user may disable any plugin from early startup.

Configuration Markup:

<!ELEMENT extension (startup*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT startup EMPTY>

<!ATTLIST startup

class CDATA #IMPLIED>

class − a fully qualified name of the class that implements org.eclipse.ui.IStartup. Since
release 3.0.

•

Startup 336

Examples:

Following is an example of a startup extension:

<p>

<extension point=

"org.eclipse.ui.startup"

/>

</p>

API Information:

See interface org.eclipse.ui.IStartup.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Startup 337

http://www.eclipse.org/legal/cpl-v10.html

System Summary Sections
Identifier:

org.eclipse.ui.systemSummarySections

Since:

3.0

Description:

The Eclipse UI provides an AboutDialog that can be branded and reused by client product plugins. This dialog
includes a SystemSummary dialog that contains configuration details. By extending the
org.eclipse.ui.systemSummarySections extension point clients are able to put their own information into the
log.

Configuration Markup:

<!ELEMENT extension (section+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT section EMPTY>

<!ATTLIST section

class CDATA #REQUIRED

sectionTitle CDATA #REQUIRED

id CDATA #IMPLIED>

class − The fully qualified name of a class the implements
org.eclipse.ui.about.ISystemSummarySection. The class must provide a default
constructor.

•

sectionTitle − a translatable name that will be displayed as the title of this section in the system
summary

•

id − an optional, unique name that will be used to identify this system summary section•

System Summary Sections 338

Examples:

Following is an example of a systemSummarySections extension:

API Information:

The class specified in the section element must be a concrete subclass of
org.eclipse.ui.about.ISystemSummarySection.

Supplied Implementation:

The Workbench uses this extension point to provide the following sections in the system summary dialog: −
System properties: The contents of the table returned by java.lang.System.getProperties. − Features: The id of
all features found by eclipse. − Plug−in Registry: The id of all plugins found by eclipse. − User Preferences:
The contents of the Eclipse PreferencesService. − Error Log: The contents of the platform's error log.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

System Summary Sections 339

http://www.eclipse.org/legal/cpl-v10.html

Themes
Identifier:

org.eclipse.ui.TThthemes

Description:

This extension point is used to customize the appearance of the UI. It allows definition of color and font
entities as well as theme entitities. Themes allow applications to selectivly override default color and font
specifications for particular uses.

Configuration Markup:

<!ELEMENT extension (theme* , colorDefinition* , fontDefinition* , themeElementCategory* , data* ,
categoryPresentationBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT theme (colorOverride* , fontOverride* , description? , data*)>

<!ATTLIST theme

id CDATA #REQUIRED

name CDATA #REQUIRED>

A collection of font, color and data overrides. Such a collection may be used to alter the appearance of the
workbench.

id − a unique name that will be used to identify this theme•
name − a translatable name of the theme to be presented to the user•

<!ELEMENT themeElementCategory (description)>

Themes 340

<!ATTLIST themeElementCategory

id CDATA #REQUIRED

parentId CDATA #IMPLIED

class CDATA #IMPLIED

label CDATA #IMPLIED>

A logical grouping of theme element definitions. This category may include colors and fonts.

id − the id for this category•
parentId − the id of the parent category, if any.•
class − a class that implements org.eclipse.ui.themes.IThemePreview•
label − a translatable name of the theme element category to be presented to the user•

<!ELEMENT colorDefinition (colorFactory? , colorValue* , description?)>

<!ATTLIST colorDefinition

id CDATA #IMPLIED

label CDATA #REQUIRED

defaultsTo CDATA #IMPLIED

value CDATA #IMPLIED

categoryId CDATA #IMPLIED

colorFactory CDATA #IMPLIED

isEditable (true | false) >

A symbolic color definition.

id − a unique id that can be used to identify this color definition.•
label − a translatable name of the color to be presented to the user.•
defaultsTo − the id of another color definition that is the default setting for the receiver. When there
is no preference for this color the color registry will have the value of defaultsTo set for it in the
registry. Only one of defaultsTo, value or colorFactory may be defined.

•

value − The default value of this color. The value may be specified in the following ways:
a String containing comma seperated integers in the form red,green,blue♦
a String that maps to an SWT color constant (ie: COLOR_RED).♦

•

 Welcome to Eclipse

Themes 341

Only one of defaultsTo, value or colorFactory may be defined. If value is specified,
additional value definitions may be specified on a per platform/windowing system basis via the
colorValue element.
categoryId − the optional id of the themeElementCategory this color belongs to.•
colorFactory − a class that implements org.eclipse.ui.themes.IColorFactory. This
may be used instead of value to specify the default value of the color. Please be advised that this
should be used with caution − usage of this attribute will cause plugin activation.

•

isEditable − whether the user should be allowed to edit this color in the preference page. If this is
false then the contribution is not shown to the user.

•

<!ELEMENT fontDefinition (fontValue* , description?)>

<!ATTLIST fontDefinition

id CDATA #REQUIRED

label CDATA #REQUIRED

value CDATA #IMPLIED

categoryId CDATA #IMPLIED

defaultsTo CDATA #IMPLIED

isEditable (true | false) >

A symbolic font definition.

id − a unique name that can be used to identify this font definition.•
label − a translatable name of the font to be presented to the user.•
value − the font value. This is in the form: fontname−style−height where fontname is the
name of a font, style is a font style (one of "regular", "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman−bold−36.

Only one (or neither) of value or defaultsTo may be used.

If value is specified, additional value definitions may be specified on a per platform/windowing
system basis via the fontValue element.

•

categoryId − the optional id of the themeElementCategory this font belongs to.•
defaultsTo − the id of another font definition that is the default setting for the receiver. When there is
no preference for this font the font registry will have the value of defaultsTo set for it in the registry.

Only one (or neither) of value or defaultsTo may be used.

•

isEditable − whether the user should be allowed to edit this color in the preference page. If this is
false then the contribution is not shown to the user.

•

 Welcome to Eclipse

Themes 342

<!ELEMENT colorOverride (colorFactory? , colorValue*)>

<!ATTLIST colorOverride

id CDATA #REQUIRED

value CDATA #IMPLIED

colorFactory CDATA #IMPLIED>

Allows overriding of colors defined in colorDefinition elements. These colors will be applied when the
theme is in use.

id − a unique id that can be used to identify this color definition override. This should match an
existing font identifier. Strictly speaking, you may ovverride colors that do not exist in the base theme
although this practice is not recommended. In effect, such overrides will have behaviour similar to
colorDefinitions that have isEditable set to false.

•

value − the overriding value of this color. The value may be specified in the following ways:
a String containing comma seperated integers in the form red,green,blue♦
a String that maps to an SWT color constant (ie: COLOR_RED).♦

Only one of value or colorFactory may be defined. Unlike a colorDefinition, you may
not supply a defaultsTo for an override.

•

colorFactory − a class that implements org.eclipse.ui.themes.IColorFactory. This
may be used instead of value to specify the default value of the color. Please be advised that this
should be used with caution − usage of this attribute will cause plugin activation.

•

<!ELEMENT fontOverride (fontValue*)>

<!ATTLIST fontOverride

id CDATA #REQUIRED

value CDATA #REQUIRED>

Allows overriding of fonts defined in fontsDefinition elements. These fonts will be applied when the
theme is in use.

id − a unique id that can be used to identify this font definition override. This should match an
existing font identifier. Strictly speaking, you may ovverride fonts that do not exist in the base theme
although this practice is not recommended. In effect, such overrides will have behaviour similar to
fontDefinitions that have isEditable set to false.

•

value − the overriding value of this font. This is in the form: fontname−style−height where
fontname is the name of a font, style is a font style (one of "regular", "bold", "italic",

•

 Welcome to Eclipse

Themes 343

or "bold italic") and height is an integer representing the font height.

Example: Times New Roman−bold−36.

value must be defined for a font override. Unlike a fontDefinition, you may not supply a
defaultsTo for a fontOverride.

<!ELEMENT description (#CDATA)>

A short description of the elements usage.

<!ELEMENT colorFactory (parameter*)>

<!ATTLIST colorFactory

class CDATA #REQUIRED

plugin CDATA #IMPLIED>

The element version of the colorFactory attribute. This is used when the colorFactory implements
org.eclipse.core.runtime.IExecutableExtension and there is parameterized data that you
wish used in its initialization.

class − a class that implements org.eclipse.ui.themes.IColorFactory. It may also
implement org.eclipse.core.runtime.IExecutableExtension.

•

plugin − the identifier of the plugin that contains the class•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

value CDATA #REQUIRED>

A parameter element to be used within the colorFactory element. This will be passed as initialization data to
the colorFactory class.

name − the parameter name•
value − the parameter value•

 Welcome to Eclipse

Themes 344

<!ELEMENT data EMPTY>

<!ATTLIST data

name CDATA #REQUIRED

value CDATA #REQUIRED>

An element that allows arbitrary data to be associated with a theme or the default theme. This data may be
gradient directions or percentages, labels, author information, etc.

This element has behaviour similar to definitions and overrides. If a key is present in both the default theme
and an identified theme, then the identified themes value will be used when that theme is accessed. If the
identified theme does not supply a value then the default is used.

name − the data name,•
value − the data value•

<!ELEMENT colorValue (colorFactory?)>

<!ATTLIST colorValue

os CDATA #IMPLIED

ws CDATA #IMPLIED

value CDATA #IMPLIED

colorFactory CDATA #IMPLIED>

This element allows specification of a color value on a per−platform basis.

os − an optional os string to enable choosing of color based on current OS. eg: win32,linux•
ws − an optional os string to enable choosing of color based on current WS. eg: win32,gtk•
value − The default value of this color. The value may be specified in the following ways:

a String containing comma seperated integers in the form red,green,blue♦
a String that maps to an SWT color constant (ie: COLOR_RED).♦

Only one of value or colorFactory may be defined.

•

colorFactory − a class that implements org.eclipse.ui.themes.IColorFactory. This
may be used instead of value to specify the value of the color. Please be advised that this should be
used with caution − usage of this attribute will cause plugin activation.

•

 Welcome to Eclipse

Themes 345

<!ELEMENT fontValue EMPTY>

<!ATTLIST fontValue

os CDATA #IMPLIED

ws CDATA #IMPLIED

value CDATA #REQUIRED>

This element allows specification of a font value on a per−platform basis.

os − an optional os string to enable choosing of font based on current OS. eg: win32,linux•
ws − an optional os string to enable choosing of font based on current WS. eg: win32,gtk•
value − the font value. This is in the form: fontname−style−height where fontname is the
name of a font, style is a font style (one of "regular", "bold", "italic", or "bold
italic") and height is an integer representing the font height.

Example: Times New Roman−bold−36.

•

<!ELEMENT categoryPresentationBinding EMPTY>

<!ATTLIST categoryPresentationBinding

categoryId CDATA #REQUIRED

presentationId CDATA #REQUIRED>

This element allows a category to be bound to a specific presentation as described by the
org.eclipse.ui.presentationFactory extension point. If a category has any presentation
bindings then it (and it's children) is only configurable by the user if it is bound to the active presentation. This
is useful for removing unused items from user consideration.

categoryId −•
presentationId −•

Examples:

The following is an example of several color and font definitions as well as a theme that overrides them.

<extension point=

 Welcome to Eclipse

Themes 346

"org.eclipse.ui.themes"

>

<themeElementCategory id=

"com.xyz.ThemeCategory"

class=

"com.xyz.XYZPreview"

label=

"XYZ Elements"

/>

<colorDefinition id=

"com.xyz.Forground"

categoryId=

"com.xyz.ThemeCategory"

label=

"XYZ Foreground Color"

value=

"COLOR_BLACK"

>

<!−− white should be used on GTK −−>

<colorValue value=

"COLOR_WHITE"

os=

"linux"

ws=

"gtk"

/>

 Welcome to Eclipse

Themes 347

<description>

This color is used for the forground color of the XYZ plugin editor.

</description>

</colorDefinition>

<colorDefinition id=

"com.xyz.Background"

categoryId=

"com.xyz.ThemeCategory"

label=

"XYZ Background Color"

>

<colorFactory class=

"org.eclipse.ui.themes.RGBBlendColorFactory"

plugin=

"org.eclipse.ui"

>

<parameter name=

"color1"

value=

"COLOR_WHITE"

/>

<parameter name=

"color2"

value=

"COLOR_BLUE"

/>

 Welcome to Eclipse

Themes 348

</colorFactory>

<!−− black should be used on GTK −−>

<colorValue value=

"COLOR_BLACK"

os=

"linux"

ws=

"gtk"

/>

<description>

This color is used for the background color of the XYZ plugin editor.

</description>

</colorDefinition>

<fontDefiniton id=

"com.xyz.TextFont"

categoryId=

"com.xyz.ThemeCategory"

label=

"XYZ Editor Font"

defaultsTo=

"org.eclipse.jface.textfont"

>

<description>

This font is used by the XYY plugin editor.

</description>

</fontDefintion>

 Welcome to Eclipse

Themes 349

<data name=

"com.xyz.EditorMarginWidth"

value=

"5"

/>

<theme id=

"com.xyz.HarshTheme"

label=

"Harsh Colors for XYZ"

>

<colorOverride id=

"com.xyz.Forground"

value=

"COLOR_CYAN"

/>

<colorOverride id=

"com.xyz.Background"

value=

"COLOR_MAGENTA"

/>

<data name=

"com.xyz.EditorMarginWidth"

value=

"1"

/>

</theme>

 Welcome to Eclipse

Themes 350

</extension>

API Information:

The org.eclipse.ui.IWorkbench.getThemeManager() provides
org.eclipse.ui.themes.IThemeManager. This class may be used to obtain a named theme (by id,
including the default theme which has an id of IThemeManager.DEFAULT_THEME) or the current theme.
From an org.eclipse.ui.themes.ITheme you may obtain a
org.eclipse.jface.resources.ColorRegistry, an
org.eclipse.jface.resources.FontRegistry and the arbitrary data associated with a theme.

Supplied Implementation:

The workbench provides the font definitions for the text, dialog, banner, header and part title fonts. it also
supplies color definitions for the hyperlink, active hyperlink, error, active part (background gradient parts and
forground) and the inactive part (background gradient parts and forground). The workbench also provides data
constants for the title gradient percentages (active and inactive) and the gradient directions (active and
inactive). The workbench does not provide any named themes.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Themes 351

http://www.eclipse.org/legal/cpl-v10.html

View Menus,Toolbars and Actions
Identifier:

org.eclipse.ui.viewActions

Description:

This extension point is used to add actions to the pulldown menu and toolbar for views registered by other
plug−ins. Each view has a local pulldown menu normally activated by clicking on the top right triangle
button. Other plug−ins can contribute submenus and actions to this menu. Plug−ins may also contribute
actions to a view toolbar. View owners are first given a chance to populate these areas. Optional additions by
other plug−ins are appended.

An action's enablement and/or visibility can be defined using the elements enablement and visibility
respectively. These two elements contain a boolean expression that is evaluated to determine the enablement
and/or visibility.

The syntax is the same for the enablement and visibility elements. Both contain only one boolean
expression sub−element. In the simplest case, this will be an objectClass, objectState,
pluginState, or systemProperty element. In the more complex case, the and, or, and not elements
can be combined to form a boolean expression. Both the and, and or elements must contain 2 sub−elements.
The not element must contain only 1 sub−element.

Configuration Markup:

<!ELEMENT extension (viewContribution+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT viewContribution (menu* , action*)>

<!ATTLIST viewContribution

id CDATA #REQUIRED

targetID CDATA #REQUIRED>

This element is used to define a group of view actions and/or menus.

View Menus,Toolbars and Actions 352

id − a unique identifier used to reference this contribution.•
targetID − a unique identifier of a registered view that is the target of this contribution.•

<!ELEMENT action (selection* | enablement?)>

<!ATTLIST action

id CDATA #REQUIRED

label CDATA #REQUIRED

menubarPath CDATA #IMPLIED

toolbarPath CDATA #IMPLIED

icon CDATA #IMPLIED

disabledIcon CDATA #IMPLIED

hoverIcon CDATA #IMPLIED

tooltip CDATA #IMPLIED

helpContextId CDATA #IMPLIED

style (push|radio|toggle) "push"

state (true | false)

class CDATA #REQUIRED

enablesFor CDATA #IMPLIED>

This element defines an action that the user can invoke in the UI.

id − a unique identifier used as a reference for this action.•
label − a translatable name used either as the menu item text or toolbar button label. The name can
include mnenomic information.

•

menubarPath − a slash−delimited path ('/') used to specify the location of this action in the pulldown
menu. Each token in the path, except the last one, must represent a valid identifier of an existing menu
in the hierarchy. The last token represents the named group into which this action will be added. If the
path is omitted, this action will not appear in the pulldown menu.

•

toolbarPath − a named group within the local toolbar of the target view. If the group does not exist, it
will be created. If omitted, the action will not appear in the local toolbar.

•

 Welcome to Eclipse

View Menus,Toolbars and Actions 353

icon − a relative path of an icon used to visually represent the action in its context. If omitted and the
action appears in the toolbar, the Workbench will use a placeholder icon. The path is relative to the
location of the plugin.xml file of the contributing plug−in. The icon will appear in the toolbar but not
in the pulldown menu.

•

disabledIcon − a relative path of an icon used to visually represent the action in its context when the
action is disabled. If omitted, the normal icon will simply appear greyed out. The path is relative to
the location of the plugin.xml file of the contributing plug−in. The disabled icon will appear in the
toolbar but not in the pulldown menu.

•

hoverIcon − a relative path of an icon used to visually represent the action in its context when the
mouse pointer is over the action. If omitted, the normal icon will be used. The path is relative to the
location of the plugin.xml file of the contributing plug−in.

•

tooltip − a translatable text representing the action's tool tip. Only used if the action appears in the
toolbar.

•

helpContextId − a unique identifier indicating the help context for this action. If the action appears as
a menu item, then pressing F1 while the menu item is highlighted will display help.

•

style − an optional attribute to define the user interface style type for the action. If defined, the
attribute value will be one of the following:

push − as a regular menu item or tool item.

radio − as a radio style menu item or tool item. Actions with the radio
style within the same menu or toolbar group behave as a radio set.
The initial value is specified by the state attribute.

toggle − as a checked style menu item or as a toggle tool item. The initial
value is specified by the state attribute.

•

state − an optional attribute indicating the initial state (either true or false), used when the
style attribute has the value radio or toggle.

•

class − name of the fully qualified class that implements
org.eclipse.ui.IViewActionDelegate.

•

enablesFor − a value indicating the selection count which must be met to enable the action. If this
attribute is specified and the condition is met, the action is enabled. If the condition is not met, the
action is disabled. If no attribute is specified, the action is enabled for any number of items selected.
The following attribute formats are supported:

! − 0 items selected

? − 0 or 1 items selected

+ − 1 or more items selected

multiple, 2+ − 2 or more items selected

n − a precise number of items selected.a precise number of
items selected. For example: enablesFor=" 4" enables the
action only when 4 items are selected

* − any number of items selected

•

<!ELEMENT menu (separator+ , groupMarker*)>

<!ATTLIST menu

id CDATA #REQUIRED

label CDATA #REQUIRED

 Welcome to Eclipse

View Menus,Toolbars and Actions 354

path CDATA #IMPLIED>

This element is used to defined a new menu.

id − a unique identifier that can be used to reference this menu.•
label − a translatable name used by the Workbench for this new menu. The name should include
mnemonic information.

•

path − the location of the new menu starting from the root of the menu. Each token in the path must
refer to an existing menu, except the last token which should represent a named group in the last
menu in the path. If omitted, the new menu will be added to the additions named group of the
menu.

•

<!ELEMENT separator EMPTY>

<!ATTLIST separator

name CDATA #REQUIRED>

This element is used to create a menu separator in the new menu.

name − the name of the menu separator. This name can later be referenced as the last token in a menu
path. Therefore, a separator also serve as named group into which actions and menus can be added.

•

<!ELEMENT groupMarker EMPTY>

<!ATTLIST groupMarker

name CDATA #REQUIRED>

This element is used to create a named group in the new menu. It has no visual representation in the new
menu, unlike the separator element.

name − the name of the group marker. This name can later be referenced as the last token in the menu
path. It serves as named group into which actions and menus can be added.

•

<!ELEMENT selection EMPTY>

<!ATTLIST selection

 Welcome to Eclipse

View Menus,Toolbars and Actions 355

class CDATA #REQUIRED

name CDATA #IMPLIED>

This element is used to help determine the action enablement based on the current selection. Ignored if the
enablement element is specified.

class − a fully qualified name of the class or interface that each object in the selection must
implement in order to enable the action.

•

name − an optional wild card filter for the name that can be applied to all objects in the selection. If
specified and the match fails, the action will be disabled.

•

<!ELEMENT enablement (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the enablement for the extension.

<!ELEMENT visibility (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element is used to define the visibility for the extension.

<!ELEMENT and (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean AND operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT or (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean OR operation on the result of evaluating it's two sub−element expressions.

<!ELEMENT not (and | or | not | objectClass | objectState | pluginState | systemProperty)>

This element represent a boolean NOT operation on the result of evaluating it's sub−element expressions.

 Welcome to Eclipse

View Menus,Toolbars and Actions 356

<!ELEMENT objectClass EMPTY>

<!ATTLIST objectClass

name CDATA #REQUIRED>

This element is used to evaluate the class or interface of each object in the current selection. If each object in
the selection implements the specified class or interface, the expression is evaluated as true.

name − a fully qualified name of a class or interface. The expression is evaluated as true only if all
objects within the selection implement this class or interface.

•

<!ELEMENT objectState EMPTY>

<!ATTLIST objectState

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the attribute state of each object in the current selection. If each object in the
selection has the specified attribute state, the expression is evaluated as true. To evaluate this type of
expression, each object in the selection must implement, or adapt to,
org.eclipse.ui.IActionFilter interface.

name − the name of an object's attribute. Acceptable names reflect the object type, and should be
publicly declared by the plug−in where the object type is declared.

•

value − the required value of the object's attribute. The acceptable values for the object's attribute
should be publicly declared.

•

<!ELEMENT pluginState EMPTY>

<!ATTLIST pluginState

id CDATA #REQUIRED

value (installed|activated) "installed">

This element is used to evaluate the state of a plug−in. The state of the plug−in may be one of the following:
installed or activated.

 Welcome to Eclipse

View Menus,Toolbars and Actions 357

id − the identifier of a plug−in which may or may not exist in the plug−in registry.•
value − the required state of the plug−in. The state of the plug−in may be one of the following:
installed or activated.

•

<!ELEMENT systemProperty EMPTY>

<!ATTLIST systemProperty

name CDATA #REQUIRED

value CDATA #REQUIRED>

This element is used to evaluate the state of some system property. The property value is retrieved from the
java.lang.System.

name − the name of the system property.•
value − the required value of the system property.•

Examples:

The following is an example of a view action extension:

<extension point=

"org.eclipse.ui.viewActions"

>

<viewContribution id=

"com.xyz.xyzViewC1"

targetID=

"org.eclipse.ui.views.navigator.ResourceNavigator"

>

<menu id=

"com.xyz.xyzMenu"

label=

 Welcome to Eclipse

View Menus,Toolbars and Actions 358

"XYZ Menu"

path=

"additions"

>

<separator name=

"group1"

/>

</menu>

<action id=

"com.xyz.runXYZ"

label=

"&Run XYZ Tool"

menubarPath=

"com.xyz.xyzMenu/group1"

toolbarPath=

"Normal/additions"

style=

"toggle"

state=

"true"

icon=

"icons/runXYZ.gif"

tooltip=

"Run XYZ Tool"

helpContextId=

"com.xyz.run_action_context"

 Welcome to Eclipse

View Menus,Toolbars and Actions 359

class=

"com.xyz.actions.RunXYZ"

>

<selection class=

"org.eclipse.core.resources.IFile"

name=

"*.java"

/>

</action>

</viewContribution>

</extension>

In the example above, the specified action will only enable for a single selection (enablesFor attribute). In
addition, the object in the selection must be a Java file resource.

The following is an other example of a view action extension:

<extension point=

"org.eclipse.ui.viewActions"

>

<viewContribution id=

"com.xyz.xyzViewC1"

targetID=

"org.eclipse.ui.views.navigator.ResourceNavigator"

>

<menu id=

"com.xyz.xyzMenu"

label=

 Welcome to Eclipse

View Menus,Toolbars and Actions 360

"XYZ Menu"

path=

"additions"

>

<separator name=

"group1"

/>

</menu>

<action id=

"com.xyz.runXYZ2"

label=

"&Run XYZ2 Tool"

menubarPath=

"com.xyz.xyzMenu/group1"

style=

"push"

icon=

"icons/runXYZ2.gif"

tooltip=

"Run XYZ2 Tool"

helpContextId=

"com.xyz.run_action_context2"

class=

"com.xyz.actions.RunXYZ2"

>

<enablement>

 Welcome to Eclipse

View Menus,Toolbars and Actions 361

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<not>

<objectState name=

"extension"

value=

"java"

/>

</not>

</and>

</enablement>

</action>

</editorContribution>

</extension>

In the example above, the specified action will appear as a menu item. The action is enabled if the selection
contains no Java file resources.

API Information:

The value of the class attribute must be a fully qualified name of a Java class that implements
org.eclipse.ui.IViewActionDelegate. This class is loaded as late as possible to avoid loading
the entire plug−in before it is really needed.

The interface org.eclipse.ui.IViewActionDelegate extends
org.eclipse.ui.IActionDelegate and adds an additional method that allows the delegate to
initialize with the view instance it is contributing into.

This extension point can be used to contribute actions into menus previously created by the target view.
Omitting the menu path attribute will result in adding the new menu or action at the end of the pulldown
menu.

The enablement criteria for an action extension is initially defined by enablesFor, and also either
selection or enablement. However, once the action delegate has been instantiated, it may control the

 Welcome to Eclipse

View Menus,Toolbars and Actions 362

action enable state directly within its selectionChanged method.

Action and menu labels may contain special characters that encode mnemonics using the following rules:

Mnemonics are specified using the ampersand ('&') character in front of a selected character in the
translated text. Since ampersand is not allowed in XML strings, use & character entity.

1.

If two or more actions are contributed to a menu or toolbar by a single extension the actions will appear in the
reverse order of how they are listed in the plugin.xml file. This behavior is admittedly unintuitive. However, it
was discovered after the Eclipse Platform API was frozen. Changing the behavior now would break every
plug−in which relies upon the existing behavior.

The selection and enablement elements are mutually exclusive. The enablement element can
replace the selection element using the sub−elements objectClass and objectState. For example,
the following:

<selection class=

"org.eclipse.core.resources.IFile"

name=

"*.java"

>

</selection>

can be expressed using:

<enablement>

<and>

<objectClass name=

"org.eclipse.core.resources.IFile"

/>

<objectState name=

"extension"

value=

"java"

 Welcome to Eclipse

View Menus,Toolbars and Actions 363

/>

</and>

</enablement>

Supplied Implementation:

Each view normally comes with a number of standard items on the pulldown menu and local toolbar.
Additions from other plug−ins will be appended to the standard complement.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

View Menus,Toolbars and Actions 364

http://www.eclipse.org/legal/cpl-v10.html

Working Sets
Identifier:

org.eclipse.ui.workingSets

Since:

Release 2.0

Description:

This extension point is used to define a working set wizard page. Working sets contain a number of elements
of type IAdaptable and can be used to group elements for presentation to the user or for operations on a set of
elements. A working set wizard page is used to create and edit working sets that contain elements of a specific
type.

To select a working set the user is presented with a list of working sets that exist in the workbench. From that
list a working set can be selected and edited using one of the wizard pages defined using this extension point.
An existing working set is always edited with the wizard page that was used to create it or with the default
resource based working set page if the original page is not available.

A new working set can be defined by the user from the same working set selection dialog. When a new
working set is defined, the plugin provided wizard page is preceded by a page listing all available working set
types. This list is made up of the name attribute values of each working set extension.

Views provide a user interface to open the working set selection dialog and must store the selected working
set.

The resource navigator uses a working set to filter elements from the navigator view. Only parents and
children of working set elements are shown in the view, in addition to the working set elements themselves.

Configuration Markup:

<!ELEMENT extension (workingSet*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT workingSet EMPTY>

Working Sets 365

<!ATTLIST workingSet

id CDATA #REQUIRED

name CDATA #REQUIRED

icon CDATA #IMPLIED

pageClass CDATA #REQUIRED>

id − a unique name that can be used to identify this working set dialog.•
name − the name of the element type that will be displayed and edited by the working set page. This
should be a descriptive name like "Resource" or "Java Element".

•

icon − the relative path of an image that will be displayed in the working set type list on the first page
of the working set creation wizard as well as in the working set selection dialog.

•

pageClass − the fully qualified name of a Java class implementing
org.eclipse.ui.dialogs.IWorkingSetPage.

•

Examples:

Following is an example of how the resource working set dialog extension is defined to display and edit
generic IResource elements:

<extension point=

"org.eclipse.ui.workingSets"

>

<workingSet id=

"org.eclipse.ui.resourceWorkingSetPage"

name=

"Resource"

icon=

"icons/resworkset.gif"

pageClass=

"org.eclipse.ui.internal.dialogs.ResourceWorkingSetPage"

>

 Welcome to Eclipse

Working Sets 366

</workingSet>

</extension>

API Information:

The value of the pageClass attribute must represent a class that implements the
org.eclipse.ui.dialogs.IWorkingSetPage interface.

Supplied Implementation:

The workbench provides a working set wizard page for creating and editing resource based working sets.

Copyright (c) 2002, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Working Sets 367

http://www.eclipse.org/legal/cpl-v10.html

Synchronize Participants
Identifier:

org.eclipse.team.ui.synchronizeParticipants

Since:

3.0

Description:

This extension point is used to register a synchronize participant. A synchronize participant is a component
that displays changes between resources and typically allows the user to manipulate the changes. For example,
CVS defines a workspace synchronize participant that allows showing changes between workspace resources
and the resources at a remote location that is used to share those resources. Synchronize participants are
typically created via a synchronize participant wizard or they can be created via a plug−in action and then
registered with the ISynchronizeManager. The Synchronize View displays synchronize participants.

A participant is a generic component that provides access to creating a page and is shown to the user and a
configuration that defines common configuration parameters for the page. The Synchronize View doesn't
enforce any restrictions on how changes are shown to the user, and instead only manages the participants.

Configuration Markup:

<!ELEMENT extension (participant)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − A fully qualified identifier of the target extension point•
id − An optional identifier of the extension instance.•
name − An optional name for this extension instance.•

<!ELEMENT participant EMPTY>

<!ATTLIST participant

icon CDATA #IMPLIED

id CDATA #IMPLIED

class CDATA #IMPLIED

Synchronize Participants 368

name CDATA #IMPLIED

persistent (true|false) >

icon − An icon that will be used when showing this participant in lists and menus.•
id − A unique name that will be used to identify this type of participant.•
class − A fully qualified name of the class the extends
org.eclipse.team.ui.synchronize.AbstractSynchronizeParticipant.

•

name − The name of the participant. This will be shown in the UI.•
persistent − By default participants will be persisted between sessions. Set this attribute to false if
this participant should not be persisted between sessions.

•

Examples:

<extension point=

"org.eclipse.team.ui.synchronizeParticipants"

>

<participant name=

"CVS Workspace"

icon=

"icons/full/cview16/server.gif"

class=

"org.eclipse.team.internal.ccvs.ui.subscriber.WorkspaceSynchronizeParticipant"

id=

"org.eclipse.team.cvs.ui.cvsworkspace−participant"

>

</participant>

<participant name=

"CVS Merge"

icon=

"icons/full/obj16/prjversions_rep.gif"

 Welcome to Eclipse

Synchronize Participants 369

class=

"org.eclipse.team.internal.ccvs.ui.subscriber.MergeSynchronizeParticipant"

type=

"dynamic"

id=

"org.eclipse.team.cvs.ui.cvsmerge−participant"

>

</participant>

</extension>

API Information:

The value of the class attribute must represent a class that implements
org.eclipse.team.ui.synchronize.AbstractSynchronizeParticipant.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Synchronize Participants 370

http://www.eclipse.org/legal/cpl-v10.html

Breakpoints
Identifier:

org.eclipse.debug.core.breakpoints

Description:

This extension point defines a mechanism for defining new types of breakpoints.

Configuration Markup:

<!ELEMENT extension (breakpoint*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT breakpoint EMPTY>

<!ATTLIST breakpoint

id CDATA #REQUIRED

markerType CDATA #REQUIRED

class CDATA #REQUIRED>

id − specifies a unique identifier for this breakpoint type.•
markerType − specifies the fully qualified identifier (id) of the corresponding marker definition for
breakpoints of this type.

•

class − specifies the fully qualified name of the java class that implements IBreakpoint.•

Examples:

The following is an example of a launch configuration type extension point:

Breakpoints 371

<extension point=

"org.eclipse.debug.core.breakpoints"

>

<breakpoint id=

"com.example.ExampleBreakpoint"

markerType=

"com.example.ExampleBreakpointMarker"

class=

"com.example.ExampleBreakpointImpl"

>

</breakpoint>

</extension>

In the example above, the specified type of breakpoint is implemented by the class
"com.example.BreakpointImpl". There is an associated marker definition for
"com.example.ExampleBreakpointMarker", defining the attributes of this breakpoint.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.IBreakpoint.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Breakpoints 372

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Comparators
Identifier:

org.eclipse.debug.core.launchConfigurationComparators

Description:

This extension point provides a configurable mechanism for comparing specific attributes of a launch
configuration. In general, launch configuration attributes can be compared for equality via the default
implementation of java.lang.Object.equals(Object). However, attributes that require special
handling should implement this extension point. For example, when an attribute is stored as XML, it is
possible that two strings representing an equivalent attribute have different whitespace formatting.

Configuration Markup:

<!ELEMENT extension (launchConfigurationComparator*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchConfigurationComparator EMPTY>

<!ATTLIST launchConfigurationComparator

id CDATA #REQUIRED

attribute CDATA #REQUIRED

class CDATA #REQUIRED>

id − specifies a unique identifier for this extension.•
attribute − specifies the launch configuration attribute name that this comparator compares.•
class − specifies a fully−qualified name of a class that implements java.util.Comparator.•

Launch Configuration Comparators 373

Examples:

The following is an example of a launch configuration comparator extension point:

<extension point=

"org.eclipse.debug.core.launchConfigurationComparators"

>

<launchConfigurationComparator id=

"com.example.ExampleIdentifier"

attribute=

"com.example.ExampleAttributeName"

class=

"com.example.ComparatorImplementation"

>

</launchConfigurationComparator>

</extension>

In the example above, the specified type of launch configuration comparator will be consulted when
comparing the equality of attributes keyed with name com.example.ExampleAttributeName.

API Information:

Value of the attribute class must be a fully−qualified name of a Java class that implements the interface
java.util.Comparator.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Configuration Comparators 374

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Types
Identifier:

org.eclipse.debug.core.launchConfigurationTypes

Description:

This extension point provides a configurable mechanism for launching applications. Each launch
configuration type has a name, supports one or more modes (run and/or debug), and specifies a delegate
responsible for the implementation of launching an application.

Configuration Markup:

<!ELEMENT extension (launchConfigurationType*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchConfigurationType (fileExtension+)>

<!ATTLIST launchConfigurationType

id CDATA #REQUIRED

delegate CDATA #REQUIRED

modes CDATA #REQUIRED

name CDATA #REQUIRED

public (true | false)

category CDATA #IMPLIED

sourcePathComputerId CDATA #IMPLIED

sourceLocatorId CDATA #IMPLIED>

id − specifies a unique identifier for this launch configuration type.•

Launch Configuration Types 375

delegate − specifies the fully qualified name of the Java class that implements
ILaunchConfigurationDelegate. Launch configuration instances of this type will delegate
to instances of this class to perform launching.

•

modes − specifies a comma−separated list of the modes this type of lauch configuration supports −
"run" and/or "debug".

•

name − specifies a human−readable name for this type of launch configuration.•
public − specifies whether this launch configuration type is accessible by users. Defaults to true if not
specified.

•

category − an optional attribute that specifies this launch configuration type's category. The default
value is unspecified (null). Categories are client defined. This attribute was added in the 2.1 release.

•

sourcePathComputerId − The unique identifier of a sourcePathComputers extension that is used to
compute a default source lookup path for launch configurations of this type

•

sourceLocatorId − The unique identifier of a sourceLocators extension that is used to create the
source locator for sessions launched using launch configurations of this type

•

<!ELEMENT fileExtension EMPTY>

<!ATTLIST fileExtension

extension CDATA #REQUIRED

default (true | false) >

extension − specifies a file extension that this launch configuration type can be used for.•
default − specifies whether this launch configuration type should be the default launch configuration
type for the specified file extension. Defaults to false if not specified.

•

Examples:

The following is an example of a launch configuration type extension point:

<extension point=

"org.eclipse.debug.core.launchConfigurationTypes"

>

<launchConfigurationType id=

"com.example.ExampleIdentifier"

delegate=

"com.example.ExampleLaunchConfigurationDelegate"

 Welcome to Eclipse

Launch Configuration Types 376

modes=

"run,debug"

name=

"Example Application"

>

<fileExtension extension=

"txt"

default=

"true"

/>

<fileExtension extension=

"gif"

default=

"false"

/>

</launchConfigurationType>

</extension>

In the example above, the specified type of launch configuration supports both run and debug modes. The
launch configuration is applicable to .txt and .gif files, and is the default launch configuration for .txt files.

API Information:

Value of the attribute delegate must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.ILaunchConfigurationDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Configuration Types 377

http://www.eclipse.org/legal/cpl-v10.html

Launch Delegates
Identifier:

org.eclipse.debug.core.launchDelegates

Since:

3.0

Description:

This extension point provides a mechanism for contributing a launch delegate to an existing launch
configuration type for one or more launch modes. Since launch modes are extensisble, it may be neccessary to
contribute additional launch delegates to an existing launch configuration type. Each launch delegate is
contributed for a specific launch configuration type. A launch delegate supports one or more launch modes,
and specifies a delegate responsible for the implementation of launching.

Configuration Markup:

<!ELEMENT extension (launchDelegate*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchDelegate EMPTY>

<!ATTLIST launchDelegate

id CDATA #REQUIRED

delegate CDATA #REQUIRED

modes CDATA #REQUIRED

type CDATA #REQUIRED>

id − specifies a unique identifier for this launch delegate.•
delegate − specifies the fully qualified name of the Java class that implements
ILaunchConfigurationDelegate. Launch configuration instances of this delegate's type will

•

Launch Delegates 378

delegate to instances of this class to perform launching.
modes − specifies a comma−separated list of the modes this lauch delegate supports.•
type − identifier of an existing launch configuration type that this launch delegate is capable of
launching.

•

Examples:

The following is an example of a launch delegate extension point:

<extension point=

"org.eclipse.debug.core.launchDelegates"

>

<launchDelegate id=

"com.example.ExampleProfileDelegate"

delegate=

"com.example.ExampleProfileDelegate"

type=

"org.eclipse.jdt.launching.localJavaApplication"

modes=

"profile"

>

</launchDelegate>

</extension>

In the example above, the specified launch delegate is contributed to launch Java applications in profile mode.

API Information:

Value of the attribute delegate must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.ILaunchConfigurationDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.

 Welcome to Eclipse

Launch Delegates 379

All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Delegates 380

http://www.eclipse.org/legal/cpl-v10.html

Launcher (Obsolete)
Identifier:

org.eclipse.debug.core.launchers

Description:

This extension point has been replaced by the launchConfigurationTypes extension point. Extensions of this
type are obsolete as of release 2.0 and are ignored. This extension point was used to contribute launchers. A
launcher was responsible for initiating a debug session or running a program and registering the result with
the launch manager.

Configuration Markup:

<!ELEMENT extension (launcher*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launcher EMPTY>

<!ATTLIST launcher

id CDATA #REQUIRED

class CDATA #REQUIRED

modes CDATA #REQUIRED

label CDATA #REQUIRED

wizard CDATA #IMPLIED

public (true | false)

description CDATA #IMPLIED

perspective CDATA #IMPLIED

Launcher (Obsolete) 381

icon CDATA #IMPLIED>

id − a unique identifier that can be used to reference this launcher.•
class − fully qualified name of the class that implements
org.eclipse.debug.core.model.ILauncherDelegate.

•

modes − A comma separated list of modes this launcher supports. The two supported modes are "run"
and "debug" − as defined in org.eclipse.debug.core.ILaunchManager. A launcher may
be capable of launching in one or both modes.

•

label − a label to use for the launcher. This attribute is used by the debug UI.•
wizard − fully qualified name of the class that implements
org.eclipse.debug.ui.ILaunchWizard. This attribute is used by the debug UI. A launcher
may contribute a wizard that allows users to configure and launch specific attributes.

•

public − whether a launcher is publically visible in the debug UI. If "true", the launcher will be
available from the debug UI − the launcher will appear as a choice for a default launcher, launches
created by this launcher will appear in the launch history, and the launcher will be available from the
drop−down run/debug toolbar actions.

•

description − a description of the launcher. Currently only used if the wizard attribute is specified.•
perspective − the identifier of the perspective that will be switched to on a successful launch. Default
value is the identifier for the debug perspective. This attribute is used by the debug UI.

•

icon − a relative path of an icon that will represent the launcher in the UI if specified.•

Examples:

The following is an example of a launcher extension point:

<extension point =

"org.eclipse.debug.core.launchers"

>

<launcher id =

"com.example.ExampleLauncher"

class =

"com.example.launchers.ExampleLauncher"

modes =

"run, debug"

label =

"Example Launcher"

 Welcome to Eclipse

Launcher (Obsolete) 382

wizard =

"com.example.launchers.ui.ExampleLaunchWizard"

public =

"true"

description =

"Launches example programs"

perspective=

"com.example.JavaPerspective"

>

</launcher>

</extension>

In the example above, the specified launcher supports both run and debug modes. Following a successful
launch, the debug UI will change to the Java perspective. When the debug UI presents the user with a list of
launchers to choose from, "Example Launcher" will appear as one of the choices with the "Launches example
programs" as the description, and the wizard specified by
com.example.launchers.ui.ExampleLaunchWizard will be used to configure any launch
specific details.

API Information:

Value of the attribute class must be a fully qualified class name of a Java class that implements the
interface org.eclipse.debug.core.ILauncherDelegate. Value of the attribute wizard must be
a fully qualified class name of a Java class that implements
org.eclipse.debug.ui.ILaunchWizard.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launcher (Obsolete) 383

http://www.eclipse.org/legal/cpl-v10.html

Launch Modes
Identifier:

org.eclipse.debug.core.launchModes

Since:

3.0

Description:

This extension point provides a mechanism for contributing launch modes to the debug platform. The debug
platform defines modes for "run", "debug", and "profile".

Configuration Markup:

<!ELEMENT extension (launchMode*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchMode EMPTY>

<!ATTLIST launchMode

mode CDATA #REQUIRED

label CDATA #REQUIRED>

mode − specifies a unique identifier for this launch mode. The launch modes contributed by the
debug plaform are "run", "debug", and "profile".

•

label − A human−readable label that describes the launch mode•

Examples:

The following is an example of a launch delegate extension point:

Launch Modes 384

<extension point=

"org.eclipse.debug.core.launchModes"

>

<launchMode mode=

"profile"

label=

"Profile"

>

</launchMode>

</extension>

In the example above, the profile launch mode is contributed.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Modes 385

http://www.eclipse.org/legal/cpl-v10.html

Logical Structure Types
Identifier:

org.eclipse.debug.core.logicalStructureTypes

Since:

3.0

Description:

This extension point allows debuggers to present alternative logical structures of values. Often, complex data
structures are more convenient to navigate in terms of their logical structure, rather than in terms of their
implementation. For example, no matter how a list is implemented (linked, array, etc.), a user may simply
want to see the elements in the list in terms of an ordered collection. This extension point allows the
contribution of logical structure types, to provide translations from a raw implementation value to a logical
value.

Configuration Markup:

<!ELEMENT extension (logicalStructureType*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT logicalStructureType EMPTY>

<!ATTLIST logicalStructureType

id CDATA #REQUIRED

description CDATA #REQUIRED

class CDATA #REQUIRED

modelIdentifier CDATA #REQUIRED>

id − a unique identifier for this logical structure type•
description − a description of this logical structure•

Logical Structure Types 386

class − fully qualified name of a Java class that implements
ILogicalStructureTypeDelegate

•

modelIdentifier − identifier of the debug model this logical structure type is associated with•

Examples:

The following is an example of a logical structure type extension point:

<extension point=

"org.eclipse.debug.core.logicalStructureTypes"

>

<logicalStructureType id=

"com.example.ExampleLogicalStructure"

class=

"com.example.ExampleLogicalStructureDelegate"

modelIdentifier=

"com.example.debug.model"

description=

"Ordered Collection"

>

</logicalStructureType>

</extension>

In the example above, the specified logical structure type will be consulted for alternative logical values for
values from the com.example.debug.model debug model as they are displayed in the variables view.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.ILogicalStructureTypeDelegate.

Copyright (c) 2000, 2004 IBM Corporation and others.

 Welcome to Eclipse

Logical Structure Types 387

All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Logical Structure Types 388

http://www.eclipse.org/legal/cpl-v10.html

Process Factories
Identifier:

org.eclipse.debug.core.processFactories

Since:

3.0

Description:

This extension point provides a mechanism for specifying a process factory to be used with a launch
configuration to create the appropriate instance of IProcess. The launch configuration will require the
DebugPlugin.ATTR_PROCESS_FACTORY_ID attribute set to the appropriate process factory ID that will
be used to create the IProcess

Configuration Markup:

<!ELEMENT extension (processFactory*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT processFactory EMPTY>

<!ATTLIST processFactory

id CDATA #REQUIRED

class CDATA #REQUIRED>

id − specifies a unique identifier for this process factory.•
class − specifies the fully qualified name of the Java class that implements IProcessFactory.•

Process Factories 389

Examples:

The following is an example of a process factory extension point:

<extension point=

"org.eclipse.debug.core.processFactories"

>

<processFactory id=

"com.example.ExampleIdentifier"

class=

"com.example.ExampleProcessFactory"

>

</processFactory>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.IProcessFactory.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Process Factories 390

http://www.eclipse.org/legal/cpl-v10.html

Source Container Types
Identifier:

org.eclipse.debug.core.sourceContainerTypes

Since:

3.0

Description:

This extension point allows for an extensible set of source container types to be contributed by the debug
platform source lookup facilities.

Configuration Markup:

<!ELEMENT extension (sourceContainerType*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT sourceContainerType EMPTY>

<!ATTLIST sourceContainerType

id CDATA #REQUIRED

name CDATA #REQUIRED

class CDATA #REQUIRED

description CDATA #IMPLIED>

id − The unique id used to refer to this type•
name − The name of this source container type use for presentation purposes.•
class − A class that implements ISourceContainerTypeDelegate•
description − A short description of this source container for presentation purposes.•

Source Container Types 391

Examples:

The following is an example of a source container type definition:

<extension point=

"org.eclipse.debug.core.sourceContainerTypes"

>

<sourceContainerType name=

"Project"

class=

"org.eclipse.debug.internal.core.sourcelookup.containers.ProjectSourceContainerType"

id=

"org.eclipse.debug.core.containerType.project"

description=

"A project in the workspace"

>

</sourceContainerType>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
ISourceContainerType.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Source Container Types 392

http://www.eclipse.org/legal/cpl-v10.html

Source Locators
Identifier:

org.eclipse.debug.core.sourceLocators

Description:

This extension point provides a mechanism specifying a source locator to be used with a launch configuration.

Configuration Markup:

<!ELEMENT extension (sourceLocator*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT sourceLocator EMPTY>

<!ATTLIST sourceLocator

id CDATA #REQUIRED

class CDATA #REQUIRED

name CDATA #REQUIRED>

id − specifies a unique identifier for this source locator.•
class − specifies the fully qualified name of the Java class that implements IPersistableSourceLocator.•
name − a human−readable name, describing the type of this source locator.•

Examples:

The following is an example of a source locator extension point:

<extension point=

Source Locators 393

"org.eclipse.debug.core.sourceLocators"

>

<sourceLocator id=

"com.example.ExampleIdentifier"

class=

"com.example.ExampleSourceLocator"

name=

"Example Source Locator"

>

</sourceLocator>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.model.IPersistableSourceLocator.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Source Locators 394

http://www.eclipse.org/legal/cpl-v10.html

Source Path Computers
Identifier:

org.eclipse.debug.core.sourcePathComputers

Since:

3.0

Description:

Defines an extension point to register a computer that can describe a default source lookup path for a launch
configuration. Source path computers are associated with launch configuration types via the
launchConfigurationTypes extension point. As well, a source path computer can be associated with a specific
launch configuration via the launch configuration attribute ATTR_SOURCE_PATH_COMPUTER_ID.

Configuration Markup:

<!ELEMENT extension (sourcePathComputer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT sourcePathComputer EMPTY>

<!ATTLIST sourcePathComputer

id CDATA #REQUIRED

class CDATA #REQUIRED>

Defines an extension point to register a computer that can describe a default source lookup path for a launch
configuration.

id − The unique id used to refer to this computer.•
class − A class that implements ISourcePathComputerDelegate.•

Source Path Computers 395

Examples:

Following is an example source path computer definition:

<extension point=

"org.eclipse.debug.core.sourcePathComputers"

>

<sourcePathComputer id=

"org.eclipse.example.exampleSourcePathComputer"

class=

"org.eclipse.example.SourcePathComputer"

>

</sourcePathComputer>

</extension>

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
ISourcePathComputer.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Source Path Computers 396

http://www.eclipse.org/legal/cpl-v10.html

Status Handlers
Identifier:

org.eclipse.debug.core.statusHandlers

Description:

This extension point provides a mechanism for separating the generation and resolution of an error. The
interaction between the source of the error and the resolution is client−defined. It is a client responsibility to
look up and delegate to status handlers when an error condition occurs.

Configuration Markup:

<!ELEMENT extension (statusHandler*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT statusHandler EMPTY>

<!ATTLIST statusHandler

id CDATA #REQUIRED

class CDATA #REQUIRED

plugin CDATA #REQUIRED

code CDATA #REQUIRED>

id − specifies a unique identifier for this status handler.•
class − specifies the fully qualified name of the Java class that implements IStatusHandler.•
plugin − Plug−in identifier that corresponds to the plug−in of the status this handler is registered for.
(i.e. IStatus.getPlugin()).

•

code − specifies the status code this handler is registered for.•

Status Handlers 397

Examples:

The following is an example of a status handler extension point:

<extension point=

"org.eclipse.debug.core.statusHandlers"

>

<statusHandler id=

"com.example.ExampleIdentifier"

class=

"com.example.ExampleStatusHandler"

plugin=

"com.example.ExamplePluginId"

code=

"123"

>

</statusHandler>

</extension>

In the example above, the specified status handler will be registered for to handle status objects with a plug−in
identifier of com.example.ExamplePluginId and a status code of 123.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.core.IStatusHandler.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Status Handlers 398

http://www.eclipse.org/legal/cpl-v10.html

watchExpressionDelegates
Identifier:

org.eclipse.debug.core.watchExpressionDelegates

Since:

3.0

Description:

This extension provides a mechanism for providing delegates to evaluate watch expressions on a per debug
model basis. Watch expression delegates perform evaluations for watch expressions and report the results
asynchronously.

Configuration Markup:

<!ELEMENT extension (watchExpressionDelegate*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT watchExpressionDelegate EMPTY>

<!ATTLIST watchExpressionDelegate

debugModel CDATA #REQUIRED

delegateClass CDATA #REQUIRED>

debugModel − specifies the id of the debug model that this delegate provides evaluations for•
delegateClass − specifies a Java class which implements
org.eclipse.debug.core.model.IWatchExpressionDelegate, which is used to
evaluate the value of an expression.

•

watchExpressionDelegates 399

Examples:

The following is the definition of a watch expression delegate for the com.example.foo plug−in:

<extension point=

"org.eclipse.debug.core.watchExpressionDelegates"

>

<watchExpressionDelegate debugModel=

"org.eclipse.jdt.debug"

delegateClass=

"org.eclipse.jdt.internal.debug.ui.JavaWatchExpressionDelegate"

/>

</extension>

API Information:

Value of the attribute delegateClass must be a fully qualified name of a Java class that implements the
interface org.eclipse.debug.core.model.IWatchExpressionDelegate.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

watchExpressionDelegates 400

http://www.eclipse.org/legal/cpl-v10.html

Console Color Providers
Identifier:

org.eclipse.debug.ui.consoleColorProviders

Since:

2.1

Description:

This extension point provides a mechanism for contributing a console document coloring scheme for a
process. The color provider will be used to color output in the console.

Configuration Markup:

<!ELEMENT extension (consoleColorProvider*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT consoleColorProvider EMPTY>

<!ATTLIST consoleColorProvider

id CDATA #REQUIRED

class CDATA #REQUIRED

processType CDATA #REQUIRED>

id − specifies a unique identifier for this console color provider.•
class − specifies a fully qualified name of a Java class that implements IConsoleColorProvider•
processType − specifies the type of process this color provider is for. This attribute corresponds to
the process attribute IProcess.ATTR_PROCESS_TYPE.

•

Console Color Providers 401

Examples:

The following is an example of a console color provider extension point:

<extension point=

"org.eclipse.debug.ui.consoleColorProviders"

>

<consoleColorProvider id=

"com.example.ExampleConsoleColorProvider"

class=

"com.example.ExampleConsoleColorProvider"

processType=

"ExampleProcessType"

>

</consoleColorProvider>

</extension>

In the above example, the contributed color provider will be used for processes of type
"ExampleProcessType", which corresponds to the process attribute IProcess.ATTR_PROCESS_TYPE.
Process types are client defined, and are set by clients that create processes.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.console.IConsoleColorProvider.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Console Color Providers 402

http://www.eclipse.org/legal/cpl-v10.html

Console Line Trackers
Identifier:

org.eclipse.debug.ui.consoleLineTrackers

Since:

2.1

Description:

This extension point provides a mechanism to listen to console output for a type of process.

Configuration Markup:

<!ELEMENT extension (consoleLineTracker*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT consoleLineTracker EMPTY>

<!ATTLIST consoleLineTracker

id CDATA #REQUIRED

class CDATA #REQUIRED

processType CDATA #REQUIRED>

id − specifies a unique identifier for this console line tracker.•
class − specifies a fully qualified name of a Java class that implements IConsoleLineTracker•
processType − specifies the type of process this line tracker is for. This attribute corresponds to the
process attribute IProcess.ATTR_PROCESS_TYPE.

•

Console Line Trackers 403

Examples:

The following is an example of a console line tracker extension point:

<extension point=

"org.eclipse.debug.ui.consoleLineTrackers"

>

<consoleLineTracker id=

"com.example.ExampleConsoleLineTracker"

class=

"com.example.ExampleConsoleLineTracker"

processType=

"ExampleProcessType"

>

</consoleLineTracker>

</extension>

In the above example, the contributed line tracker will be notified as lines are appended to the console for
processes of type "ExampleProcessType", which corresponds to the process attribute
IProcess.ATTR_PROCESS_TYPE. Process types are client defined, and are set by clients that create
processes.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.console.IConsoleLineTracker.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Console Line Trackers 404

http://www.eclipse.org/legal/cpl-v10.html

Context View Bindings
Identifier:

org.eclipse.debug.ui.contextViewBindings

Since:

3.0

Description:

This extension point provides a mechanism for associating a view with a context identifier. When a context is
activated by the Debug view, views associated with it (and also views associated with any parent contexts) are
opened, closed, or activated. Contributors have the option to override the automatic open and close behavior.

Configuration Markup:

<!ELEMENT extension (contextViewBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT contextViewBinding EMPTY>

<!ATTLIST contextViewBinding

contextId CDATA #REQUIRED

viewId CDATA #REQUIRED

autoOpen (true | false)

autoClose (true | false) >

contextId − Specifies the context identifier that this binding is for.•
viewId − Specifies the identifier of the view which should be associated with the specified context.
When the specified context is enabled, this view will be automatically brought to the front. When
elements are selected in the Debug view, contexts associated with those elements (as specified by
extensions of the debugModelContextBindings extension point) are automatically enabled. Note that

•

Context View Bindings 405

this only occurs in perspectives for which the user has requested "automatic view management" via
the preferences (by default, only in the Debug perspective).
autoOpen − Specifies whether the view should be automatically opened when the given context is
enabled. If unspecified, the value of this attribute is true. If this attribute is specified false, the view
will not be automatically opened, but it will still be brought to the front if it is open when the given
context is enabled. Clients are intended to specify false to avoid cluttering the perspective with views
that are used infrequently.

•

autoClose − Clients are not intended to specify this attribute except in rare cases. Specifies whether
the view should be automatically closed when the given context is disabled (this occurs when all
debug targets that contained the specified context have terminated). When unspecified, the value of
this attribute is true. This attribute should only be specified false in the unlikely case that a debugging
view must remain open even when the user is not debugging.

•

Examples:

The following is an example of a context view binding contribution:

<extension point=

"org.eclipse.debug.ui.contextViewBindings"

>

<contextViewBinding contextId=

"com.example.mydebugger.debugging"

viewId=

"com.example.view"

autoOpen=

"true"

autoClose=

"false"

>

</contextViewBinding>

</extension>

In the above example, when a context with the specified identifier is activated by the Debug view, the given
view will be automatically opened. When a context which is bound to a different debug model is activated
that isn't associated with the view, the view will not be automatically closed.

 Welcome to Eclipse

Context View Bindings 406

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Context View Bindings 407

http://www.eclipse.org/legal/cpl-v10.html

Debug Model Context Bindings
Identifier:

org.eclipse.debug.ui.debugModelContextBindings

Since:

3.0

Description:

This extension point provides a mechanism for specifying a context that should be associated with the given
debug model. The Debug view uses these bindings to automatically enable contexts. When an element in the
Debug view which provides an IDebugModelProvider adapter or a stack frame with the specified debug
model identifier is selected, the context with the given identifier will be enabled.

Configuration Markup:

<!ELEMENT extension (modelContextBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT modelContextBinding EMPTY>

<!ATTLIST modelContextBinding

debugModelId CDATA #REQUIRED

contextId CDATA #REQUIRED>

debugModelId − specifies the debug model identifier this binding is for•
contextId − specifies the context identifier of the context that should be associated with the given
debug model

•

Debug Model Context Bindings 408

Examples:

The following is an example of a debug model context binding contribution:

<extension point=

"org.eclipse.debug.ui.debugModelContextBindings"

>

<modelContextBinding contextId=

"com.example.myLanguage.debugging"

debugModelId=

"com.example.myLanguageDebugModel"

>

</modelContextBinding>

</extension>

In the above example, when a stack frame with the debug model identifier of
"com.example.myLanguageDebugModel" is selected, the context with the identifier
"com.example.myLanguage.debugging" will be enabled.

Copyright (c) 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Debug Model Context Bindings 409

http://www.eclipse.org/legal/cpl-v10.html

Debug Model Presentation
Identifier:

org.eclipse.debug.ui.debugModelPresentations

Description:

This extension point allows tools to handle the presentation aspects of a debug model. A debug model
presentation is responsible for providing labels, images, and editors for elements in a specific debug model.

Configuration Markup:

<!ELEMENT extension (debugModelPresentation*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT debugModelPresentation EMPTY>

<!ATTLIST debugModelPresentation

class CDATA #REQUIRED

id CDATA #REQUIRED

detailsViewerConfiguration CDATA #IMPLIED>

class − fully qualifed name of a Java class that implements the
org.eclipse.debug.ui.IDebugModelPresentation interface.

•

id − the identifier of the debug model this presentation is responsible for•
detailsViewerConfiguration − the fully qualified name of the Java class that is an instance of
org.eclipse.jface.text.source.SourceViewerConfiguration. When specified, the source viewer
configuration will be used in the "details" area of the variables and expressions view when displaying
the details of an element from the debug model associated with this debug model presentation. When
unspecified, a default configuration is used.

•

Debug Model Presentation 410

Examples:

The following is an example of a debug model presentations extension point:

<extension point =

"org.eclipse.debug.ui.debugModelPresentations"

>

<debugModelPresentation class =

"com.example.JavaModelPresentation"

id =

"com.example.JavaDebugModel"

>

</debugModelPresentation>

</extension>

In the example above, the class com.example.JavaModelPresentation will be used to render and
present debug elements originating from the debug model identified by
com.example.JavaDebugModel.

API Information:

Value of the action attribute class must be a fully qualified class name of a Java class that implements
org.eclipse.debug.ui.IDebugModelPresentation.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Debug Model Presentation 411

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Tab Groups
Identifier:

org.eclipse.debug.ui.launchConfigurationTabGroups

Description:

This extension point provides a mechanism for contributing a group of tabs to the launch configuration dialog
for a type of launch configuration.

Configuration Markup:

<!ELEMENT extension (launchConfigurationTabGroup*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchConfigurationTabGroup (launchMode*)>

<!ATTLIST launchConfigurationTabGroup

id CDATA #REQUIRED

type CDATA #REQUIRED

class CDATA #REQUIRED

helpContextId CDATA #IMPLIED

description CDATA #IMPLIED>

id − specifies a unique identifier for this launch configuration tab group.•
type − specifies a launch configuration type that this tab group is applicable to (corresponds to the id
of a launch configuration type extension).

•

class − specifies a fully qualified name of a Java class that implements
ILaunchConfigurationTabGroup.

•

helpContextId − an optional identifier that specifies the help context to associate with this tab group's
launch configuration type

•

description − A description of the Launch Configuration Type•

Launch Configuration Tab Groups 412

<!ELEMENT launchMode EMPTY>

<!ATTLIST launchMode

mode CDATA #REQUIRED

perspective CDATA #IMPLIED

description CDATA #IMPLIED>

A launch mode element specifies a launch mode this tab group is specific to. A tab group can be associated
with one or more launch modes. For backwards compatibility (previous to 3.0), a launch mode does not need
to be specified. When unspecified, a tab group is registered as the default tab group for the associated launch
configration type (i.e. applicable to all supported launch modes for which a specific tab group has not been
contributed).

mode − identifier for a launch mode this tab group is specific to.•
perspective − the default perspective identifier associated with this launch configuration type and
launch mode. This allows an extension to cause a perspective switch (or open) when a corresponding
launch is registered with the debug plug−in. When unspecified, it indicates that by default, no
perspective switch should occurr.

•

description − A description of the Launch Configuration Type specific to this launchMode.•

Examples:

The following is an example of a launch configuration tab group extension point:

<extension point=

"org.eclipse.debug.ui.launchConfigurationTabGroups"

>

<launchConfigurationTabGroup id=

"com.example.ExampleTabGroup"

type=

"com.example.ExampleLaunchConfigurationTypeIdentifier"

class=

 Welcome to Eclipse

Launch Configuration Tab Groups 413

"com.example.ExampleLaunchConfigurationTabGroupClass"

>

</launchConfigurationTabGroup>

</extension>

In the above example, the contributed tab group will be shown for the launch configuration type with
identifier com.example.ExampleLaunchConfigurationTypeIdentifier.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.ILaunchConfigurationTabGroup.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Configuration Tab Groups 414

http://www.eclipse.org/legal/cpl-v10.html

Launch Configuration Type Images
Identifier:

org.eclipse.debug.ui.launchConfigurationTypeImages

Description:

This extension point provides a way to associate an image with a launch configuration type.

Configuration Markup:

<!ELEMENT extension (launchConfigurationTypeImage*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchConfigurationTypeImage EMPTY>

<!ATTLIST launchConfigurationTypeImage

id CDATA #REQUIRED

configTypeID CDATA #REQUIRED

icon CDATA #REQUIRED>

id − specifies a unique identifier for this launch configuration type image.•
configTypeID − specifies the fully qualified ID of a launch configuration type.(in 2.1, this attribute
can also be specified using the "type" attribute, to be consistent with the
launchConfigurationTabGroups extension point).

•

icon − specifies the plugin−relative path of an image file.•

Examples:

The following is an example of a launch configuration type image extension point:

Launch Configuration Type Images 415

<extension point=

"org.eclipse.debug.ui.launchConfigurationTypeImages"

>

<launchConfigurationTypeImage id=

"com.example.FirstLaunchConfigurationTypeImage"

configTypeID=

"com.example.FirstLaunchConfigurationType"

icon=

"icons/FirstLaunchConfigurationType.gif"

>

</launchConfigurationTypeImage>

</extension>

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Configuration Type Images 416

http://www.eclipse.org/legal/cpl-v10.html

Launch Groups
Identifier:

org.eclipse.debug.ui.launchGroups

Since:

2.1

Description:

This extension point provides support for defining a group of launch configurations to be viewed together in
the launch configuration dialog, and support a launch history (recent and favorite launches).

Configuration Markup:

<!ELEMENT extension (launchGroup*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT launchGroup EMPTY>

<!ATTLIST launchGroup

id CDATA #REQUIRED

mode CDATA #REQUIRED

category CDATA #IMPLIED

label CDATA #REQUIRED

image CDATA #REQUIRED

bannerImage CDATA #REQUIRED

public CDATA #IMPLIED>

Launch Groups 417

id − specifies a unique identifier for this launch group.•
mode − specifies the launch mode associated with this group − i.e. run or debug.•
category − specifies the category of launch configurations in this group. When unspecified, the
category is null.

•

label − specifies a translatable label used to render this group.•
image − specifies a plug−in relative path to an image used to render this group in trees, lists, tabs, etc.•
bannerImage − specifies a plug−in relative path to an image used to render this group in a wizard or
dialog banner area.

•

public − specifies whether this launch group is public and should be have a visible launch history tab
in the debug preferences. The implied value is true, when not specified.

•

Examples:

The following is an example of a launch group extension point:

<extension point=

"org.eclipse.debug.ui.launchGroups"

>

<launchGroup id=

"com.example.ExampleLaunchGroupId"

mode=

"run"

label=

"Run"

image=

"icons\run.gif"

bannerImage=

"icons\runBanner.gif"

>

</launchGroup>

</extension>

 Welcome to Eclipse

Launch Groups 418

In the above example, the launch group will consist of all launch configurations with no category that support
run mode.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Groups 419

http://www.eclipse.org/legal/cpl-v10.html

Launch Shortcuts
Identifier:

org.eclipse.debug.ui.filaunchShortcuts

Description:

This extension point provides support for selection sensitive launching. Extensions register a shortcut which
appears in the run and/or debug cascade menus to launch the workbench selection or active editor.

Configuration Markup:

<!ELEMENT extension (shortcut*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT shortcut (perspective* , contextualLaunch? , enablement?)>

<!ATTLIST shortcut

id CDATA #REQUIRED

modes CDATA #REQUIRED

class CDATA #REQUIRED

label CDATA #REQUIRED

icon CDATA #IMPLIED

category CDATA #IMPLIED

helpContextId CDATA #IMPLIED>

id − specifies a unique identifier for this launch shortcut.•
modes − specifies a comma−separated list of modes this shortcut supports.•
class − specifies the fully qualified name of a class which implements
org.eclipse.debug.ui.ILaunchShortcut.

•

Launch Shortcuts 420

label − specifies a label used to render this shortcut.•
icon − specifies a plugin−relative path to an image used to render this shortcut. Icon is optional
because it is up to other plugins (i.e. Views) to render it.

•

category − specifies the launch configuration type category this shortcut is applicable for. When
unspecified, the category is null (default).

•

helpContextId − an optional identifier that specifies the help context to associate with this launch
shortcut

•

<!ELEMENT perspective EMPTY>

<!ATTLIST perspective

id CDATA #REQUIRED>

id − the unique identifier of a perspective in which a menu shortcut for this launch shortcut will
appear.

•

<!ELEMENT contextualLaunch (contextLabel* , enablement?)>

Holds all descriptions for adding shortcuts to the Run context menu (pop−up).

<!ELEMENT contextLabel EMPTY>

<!ATTLIST contextLabel

mode (run|debug|profile)

label CDATA #REQUIRED>

Specify the label for a contextual launch mode.

mode − specifies a mode from the set {"run","debug","profile"}•
label − specifies the label to appear in the contextual launch menu.•

<!ELEMENT enablement (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

A generic root element. The element can be used inside an extension point to define its enablement
expression. The children of an enablement expression are combined using the and operator.

 Welcome to Eclipse

Launch Shortcuts 421

<!ELEMENT not (not | and | or | instanceof | test | systemTest | equals | count | with | resolve | adapt | iterate)>

This element represent a NOT operation on the result of evaluating it's sub−element expression.

<!ELEMENT and (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an AND operation on the result of evaluating all it's sub−elements expressions.

<!ELEMENT or (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

This element represent an OR operation on the result of evaluating all it's sub−element expressions.

<!ELEMENT instanceof EMPTY>

<!ATTLIST instanceof

value CDATA #REQUIRED>

This element is used to perform an instanceof check of the object in focus. The expression returns
EvaluationResult.TRUE if the object's type is a sub type of the type specified by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − a fully qualified name of a class or interface.•

<!ELEMENT test EMPTY>

<!ATTLIST test

property CDATA #REQUIRED

args CDATA #IMPLIED

value CDATA #IMPLIED>

 Welcome to Eclipse

Launch Shortcuts 422

This element is used to evaluate the property state of the object in focus. The set of testable properties can be
extended using the propery tester extension point. The test expression returns
EvaluationResult.NOT_LOADED if teh property tester doing the actual testing isn't loaded yet.

property − the name of an object's property to test.•
args − additional arguments passed to the property tester. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

•

value − the expected value of the property. Can be omitted if the property is a boolean property. The
test expression is supposed to return EvaluationResult.TRUE if the property matches the value and
EvaluationResult.FALSE otherwise. The value attribute is converted into a Java base type using the
following rules:

the string "true" is converted into Boolean.TRUE♦
the string "false" is converted into Boolean.FALSE♦
if the string contains a dot then the interpreter tries to convert the value into a Float object. If
this fails the string is treated as a java.lang.String

♦

if the string only consists of numbers then the interpreter converts the value in an Integer
object.

♦

in all other cases the string is treated as a java.lang.String♦
the conversion of the string into a Boolean, Float, or Integer can be suppressed by
surrounding the string with single quotes. For example, the attribute value="'true'" is
converted into the string "true"

♦

•

<!ELEMENT systemTest EMPTY>

<!ATTLIST systemTest

property CDATA #REQUIRED

value CDATA #REQUIRED>

Tests a system property by calling the System.getProperty method and compares the result with the value
specified through the value attribute.

property − the name of an system property to test.•
value − the expected value of the property. The value is interpreted as a string value.•

<!ELEMENT equals EMPTY>

<!ATTLIST equals

value CDATA #REQUIRED>

 Welcome to Eclipse

Launch Shortcuts 423

This element is used to perform an equals check of the object in focus. The expression returns
EvaluationResult.TRUE if the object is equal to the value provided by the attribute value. Otherwise
EvaluationResult.FALSE is returned.

value − the operatand of the equals tests. The value provided as a string is converted into a Java base
type using the same rules as for the value attribute of the test expression.

•

<!ELEMENT count EMPTY>

<!ATTLIST count

value CDATA #REQUIRED>

This element is used to test the number of elements in a collection.

value − an expression to specify the number of elements in a list. Following wildcard characters can
be used:
*

any number of elements
?

no elements or one element
+

one or more elements
!

no elements
integer value

the list must contain the exact number of elements

•

<!ELEMENT with (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST with

variable CDATA #REQUIRED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be used for further inspection. It is up to the evaluator of an
extension point to provide the variable in the variable pool.

•

 Welcome to Eclipse

Launch Shortcuts 424

<!ELEMENT resolve (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST resolve

variable CDATA #REQUIRED

args CDATA #IMPLIED>

This element changes the object to be inspected for all its child element to the object referneced by the given
variable. If the variable can not be resolved then the expression will throw a ExpressionException when
evaluating it. The children of a with expression are combined using the and operator.

variable − the name of the variable to be resolved. This variable is then used as the object in focus for
child element evaluation. It is up to the evaluator of an extension point to provide a corresponding
variable resolver (see IVariableResolver) through the evaluation context passed to the root expression
element when evaluating the expression.

•

args − additional arguments passed to the variable resolver. Multiple arguments are seperated by
commas. Each individual argument is converted into a Java base type using the same rules as defined
for the value attribute of the test expression.

•

<!ELEMENT adapt (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST adapt

type CDATA #REQUIRED>

This element is used to adapt the object in focus to the type specified by the attribute type. The expression
returns not loaded if either the adapter or the type referenced isn't loaded yet. It throws a ExpressionException
during evaluation if the type name doesn't exist at all. The children of an adapt expression are combined using
the and operator.

type − the type to which the object in focus is to be adapted.•

<!ELEMENT iterate (not , and , or , instanceof , test , systemTest , equals , count , with , resolve , adapt ,
iterate)*>

<!ATTLIST iterate

operator (or|and) >

 Welcome to Eclipse

Launch Shortcuts 425

This element is used to iterate over a variable that is of type java.util.Collection. If the object in focus is not of
type java.util.Collection then an ExpressionException will be thrown while evaluating the expression.

operator − either "and" or "or". The operator defines how the child elements will be combined. If not
specified, "and" will be used.

•

Examples:

The following is an example of a launch shortcut extension point:

<extension point=

"org.eclipse.debug.ui.launchShortcuts"

>

<shortcut id=

"com.example.ExampleLaunchShortcutId"

modes=

"run,debug"

class=

"com.example.ExampleLaunchShortcutImpl"

label=

"Example Launch Shortcut"

icon=

"icons/examples.gif"

>

<perspective id=

"org.eclipse.jdt.ui.JavaPerspective"

/>

<perspective id=

 Welcome to Eclipse

Launch Shortcuts 426

"org.eclipse.debug.ui.DebugPerspective"

/>

</shortcut>

</extension>

In the above example, a launch shortcut will be shown in the run and debug cascade menus with the label
"Example Launch Shortcut", in the JavaPerspective and the DebugPerspective.

API Information:

Value of the attribute class must be a fully qualified name of a Java class that implements the interface
org.eclipse.debug.ui.ILaunchShortcut.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Launch Shortcuts 427

http://www.eclipse.org/legal/cpl-v10.html

Source Container Presentations
Identifier:

org.eclipse.debug.ui.sourceContainerPresentations

Since:

3.0

Description:

Extension point to define a presentation aspects of a source container type.

Configuration Markup:

<!ELEMENT extension (sourceContainerPresentation*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT sourceContainerPresentation EMPTY>

<!ATTLIST sourceContainerPresentation

id CDATA #REQUIRED

icon CDATA #IMPLIED

containerTypeID CDATA #REQUIRED

browserClass CDATA #IMPLIED>

An extension point to define presentation aspects of a source container type.

id − The unique id used to refer to this implementation.•
icon − The icon that should be displayed for the source container type and instances.•

Source Container Presentations 428

containerTypeID − The unique identifier of the source container type for which this presentation is
being provided.

•

browserClass − A class that can be called to display a browse dialog for the source container type.
Must implement ISourceLocationBrowser.

•

Examples:

Following is an example of an source container presentation definition.

<extension point=

"org.eclipse.debug.ui.sourceContainerPresentations"

>

<sourceContainerPresentation browserClass=

"org.eclipse.debug.internal.ui.sourcelookup.browsers.ProjectSourceContainerBrowser"

containerTypeID=

"org.eclipse.debug.core.containerType.project"

icon=

"icons/full/obj16/prj_obj.gif"

id=

"org.eclipse.debug.ui.containerPresentation.project"

>

</sourceContainerPresentation>

</extension>

API Information:

Value of the attribute browserClass must be a fully qualified name of a Java class that implements the
interface ISourceLocationBrowser.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at

 Welcome to Eclipse

Source Container Presentations 429

http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Source Container Presentations 430

http://www.eclipse.org/legal/cpl-v10.html

String Variable Presentations
Identifier:

org.eclipse.debug.ui.stringVariablePresentations

Since:

2.1

Description:

This extension point provides a mechanism for contributing a user interface/presentation for a string
substitution variable (i.e. a context variable or value variable).

Configuration Markup:

<!ELEMENT extension (variablePresentation*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT variablePresentation EMPTY>

<!ATTLIST variablePresentation

variableName CDATA #REQUIRED

argumentSelector CDATA #REQUIRED>

variableName − specifies the variable this presentation is for•
argumentSelector − specifies a fully qualified name of a Java class that implements
IArgumentSelector

•

Examples:

The following is an example of a variable presentation contribution:

String Variable Presentations 431

<extension point=

"org.eclipse.debug.ui.stringVariablePresentations"

>

<variablePresentation variableName=

"example_variable"

argumentSelector=

"com.example.ExampleArgumentChooser"

>

</variablePresentation>

</extension>

In the above example, the contributed presentation will be used for the variable named "example_variable".
An argument selector is specified to configure an argument applicable to the variable.

API Information:

Value of the attribute argumentSelector must be a fully qualified name of a Java class that implements the
interface org.eclipse.debug.ui.stringsubstitution.IArgumentSelector.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

String Variable Presentations 432

http://www.eclipse.org/legal/cpl-v10.html

Help Content Producer
Identifier:

org.eclipse.help.contentProducer

Since:

3.0

Description:

For providing dynamic, generated at run time, help content.

Configuration Markup:

<!ELEMENT extension (contentProducer?)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT contentProducer (producer)>

<!ATTLIST contentProducer

producer CDATA #IMPLIED>

producer − the implementation class for the help content producer. This class must implement the
org.eclipse.help.IHelpContentProducer interface. This attribute may be omitted, and
the nested producer element may be provided instead.

•

<!ELEMENT producer (parameter*)>

<!ATTLIST producer

class CDATA #REQUIRED>

class − the implementation class for the help content producer. This class must implement the
org.eclipse.help.IHelpContentProducer interface.

•

Help Content Producer 433

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − name of a parameter passed to the implementation class•
value − value of a parameter passed to the implementation class•

Examples:

The following is a sample usage of the browser extension point:

<extension point=

"org.eclipse.help.contentProducer"

id=

"org.eclipse.myPlugin.myDynamicHelpProducer"

name=

"My Dynamic Help Content"

>

<contentProducer producer=

"org.eclipse.myPlugin.myPackage.Myproducer"

/>

</extension>

API Information:

The supplied content producer class must implement the
org.eclipse.help.IHelpContentProducer interface. The producer is responsible for providing
content for dynamic help resources from a plug−in. The method of content producer is called by help for
every help resource obtained from the plug−in.

 Welcome to Eclipse

Help Content Producer 434

Supplied Implementation:

None. If a documentation plug−in does not provide help content producer or a call to it results in null, help
system searches doc.zip and file system in the plug−in install location for a static document and displays its
content.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Help Content Producer 435

http://www.eclipse.org/legal/cpl-v10.html

Contexts
Identifier:

org.eclipse.help.contexts

Description:

For defining context−sensitive help for an individual plug−in.

Configuration Markup:

<!ELEMENT extension (contexts*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT contexts EMPTY>

<!ATTLIST contexts

file CDATA #REQUIRED

plugin CDATA #IMPLIED>

file − the name of the manifest file which contains the context−sensitive help documentation for this
plug−in.

Configuration Markup for what goes into the contexts manifest file:

 <!ELEMENT contexts (context)*) >

 <!ELEMENT context (description?,topic*) >
 <!ATTLIST context id ID #REQUIRED >

 <!ELEMENT description (#PCDATA)>

 <!ELEMENT topic EMPTY >
 <!ATTLIST topic label CDATA #REQUIRED >
 <!ATTLIST topic href CDATA #IMPLIED >

The contexts manifest files provide all the information needed when context−sensitive help is
requested by the user. The id is passed by the platform to identify the currently active context. The
context definitions with matching IDs are then retrieved. The IContext object is then created by help

•

Contexts 436

system that contains descriptions and topics from all context definitions for a given ID. The
description is to be displayed to the user, and related topics might be useful to the user for
understanding the current context. The related topic are html files packaged in doc.zip, together with
topics that are part of on line help.
plugin − Plugin to which its context definitions are extended with extra information.

If a plugin defines some context id's, one can extend the description or related links of a context by
declaring another context with the same id.

•

Examples:

The following is an example of using the contexts extension point:
(in file plugin.xml)

<extension point=

"org.eclipse.help.contexts"

>

<contexts file=

"xyzContexts.xml"

/>

</extension>

(in file xyzContexts.xml)

 <contexts>
 <context id="generalContextId">
 <description> This is a sample F1 help string.</description>
 <topic href="contexts/RelatedContext1.html" label="Help Related
Topic 1"/>
 <topic href="contexts/RelatedContext2.html" label="Help Related
Topic 2"/>
 </context>
 </contexts>

Externalizing Strings The Context XML files can be translated and the resulting copy (with translated
descriptions labels) should be placed in nl/<language>/<country> or nl/<language> directory. The
<language> and <country> stand for two letter language and country codes as used in locale codes. For
example, Traditional Chinese translations should be placed in the nl/zh/TW directory. The
nl/<language>/<country> directory has a higher priority than nl/<language>. Only if no file is found in the
nl/<language>/<country>, the file residing in nl/<language> will be used. The the root directory of a plugin

 Welcome to Eclipse

Contexts 437

will be searched last.

The related topics contained in doc.zip can be localized by creating a doc.zip file with translated version of
documents, and placing doc.zip in
nl/<language>/<country> or nl/<language> directory. The help system will look for the files under this
directories before defaulting to plugin directory.

API Information:

No code is required to use this extension point. All that is needed is to supply the appropriate manifest file(s)
mentioned in the plugin.xml file.

Supplied Implementation:

The optional default implementation of the help system UI supplied with the Eclipse platform fully supports
the contexts extension point.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Contexts 438

http://www.eclipse.org/legal/cpl-v10.html

Browser
Identifier:

org.eclipse.help.base.browser

Since:

3.0 (originally added in release 2.0 as org.eclipse.help.ui.browser)

Description:

For providing web browsers capable of displaying html documents at a given URL.

Configuration Markup:

<!ELEMENT extension (browser*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT browser (factoryclass)>

<!ATTLIST browser

id CDATA #REQUIRED

factoryclass CDATA #IMPLIED

name CDATA #REQUIRED>

id − the unique ID of the browser.•
factoryclass − the implementation class for the browser factory. This class must implement the
org.eclipse.help.browser.IBrowserFactory interface. This attribute may be omitted,
and the nested factoryclass element may be provided instead.

•

name − the name of the browser (translatable).•

<!ELEMENT factoryclass (parameter*)>

<!ATTLIST factoryclass

class CDATA #REQUIRED>

Browser 439

class − the implementation class for the browser factory. This class must implement the
org.eclipse.help.browser.IBrowserFactory interface.

•

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter

name CDATA #REQUIRED

value CDATA #REQUIRED>

name − name of a parameter passed to the implementation class•
value − value of a parameter passed to the implementation class•

Examples:

The following is a sample usage of the browser extension point:

<extension point=

"org.eclipse.help.base.browser"

>

<browser id=

"org.eclipse.myPlugin.myBrowserID"

factoryClass=

"org.eclipse.myPlugin.myPackage.MyFactoryClass"

name=

"My Browser"

>

</browser>

</extension>

 Welcome to Eclipse

Browser 440

API Information:

The supplied factory class must implement the org.eclipse.help.browser.IBrowserFactory
interface. Methods in that interface determine whether the factory is available on the given system, i.e. is
capable of supplying browser instances, and create browser instances that implement IBrowser interface.

Supplied Implementation:

The org.eclipse.help.base and org.eclipse.help.ui plug−ins contain implementation of
browsers on common platforms. Other plug−ins can provide different implementations. In the preferences, the
user can select the default browser from among available browsers.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Browser 441

http://www.eclipse.org/legal/cpl-v10.html

Lucene Analyzer
Identifier:

org.eclipse.help.base.luceneAnalyzer

Since:

3.0 (originally added in release 2.0 as org.eclipse.help.luceneAnalyzer)

Description:

This extension point is used to register text analyzers for use by help when indexing and searching
documentation.

Help exploits capabilities of the Lucene search engine, that allows indexing of token streams (streams of
words). Analyzers create tokens from the character stream. They examine text content and provide tokens for
use with the index. The text stream can be tokenized in many unique ways. A trivial analyzer can tokenize
streams at white space, a different one can perform filtering of tokens, based on the application needs. Since
the documentation is mostly human−readable text, it is desired that analyzers used by the help system perform
language and grammar aware tokenization and normalization of indexed text. For some languages, the quality
of search increases significantly if stop word removal and stemming is performed on the indexed text.

The analyzer contributed to this extension point will override the one provided by the Eclipse help system for
a given locale.

Configuration Markup:

<!ELEMENT extension (analyzer*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT analyzer EMPTY>

<!ATTLIST analyzer

locale CDATA #REQUIRED

class CDATA #REQUIRED>

locale − a string identifying locale for which the supplied analyzer is to bue sued. If two letters,
language is provided, and the analyzer will be available to all locales of that language.

•

Lucene Analyzer 442

class − a fully qualified name of the Java class extending
org.apache.lucene.analysis.Analyzer.

•

Examples:

Following is an example of Lucene Analyzer configuration:

<extension id=

"com.xyx.XYZ"

point=

"org.eclipse.help.base.luceneAnalyzer"

>

<analyzer locale=

"ll_CC"

class=

"com.xyz.ll_CCAnalyzer"

/>

</extension>

API Information:

The value of the locale attribute must represent either a five− or two−charcter locale string. If the analyzer
is configured for a language by specifying two−letter language designation, the analyzer is going to be used
for all locales of this language. If the analyzer is configured that matchs a five−character locale, it is going to
be used instead.

The value of the class attribute must represent a class that extends
org.apache.lucene.analysis.Analyzer. It is recommended that this analyzer performs lowercase
filtering for languages where it is possible to increase number of search hits by making search case−sensitive.

Supplied Implementation:

The Eclipse help system provides analyzers for all languages. For English and German, the analyzers perform
stop word filtering, lowercase filtering, and stemming. For all the other languages the supplied analyzer only
performs lowercase filtering.

 Welcome to Eclipse

Lucene Analyzer 443

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Lucene Analyzer 444

http://www.eclipse.org/legal/cpl-v10.html

Ant Properties
Identifier:

org.eclipse.ant.core.antProperties

Since:

3.0

Description:

Allows plug−ins to define Ant properties for use in Ant build files.

Configuration Markup:

<!ELEMENT extension (antProperty*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT antProperty EMPTY>

<!ATTLIST antProperty

name CDATA #REQUIRED

value CDATA #IMPLIED

class CDATA #IMPLIED

headless (true | false)

eclipseRuntime (true | false) >

name − The name of the property.•
value − The value of the property. If a value is provided here, the "class" attribute is ignored.•
class − If there is no 'value' attribute provided, this class is called to return the dynamic value for the
Ant property. If null is returned, the value is not set.

•

Ant Properties 445

headless − indicates whether this property is suitable for use in a "headless" Ant environment. If
running headless and the attribute is "false", the property will not be set and any specified
org.eclipse.ant.core.IAntPropertyProvider will not be instantiated. The implied
value is true, when not specified.

•

eclipseRuntime − indicates whether this property should only be considered when run in the same
VM as Eclipse. The implied value is true, when not specified.

•

Examples:

The following is an example of an Ant properties extension point:

<extension point=

"org.eclipse.ant.core.antProperties"

>

<antProperty name=

"eclipse.home"

class=

"org.eclipse.ant.internal.core.AntPropertyValueProvider"

/>

<antProperty name=

"eclipse.running"

value=

"true"

/>

</extension>

API Information:

The class named in the class property must implement the
org.eclipse.ant.core.IAntPropertyProvider interface.

 Welcome to Eclipse

Ant Properties 446

Supplied Implementation:

The platform uses this mechanism to set the Ant property eclipse.home to the Eclipse installation directory
and to set the eclipse.running property.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Ant Properties 447

http://www.eclipse.org/legal/cpl-v10.html

Ant Tasks
Identifier:

org.eclipse.ant.core.antTasks

Description:

Allows plug−ins to define arbitrary Ant tasks for use by the Ant infrastructure. The standard Ant
infrastructure allows for the addition of arbitrary tasks. Unfortunately, it is unlikely that the Ant Core plug−in
would have the classes required by these tasks on its classpath (or that of any of its prerequisites). To address
this, clients should define an extension which plugs into this extension−point and maps a task name onto a
class. The Ant plug−in can then request that the declaring plug−in load the specified class.

Configuration Markup:

<!ELEMENT extension (antTask*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT antTask EMPTY>

<!ATTLIST antTask

name CDATA #REQUIRED

class CDATA #REQUIRED

library CDATA #REQUIRED

headless (true | false)

eclipseRuntime (true | false) >

name − name of the task to be defined•
class − the fully qualified name of a Java class implementing the task. Generally this class must be a
subclass of org.apache.tools.ant.Task.

•

library − a path relative to the plug−in install location for the library containing the task.•

Ant Tasks 448

headless − indicates whether this task is suitable for use in a "headless" Ant environment. If running
headless and the attribute is "false", the task will not be loaded or defined. As well, the plugin class
loader will not be added as a parent classloader to the Ant classloader. The implied value is true, when
not specified.

•

eclipseRuntime − indicates whether this task requires an Eclipse runtime (i.e. must be run in the
same VM as Eclipse). The implied value is true, when not specified.

•

Examples:

The following is an example of an Ant tasks extension point:

<extension point=

"org.eclipse.ant.core.antTasks"

>

<antTask name=

"coolTask"

class=

"com.example.CoolTask"

library=

"lib/antSupport.jar"

/>

</extension>

Supplied Implementation:

The platform itself supplies a number of tasks including eclipse.incrementalBuild and eclipse.refreshLocal.

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Ant Tasks 449

http://www.eclipse.org/legal/cpl-v10.html

Ant Types
Identifier:

org.eclipse.ant.core.antTypes

Description:

Allows plug−ins to define arbitrary Ant datatypes for use by the Ant infrastructure. The standard Ant
infrastructure allows for the addition of arbitrary datatypes. Unfortunately, it is unlikely that the Ant Core
plug−in would have the classes required by these datatypes on its classpath (or that of any of its prerequisites).
To address this, clients should define an extension which plugs into this extension−point and maps a datatype
name onto a class. The Ant plug−in can then request that the declaring plug−in load the specified class.

Configuration Markup:

<!ELEMENT extension (antType*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT antType EMPTY>

<!ATTLIST antType

name CDATA #REQUIRED

class CDATA #REQUIRED

library CDATA #REQUIRED

headless (true | false)

eclipseRuntime (true | false) >

name − name of the type to be defined•
class − the fully qualified name of a Java class implementing the datatype. Generally this class must
be a subclass of org.apache.tools.ant.types.DataType.

•

library − a path relative to the plug−in install location for the library containing the type.•

Ant Types 450

headless − indicates whether this type is suitable for use in a "headless" Ant environment. If running
headless and the attribute is "false", the type will not be loaded or defined. As well, the plugin class
loader will not be added as a parent classloader to the Ant classloader. The implied value is true, when
not specified.

•

eclipseRuntime − indicates whether this type requires an Eclipse runtime (i.e. must be run in the
same VM as Eclipse). The implied value is true, when not specified.

•

Examples:

The following is an example of an Ant types extension point:

<extension point=

"org.eclipse.ant.core.antTypes"

>

<antType name=

"coolType"

class=

"com.example.CoolType"

library=

"lib/antSupport.jar"

/>

</extension>

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Ant Types 451

http://www.eclipse.org/legal/cpl-v10.html

Extra Ant Classpath Entries
Identifier:

org.eclipse.ant.core.extraClasspathEntries

Description:

Allows plug−ins to define arbitrary JARs for use by the Ant infrastructure. These JARs are put into the Ant
classpath at runtime. Besides the JAR, the plug−in classloader of the plug−in providing the JAR is also added
to the classpath.

Configuration Markup:

<!ELEMENT extension (extraClasspathEntry*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT extraClasspathEntry EMPTY>

<!ATTLIST extraClasspathEntry

library CDATA #REQUIRED

headless (true | false)

eclipseRuntime (true | false) >

library − a path relative to the plug−in install location for the library.•
headless − indicates whether this extra classpath entry is suitable for use in a "headless" Ant
environment. If running headless and the attribute is "false", this entry will not be added to the Ant
classpath. As well, the plugin class loader will not be added as a parent classloader to the Ant
classloader. The implied value is true, when not specified.

•

eclipseRuntime − indicates whether this extra classpath entry should only be considered for builds
run in the same VM as Eclipse. The implied value is true, when not specified.

•

Extra Ant Classpath Entries 452

Examples:

The following is an example of an extra classpath entries extension point:

<extension point=

"org.eclipse.ant.core.extraClasspathEntries"

>

<extraClasspathEntry library=

"myExtraLibrary.jar"

/>

</extension>

Supplied Implementation:

The platform itself supplies an Ant support jar (antsupportlib.jar).

Copyright (c) 2000, 2003 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Extra Ant Classpath Entries 453

http://www.eclipse.org/legal/cpl-v10.html

ContentMerge Viewers
Identifier:

org.eclipse.compare.contentMergeViewers

Description:

This extension point allows a plug−in to register compare/merge viewers for specific content types. The
viewer is expected to extend org.eclipse.jface.viewers.Viewer. However, since viewers don't
have a default constructor, the extension point must implement the factory interface for viewers
org.eclipse.compare.IViewerCreator.

Configuration Markup:

<!ELEMENT extension (viewer* , contentTypeBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT viewer EMPTY>

<!ATTLIST viewer

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>

id − a unique identifier that can be used to reference the viewer•
class − a fully qualified name of a class that implements a factory for the content merge viewer and
implements org.eclipse.compare.IViewerCreator

•

extensions − a comma separated list of file extensions e.g. "java, gif"•

<!ELEMENT contentTypeBinding EMPTY>

<!ATTLIST contentTypeBinding

contentTypeId CDATA #REQUIRED

contentMergeViewerId CDATA #REQUIRED>

ContentMerge Viewers 454

contentTypeId −•
contentMergeViewerId −•

Examples:

The following is an example of a compare/merge viewer for text files (extension "txt"):

<extension point =

"org.eclipse.compare.contentMergeViewers"

>

<viewer id=

"org.eclipse.compare.contentmergeviewer.TextMergeViewer"

class=

"org.eclipse.compare.internal.TextMergeViewerCreator"

extensions=

"txt"

/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.IViewerCreator

Supplied Implementation:

The Compare UI plugin defines content viewers for text, binary contents, and images.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

ContentMerge Viewers 455

http://www.eclipse.org/legal/cpl-v10.html

Content Viewers
Identifier:

org.eclipse.compare.contentViewers

Description:

This extension point allows a plug−in to register viewers for specific content types. These viewers are used in
the EditionSelectionDialog when presenting an edition of a resource or a subsection thereof. The
viewer is expected to extend org.eclipse.jface.viewers.Viewer. However since viewers don't
have a default constructor the extension point must implement the factory interface for viewers
org.eclipse.compare.IViewerCreator.

Configuration Markup:

<!ELEMENT extension (viewer* , contentTypeBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT viewer EMPTY>

<!ATTLIST viewer

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>

id − a unique identifier that can be used to reference the viewer•
class − a fully qualified name of a class that implements a factory for the content viewer and
implements org.eclipse.compare.IViewerCreator

•

extensions − a comma separated list of file extensions e.g. "java, gif"•

<!ELEMENT contentTypeBinding EMPTY>

<!ATTLIST contentTypeBinding

contentTypeId CDATA #REQUIRED

Content Viewers 456

contentViewerId CDATA #REQUIRED>

contentTypeId −•
contentViewerId −•

Examples:

The following is an example of a viewer for text files (extension "txt"):

<extension point =

"org.eclipse.compare.contentViewers"

>

<viewer id=

"org.eclipse.compare.internal.TextViewer"

class=

"org.eclipse.compare.internal.TextViewerCreator"

extensions=

"txt"

/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.IViewerCreator

Supplied Implementation:

The Compare UI plugin defines content viewers for text and images.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Content Viewers 457

http://www.eclipse.org/legal/cpl-v10.html

Stream Merger
Identifier:

org.eclipse.compare.streamMergers

Since:

3.0

Description:

This extension point allows a plug−in to register a stream merger for specific content types. The stream
merger is expected to perform a three−way merge on three input streams and writes the result to an output
stream. The extension point must implement the interface org.eclipse.compare.IStreamMerger.

Configuration Markup:

<!ELEMENT extension (streamMerger* , contentTypeBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT streamMerger EMPTY>

<!ATTLIST streamMerger

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>

id − a unique identifier that can be used to reference the stream merger•
class − a fully qualified name of a class that implements
org.eclipse.compare.IStreamMerger

•

extensions − a comma separated list of file extensions e.g. "java, properties"•

Stream Merger 458

<!ELEMENT contentTypeBinding EMPTY>

<!ATTLIST contentTypeBinding

contentTypeId CDATA #REQUIRED

streamMergerId CDATA #REQUIRED>

contentTypeId −•
streamMergerId −•

Examples:

The following is an example of a stream merger for property files (extension "properties"):

<extension point =

"org.eclipse.compare.streamMergers"

>

<streamMerger id=

"org.eclipse.compare.internal.merge.TextStreamMerger"

class=

"org.eclipse.compare.internal.merge.TextStreamMerger"

extensions=

"properties"

/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.IStreamMerger

Supplied Implementation:

The Compare UI plugin defines a stream merger for line oriented text files.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the

 Welcome to Eclipse

Stream Merger 459

Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Stream Merger 460

http://www.eclipse.org/legal/cpl-v10.html

Structure Creators
Identifier:

org.eclipse.compare.structureCreators

Description:

This extension point allows a plug−in to register a structure creator for specific content types. The structure
creator is expected to create a tree of IStructureComparators for a given content. This tree is used as
the input for the structural compare. The extension point must implement the interface
org.eclipse.compare.structuremergeviewer.IStructureCreator.

Configuration Markup:

<!ELEMENT extension (structureCreator* , contentTypeBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT structureCreator EMPTY>

<!ATTLIST structureCreator

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #IMPLIED>

id − a unique identifier that can be used to reference the structure creator•
class − a fully qualified name of a class that implements
org.eclipse.compare.structuremergeviewer.IStructureCreator

•

extensions − a comma separated list of file extensions e.g. "java, properties"•

<!ELEMENT contentTypeBinding EMPTY>

<!ATTLIST contentTypeBinding

contentTypeId CDATA #REQUIRED

structureCreatorId CDATA #REQUIRED>

Structure Creators 461

contentTypeId −•
structureCreatorId −•

Examples:

The following is an example of a structure creator for java files (extension "java"):

<extension point =

"org.eclipse.compare.structureCreators"

>

<structureCreator id=

"org.eclipse.compare.JavaStructureCreator"

class=

"org.eclipse.compare.JavaStructureCreator"

extensions=

"java"

/>

</extension>

API Information:

The contributed class must implement
org.eclipse.compare.structuremergeviewer.IStructureCreator

Supplied Implementation:

The Compare UI plugin defines a structure creator for zip archives.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Structure Creators 462

http://www.eclipse.org/legal/cpl-v10.html

StructureMerge Viewers
Identifier:

org.eclipse.compare.structureMergeViewers

Description:

This extension point allows a plug−in to register compare/merge viewers for structural content types. The
viewer is expected to extend org.eclipse.jface.viewers.Viewer. However, since viewers don't
have a default constructor, the extension point must implement the factory interface for viewers
org.eclipse.compare.IViewerCreator.

Configuration Markup:

<!ELEMENT extension (viewer* , contentTypeBinding*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT viewer EMPTY>

<!ATTLIST viewer

id CDATA #REQUIRED

class CDATA #REQUIRED

extensions CDATA #REQUIRED>

id − a unique identifier that can be used to reference the viewer•
class − a fully qualified name of a class that implements a factory for the structure merge viewer and
implements org.eclipse.compare.IViewerCreator

•

extensions − a comma separated list of file extensions e.g. "zip, jar"•

<!ELEMENT contentTypeBinding EMPTY>

<!ATTLIST contentTypeBinding

contentTypeId CDATA #REQUIRED

structureMergeViewerId CDATA #REQUIRED>

StructureMerge Viewers 463

contentTypeId −•
structureMergeViewerId −•

Examples:

The following is an example of compare/merge viewer for zip files (extension "zip"):

<extension point =

"org.eclipse.compare.structureMergeViewers"

>

<viewer id=

"org.eclipse.compare.ZipCompareViewer"

class=

"org.eclipse.compare.ZipCompareViewerCreator"

extensions=

"zip"

/>

</extension>

API Information:

The contributed class must implement org.eclipse.compare.IViewerCreator

Supplied Implementation:

The Compare UI plugin defines a structure compare viewer for zip archives.

Copyright (c) 2000, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

StructureMerge Viewers 464

http://www.eclipse.org/legal/cpl-v10.html

Property Testers
Identifier:

org.eclipse.jdt.ui.propertyTesters

Since:

3.0

Description:

This extension point allows to add properties to an already existing type. Those properties can then be used
inside the expression language's test expression element.

Configuration Markup:

<!ELEMENT extension (propertyTester*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT propertyTester EMPTY>

<!ATTLIST propertyTester

id CDATA #REQUIRED

type CDATA #REQUIRED

namespace CDATA #REQUIRED

properties CDATA #REQUIRED

class CDATA #REQUIRED>

id − unique identifier for the property tester•
type − the type to be extended by this property tester•
namespace − a unique id determining the name space the properties are added to•
properties − a comma separated list of properties provided by this property tester•

Property Testers 465

class − the name of the class that implements the testing methods. The class must be public and
extend org.eclipse.core.expressions.PropertyTester with a public 0−argument
constructor.

•

Examples:

The following is an example of a property tester contribution:

<extension point=

"org.eclipse.core.expressions.propertyTesters"

>

<propertyTester id=

"org.eclipse.jdt.ui.IResourceTester"

type=

"org.eclipse.core.resources.IResource"

namespace=

"org.eclipse.jdt.ui"

properties=

"canDelete"

class=

"org.eclipse.jdt.ui.internal.ResourceTester"

>

</propertyTester>

</extension>

API Information:

The contributed class must extend org.eclipse.core.expressions.PropertyTester

Copyright (c) 2001, 2004 IBM Corporation and others.

 Welcome to Eclipse

Property Testers 466

All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Property Testers 467

http://www.eclipse.org/legal/cpl-v10.html

Dynamic Stirng Substitution Variables
Identifier:

org.eclipse.core.variables.dynamicVariables

Since:

3.0

Description:

This extension point provides a mechanism for defining dynamic variables used in string substitution. The
value of a dynamic variable is resolved at the time a string substitution is performed, with an optional
argument.

Configuration Markup:

<!ELEMENT extension (variable*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT variable EMPTY>

<!ATTLIST variable

name CDATA #REQUIRED

resolver CDATA #REQUIRED

description CDATA #REQUIRED

supportsArgument (true | false) >

name − specifies a unique name for this variable.•
resolver − specifies a Java class which implements
org.eclipse.core.variables.IDynamicVariableResolver, which is used to
determine the value of the variable

•

description − specifies a human−readable description of this variable•

Dynamic Stirng Substitution Variables 468

supportsArgument − Whether this variable supports an argument. When unspecified, the implied
value is true.

•

Examples:

The following is a definition of a dynamic variable that resolves to the name of the selected resource:

<extension point=

"org.eclipse.core.variables.dynamicVariables"

>

<variable name=

"resource_name"

expanderClass=

"com.example.ResourceNameExpander"

description=

"The name of the selected resource"

>

</variable>

</extension>

API Information:

Value of the attribute resolver must be a fully qualified name of a Java class that implements the interface
org.eclipse.core.variables.IDynamicVariableResolver.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Dynamic Stirng Substitution Variables 469

http://www.eclipse.org/legal/cpl-v10.html

Value Variables
Identifier:

org.eclipse.core.variables.valueVariables

Since:

3.0

Description:

This extension point provides a mechanism for defining variables used for string substitution. A value
variable has a static value.

Configuration Markup:

<!ELEMENT extension (variable*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT variable EMPTY>

<!ATTLIST variable

name CDATA #REQUIRED

initialValue CDATA #IMPLIED

initializerClass CDATA #IMPLIED

description CDATA #IMPLIED>

name − specifies a unique name for this variable.•
initialValue − specifies the initial value for this variable. When specified, an initializerClass
attribute must not be specified.

•

initializerClass − specifies the fully qualified name of the Java class that implements
org.eclipse.core.variables.IValueVariableInitializer. When specified, an
initialValue attribute must not be specified.

•

Value Variables 470

description − specifies a human−readable description of this variable.•

Examples:

The following is an example of a value variable contribution with an initial value:

<extension point=

"org.eclipse.core.variables.valueVariables"

>

<variable name=

"FOO_HOME"

initialValue=

"/usr/local/foo"

>

</variable>

</extension>

In the example above, the specified variable is created with the initial value "/usr/local/foo". The following is
an example of a value variable contribution with an initializer class:

<extension point=

"org.eclipse.core.variables.valueVariables"

>

<variable name=

"FOO_HOME"

initializerClass=

"com.example.FooLocator"

>

 Welcome to Eclipse

Value Variables 471

</variable>

</extension>

In the example above, the variable FOO_HOME is created and the class "com.example.FooLocator" will be
used to initialize the value the first time it's requested.

API Information:

Value of the attribute initializerClass must be a fully qualified name of a Java class that implements the
interface org.eclipse.core.variables.IValueVariableInitializer.

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Value Variables 472

http://www.eclipse.org/legal/cpl-v10.html

Search Pages
Identifier:

org.eclipse.search.searchPages

Description:

This extension point allows a plug−in to register search pages for specialized searches. When the search
action is performed on a resource, the search infrastructure locates the most specific registered search page for
it.

Configuration Markup:

<!ELEMENT extension (page*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT page EMPTY>

<!ATTLIST page

id CDATA #REQUIRED

label CDATA #REQUIRED

class CDATA #REQUIRED

icon CDATA #IMPLIED

sizeHint CDATA #IMPLIED

tabPosition CDATA #IMPLIED

extensions CDATA #IMPLIED

searchViewHelpContextId CDATA #IMPLIED

showScopeSection (true | false)

Search Pages 473

enabled (true | false)

canSearchEnclosingProjects (true | false) >

id − a unique name that will be used to identify this search page•
label − a translatable label that will be used in the search page tab•
class − a name of the class which implements org.eclipse.search.ui.ISearchPage. We
recommend subclassing org.eclipse.jface.dialogs.DialogPage.

•

icon − a relative name of the image that will be used for all resources that match the specified
extensions. If omitted, the search page's tab will only contain a label.

•

sizeHint − a hint for the initial size of the page. This is a string containing the width and height
separated by comma (e.g. "50, 60"). In the case this hint is omitted the page will be no larger than the
other pages.

•

tabPosition − an integer defining where the page is placed in the page book. The value does not
define the absolute position but the position relative to the other pages. The ordering of pages is as
follows:

if neither page defines the tab position then they are ordered alphabetically according to their
labels

1.

if both pages have the tab position specified then the page with the lower value comes first. If
the values are equal then the pages are treated as if the values would not exist (see 1.)

2.

if only one page has the value specified then this page comes first3.

•

extensions − a comma separated list with file extensions on which the search page can operate. Each
extension must also include a weight (0 meaning lowest weight) which enables the search
infrastructure to find the best fitting page. The weight is separated from the extension by a colon. If a
search page can search all possible resources then "*" can be used.

•

searchViewHelpContextId − an optional help context ID of the Search view displaying results of
this page. If this attribute is missing then the default search help context ID
(org.eclipse.search.search_view_context) is used.

•

showScopeSection − If this attribute is missing or set to "false", then the scope section is not shown
in the Search dialog. To see the scope section, this attribute has to be set to "true". Plug−ins which add
their own Search page and want to see the scope section have to add this to their plugin.xml.

•

enabled − If this attribute is missing or set to "false", then the page is not initially shown in the
Search dialog. The page can be activated by the user via the "Customize..." button on the Search
dialog.

•

canSearchEnclosingProjects − If this attribute is missing or set to "false", the "Enclosing Projects"
search scope is not shown in the search dialog's scope part. If the attribute "showScopeSection" is
missing or set to "false", this attribute will be ignored.

•

Examples:

The following is an example of a search page extension definition:

<extension point=

"org.eclipse.search.searchPages"

>

 Welcome to Eclipse

Search Pages 474

<page id=

"org.eclipse.search.ui.text.TextSearchPage"

label=

"Text Search"

icon=

"icons/full/obj16/tsearch_pref.gif"

sizeHint=

"250,160"

tabPosition=

"1"

extensions=

"*:1"

showScopeSection=

"true"

class=

"org.eclipse.search.ui.text.TextSearchPage"

>

</page>

</extension>

API Information:

The contributed class must implement org.eclipse.search.ui.ISearchPage

Supplied Implementation:

The search infrastructure provides a search page for full−text search.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at

 Welcome to Eclipse

Search Pages 475

http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Search Pages 476

http://www.eclipse.org/legal/cpl-v10.html

Result Sorters
Identifier:

org.eclipse.search.searchResultSorters

Description:

This extension point allows a plug−in to contribute search result sorters to the search result view's Sort context
menu.

Configuration Markup:

<!ELEMENT extension (sorter*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•
name − an optional name of the extension instance•

<!ELEMENT sorter EMPTY>

<!ATTLIST sorter

id CDATA #REQUIRED

pageId CDATA #REQUIRED

label CDATA #REQUIRED

tooltip CDATA #IMPLIED

icon CDATA #IMPLIED

class CDATA #REQUIRED>

id − a unique name that will be used to identify this search result sorter.•
pageId − the ID of a registered search page for which the sorter will be activated. "*" activates the
sorter for all pages.

•

label − a translatable label that will be used as the menu item's label.•
tooltip − a translatable text that will be used as the menu item's tool tip . If omitted, the menu item
will have no tool tip.

•

Result Sorters 477

icon − a relative name of the image that will be shown in the context menu along with the label. If
omitted, the menu entry will only contain a label.

•

class − a name of the class that extends org.eclipse.jface.viewers.ViewerSorter•

Examples:

The following is an example of a search page extension definition:

<extension point=

"org.eclipse.search.searchResultSorters"

>

<sorter id=

"org.eclipse.search.internal.ui.FileNameSorter"

pageId=

"*"

label=

"%FileNameSorter.label"

tooltip=

"%FilenNameSorter.tooltip"

icon=

"icons/full/ecl16/search_sort.gif"

class=

"org.eclipse.search.internal.ui.FileNameSorter"

>

</sorter>

</extension>

 Welcome to Eclipse

Result Sorters 478

API Information:

The contributed class must implement org.eclipse.jface.viewers.ViewerSorter

Supplied Implementation:

The search infrastructure provides a sorter that sorts the matches by the resource name.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Result Sorters 479

http://www.eclipse.org/legal/cpl-v10.html

Search Result View Pages
Identifier:

org.eclipse.search.searchResultViewPages

Since:

3.0

Description:

This extension point allows clients to plug pages into the search result view.

Configuration Markup:

<!ELEMENT extension (viewPage)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED>

point − a fully qualified identifier of the target extension point•
id − an optional identifier of the extension instance•

<!ELEMENT viewPage EMPTY>

<!ATTLIST viewPage

searchResultClass CDATA #REQUIRED

class CDATA #REQUIRED

id CDATA #REQUIRED>

searchResultClass − The fully qualified class name of the ISearchResult implementation this
search result page supposed to show.

•

class − the fully qualified class name implementing this search result page. The class must implement
org.eclipse.search.ui.ISearchResultPage.

•

id − the id, typically the same as the fully qualified class name•

Examples:

As an example, here is the markup for the file search result page.

Search Result View Pages 480

<extension id=

"FileSearchPage"

point=

"org.eclipse.search.searchResultViewPages"

>

<viewPage id=

"org.eclipse.search.text.FileSearchResultPage"

searchResultClass=

"org.eclipse.search.internal.ui.text.FileSearchResult"

class=

"org.eclipse.search.internal.ui.text.FileSearchPage"

>

</viewPage>

</extension>

API Information:

The contributed class must implement org.eclipse.search.ui.ISearchResultPage

Supplied Implementation:

The search plugin provide a search result page for file searches.

Copyright (c) 2001, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Search Result View Pages 481

http://www.eclipse.org/legal/cpl-v10.html

Configuration Duplication Maps
Identifier:

org.eclipse.ui.externaltools.configurationDuplicationMaps

Since:

3.0

Description:

This is an internal extension point to declare the launch configuration type that should be created when
duplicating an existing configuration as a project builder. Clients are not intended to use this extension point.

Configuration Markup:

<!ELEMENT extension (configurationMap*)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

<!ELEMENT configurationMap EMPTY>

<!ATTLIST configurationMap

sourceType CDATA #REQUIRED

builderType CDATA #REQUIRED>

sourceType − specifies the identifier of the launch configuration type for which this mapping is
provided

•

builderType − specifies the identifier of the launch configuration type which should be created when
a configuration of type "sourceType" is imported to be a project builder

•

Examples:

The following example specifies that when the user chooses to import a launch configuration of the type
"org.eclipse.ui.externaltools.ProgramLaunchConfigurationType", a new launch configuration of the
type"org.eclipse.ui.externaltools.ProgramBuilderLaunchConfigurationType" should be created.

Configuration Duplication Maps 482

Copyright (c) 2003, 2004 IBM Corporation and others.
All rights reserved. This program and the accompanying materials are made available under the terms of the
Common Public License v1.0 which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl−v10.html

 Welcome to Eclipse

Configuration Duplication Maps 483

http://www.eclipse.org/legal/cpl-v10.html

Feature Type Factory
Identifier:

org.eclipse.update.core.featureTypes

Description:

The platform update mechanism supports pluggable feature type implementations. A new feature type can be
registered in order to support alternate packaging and verification schemes.

The featureTypes extension point allows alternate feature implementations to be registered using a
symbolic type identifier. Whenever the type is referenced using this identifier, the supplied factory is used to
create the correct concrete feature implementation.

Configuration Markup:

<!ELEMENT extension (feature−factory+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − must be specified as org.eclipse.update.core.featureTypes•
id − must be specified. Identifies the new feature type•
name − optional displayable label for the new feature type•

<!ELEMENT feature−factory EMPTY>

<!ATTLIST feature−factory

class CDATA #REQUIRED>

class − fully qualified name of the factory class for the identified feature type•

Examples:

The following is an example of new feature type registration:

<extension id=

Feature Type Factory 484

"custom"

point=

"org.eclipse.update.core.featureTypes"

name=

"Custom packaged feature"

>

<feature−factory class=

"com.xyz.update.CustomFeatureFactory"

>

</feature−factory>

</extension>

API Information:

Registered factory classes must implement org.eclipse.update.core.IFeatureFactory

Supplied Implementation:

The platform supplies two standard implementations of feature types. One representing the default packaged
feature type, and the other representing an installed feature type.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html.

 Welcome to Eclipse

Feature Type Factory 485

http://www.eclipse.org/legal/cpl-v10.html

Global Install Handlers
Identifier:

org.eclipse.update.core.installHandlers

Description:

Extension point for registering global install handlers. Global install handlers can be referenced by features
(using the <feature> <install−handler> tags) without having to include a copy of the handler code
as part of the downloadable feature.

Configuration Markup:

<!ELEMENT extension (install−handler+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − must be specified as org.eclipse.update.core.installHandlers•
id − must be specified. Identifies the new install handler•
name − optional displayable label for the new install handler•

<!ELEMENT install−handler EMPTY>

<!ATTLIST install−handler

class CDATA #REQUIRED>

class − fully qualified name of the handler implementation class for the identified install handler•

Examples:

The following is an example of new global install handler registration:

<extension id=

"custom"

point=

Global Install Handlers 486

"org.eclipse.update.core.installHandlers"

name=

"Custom install handler"

>

<install−handler class=

"com.xyz.update.CustomInstallHandler"

>

</install−handler>

</extension>

API Information:

Registered install handler classes must implement org.eclipse.update.core.IInstallHandler
interface. Implementers should extend base class
org.eclipse.update.core.BaseInstallHandler.

Supplied Implementation:

The platform supplies a simple install handler that is registered as
org.eclipse.update.core.DefaultInstallHandler. If used, it will copy any non−plug−in
data entries provided with the feature into the feature installation directory.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html.

 Welcome to Eclipse

Global Install Handlers 487

http://www.eclipse.org/legal/cpl-v10.html

Site Type Factory
Identifier:

org.eclipse.update.core.siteTypes

Description:

The platform update mechanism supports pluggable site type implementations. A new site type can be
registered in order to support alternate site layout schemes.

The siteTypes extension point allows alternate site implementations to be registered using a symbolic type
identifier. Whenever the type is referenced using this identifier, the supplied factory is used to create the
correct concrete site implementation.

Configuration Markup:

<!ELEMENT extension (site−factory+)>

<!ATTLIST extension

point CDATA #REQUIRED

id CDATA #IMPLIED

name CDATA #IMPLIED>

point − must be specified as org.eclipse.update.core.siteTypes•
id − must be specified. Identifies the new site type•
name − optional displayable label for the new site type•

<!ELEMENT site−factory EMPTY>

<!ATTLIST site−factory

class CDATA #REQUIRED>

class − fully qualified name of the factory class for the identified site type•

Examples:

The following is an example of new site type registration.

<extension id=

Site Type Factory 488

"custom"

point=

"org.eclipse.update.core.siteTypes"

name=

"Custom site"

>

<site−factory class=

"com.xyz.update.CustomSiteFactory"

>

</site−factory>

</extension>

API Information:

Registered factory classes must implement org.eclipse.update.core.ISiteFactory

Supplied Implementation:

The platform supplies two standard implementations of site types. One representing the default update server
type, and the other representing the local file system site.

Copyright (c) 2004 IBM Corporation and others. All rights reserved. This program and the accompanying
materials are made available under the terms of the Common Public License v1.0 which accompanies this
distribution, and is available at http://www.eclipse.org/legal/cpl−v10.html.

 Welcome to Eclipse

Site Type Factory 489

http://www.eclipse.org/legal/cpl-v10.html

Runtime overview
The Eclipse runtime defines the plug−ins (org.eclipse.osgi and org.eclipse.core.runtime) on which all other
plug−ins depend. The runtime is responsible for defining a structure for plug−ins and the implementation
detail (bundles and classloaders) behind them. The runtime is also responsible for finding and executing the
main Eclipse application and for maintaining a registry of plug−ins, their extensions, and extension points.

The runtime also provides an assortment of utilities, such as logging, debug trace options, adapters, a
preference store, and a concurrency infrastructure. Of course, as a minimal kernel, the runtime is only
interesting once plug−ins that make use of it and perform some kind of task are created. Like Atlas, the
runtime plug−in stoically resides at the bottom of the plug−in heap, holding the Eclipse universe aloft on its
steady shoulders.

The runtime plug−in model

The platform runtime engine is started when a user starts an application developed with Eclipse. The runtime
implements the basic plug−in model and infrastructure used by the platform. It keeps track of all of the
installed plug−ins and the function that they provide.

A plug−in is a structured component that contributes code (or documentation or both) to the system and
describes it in a structured way. Plug−ins can define extension points, well−defined function points that can
be extended by other plug−ins. When a plug−in contributes an implementation for an extension point, we say
that it adds an extension to the platform. These extensions and extension points are declared in the plug−ins's
manifest (plugin.xml) file.

Using a common extension model provides a structured way for plug−ins to describe the ways they can be
extended, and for client plug−ins to describe the extensions they supply. Defining an extension point is much
like defining any other API. The only difference is that the extension point is declared using XML instead of a
code signature. Likewise, a client plug−in uses XML to describe its specific extension to the system.

A general goal of the runtime is that the end user should not pay a memory or performance penalty for
plug−ins that are installed, but not used. The declarative nature of the platform extension model allows the
runtime engine to determine what extension points and extensions are supplied by a plug−in without ever
running it. Thus, many plug−ins can be installed, but none will be activated until a function provided by a
plug−in has been requested according to the user's activity. This is an important feature in providing providing
a scalable, robust platform.

Plug−ins and bundles

The mechanics for supporting plug−ins are implemented using the OSGi framework. From this standpoint, a
plug−in is the same thing as an OSGi bundle. The bundle and its associated classes specify and implement the
process for Java class−loading, prequisite management, and the bundle's life−cycle. For the rest of this
discussion, we use the terms plug−in and bundle interchangeably, unless discussing a particular class in the
framework.

 Runtime overview 490

http://www.osgi.org

Plugin

The Plugin class represents a plug−in that is running in the platform. It is a convenient place to centralize the
life−cycle aspects and overall semantics of a plug−in. A plug−in can implement specialized function for the
start and stop aspects of its life−cycle. Each life−cycle method includes a reference to a BundleContext
which can supply additional information.

The start portion of the life−cycle is worth particular discussion. We've seen already that information about a
plug−in can be obtained from the plug−in's manifest file without ever running any of the plug−in's code.
Typically, some user action in the workbench causes a chain of events that requires the starting of a plug−in.
From an implementation point of view, a plug−in is never started until a class contained the in the plug−in
needs to be loaded.

The start method has been a convenient place to implement initialization and registration behavior for a
plug−in. However, it is important to realize that your plug−in can be started in many different circumstances.
Something as simple as obtaining an icon to decorate an object can cause one of your plug−in's classes to be
loaded, thus starting your plug−in. Over−eager initialization can cause your plug−in's code and data to be
loaded long before it is necessary. Therefore, it's important to look closely at your plug−in's initialization tasks
and consider alternatives to performing initialization at start−up.

Registration activities such as registering listeners or starting background threads are appropriate
during plug−in start−up if they can be performed quickly. However, it is advisable to trigger these
actions as part of accessing the plug−in's data if the registration activities have side−effects such as
initializing large data structures or performing unrelated operations.

•

Initialization of data is best done lazily, when the data is first accessed, rather than automatically in
the start−up code. This ensures that large data structures are not built until they are truly necessary.

•

Bundle Context

Life−cycle management is where the OSGi "bundle" terminology and the platform's "plug−in" terminology
meet. When your plug−in is started, it is given a reference to a BundleContext from which it can obtain
information related to the plug−in. The BundleContext can also be used to find out about other
bundles/plug−ins in the system.

BundleContext.getBundles() can be used to obtain an array of all bundles in the system. Listeners for
BundleEvent can be registered so that your plug−in is aware when another bundle has a change in its
life−cycle status. See the javadoc for BundleContext and BundleEvent for more information.

Prior to 3.0, a plugin registry (IPluginRegistry) was provided to supply similar information.
For example, it could be queried for the plug−in descriptors of all plug−ins in the system.
This registry is now deprecated and BundleContext should be used for this purpose. The
platform registry is now used exclusively for information about extensions and extension
points.

Bundle Activator

The BundleActivator interface defines the start and stop behavior implemented in Plugin. Although the
Plugin class is a convenient place to implement this function, a plug−in developer has complete freedom to
implement the interface for BundleActivator in any class appropriate for the plug−in's design. In fact, your
plug−in need not implement this interface at all if it does not have specific life−cycle management needs.

 Welcome to Eclipse

Plug−ins and bundles 491

Bundles

Underneath every plug−in lies an OSGi bundle managed by the framework. The Bundle is the OSGi unit of
modularity. Fundamentally, a bundle is just a collection of files (resources and code) installed in the platform.
Each bundle has its own Java class loader, and includes protocol for starting, stopping, and uninstalling itself.
From the Eclipse platform point of view, Bundle is merely an implementation class. Plug−in developers do
not extend the bundle class, but use Plugin or other BundleActivator implementations to represent the
plug−in.

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 org.osgi.framework

Interface BundleContext

public interface BundleContext

A bundle's execution context within the Framework. The context is used to grant access to other methods so
that this bundle can interact with the Framework.

BundleContext methods allow a bundle to:

Subscribe to events published by the Framework.•
Register service objects with the Framework service registry.•
Retrieve ServiceReferences from the Framework service registry.•
Get and release service objects for a referenced service.•
Install new bundles in the Framework.•
Get the list of bundles installed in the Framework.•
Get the Bundleobject for a bundle.•
Create File objects for files in a persistent storage area provided for the bundle by the Framework.•

A BundleContext object will be created and provided to this bundle when it is started using the
BundleActivator.start(org.osgi.framework.BundleContext)method. The same
BundleContext object will be passed to this bundle when it is stopped using the
BundleActivator.stop(org.osgi.framework.BundleContext)method. BundleContext
is generally for the private use of this bundle and is not meant to be shared with other bundles in the OSGi
environment. BundleContext is used when resolving ServiceListener and EventListener
objects.

The BundleContext object is only valid during an execution instance of this bundle; that is, during the
period from when this bundle is called by BundleActivator.start until after this bundle is called and
returns from BundleActivator.stop (or if BundleActivator.start terminates with an
exception). If the BundleContext object is used subsequently, an IllegalStateException must be

 Welcome to Eclipse

Plug−ins and bundles 492

thrown. When this bundle is restarted, a new BundleContext object must be created.

The Framework is the only entity that can create BundleContext objects and they are only valid within the
Framework that created them.

Method Summary
 void addBundleListener(BundleListener listener)

 Adds the specified BundleListener object to this context bundle's list of
listeners if not already present.

 void addFrameworkListener(FrameworkListener listener)
 Adds the specified FrameworkListener object to this context bundle's
list of listeners if not already present.

 void addServiceListener(ServiceListener listener)
 Adds the specified ServiceListener object to this context bundle's list
of listeners.

 void addServiceListener(ServiceListener listener,
java.lang.String filter)
 Adds the specified ServiceListener object with the specified filter
to this context bundle's list of listeners.

 Filter createFilter(java.lang.String filter)
 Creates a Filter object.

 Bundle getBundle()
 Returns the Bundle object for this context bundle.

 Bundle getBundle(long id)
 Returns the bundle with the specified identifier.

 Bundle[] getBundles()
 Returns a list of all installed bundles.

 java.io.File getDataFile(java.lang.String filename)
 Creates a File object for a file in the persistent storage area provided for the
bundle by the Framework.

 java.lang.String getProperty(java.lang.String key)
 Returns the value of the specified property.

 java.lang.Object getService(ServiceReference reference)
 Returns the specified service object for a service.

 ServiceReference getServiceReference(java.lang.String clazz)
 Returns a ServiceReference object for a service that implements, and
was registered under, the specified class.

 ServiceReference[] getServiceReferences(java.lang.String clazz,
java.lang.String filter)
 Returns a list of ServiceReference objects.

 Bundle installBundle(java.lang.String location)
 Installs the bundle from the specified location string.

 Welcome to Eclipse

Plug−ins and bundles 493

 Bundle installBundle(java.lang.String location,
java.io.InputStream input)
 Installs the bundle from the specified InputStream object.

 ServiceRegistration registerService(java.lang.String[] clazzes,
java.lang.Object service,
java.util.Dictionary properties)
 Registers the specified service object with the specified properties under the
specified class names into the Framework.

 ServiceRegistration registerService(java.lang.String clazz,
java.lang.Object service,
java.util.Dictionary properties)
 Registers the specified service object with the specified properties under the
specified class name with the Framework.

 void removeBundleListener(BundleListener listener)
 Removes the specified BundleListener object from this context bundle's
list of listeners.

 void removeFrameworkListener(FrameworkListener listener)
 Removes the specified FrameworkListener object from this context
bundle's list of listeners.

 void removeServiceListener(ServiceListener listener)
 Removes the specified ServiceListener object from this context
bundle's list of listeners.

 boolean ungetService(ServiceReference reference)
 Releases the service object referenced by the specified
ServiceReference object.

Method Detail

getProperty

public java.lang.String getProperty(java.lang.String key)

Returns the value of the specified property. If the key is not found in the Framework properties, the
system properties are then searched. The method returns null if the property is not found.

The Framework defines the following standard property keys:

Constants.FRAMEWORK_VERSION − The OSGi Framework version.◊
Constants.FRAMEWORK_VENDOR − The Framework implementation vendor.◊
Constants.FRAMEWORK_LANGUAGE − The language being used. See ISO 639 for
possible values.

◊

Constants.FRAMEWORK_OS_NAME − The host computer operating system.◊

 Welcome to Eclipse

 getProperty 494

Constants.FRAMEWORK_OS_VERSION − The host computer operating system version
number.

◊

Constants.FRAMEWORK_PROCESSOR − The host computer processor name.◊
All bundles must have permission to read these properties.

Note: The last four standard properties are used by the
Constants.BUNDLE_NATIVECODEManifest header's matching algorithm for selecting native
language code.
Parameters:

key − The name of the requested property.
Returns:

The value of the requested property, or null if the property is undefined.
Throws:

java.lang.SecurityException − If the caller does not have the appropriate
PropertyPermission to read the property, and the Java Runtime Environment supports
permissions.

getBundle

public Bundle getBundle()

Returns the Bundle object for this context bundle.

The context bundle is defined as the bundle that was assigned this BundleContext in its
BundleActivator.
Returns:

The context bundle's Bundle object.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.

installBundle

public Bundle installBundle(java.lang.String location)
 throws BundleException

Installs the bundle from the specified location string. A bundle is obtained from location as
interpreted by the Framework in an implementation dependent manner.

Every installed bundle is uniquely identified by its location string, typically in the form of a URL.

The following steps are required to install a bundle:

If a bundle containing the same location string is already installed, the Bundle object for
that bundle is returned.

1.

The bundle's content is read from the location string. If this fails, a BundleExceptionis
thrown.

2.

The bundle's Bundle−NativeCode dependencies are resolved. If this fails, a
BundleException is thrown.

3.

 Welcome to Eclipse

 getBundle 495

The bundle's associated resources are allocated. The associated resources minimally consist of
a unique identifier, and a persistent storage area if the platform has file system support. If this
step fails, a BundleException is thrown.

4.

If the bundle has declared an Bundle−RequiredExecutionEnvironment header, then the listed
execution environments must be verified against the installed execution environments. If they
are not all present, a BundleException must be thrown.

5.

The bundle's state is set to INSTALLED.6.
A bundle event of type BundleEvent.INSTALLEDis broadcast.7.
The Bundle object for the newly installed bundle is returned.8.

Postconditions, no exceptions thrown
getState() in {INSTALLED}, RESOLVED}.◊
Bundle has a unique ID.◊

Postconditions, when an exception is thrown
Bundle is not installed and no trace of the bundle exists.◊

Parameters:
location − The location identifier of the bundle to install.

Returns:
The Bundle object of the installed bundle.

Throws:
BundleException − If the installation failed.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

installBundle

public Bundle installBundle(java.lang.String location,
 java.io.InputStream input)
 throws BundleException

Installs the bundle from the specified InputStream object.

This method performs all of the steps listed in BundleContext.installBundle(String
location), except that the bundle's content will be read from the InputStream object. The
location identifier string specified will be used as the identity of the bundle.

This method must always close the InputStream object, even if an exception is thrown.
Parameters:

location − The location identifier of the bundle to install.
in − The InputStream object from which this bundle will be read.

Returns:
The Bundle object of the installed bundle.

Throws:
BundleException − If the provided stream cannot be read or the installation failed.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

See Also:
installBundle(java.lang.String)

 Welcome to Eclipse

 installBundle 496

getBundle

public Bundle getBundle(long id)

Returns the bundle with the specified identifier.
Parameters:

id − The identifier of the bundle to retrieve.
Returns:

A Bundle object, or null if the identifier does not match any installed bundle.

getBundles

public Bundle[] getBundles()

Returns a list of all installed bundles.

This method returns a list of all bundles installed in the OSGi environment at the time of the call to
this method. However, as the Framework is a very dynamic environment, bundles can be installed or
uninstalled at anytime.
Returns:

An array of Bundle objects; one object per installed bundle.

addServiceListener

public void addServiceListener(ServiceListener listener,
 java.lang.String filter)
 throws InvalidSyntaxException

Adds the specified ServiceListener object with the specified filter to this context bundle's
list of listeners.

See getBundle()for a definition of context bundle, and Filterfor a description of the filter
syntax. ServiceListener objects are notified when a service has a lifecycle state change.

If this context bundle's list of listeners already contains a listener l such that (l==listener), this
method replaces that listener's filter (which may be null) with the specified one (which may be
null).

The listener is called if the filter criteria is met. To filter based upon the class of the service, the filter
should reference the Constants.OBJECTCLASSproperty. If filter is null, all services are
considered to match the filter.

When using a filter, it is possible that the ServiceEvents for the complete life cycle of a
service will not be delivered to the listener. For example, if the filter only matches when the
property x has the value 1, the listener will not be called if the service is registered with the property
x not set to the value 1. Subsequently, when the service is modified setting property x to the value 1,
the filter will match and the listener will be called with a ServiceEvent of type MODIFIED. Thus,
the listener will not be called with a ServiceEvent of type REGISTERED.

 Welcome to Eclipse

 getBundle 497

If the Java Runtime Environment supports permissions, the ServiceListener object will be
notified of a service event only if the bundle that is registering it has the ServicePermission to
get the service using at least one of the named classes the service was registered under.
Parameters:

listener − The ServiceListener object to be added.
filter − The filter criteria.

Throws:
InvalidSyntaxException − If filter contains an invalid filter string which cannot
be parsed.
java.lang.IllegalStateException − If this context bundle has stopped.

See Also:
ServiceEvent, ServiceListener, ServicePermission

addServiceListener

public void addServiceListener(ServiceListener listener)

Adds the specified ServiceListener object to this context bundle's list of listeners.

This method is the same as calling
BundleContext.addServiceListener(ServiceListener listener, String
filter) with filter set to null.
Parameters:

listener − The ServiceListener object to be added.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.
See Also:

addServiceListener(ServiceListener, String)

removeServiceListener

public void removeServiceListener(ServiceListener listener)

Removes the specified ServiceListener object from this context bundle's list of listeners. See
getBundle()for a definition of context bundle.

If listener is not contained in this context bundle's list of listeners, this method does nothing.
Parameters:

listener − The ServiceListener to be removed.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.

addBundleListener

public void addBundleListener(BundleListener listener)

 Welcome to Eclipse

 addServiceListener 498

Adds the specified BundleListener object to this context bundle's list of listeners if not already
present. See getBundle()for a definition of context bundle. BundleListener objects are notified
when a bundle has a lifecycle state change.

If this context bundle's list of listeners already contains a listener l such that (l==listener), this
method does nothing.
Parameters:

listener − The BundleListener to be added.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.
See Also:

BundleEvent, BundleListener

removeBundleListener

public void removeBundleListener(BundleListener listener)

Removes the specified BundleListener object from this context bundle's list of listeners. See
getBundle()for a definition of context bundle.

If listener is not contained in this context bundle's list of listeners, this method does nothing.
Parameters:

listener − The BundleListener object to be removed.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.

addFrameworkListener

public void addFrameworkListener(FrameworkListener listener)

Adds the specified FrameworkListener object to this context bundle's list of listeners if not
already present. See getBundle()for a definition of context bundle. FrameworkListeners are
notified of general Framework events.

If this context bundle's list of listeners already contains a listener l such that (l==listener), this
method does nothing.
Parameters:

listener − The FrameworkListener object to be added.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.
See Also:

FrameworkEvent, FrameworkListener

removeFrameworkListener

public void removeFrameworkListener(FrameworkListener listener)

 Welcome to Eclipse

 removeBundleListener 499

Removes the specified FrameworkListener object from this context bundle's list of listeners. See
getBundle()for a definition of context bundle.

If listener is not contained in this context bundle's list of listeners, this method does nothing.
Parameters:

listener − The FrameworkListener object to be removed.
Throws:

java.lang.IllegalStateException − If this context bundle has stopped.

registerService

public ServiceRegistration registerService(java.lang.String[] clazzes,
 java.lang.Object service,
 java.util.Dictionary properties)

Registers the specified service object with the specified properties under the specified class names
into the Framework. A ServiceRegistration object is returned. The
ServiceRegistration object is for the private use of the bundle registering the service and
should not be shared with other bundles. The registering bundle is defined to be the context bundle.
See getBundle()for a definition of context bundle. Other bundles can locate the service by using
either the getServiceReferences(java.lang.String, java.lang.String)or
getServiceReference(java.lang.String)method.

A bundle can register a service object that implements the ServiceFactoryinterface to have more
flexibility in providing service objects to other bundles.

The following steps are required to register a service:

If service is not a ServiceFactory, an IllegalArgumentException is thrown
if service is not an instanceof all the classes named.

1.

The Framework adds these service properties to the specified Dictionary (which may be
null): a property named Constants.SERVICE_IDidentifying the registration number of
the service, and a property named Constants.OBJECTCLASScontaining all the specified
classes. If any of these properties have already been specified by the registering bundle, their
values will be overwritten by the Framework.

2.

The service is added to the Framework service registry and may now be used by other
bundles.

3.

A service event of type ServiceEvent.REGISTEREDis synchronously sent.4.
A ServiceRegistration object for this registration is returned.5.

Parameters:
clazzes − The class names under which the service can be located. The class names in this
array will be stored in the service's properties under the key Constants.OBJECTCLASS.
service − The service object or a ServiceFactory object.
properties − The properties for this service. The keys in the properties object must all be
String objects. See Constantsfor a list of standard service property keys. Changes
should not be made to this object after calling this method. To update the service's properties
the ServiceRegistration.setProperties(java.util.Dictionary)method
must be called. properties may be null if the service has no properties.

Returns:

 Welcome to Eclipse

 registerService 500

A ServiceRegistration object for use by the bundle registering the service to update
the service's properties or to unregister the service.

Throws:
java.lang.IllegalArgumentException − If one of the following is true:

service is null.•
service is not a ServiceFactory object and is not an instance of all the named
classes in clazzes.

•

properties contains case variants of the same key name.•
java.lang.SecurityException − If the caller does not have the
ServicePermission to register the service for all the named classes and the Java
Runtime Environment supports permissions.
java.lang.IllegalStateException − If this context bundle was stopped.

See Also:
ServiceRegistration, ServiceFactory

registerService

public ServiceRegistration registerService(java.lang.String clazz,
 java.lang.Object service,
 java.util.Dictionary properties)

Registers the specified service object with the specified properties under the specified class name with
the Framework.

This method is otherwise identical to registerService(java.lang.String[],
java.lang.Object, java.util.Dictionary)and is provided as a convenience when
service will only be registered under a single class name. Note that even in this case the value of
the service's Constants.OBJECTCLASSproperty will be an array of strings, rather than just a
single string.
See Also:

registerService(java.lang.String[], java.lang.Object,
java.util.Dictionary)

getServiceReferences

public ServiceReference[] getServiceReferences(java.lang.String clazz,
 java.lang.String filter)
 throws InvalidSyntaxException

Returns a list of ServiceReference objects. This method returns a list of ServiceReference
objects for services which implement and were registered under the specified class and match the
specified filter criteria.

The list is valid at the time of the call to this method, however as the Framework is a very dynamic
environment, services can be modified or unregistered at anytime.

filter is used to select the registered service whose properties objects contain keys and values
which satisfy the filter. See Filterfor a description of the filter string syntax.

 Welcome to Eclipse

 registerService 501

If filter is null, all registered services are considered to match the filter.

If filter cannot be parsed, an InvalidSyntaxExceptionwill be thrown with a human
readable message where the filter became unparsable.

The following steps are required to select a service:

If the Java Runtime Environment supports permissions, the caller is checked for the
ServicePermission to get the service with the specified class. If the caller does not have
the correct permission, null is returned.

1.

If the filter string is not null, the filter string is parsed and the set of registered services
which satisfy the filter is produced. If the filter string is null, then all registered services are
considered to satisfy the filter.

2.

If clazz is not null, the set is further reduced to those services which are an
instanceof and were registered under the specified class. The complete list of classes of
which a service is an instance and which were specified when the service was registered is
available from the service's Constants.OBJECTCLASSproperty.

3.

An array of ServiceReference to the selected services is returned.4.
Parameters:

clazz − The class name with which the service was registered, or null for all services.
filter − The filter criteria.

Returns:
An array of ServiceReference objects, or null if no services are registered which
satisfy the search.

Throws:
InvalidSyntaxException − If filter contains an invalid filter string which cannot
be parsed.

getServiceReference

public ServiceReference getServiceReference(java.lang.String clazz)

Returns a ServiceReference object for a service that implements, and was registered under, the
specified class.

This ServiceReference object is valid at the time of the call to this method, however as the
Framework is a very dynamic environment, services can be modified or unregistered at anytime.

This method is the same as calling getServiceReferences(java.lang.String,
java.lang.String)with a null filter string. It is provided as a convenience for when the caller
is interested in any service that implements the specified class.

If multiple such services exist, the service with the highest ranking (as specified in its
Constants.SERVICE_RANKINGproperty) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified in its
Constants.SERVICE_IDproperty); that is, the service that was registered first is returned.
Parameters:

clazz − The class name with which the service was registered.

 Welcome to Eclipse

 getServiceReference 502

Returns:
A ServiceReference object, or null if no services are registered which implement the
named class.

See Also:
getServiceReferences(java.lang.String, java.lang.String)

getService

public java.lang.Object getService(ServiceReference reference)

Returns the specified service object for a service.

A bundle's use of a service is tracked by the bundle's use count of that service. Each time a service's
service object is returned by getService(org.osgi.framework.ServiceReference)the
context bundle's use count for that service is incremented by one. Each time the service is released by
ungetService(org.osgi.framework.ServiceReference)the context bundle's use
count for that service is decremented by one.

When a bundle's use count for a service drops to zero, the bundle should no longer use that service.
See getBundle()for a definition of context bundle.

This method will always return null when the service associated with this reference has been
unregistered.

The following steps are required to get the service object:

If the service has been unregistered, null is returned.1.
The context bundle's use count for this service is incremented by one.2.
If the context bundle's use count for the service is currently one and the service was registered
with an object implementing the ServiceFactory interface, the
ServiceFactory.getService(org.osgi.framework.Bundle,
org.osgi.framework.ServiceRegistration)method is called to create a service
object for the context bundle. This service object is cached by the Framework. While the
context bundle's use count for the service is greater than zero, subsequent calls to get the
services's service object for the context bundle will return the cached service object.
If the service object returned by the ServiceFactory object is not an instanceof all
the classes named when the service was registered or the ServiceFactory object throws
an exception, null is returned and a Framework event of type
FrameworkEvent.ERRORis broadcast.

3.

The service object for the service is returned.4.
Parameters:

reference − A reference to the service.
Returns:

A service object for the service associated with reference, or null if the service is not
registered or does not implement the classes under which it was registered in the case of a
Service Factory.

Throws:
java.lang.SecurityException − If the caller does not have the
ServicePermission to get the service using at least one of the named classes the service

 Welcome to Eclipse

 getService 503

was registered under, and the Java Runtime Environment supports permissions.
java.lang.IllegalStateException − If the context bundle has stopped.

See Also:
ungetService(org.osgi.framework.ServiceReference),
ServiceFactory

ungetService

public boolean ungetService(ServiceReference reference)

Releases the service object referenced by the specified ServiceReference object. If the context
bundle's use count for the service is zero, this method returns false. Otherwise, the context bundle's
use count for the service is decremented by one. See getBundle()for a definition of context
bundle.

The service's service object should no longer be used and all references to it should be destroyed
when a bundle's use count for the service drops to zero.

The following steps are required to unget the service object:

If the context bundle's use count for the service is zero or the service has been unregistered,
false is returned.

1.

The context bundle's use count for this service is decremented by one.2.
If the context bundle's use count for the service is currently zero and the service was
registered with a ServiceFactory object, the
ServiceFactory.ungetService(org.osgi.framework.Bundle,
org.osgi.framework.ServiceRegistration, java.lang.Object)method
is called to release the service object for the context bundle.

3.

true is returned.4.
Parameters:

reference − A reference to the service to be released.
Returns:

false if the context bundle's use count for the service is zero or if the service has been
unregistered; true otherwise.

Throws:
java.lang.IllegalStateException − If the context bundle has stopped.

See Also:
getService(org.osgi.framework.ServiceReference), ServiceFactory

getDataFile

public java.io.File getDataFile(java.lang.String filename)

Creates a File object for a file in the persistent storage area provided for the bundle by the
Framework. This method will return null if the platform does not have file system support.

A File object for the base directory of the persistent storage area provided for the context bundle by
the Framework can be obtained by calling this method with an empty string (" ") as filename. See

 Welcome to Eclipse

 ungetService 504

getBundle()for a definition of context bundle.

If the Java Runtime Environment supports permissions, the Framework will ensure that the bundle
has the java.io.FilePermission with actions read, write, delete for all files
(recursively) in the persistent storage area provided for the context bundle.
Parameters:

filename − A relative name to the file to be accessed.
Returns:

A File object that represents the requested file or null if the platform does not have file
system support.

Throws:
java.lang.IllegalStateException − If the context bundle has stopped.

createFilter

public Filter createFilter(java.lang.String filter)
 throws InvalidSyntaxException

Creates a Filter object. This Filter object may be used to match a ServiceReference
object or a Dictionary object. See Filterfor a description of the filter string syntax.

If the filter cannot be parsed, an InvalidSyntaxExceptionwill be thrown with a human
readable message where the filter became unparsable.
Parameters:

filter − The filter string.
Returns:

A Filter object encapsulating the filter string.
Throws:

InvalidSyntaxException − If filter contains an invalid filter string that cannot be
parsed.
NullPointerException − If filter is null.

Since:
1.1

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright (c) OSGi Alliance (2000, 2003). All Rights Reserved.

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 org.osgi.framework

Class BundleEvent

java.lang.Object
 |

 Welcome to Eclipse

 createFilter 505

 +−−java.util.EventObject
 |
 +−−org.osgi.framework.BundleEvent

All Implemented Interfaces:
java.io.Serializable

public class BundleEvent
extends java.util.EventObject

A Framework event describing a bundle lifecycle change.

BundleEvent objects are delivered to BundleListener objects when a change occurs in a bundle's
lifecycle. A type code is used to identify the event type for future extendability.

OSGi reserves the right to extend the set of types.

See Also:
Serialized Form

Field Summary
static int INSTALLED

 The bundle has been installed.

static int RESOLVED
 The bundle has been resolved.

static int STARTED
 The bundle has been started.

static int STOPPED
 The bundle has been stopped.

static int UNINSTALLED
 The bundle has been uninstalled.

static int UNRESOLVED
 The bundle has been unresolved.

static int UPDATED
 The bundle has been updated.

Fields inherited from class java.util.EventObject

source

Constructor Summary

 Welcome to Eclipse

 createFilter 506

BundleEvent(int type, Bundle bundle)
 Creates a bundle event of the specified type.

Method Summary
 Bundle getBundle()

 Returns the bundle which had a lifecycle change.

 int getType()
 Returns the type of lifecyle event.

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

INSTALLED

public static final int INSTALLED

The bundle has been installed.

The value of INSTALLED is 0x00000001.
See Also:

BundleContext.installBundle(java.lang.String)

STARTED

public static final int STARTED

The bundle has been started.

The value of STARTED is 0x00000002.
See Also:

Bundle.start()

 Welcome to Eclipse

 INSTALLED 507

STOPPED

public static final int STOPPED

The bundle has been stopped.

The value of STOPPED is 0x00000004.
See Also:

Bundle.stop()

UPDATED

public static final int UPDATED

The bundle has been updated.

The value of UPDATED is 0x00000008.
See Also:

Bundle.update()

UNINSTALLED

public static final int UNINSTALLED

The bundle has been uninstalled.

The value of UNINSTALLED is 0x00000010.
See Also:

Bundle.uninstall()

RESOLVED

public static final int RESOLVED

The bundle has been resolved.

The value of RESOLVED is 0x00000020.
See Also:

Bundle.RESOLVED
Since:

1.3 EXPERIMENTAL

UNRESOLVED

public static final int UNRESOLVED

 Welcome to Eclipse

 STOPPED 508

The bundle has been unresolved.

The value of UNRESOLVED is 0x00000040.
See Also:

Bundle.INSTALLED
Since:

1.3 EXPERIMENTAL

Constructor Detail

BundleEvent

public BundleEvent(int type,
Bundle bundle)

Creates a bundle event of the specified type.
Parameters:

type − The event type.
bundle − The bundle which had a lifecycle change.

Method Detail

getBundle

public Bundle getBundle()

Returns the bundle which had a lifecycle change. This bundle is the source of the event.
Returns:

A bundle that had a change occur in its lifecycle.

getType

public int getType()

Returns the type of lifecyle event. The type values are:

INSTALLED◊
STARTED◊
STOPPED◊
UPDATED◊
UNINSTALLED◊
RESOLVED◊
UNRESOLVED◊

Returns:
The type of lifecycle event.

 Welcome to Eclipse

 BundleEvent 509

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright (c) OSGi Alliance (2000, 2003). All Rights Reserved.

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 org.osgi.framework

Interface BundleActivator

All Known Implementing Classes:
XMLParserActivator

public interface BundleActivator

Customizes the starting and stopping of this bundle.

BundleActivator is an interface that may be implemented when this bundle is started or stopped. The
Framework can create instances of this bundle's BundleActivator as required. If an instance's
BundleActivator.start method executes successfully, it is guaranteed that the same instance's
BundleActivator.stop method will be called when this bundle is to be stopped.

BundleActivator is specified through the Bundle−Activator Manifest header. A bundle can only
specify a single BundleActivator in the Manifest file. The form of the Manifest header is:

 Bundle−Activator: class−name

where class−name is a fully qualified Java classname.

The specified BundleActivator class must have a public constructor that takes no parameters so that a
BundleActivator object can be created by Class.newInstance().

Method Summary
 void start(BundleContext context)

 Called when this bundle is started so the Framework can perform the
bundle−specific activities necessary to start this bundle.

 void stop(BundleContext context)
 Called when this bundle is stopped so the Framework can perform the
bundle−specific activities necessary to stop the bundle.

 Welcome to Eclipse

 org.osgi.framework Interface BundleActivator 510

Method Detail

start

public void start(BundleContext context)
 throws java.lang.Exception

Called when this bundle is started so the Framework can perform the bundle−specific activities
necessary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.
Parameters:

context − The execution context of the bundle being started.
Throws:

java.lang.Exception − If this method throws an exception, this bundle is marked as
stopped and the Framework will remove this bundle's listeners, unregister all services
registered by this bundle, and release all services used by this bundle.

See Also:
Bundle.start()

stop

public void stop(BundleContext context)
 throws java.lang.Exception

Called when this bundle is stopped so the Framework can perform the bundle−specific activities
necessary to stop the bundle. In general, this method should undo the work that the
BundleActivator.start method started. There should be no active threads that were started by
this bundle when this bundle returns. A stopped bundle should be stopped and should not call any
Framework objects.

This method must complete and return to its caller in a timely manner.
Parameters:

context − The execution context of the bundle being stopped.
Throws:

java.lang.Exception − If this method throws an exception, the bundle is still marked
as stopped, and the Framework will remove the bundle's listeners, unregister all services
registered by the bundle, and release all services used by the bundle.

See Also:
Bundle.stop()

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3PREV CLASS NEXT CLASS FRAMES NO FRAMES

 Welcome to Eclipse

 start 511

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright (c) OSGi Alliance (2000, 2003). All Rights Reserved.

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 org.osgi.framework

Interface Bundle

public interface Bundle

An installed bundle in the Framework.

A Bundle object is the access point to define the life cycle of an installed bundle. Each bundle installed in
the OSGi environment will have an associated Bundle object.

A bundle will have a unique identity, a long, chosen by the Framework. This identity will not change during
the life cycle of a bundle, even when the bundle is updated. Uninstalling and then reinstalling the bundle will
create a new unique identity.

A bundle can be in one of six states:

UNINSTALLED•
INSTALLED•
RESOLVED•
STARTING•
STOPPING•
ACTIVE•

Values assigned to these states have no specified ordering; they represent bit values that may be ORed
together to determine if a bundle is in one of the valid states.

A bundle should only execute code when its state is one of STARTING, ACTIVE, or STOPPING. An
UNINSTALLED bundle can not be set to another state; it is a zombie and can only be reached because invalid
references are kept somewhere.

The Framework is the only entity that is allowed to create Bundle objects, and these objects are only valid
within the Framework that created them.

Field Summary
static int ACTIVE

 This bundle is now running.

static int INSTALLED

 Welcome to Eclipse

 org.osgi.framework Interface Bundle 512

 This bundle is installed but not yet resolved.

static int RESOLVED
 This bundle is resolved and is able to be started.

static int STARTING
 This bundle is in the process of starting.

static int STOPPING
 This bundle is in the process of stopping.

static int UNINSTALLED
 This bundle is uninstalled and may not be used.

Method Summary
 long getBundleId()

 Returns this bundle's identifier.

 java.net.URL getEntry(java.lang.String name)
 Returns a URL to the specified entry in this bundle.

 java.util.Enumeration getEntryPaths(java.lang.String path)
 Returns enumeration of all the paths to entries within the bundle whose
longest sub−path matches the supplied path argument.

 java.util.Dictionary getHeaders()
 Returns this bundle's Manifest headers and values.

 java.util.Dictionary getHeaders(java.lang.String localeString)
 Returns this bundle's Manifest headers and values localized to the
specifed locale.

 java.lang.String getLocation()
 Returns this bundle's location identifier.

 ServiceReference[] getRegisteredServices()
 Returns this bundle's ServiceReference list for all services it has
registered or null if this bundle has no registered services.

 java.net.URL getResource(java.lang.String name)
 Find the specified resource in this bundle.

 ServiceReference[] getServicesInUse()
 Returns this bundle's ServiceReference list for all services it is
using or returns null if this bundle is not using any services.

 int getState()
 Returns this bundle's current state.

 java.lang.String getSymbolicName()
 Returns the symbolic name of this bundle as specified by its
Bundle−SymbolicName manifest header.

 boolean hasPermission(java.lang.Object permission)
 Determines if this bundle has the specified permissions.

 Welcome to Eclipse

 org.osgi.framework Interface Bundle 513

 java.lang.Class loadClass(java.lang.String name)
 Loads the specified class using this bundle’s classloader.

 void start()
 Starts this bundle.

 void stop()
 Stops this bundle.

 void uninstall()
 Uninstalls this bundle.

 void update()
 Updates this bundle.

 void update(java.io.InputStream in)
 Updates this bundle from an InputStream.

Field Detail

UNINSTALLED

public static final int UNINSTALLED

This bundle is uninstalled and may not be used.

The UNINSTALLED state is only visible after a bundle is uninstalled; the bundle is in an unusable
state and all references to the Bundle object should be released immediately.

The value of UNINSTALLED is 0x00000001.

INSTALLED

public static final int INSTALLED

This bundle is installed but not yet resolved.

A bundle is in the INSTALLED state when it has been installed in the Framework but cannot run.

This state is visible if the bundle's code dependencies are not resolved. The Framework may attempt
to resolve an INSTALLED bundle's code dependencies and move the bundle to the RESOLVED state.

The value of INSTALLED is 0x00000002.

 Welcome to Eclipse

 UNINSTALLED 514

RESOLVED

public static final int RESOLVED

This bundle is resolved and is able to be started.

A bundle is in the RESOLVED state when the Framework has successfully resolved the bundle's
dependencies. These dependencies include:

The bundle's class path from its Constants.BUNDLE_CLASSPATH Manifest header.◊
The bundle's package dependencies from its Constants.EXPORT_PACKAGEand
Constants.IMPORT_PACKAGE Manifest headers.

◊

Note that the bundle is not active yet. A bundle must be put in the RESOLVED state before it can be
started. The Framework may attempt to resolve a bundle at any time.

The value of RESOLVED is 0x00000004.

STARTING

public static final int STARTING

This bundle is in the process of starting.

A bundle is in the STARTING state when the start()method is active. A bundle will be in this
state when the bundle's
BundleActivator.start(org.osgi.framework.BundleContext)is called. If this
method completes without exception, then the bundle has successfully started and will move to the
ACTIVE state.

The value of STARTING is 0x00000008.

STOPPING

public static final int STOPPING

This bundle is in the process of stopping.

A bundle is in the STOPPING state when the stop()method is active. A bundle will be in this state
when the bundle's
BundleActivator.stop(org.osgi.framework.BundleContext)method is called.
When this method completes the bundle is stopped and will move to the RESOLVED state.

The value of STOPPING is 0x00000010.

 Welcome to Eclipse

 RESOLVED 515

ACTIVE

public static final int ACTIVE

This bundle is now running.

A bundle is in the ACTIVE state when it has been successfully started.

The value of ACTIVE is 0x00000020.

Method Detail

getState

public int getState()

Returns this bundle's current state.

A bundle can be in only one state at any time.
Returns:

An element of UNINSTALLED, INSTALLED, RESOLVED, STARTING, STOPPING,
ACTIVE.

start

public void start()
 throws BundleException

Starts this bundle. If the Framework implements the optional Start Level service and the current start
level is less than this bundle's start level, then the Framework must persistently mark this bundle as
started and delay the starting of this bundle until the Framework's current start level becomes equal or
more than the bundle's start level.

Otherwise, the following steps are required to start a bundle:

If this bundle's state is UNINSTALLED then an IllegalStateException is thrown.1.
If this bundle's state is STARTING or STOPPING then this method will wait for this bundle
to change state before continuing. If this does not occur in a reasonable time, a
BundleException is thrown to indicate this bundle was unable to be started.

2.

If this bundle's state is ACTIVE then this method returns immediately.3.
If this bundle's state is not RESOLVED, an attempt is made to resolve this bundle's package
dependencies. If the Framework cannot resolve this bundle, a BundleException is
thrown.

4.

This bundle's state is set to STARTING.5.
The
BundleActivator.start(org.osgi.framework.BundleContext)method of
this bundle's BundleActivator, if one is specified, is called. If the BundleActivator

6.

 Welcome to Eclipse

 ACTIVE 516

is invalid or throws an exception, this bundle's state is set back to RESOLVED.
Any services registered by the bundle will be unregistered.
Any services used by the bundle will be released.
Any listeners registered by the bundle will be removed.
A BundleException is then thrown.
If this bundle's state is UNINSTALLED, because the bundle was uninstalled while the
BundleActivator.start method was running, a BundleException is thrown.

7.

Persistently record that this bundle has been started. When the Framework is restarted, this
bundle will be automatically started.

8.

This bundle's state is set to ACTIVE.9.
A bundle event of type BundleEvent.STARTEDis broadcast.10.

Preconditions
getState() in {INSTALLED}, {RESOLVED}.◊

Postconditions, no exceptions thrown
getState() in {ACTIVE}.◊
BundleActivator.start() has been called and did not throw an exception.◊

Postconditions, when an exception is thrown
getState() not in {STARTING}, {ACTIVE}.◊

Throws:
BundleException − If this bundle couldn't be started. This could be because a code
dependency could not be resolved or the specified BundleActivator could not be loaded
or threw an exception.
java.lang.IllegalStateException − If this bundle has been uninstalled or this
bundle tries to change its own state.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermisson, and the Java Runtime Environment supports permissions.

stop

public void stop()
 throws BundleException

Stops this bundle.

The following steps are required to stop a bundle:

If this bundle's state is UNINSTALLED then an IllegalStateException is thrown.1.
If this bundle's state is STARTING or STOPPING then this method will wait for this bundle
to change state before continuing. If this does not occur in a reasonable time, a
BundleException is thrown to indicate this bundle was unable to be stopped.

2.

Persistently record that this bundle has been stopped. When the Framework is restarted, this
bundle will not be automatically started.

3.

If this bundle's state is not ACTIVE then this method returns immediately.4.
This bundle's state is set to STOPPING.5.
The BundleActivator.stop(org.osgi.framework.BundleContext)method
of this bundle's BundleActivator, if one is specified, is called. If this method throws an
exception, it will continue to stop this bundle. A BundleException will be thrown after
completion of the remaining steps.

6.

Any services registered by this bundle must be unregistered.7.
Any services used by this bundle must be released.8.

 Welcome to Eclipse

 stop 517

Any listeners registered by this bundle must be removed.9.
If this bundle's state is UNINSTALLED, because the bundle was uninstalled while the
BundleActivator.stop method was running, a BundleException must be thrown.

10.

This bundle's state is set to RESOLVED.11.
A bundle event of type BundleEvent.STOPPEDis broadcast.12.

Preconditions
getState() in {ACTIVE}.◊

Postconditions, no exceptions thrown
getState() not in {ACTIVE, STOPPING}.◊
BundleActivator.stop has been called and did not throw an exception.◊

Postconditions, when an exception is thrown
None.◊

Throws:
BundleException − If this bundle's BundleActivator could not be loaded or threw
an exception.
java.lang.IllegalStateException − If this bundle has been uninstalled or this
bundle tries to change its own state.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

update

public void update()
 throws BundleException

Updates this bundle.

If this bundle's state is ACTIVE, it will be stopped before the update and started after the update
successfully completes.

If the bundle being updated has exported any packages, these packages will not be updated. Instead,
the previous package version will remain exported until the PackageAdmin.refreshPackages
method has been has been called or the Framework is relaunched.

The following steps are required to update a bundle:

If this bundle's state is UNINSTALLED then an IllegalStateException is thrown.1.
If this bundle's state is ACTIVE, STARTING or STOPPING, the bundle is stopped as
described in the Bundle.stop method. If Bundle.stop throws an exception, the
exception is rethrown terminating the update.

2.

The download location of the new version of this bundle is determined from either the
bundle's Constants.BUNDLE_UPDATELOCATION Manifest header (if available) or the
bundle's original location.

3.

The location is interpreted in an implementation dependent manner, typically as a URL, and
the new version of this bundle is obtained from this location.

4.

The new version of this bundle is installed. If the Framework is unable to install the new
version of this bundle, the original version of this bundle will be restored and a
BundleException will be thrown after completion of the remaining steps.

5.

If the bundle has declared an Bundle−RequiredExecutionEnvironment header, then the listed
execution environments must be verified against the installed execution environments. If they

6.

 Welcome to Eclipse

 update 518

do not all match, the original version of this bundle will be restored and a
BundleException will be thrown after completion of the remaining steps.
This bundle's state is set to INSTALLED.7.
If this bundle has not declared an Import−Package header in its Manifest file
(specifically, this bundle does not depend on any packages from other bundles), this bundle's
state may be set to RESOLVED.

8.

If the new version of this bundle was successfully installed, a bundle event of type
BundleEvent.UPDATEDis broadcast.

9.

If this bundle's state was originally ACTIVE, the updated bundle is started as described in the
Bundle.start method. If Bundle.start throws an exception, a Framework event of
type FrameworkEvent.ERRORis broadcast containing the exception.

10.

Preconditions
getState() not in {UNINSTALLED}.◊

Postconditions, no exceptions thrown
getState() in {INSTALLED, RESOLVED, ACTIVE}.◊
This bundle has been updated.◊

Postconditions, when an exception is thrown
getState() in {INSTALLED, RESOLVED, ACTIVE}.◊
Original bundle is still used; no update occurred.◊

Throws:
BundleException − If the update fails.
java.lang.IllegalStateException − If this bundle has been uninstalled or this
bundle tries to change its own state.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

See Also:
stop(), start()

update

public void update(java.io.InputStream in)
 throws BundleException

Updates this bundle from an InputStream.

This method performs all the steps listed in Bundle.update(), except the bundle will be read
from the supplied InputStream, rather than a URL.

This method will always close the InputStream when it is done, even if an exception is thrown.
Parameters:

in − The InputStream from which to read the new bundle.
Throws:

BundleException − If the provided stream cannot be read or the update fails.
java.lang.IllegalStateException − If this bundle has been uninstalled or this
bundle tries to change its own state.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

See Also:
update()

 Welcome to Eclipse

 update 519

uninstall

public void uninstall()
 throws BundleException

Uninstalls this bundle.

This method causes the Framework to notify other bundles that this bundle is being uninstalled, and
then puts this bundle into the UNINSTALLED state. The Framework will remove any resources
related to this bundle that it is able to remove.

If this bundle has exported any packages, the Framework will continue to make these packages
available to their importing bundles until the PackageAdmin.refreshPackages method has
been called or the Framework is relaunched.

The following steps are required to uninstall a bundle:

If this bundle's state is UNINSTALLED then an IllegalStateException is thrown.1.
If this bundle's state is ACTIVE, STARTING or STOPPING, this bundle is stopped as
described in the Bundle.stop method. If Bundle.stop throws an exception, a
Framework event of type FrameworkEvent.ERRORis broadcast containing the exception.

2.

This bundle's state is set to UNINSTALLED.3.
A bundle event of type BundleEvent.UNINSTALLEDis broadcast.4.
This bundle and any persistent storage area provided for this bundle by the Framework are
removed.

5.

Preconditions
getState() not in {UNINSTALLED}.◊

Postconditions, no exceptions thrown
getState() in {UNINSTALLED}.◊
This bundle has been uninstalled.◊

Postconditions, when an exception is thrown
getState() not in {UNINSTALLED}.◊
This Bundle has not been uninstalled.◊

Throws:
BundleException − If the uninstall failed. This can occur if another thread is attempting
to change the bundle's state and does not complete in a timely manner.
java.lang.IllegalStateException − If this bundle has been uninstalled or this
bundle tries to change its own state.
java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

See Also:
stop()

getHeaders

public java.util.Dictionary getHeaders()

 Welcome to Eclipse

 uninstall 520

Returns this bundle's Manifest headers and values. This method returns all the Manifest headers and
values from the main section of the bundle's Manifest file; that is, all lines prior to the first blank line.

Manifest header names are case−insensitive. The methods of the returned Dictionary object will
operate on header names in a case−insensitive manner. If a Manifest header value starts with "%", it
will be localized with the localization properties file for the default locale.

For example, the following Manifest headers and values are included if they are present in the
Manifest file:

 Bundle−Name
 Bundle−Vendor
 Bundle−Version
 Bundle−Description
 Bundle−DocURL
 Bundle−ContactAddress

This method will continue to return Manifest header information while this bundle is in the
UNINSTALLED state.
Returns:

A Dictionary object containing this bundle's Manifest headers and values.
Throws:

java.lang.SecurityException − If the caller does not have the
AdminPermission, and the Java Runtime Environment supports permissions.

See Also:
Constants.BUNDLE_LOCALIZATION

getBundleId

public long getBundleId()

Returns this bundle's identifier. The bundle is assigned a unique identifier by the Framework when it
is installed in the OSGi environment.

A bundle's unique identifier has the following attributes:

Is unique and persistent.◊
Is a long.◊
Its value is not reused for another bundle, even after the bundle is uninstalled.◊
Does not change while the bundle remains installed.◊
Does not change when the bundle is updated.◊

This method will continue to return this bundle's unique identifier while this bundle is in the
UNINSTALLED state.
Returns:

The unique identifier of this bundle.

 Welcome to Eclipse

 getBundleId 521

getLocation

public java.lang.String getLocation()

Returns this bundle's location identifier.

The bundle location identifier is the location passed to
BundleContext.installBundle(java.lang.String)when a bundle is installed.

This method will continue to return this bundle's location identifier while this bundle is in the
UNINSTALLED state.
Returns:

The string representation of this bundle's location identifier.
Throws:

java.lang.SecurityException − If the caller does not have the appropriate
AdminPermission, and the Java Runtime Environment supports permissions.

getRegisteredServices

public ServiceReference[] getRegisteredServices()

Returns this bundle's ServiceReference list for all services it has registered or null if this
bundle has no registered services.

If the Java runtime supports permissions, a ServiceReference object to a service is included in
the returned list only if the caller has the ServicePermission to get the service using at least one
of the named classes the service was registered under.

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at anytime.
Returns:

An array of ServiceReference objects or null.
Throws:

java.lang.IllegalStateException − If this bundle has been uninstalled.
See Also:

ServiceRegistration, ServiceReference, ServicePermission

getServicesInUse

public ServiceReference[] getServicesInUse()

Returns this bundle's ServiceReference list for all services it is using or returns null if this
bundle is not using any services. A bundle is considered to be using a service if its use count for that
service is greater than zero.

If the Java Runtime Environment supports permissions, a ServiceReference object to a service
is included in the returned list only if the caller has the ServicePermission to get the service
using at least one of the named classes the service was registered under.

 Welcome to Eclipse

 getLocation 522

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at anytime.
Returns:

An array of ServiceReference objects or null.
Throws:

java.lang.IllegalStateException − If this bundle has been uninstalled.
See Also:

ServiceReference, ServicePermission

hasPermission

public boolean hasPermission(java.lang.Object permission)

Determines if this bundle has the specified permissions.

If the Java Runtime Environment does not support permissions, this method always returns true.

permission is of type Object to avoid referencing the java.security.Permission class
directly. This is to allow the Framework to be implemented in Java environments which do not
support permissions.

If the Java Runtime Environment does support permissions, this bundle and all its resources including
nested JAR files, belong to the same java.security.ProtectionDomain; that is, they will
share the same set of permissions.
Parameters:

permission − The permission to verify.
Returns:

true if this bundle has the specified permission or the permissions possessed by this bundle
imply the specified permission; false if this bundle does not have the specified permission
or permission is not an instanceof java.security.Permission.

Throws:
java.lang.IllegalStateException − If this bundle has been uninstalled.

getResource

public java.net.URL getResource(java.lang.String name)

Find the specified resource in this bundle. This bundle's class loader is called to search for the named
resource. If this bundle's state is INSTALLED, then only this bundle will be searched for the specified
resource. Imported packages cannot be searched when a bundle has not been resolved.
Parameters:

name − The name of the resource. See java.lang.ClassLoader.getResource for
a description of the format of a resource name.

Returns:
a URL to the named resource, or null if the resource could not be found or if the caller does
not have the AdminPermission, and the Java Runtime Environment supports permissions.

Throws:
java.lang.IllegalStateException − If this bundle has been uninstalled.

 Welcome to Eclipse

 hasPermission 523

Since:
1.1

getHeaders

public java.util.Dictionary getHeaders(java.lang.String localeString)

Returns this bundle's Manifest headers and values localized to the specifed locale.

This method performs the same function as Bundle.getHeaders() except the manifest header
values are localized to the specified locale. If a Manifest header value starts with "%", it will be
localized with the localization properties file for the specified locale. If null is specified as the
locale string, the header values will be localized using the default locale. If the empty string ("") is
specified as the locale string, the header values will not be localized but any leading "%"s will be
stripped off of the header values.

This method will continue to return Manifest header information while this bundle is in the
UNINSTALLED state, however the header values will only be localized to the default locale.
Returns:

A Dictionary object containing this bundle's Manifest headers and values.
Throws:

java.lang.SecurityException − If the caller does not have the
AdminPermission, and the Java Runtime Environment supports permissions.

Since:
1.3 EXPERIMENTAL

See Also:
getHeaders(), Constants.BUNDLE_LOCALIZATION

getSymbolicName

public java.lang.String getSymbolicName()

Returns the symbolic name of this bundle as specified by its Bundle−SymbolicName manifest
header. The name must be unique, it is recommended to use a reverse domain name naming
convention like that used for java packages. If the bundle does not have a specified symbolic name
then null is returned.

This method will continue to return this bundle's symbolic name while this bundle is in the
UNINSTALLED state.
Returns:

The symbolic name of this bundle.
Since:

1.3 EXPERIMENTAL

 Welcome to Eclipse

 getHeaders 524

loadClass

public java.lang.Class loadClass(java.lang.String name)
 throws java.lang.ClassNotFoundException

Loads the specified class using this bundle’s classloader.

If this bundle's state is INSTALLED, this method will attempt to resolve the bundle before attempting
to load the class.

If the bundle cannot be resolved, a Framework event of type FrameworkEvent.ERROR is
broadcast containing a BundleException with details of the reason the bundle could not be
resolved. This method must then throw a ClassNotFoundException.

If this bundle's state is UNINSTALLED, then an IllegalStateException is thrown.
Parameters:

name − The name of the class to load.
Returns:

The Class object for the requested class.
Throws:

java.lang.ClassNotFoundException − If no such class can be found or if the
caller does not have the AdminPermission, and the Java Runtime Environment supports
permissions.
java.lang.IllegalStateException − If this bundle has been uninstalled.

Since:
1.3 EXPERIMENTAL

getEntryPaths

public java.util.Enumeration getEntryPaths(java.lang.String path)

Returns enumeration of all the paths to entries within the bundle whose longest sub−path matches the
supplied path argument. The bundle's classloader is not used to search for entries. Only the contents
of the bundle is searched. A specified path of "/" indicates the root of the bundle.

Returned paths indicating subdirectory paths end with a "/". The returned paths are all relative to the
root of the bundle and have a leading "/".

This method returns an empty enumeration if no entries could be found that match the specified path
or if the caller does not have AdminPermission and the Java Runtime Environment supports
permissions.
Parameters:

path − the path name to get the entry path names for.
Returns:

An Enumeration of the entry paths that are contained in the specified path.
Throws:

java.lang.IllegalStateException − If this bundle has been uninstalled.
Since:

1.3 EXPERIMENTAL

 Welcome to Eclipse

 loadClass 525

getEntry

public java.net.URL getEntry(java.lang.String name)

Returns a URL to the specified entry in this bundle. The bundle's classloader is not used to search for
the specified entry. Only the contents of the bundle is searched for the specified entry. A specified
path of "/" indicates the root of the bundle.

This method returns a URL to the specified entry, or null if the entry could not be found or if the
caller does not have the AdminPermission and the Java Runtime Environment supports
permissions.
Parameters:

name − The name of the entry. See java.lang.ClassLoader.getResource for a
description of the format of a resource name.

Returns:
A URL to the specified entry, or null if the entry could not be found or if the caller does not
have the AdminPermission and the Java Runtime Environment supports permissions.

Throws:
java.lang.IllegalStateException − If this bundle has been uninstalled.

Since:
1.3 EXPERIMENTAL

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Copyright (c) OSGi Alliance (2000, 2003). All Rights Reserved.

Extension points and the registry

While the "bundle" aspects of a plug−in may be interesting to the runtime plug−in and runtime tools, it is
much more common that a plug−in is concerned with what extension points have been defined by plug−ins
and what extensions are contributed by plug−ins. This information is provided by the platform extension
registry, IExtensionRegistry.

Why might a plug−in want to know what extensions are present? A concrete example will help show the need
for this information and the protocol for getting it.

Recall the workbench Show View dialog which shows all of the available views that have been installed in
the platform.

 Welcome to Eclipse

 getEntry 526

We know that the category names and view names of all contributed views are specified in the plugin.xml file
for any plug−in that contributes an extension for org.eclipse.ui.views. But how does the workbench find out
this information? From the platform extension registry. The following code is a simplified snippet based on
the workbench implementation of the Show View dialog:

 ...
 IExtensionRegistry registry = Platform.getExtensionRegistry();
 IExtensionPoint point = registry.getExtensionPoint("org.eclipse.ui.views");
 if (point == null) return;
 IExtension[] extensions = point.getExtensions();
 for (int i = 0; i < extensions.length; i++)
 readExtension(extensions[i]); //get the information about each extension
 ...

We see above that the registry can be obtained from the Platform class. The protocol in IExtensionRegistry
is used to find the extension point named org.eclipse.ui.views. Information in the registry about particular
extension points or extensions can be found using protocol defined in IExtensionRegistry, IExtensionPoint,
and IExtension. The javadoc for these classes provides detailed information about the registry protocol.

Once the extension definition of interest has been found, protocol in IConfigurationElement can be used to
examine the individual attributes of an extension.

Runtime preferences

The org.eclipse.core.runtime.preferences package provides infrastructure for storing a plug−in's
preferences. Preferences typically map to settings controlled by the user on the workbench Preferences page,

 Welcome to Eclipse

 Runtime preferences 527

although this is not required by the underlying infrastructure. Plug−in preferences are key/value pairs, where
the key describes the name of the preference, and the value is one of several different types (boolean, double,
float, int, long, or string). Preferences can be stored and retrieved by the platform from the file system. The
exact location of the saved preferences depends upon the scope of the preference.

Preference scopes

The scope of a preference is closely related to where the preference is stored. Plug−in developers can decide
which of the standard scopes apply for their preferences, or can define new scopes that make sense for their
plug−in. Let's look first at the scopes defined by the platform runtime:

Instance scoped preferences are stored per workspace, or per running instance of the platform.•
Configuration scoped preferences are stored per installation of the platform. They are shared
between workspaces. For example, if a user has a single installation of the platform, but runs several
different workspaces, preferences scoped at the configuration level will be shared between the
workspaces.

•

Default scoped preferences represent the default values for preferences. These are not changed or
stored by the platform. However, the values originate from files stored with the plug−in's product or
primary feature. (See What is a product? for an explanation of products and primary features, and
their related files.)

•

You can think of the overall preference store as a hierarchy of nodes, where each main branch of the hierarchy
represents a particular scope. The children of any particular node depend upon how that scope is defined. For
the instance and configuration scopes, the child nodes are the preferences for a particular plug−in as specified
by a preference qualifier, usually the plug−in's id.

If all of this sounds confusing, don't worry. If you don't care about scopes and nodes, you need not worry
about any particular scope or about which node of the tree actually contains your preference value. The
preferences API will automatically traverse the nodes in the proper order (instance, configuration, default)
when you query a preference value and use the supplied qualifier and preference name to find the node that
actually contains the value.

Preferences are accessed using IPreferencesService protocol. The platform's default preference service can
be accessed using the Platform class.

 ...
 IPreferencesService service = Platform.getPreferencesService();
 ...

Once the preference service is obtained, preference values can be queried by name using any of get... methods
provided in IPreferencesService. For example, the following snippet queries the value of the "MyPreference"
preference in the plug−in "com.example.myplugin".

 ...
 IPreferencesService service = Platform.getPreferencesService();
 boolean value = service.getBoolean("com.example.myplugin", "MyPreference", true, null);
 //do something with the value.
 ...

The last parameter in the query method is an array of scope contexts to use when searching for the preference
node. If the array is null, then the platform assumes that the default scope search order should be used and
guesses the appropriate preference node. If an array of scopes contexts is passed, then this determines the

 Welcome to Eclipse

 Preference scopes 528

scope lookup order that should be used to find the preference node. The default scope lookup order is always
consulted if no node can be found using the specified scopes.

Using scopes and nodes

If a plug−in needs finer control over the scope search order, classes that represent the scopes can be used to
access the actual node that represents the preference at a particular scope. In this way, an array of nodes can
be created that specifies the particular search order required. The following snippet queries the preferences
service for the same preference used above, but searches the configuration scope for the plug−in, followed by
the instance scope for the plug−in. When nodes are specified for the search order, the default scoping is not
considered. That is, the platform will only search the exact nodes that have been provided.

 ...
 IPreferencesService service = Platform.getPreferencesService();
 Preferences configurationNode = new ConfigurationScope().getNode("com.example.myplugin");
 Preferences instanceNode = new InstanceScope().getNode("com.example.myplugin");
 Preferences[] nodes = new Preferences[] {configurationNode, instanceNode};
 stringValue = service.get("MyPreference", "true", nodes);
 //do something with the value.
 ...

A plug−in may also implement its own traversal through the preference tree nodes. The root node of the
preference tree can be obtained from the preferences service. The scope classes can be used to further traverse
the tree. The following snippet traverses to a specific node and retrieves the preference value from the node
itself.

 ...
 IPreferencesService service = Platform.getPreferencesService();
 Preferences root = service.getRootNode();
 Preferences myInstanceNode = root.node(InstanceScope.SCOPE).node("com.example.myplugin");
 if (myInstanceNode != null) {
 value = node.getBoolean("MyPreference", "true");
 //do something with the value.
 }
 ...

Extending the scopes

Plug−ins may define their own specialized scopes using the org.eclipse.core.runtime.preferences extension.
In this extension, the plug−in defines the name of the new scope, as well a class that can create preference
nodes for the new scope. Optionally, it can specify the name of a class that initializes the default preference
values at that scope. When a plug−in defines a new scope, it is up to that plug−in to implement the traversal
order for any new scope relative to the platform traversal order. We'll look at this capability in more detail
using the specific example of Project−scoped preferences.

Products and features

An Eclipse based product is a stand−alone program built with the Eclipse platform. A product may optionally
be packaged and delivered as one or more features, which are simply groupings of plug−ins that are managed
as a single entity by the Eclipse update mechanisms.

 Welcome to Eclipse

 Using scopes and nodes 529

Products include all the code and plug−ins needed to run them. This includes a Java runtime environment
(JRE) and the Eclipse platform code. The plug−in code, JRE, and Eclipse platform are typically installed with
a product−specific installation program. Product providers are free to use any installation tool or program that
is appropriate for their needs.

Once installed, the user launches the product and is presented with an Eclipse workbench configured
specifically for the purpose supported by the product, such as web development, C++ program development,
or any other purpose. The platform makes it easy to configure labels, about dialogs, graphics, and splash
screens, so that the user has no concept of a platform workbench, but instead views the workbench as the main
window of the product itself.

The top level directory structure of such a product looks something like this for a hypothetical product called
"AcmeWeb" that has been installed on a Windows platform:

acmeweb/
acmeweb.exe (product executable)
eclipse/ (directory for installed Eclipse files)
.eclipseproduct (marker file)
eclipse.exe
 startup.jar
 configuration/
 config.ini
 jre/
 features/ (installed features if any)
com.example.acme.acmefeature_1.0.0/
 feature.xml
 ...
 plugins/
 com.example.acme.acmefeature_1.0.0/
 plugin.xml
 about.ini
 about.html
 about.mappings
 about.properties
 acme.gif
 splash.jpg
 com.example.acme.acmewebsupport_1.0.0/
 ...
 links/
 ...

There are actually two ways of defining a product in Eclipse. The preferred mechanism is to use the products
extension point (new to Eclipse 3.0). This extension point allows you to define your product and customize
branding such as splash screens, window icons, and the like. The older mechanism (used in Eclipse 2.1) uses
features, and in particular assumes the existence of a primary feature. Under the covers, Eclipse 3.0 uses the
products extension point mechanism, but provides compatibility functions that integrate the legacy definitions
into the new model if necessary.

We'll look at both mechanisms and how they are used to customize a product. Even when the products
extension point mechanism is used, features can still be used as a way to group functionality that is delivered
by the update manager. In the next few topics, we'll assume that feature groupings are present in our plug−in,
in addition to product definitions.

 Welcome to Eclipse

 Using scopes and nodes 530

Products extension point

The preferred mechanism for defining a product based on the Eclipse platform is to contribute to the
org.eclipse.core.runtime.products extension point. To do this, a plug−in simply declares the name and id of
its product, as well as the id of the application extension that should be run when the product is invoked. This
is the technique used by the Eclipse platform itself in defining the Eclipse product. Here is the extension
definition found in org.eclipse.platform:

<extension id="ide" point="org.eclipse.core.runtime.products">
 <product name="%productName" application="org.eclipse.ui.ide.workbench" description="%productBlurb">
 <property name="windowImages" value="eclipse.gif,eclipse32.gif"/>
 <property name="aboutImage" value="eclipse_lg.gif"/>
 <property name="aboutText" value="%productBlurb"/>
 <property name="appName" value="Eclipse"/>
 <property name="preferenceCustomization" value="plugin_customization.ini"/>
 </product>
</extension>

A product extension is defined whose application id is "org.eclipse.ui.ide.workbench". This is the application
id defined by the plug−in org.eclipse.ui.ide in its contribution to the org.eclipse.core.runtime.applications
extension point.

<extension
id="workbench"
 point="org.eclipse.core.runtime.applications">
 <application>
 <run
 class="org.eclipse.ui.internal.ide.IDEApplication">
 </run>
 </application>
</extension>

This extension is defined with the same id that is referenced in the application property of the product
extension. (The fully qualified name, with plug−in prefix, is used when referring to the application id from the
other plug−in.) Using this mechanism, a separate plug−in can define all of the product−specific branding, and
then refer to an existing plug−in's application as the application that is actually run when the product is
started.

In addition to the application, the org.eclipse.core.runtime.products extension describes product
customization properties that are used to configure the product's branding information. This information is
described as named properties. Let's look again at that portion of the markup for the platform plug−in.

 <property name="windowImages" value="eclipse.gif,eclipse32.gif"/>
 <property name="aboutImage" value="eclipse_lg.gif"/>
 <property name="aboutText" value="%productBlurb"/>
 <property name="appName" value="Eclipse"/>
 <property name="preferenceCustomization" value="plugin_customization.ini"/>

The possible property names that are honored by the platform for product customization are defined in
IProductConstants. See the javadoc for a complete description of these properties and their values. We'll
look at these further in Customizing a product.

 Welcome to Eclipse

Products extension point 531

Customizing a product

There are many customizable aspects of a product, such as its splash screen, about dialog text, window icons,
etc. Most of these customizations are defined in the contribution to the org.eclipse.core.runtime.products
extension point.

Let's look at how some of the more common customizable elements are defined.

About dialogs

The platform "about" dialog is shown whenever the user selects Help > About in the workbench menu.

The upper part of the about dialog shows product level information while the lower part details the features (if
any) and plug−ins installed. The feature details (branding if you will) are supplied using about.ini,
about.properties and about.html files in the plug−in associated with the feature. This information is
displayed when the user requests feature details and selects a particular feature.

The product branding (top half of the dialog) is specify by extension properties that describe the text and
images that are shown in this dialog. For example, the following extract from the Eclipse Platform product
declaration.

 <property
 name="aboutText"
 value="%aboutText"/>
 <property
 name="aboutImage"
 value="icons/eclipse_lg.gif"/>
 </product>

aboutText specifies the text to show in the about dialog•
aboutImage specifies an image that should be used in the about dialog. Large images will be shown
by themselves, and smaller images will be shown along with the about text.

•

 Welcome to Eclipse

Customizing a product 532

See IProductConstants for more information about these properties.

Window images

A 16x16 pixel color image can be used to brand windows created by the product. It will appear in the upper
left hand corner of product windows. It is specified in the windowImage attribute in the products extension
definition. Alternatively, the windowImages attribute can be used to describe an array of images of different
sizes that should be used in the upper left hand corner.

 <property
 name="windowImages"
 value="icons/eclipse.gif,icons/eclipse32.gif"/>

The windowImages property supercedes the windowImage property if both are specified.

Welcome page

Products using the Eclipse 2.1 welcome page mechanism can specify the name and location of their welcome
page file in the welcomePage property.

 <property
 name="welcomePage"
 value="nl/welcome.xml"/>

Use of this property is discouraged in Eclipse 3.0 in favor of the org.eclipse.ui.intro extension point. See
Intro support for more detail about the new welcome/intro mechanisms.

Preferences defaults

The preferenceCustomization property can be used to specify a file containing default preference values for
the product.

 <property
 name="preferenceCustomization"
 value="plugin_customization.ini"/>

This file is a java.io.Properties format file. Typically this file is used to set the values for preferences that are
published as part of a plug−in's public API. That is, you are taking a risk if you refer to preferences that are
used by plug−ins but not defined formally in the API.

Splash screens

The product splash screen is specified in the config.ini which is located underneath the product's
configuration directory. The osgi.splashPath property in this file describes places to search for a file
called splash.bmp. The osgi.splashLocation property identifes a complete and exact path to the splash screen
file to use. Specifying a splash path allows for locale specific splash screens to be used as the given search
path can indicate several plug−ins or fragments to search as well as nl style paths. See the platform SDK's
config.ini file for a complete description of properties that can be configured in this file. The image
should be supplied in 24−bit color BMP format (RGB format) and should be approximately 500x330 pixels in
size.

 Welcome to Eclipse

Window images 533

Intro support

Intro support is a set of extension points and workbench parts that allow plug−ins to define specialized pages
that introduce a platform product to new users. The intro information is typically shown the first time a
product is started. Intro support is typically configured at the product level, although individual plug−ins can
contribute intro information to known product intro configurations.

From a workbench point of view, the root of the intro support is in the intro part. This part is specified in an
extension definition. When the workbench initializes, it creates an intro site that reserves space for the intro
page. The intro part implementation for the site is determined using product configuration information. Once
an intro part is shown, it can move between two modes:

in full mode, the intro part takes over the main workbench area.•
in standby mode, the intro part moves to the side, allowing the current perspective to remain visible.•

Once an intro part is established, it must be configured with intro information. This is done using an intro
config which is also contributed using an extension. Individual plug−ins can add to the basic product intro
config using their own extensions.

We'll look at the platform SDK intro page as an example in order to better understand these concepts.

Defining an intro part

The IIntroPart interface and the org.eclipse.ui.intro extension point make up the generic mechanism that
can be used to create your own intro support for a given product. The main purpose of this extension is to
define the class that implements IIntroPart and to specify the binding between a product id and an intro part.
For example, the following contribution defines a hypothetical intro part to be shown by the workbench on
startup:

<extension
 point="org.eclipse.ui.intro">
 <intro
 class="com.example.SampleIntroPart"
 id="someId">
 icon="someIcon.gif"
 </intro>
 <introProductBinding
 introId="someId"
 productId="com.example.someProductId">
 </introProductBinding>
</extension>

This contribution first defines the intro part and assigns it the id "someId". It then binds this intro part to a
product whose id is "com.example.someProductId". On platform startup, the class specified in the class
attribute will be instantiated by the workbench and presented to the user as the introduction to the product.
This is the lowest level integration into the IIntroPart interface.

The platform supplies its own IIntroPart implementation called CustomizableIntroPart that allows for the
content and presentation of the intro to be customized. Below is the snippet that defines the intro part for the
workbench. We won't go over the mechanics of implementing an intro part since we want to focus on defining
the intro content. (See the extension point documentation and javadoc referenced above for more detail if you

 Welcome to Eclipse

 Intro support 534

need it.)

<extension
 point="org.eclipse.ui.intro">
 <intro
 class="org.eclipse.ui.intro.config.CustomizableIntroPart"
 id="org.eclipse.platform.intro">
 </intro>
 <introProductBinding
 introId="org.eclipse.platform.intro"
 productId="org.eclipse.platform">
 </introProductBinding>
</extension>

The above contribution defines the CustomizableIntroPart as the intro part to be used for the Eclipse SDK
platform. The rest of this discussion shows you how to use and extend this part.

Using the CustomizableIntroPart

The platform's CustomizableIntroPart allows for the content and presentation of the intro to be customized
using the org.eclipse.ui.intro.config extension point. (This intro config can be extended using the
org.eclipse.ui.intro.configExtension extension point.) This structure allows product plug−in developers to
focus on developing their intro content rather than implementing an intro part scheme from scratch. If a
different intro class is specified, then these two extension points are not utilized and the specified class must
implement its own scheme for intro content format and configuration.

Defining an intro config

org.eclipse.ui.intro.config describes the id of the intro config that is to show our content, and the name of the
XML file that contains the specific definition for the intro content. It is expected that only one intro config
should be defined for a given CustomizableIntroPart. (Only the first intro config found can be shown in a
CustomizableIntroPart.)

<extension
 id="intro"
 point="org.eclipse.ui.intro.config">
<config
 introId="org.eclipse.platform.intro"
 id="org.eclipse.platform.introConfig"
 content="nl/introContent.xml">
 <presentation
 home−page−id="root" standby−page−id="standby">
 <implementation
 ws="win32"
 style="css/shared.css"
 kind="html"
 os="win32">
 </implementation>
 <implementation
 kind="swt">
 </implementation>
 </presentation>
 </config>
</extension>

The path for the file is relative to the plug−in's directory. (Note the use of the nl variable in the directory
name, which means the file will be located in a directory specific to the national language of the target

 Welcome to Eclipse

Intro support 535

environment.)

The config extension allows you to specify both the content and the presentation of the content. While the
content element focuses on defining pages, the presentation element describes presentation−related
attributes that describe how pages will be shown. The page id for the intro home page (in full mode) must be
specified, and the standby page id (in standby mode) is optional. The home page is the page that is shown
when the product is first started. A presentation can specify one or more implementations for showing the
pages. Implementations are specified per platform and windowing system, allowing you to take advantage of
platform−specific features for showing page content. For example, the windows platform has a robust HTML
browser widget, so an HTML−based implementation is used for intro content. Other platforms without this
capability use an SWT−based implementation that maps page descriptions to an SWT−based form. An
implementation that does not specify either a windowing system or operating system will be considered the
generic implementation; to ensure an intro is shown on all platforms, it is important to define such an
implementation. The workbench will first look for an implementation that matches the current operating
system and windowing system. If one cannot be found, it will choose the generic implementation. Most of
these details are handled at the product configuration level, so we won't discuss them any further here.

Defining intro content

Now we can look at the content itself. Content is described in terms of pages. All pages have an id attribute.
This is the id that is used when defining the home and standby pages, and other places where there is a
reference to a page. Otherwise, the relevant attributes depend on the kind of page that is defined. There are
two basic types of pages:

Static pages are plain HTML files. These pages use the normal HTML mechanisms to link to other
pages. Static pages need not be defined in the config content file, except for the home page. Since the
home page is specified by id (home−page−id) in the presentation element, there must be a page
definition using that id in the content file. This page need only define a url. All other subelements will
be ignored since the HTML page itself will describe the page content. All other HTML intro pages
contributed by the plug−in must be included with the plug−in, but do not need to be specified in the
content file. HTML files located in other plug−ins or on the web may be referenced also.

•

Dynamic pages are described in the XML content file using subelements that describe the content of
the page. The subelements are UI items often found in HTML−like pages. Depending on the
implementation, these pages will either be dynamically translated to HTML (when the
implementation kind is html) or else dynamically created as SWT−based UI forms (when the
implementation kind is swt). The following subelements can be defined in a page:

A group is used to group other subelements and define a consistent style across the group.♦
A link defines a link that can be displayed using an image and text. The link can navigate to
another page and optionally run an intro action. Actions are specified as commands in the
URL.

♦

The text and img elements show text and image content.♦
The include element includes a previously defined subelement. The element is referred to by
its id.

♦

The head element defines additional HTML to be included in the head section of the page
when the html implementation is used.

♦

The html element defines additional HTML to be included in the body of the page when the
html implementation is used.

♦

A title for a page may also be defined. A page may also specify that its content is defined in a
separate content file. Breaking up pages into separate files may be useful when performance is a
concern, since an intro page's contents won't be initialized until needed.

•

 Welcome to Eclipse

Intro support 536

The best way to get a feel for the content definition format is to browse the implementations in the SDK. The
following snippet shows just the first part of the content for the SDK root page, which is the first intro page
shown.

<introContent>
 <page alt−style="css/root_swt.properties" style="css/root.css" id="root" style−id="page">
 <title style−id="intro−header">Welcome to Eclipse Platform 3.0</title>
 <group id="links−background">
 <group id="page−links">
 <link label="Overview" url="http://org.eclipse.ui.intro/showPage?id=overview" id="overview" style−id="left">
 <text>Find out what Eclipse is all about</text>
 </link>
 <link label="Tutorials" url="http://org.eclipse.ui.intro/showPage?id=tutorials" id="tutorials" style−id="left">
 <text>Let us guide you through Eclipse end−to−end tutorials</text>
 </link>
 <link label="Samples" url="http://org.eclipse.ui.intro/showPage?id=samples" id="samples" style−id="right">
 <text>Explore Eclipse development through code samples</text>
 </link>
 <link label="Whats New" url="http://org.eclipse.ui.intro/showPage?id=news" id="news" style−id="right">
 <text>Find out what is new in this release</text>
 </link>
 </group>
 </group>

Elements on a page can also be filteredFrom a particular implementation. This allows page designers to
design with particular platforms in mind. There are many more powerful attributes that can be used when
describing a page and its contents. See the extension point documentation for org.eclipse.ui.intro.config and
its associated intro content file format specification for a complete reference of valid elements, subelements,
and their attributes.

Extending an intro config

An intro configuration can be extended in three ways:

content of an existing intro config can be extended.•
a custom standby content part, such as Cheat Sheet, can be contributed to provide content for the
standby area of the Intro part.

•

custom IntroURL actions can be defined.•

Extending the content of an intro config

Plug−ins can contribute intro content to a page defined elsewhere. However, the defining page must define an
anchor attribute that acts as a location placeholder for new content. The SDK overview page defines two
anchors for adding JDT and PDE related elements on the overview page.

<group id="page−content">
 <text style−id="page−title" id="page−title">OVERVIEW</text>
 <text style−id="page−description" id="page−description">Eclipse is a kind of universal tool platform − an open extensible IDE for anything and nothing in particular. It provides a feature−rich development environment that allows the developer to efficiently create tools that integrate seamlessly into the Eclipse Platform.</text>
 <group id="overview−links">
 <link label="Workbench basics" url="http://org.eclipse.ui.intro/showHelpTopic?id=/org.eclipse.platform.doc.user/concepts/concepts−2.htm" id="basics">
 <text>Learn about basic Eclipse workbench concepts</text>
 </link>
 <link label="Team support" url="http://org.eclipse.ui.intro/showHelpTopic?id=/org.eclipse.platform.doc.user/concepts/concepts−26.htm" id="team">
 <text>Find out how to collaborate with other developers</text>
 </link>
<anchor id="jdtAnchor"/>
 <anchor id="pdeAnchor"/>

 Welcome to Eclipse

Intro support 537

 </group>
</group>

These anchors can be referenced by plug−ins that add content to the page. Content is added using the
org.eclipse.ui.intro.configExtension extension. In addition to extending page content, this extension point
also allows one to contribute standby content parts and custom actions.

To extend an existing intro config, you can use the configExtension element. In this element, you specify the
configId of the intro config being extended and the content file that describes the new content.

<extension
 point="org.eclipse.ui.intro.configExtension">
 <configExtension
 configId="org.eclipse.platform.introConfig"
 content="nl/overviewExtensionContent.xml"/>
 ...
</extension>

The format of the content file is similar to that of the intro config content, except that it must contain an
extensionContent element that defines the path to the anchor where the extension content should be inserted.

<introContent>
 <extensionContent alt−style="css/swt.properties" style="css/overview.css" path="overview/page−content/overview−links/jdtAnchor">
 <link label="Java development" url="http://org.eclipse.ui.intro/showHelpTopic?id=/org.eclipse.jdt.doc.user/gettingStarted/qs−BasicTutorial.htm" id="java">
 <text>Get familiar with developing Java programs using Eclipse</text>
 </link>
 </extensionContent>
</introContent>

After contributing custom content to an intro's predefined anchor points, a given product can bind itself to that
intro using the org.eclipse.ui.intro discussed above. When the product is run, the intro that was extended will
be shown with the additional content. This allows the product to have its own branding and other
product−specific information, while reusing a closely related product's intro along with key content of its own.

A given intro could also selectively include pieces of a related product's intro. In this case, the product could
define its own intro and intro config, and then reference important elements defined in another intro's config
using an include in the content file. This mechanism is valuable in situations where related products are built
on top of one another and it is necessary to introduce users to key concepts in the higher level products.

Contributing a standby content part

Plug−ins can also implement a part for displaying alternative content when the intro page is in standby mode.
For example, the platform defines a standby part that will show a cheat sheet for related intro content. The
part is launched using a page link with a specialized URL. Standby parts are launched using a URL containing
a special command for showing a standby part, such as
http://org.eclipse.ui.intro/showStandby?partId=somePartId. The part is defined in
the standbyContentPart subelement in the org.eclipse.ui.intro.configExtension extension. An id, pluginId,
and class must be specified for the part. The class must implement IStandbyContentPart. The following
snippet shows how the platform defines a standby part for showing cheat sheets.

<extension point="org.eclipse.ui.intro.configExtension">
 <standbyContentPart
 id="org.eclipse.platform.cheatsheet"
 class="org.eclipse.platform.internal.CheatSheetStandbyContent"
 pluginId="org.eclipse.platform"/>

 Welcome to Eclipse

Intro support 538

</extension>

This cheat sheet could be launched from an intro page using a link subelement whose URL is
http://org.eclipse.ui.intro/showStandby?partId=org.eclipse.platform.cheatsheet&input=org.eclipse.pde.helloworld.
This IntroURL would launch the org.eclipse.platform.cheatsheet standby content part and set its input to
"org.eclipse.pde.helloworld". The detailed mechanics for implementing a standby part are beyond the scope of
this discussion. See IStandbyContentPart and its related classes for more information.

Defining a custom IntroURL action

Using the org.eclipse.ui.intro.configExtension extension point, plug−ins can contribute their own custom
actions that can be used as a url value for a link element in a page. For example, consider the following link:

http://org.eclipse.ui.intro/runAction?pluginId=org.eclipse.pde.ui&class=org.eclipse.pde.ui.internal.samples.ShowSampleAction&id=org.eclipse.sdk.samples.swt.examples

This IntroURL will run an action class called ShowSampleAction, which is in a package
"org.eclipse.pde.ui.internal.samples" in the plug−in "org.eclipse.pde.ui". The id of the sample to run is
"org.eclipse.sdk.samples.swt.examples".

To define a custom version of this intro URL, you can use the following markup:

<extension point="org.eclipse.ui.intro.configExtension">
 <action
 name="myCommand"
replaces="runAction?pluginID=org.eclipse.pde.ui&class=org.eclipse.pde.ui.internal.samples.ShowSampleAction">
 </action>
</extension>

With the above extension you can now use the following URL to run the same action:

http://org.eclipse.ui.intro/myCommand?id=org.eclipse.sdk.samples.swt.examples

The action "myCommand" will be replaced by the value of the replaces attribute and any remaining URL
parameters will be appended to the end. Once the substitution is made, the resulting URL will be expanded
back into:

http://org.eclipse.ui.intro/runAction?pluginId=org.eclipse.pde.ui&class=org.eclipse.pde.ui.internal.samples.ShowSampleAction&id=org.eclipse.sdk.samples.swt.examples

Features

A feature is a way of grouping and describing different functionality that makes up a product. Grouping
plug−ins into features allows the product to be installed and updated using the Eclipse update server and
related support. The platform itself is partitioned into three major features:

Platform•
JDT (Java Development Tooling)•
PDE (Plug−in Developer Environment)•

There are other minor features, such as examples and OS−dependent portions of the platform.

 Welcome to Eclipse

Intro support 539

Note: The platform installation and update framework allows you to build your own custom
implementations of the concepts discussed here. That is, you can define your own types of
features, (their packaging formats, install procedures, etc.), as well as your own types of
server sites for updating your features. The remainder of this discussion is focused on the
platform default implementations for features and update sites.

Features do not contain any code. They merely describe a set of plug−ins that provide the function for the
feature and information about how to update it. Features are packaged in a feature archive file and described
using a feature manifest file, feature.xml. The following is the first part of the manifest for the platform
feature:

<?xml version="1.0" encoding="UTF−8"?>
<feature
 id="org.eclipse.platform"
 label="%featureName"
 version="3.0.0"
 provider−name="%providerName"
 plugin=""
 image="eclipse_update_120.jpg"
 primary="true"
 application="org.eclipse.ui.ide.workbench">

 <description>
 %description
 </description>

 <license url="%licenseURL">
 %license
 </license>

 <url>
 <update label="%updateSiteName" url="http://update.eclipse.org/updates/3.0"/>
 <discovery label="%updateSiteName" url="http://update.eclipse.org/updates/3.0"/>
 </url>

 <plugin
 id="org.apache.ant"
 download−size="0"
 install−size="0"
 version="1.6.1"/>

 <plugin
 id="org.apache.lucene"
 download−size="0"
 install−size="0"
 version="1.3.0"/>
 ...
</feature>

 Welcome to Eclipse

Intro support 540

Feature Archives
The feature packaging information is placed into a separate Java .jar. Standard Java jar facilities are used for
constructing feature archives. Feature archives reference separately packaged plug−in archives (see next
section) and non−plug−in files.

Features are identified using a structured identifier based on the provider internet domain name. For example,
organization eclipse.org produces feature org.eclipse.jdt. The character set used for feature identifiers is as
specified for plug−in identifiers (see Plug−in Manifest).

The recommended convention for naming the feature archives is
<id>_<version>.jar

Where <id> is the feature identifier and <version> is the full version identifier contained in the respective
feature.xml. Note that this is a recommended convention that minimizes chance of collisions, but is not
required by the Eclipse architecture. For example, the following are valid feature archive names

org.eclipse.jdt_2.0.0.jar
org.eclipse.pde_2.0.jar
my_feature.jar

Internally, each feature archive is packaged relative to its feature directory (but not including the directory
path element). The archive has the following structure

feature.xml
feature<_locale>.properties (see "Translated Feature Information")
other feature files and subdirectories (TBD)
META−INF/
 Java jar manifest and security files

Note that feature archives do not contain their constituent plug−ins and fragments.

 Feature Archives 541

Eclipse platform plug−in manifest
Version 3.0 − Last revised June 24, 2004

The manifest markup definitions below make use of various naming tokens and identifiers. To eliminate
ambiguity, here are some production rules for these [are referenced in text below]. In general, all identifiers
are case−sensitive.

SimpleToken := sequence of characters from ('a−z','A−Z','0−9','_')
ComposedToken := SimpleToken | (SimpleToken '.' ComposedToken)
JavaClassName := ComposedToken
PlugInId := ComposedToken
PlugInPrereq := PlugInId | 'export' PlugInId
ExtensionId := SimpleToken
ExtensionPointId := SimpleToken
ExtensionPointReference := ExtensionPointID | (PlugInId '.' ExtensionPointId)

The remainder of this section describes the plugin.xml file structure as a series of DTD fragments. File
plugin.dtd presents the DTD definition in its entirety.

<?xml encoding="US−ASCII"?>
<!ELEMENT plugin (requires?, runtime?, extension−point*, extension*)>
<!ATTLIST plugin
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 version CDATA #REQUIRED
 provider−name CDATA #IMPLIED
 class CDATA #IMPLIED
>

The <plugin> element defines the body of the manifest. It optionally contains definitions for the plug−in
runtime, definitions of other plug−ins required by this one, declarations of any new extension points being
introduced by the plug−in, as well as configuration of functional extensions (configured into extension points
defined by other plug−ins, or introduced by this plug−in). <plugin> attributes are as follows:

name − user displayable (translatable) name for the plug−in•
id − unique identifier for the plug−in.•

To minimize potential for naming collisions, the identifier should be derived from the internet
domain id of the supplying provider (reversing the domain name tokens and appending
additional name tokens separated by dot [.]). For example, provider ibm.com could define
plug−in identifier com.ibm.db2

•

[production rule: PlugInId]•
version − plug−in version number. See org.eclipse.core.runtime.PluginVersionIdentifier for details.
Plug−in version format is major.minor.service.qualifier. Change in the major component is
interpreted as an incompatible version change. Change in the minor component is interpreted as a
compatible version change. Change in the service component is interpreted as cumulative service
applied to the minor version. Change in the qualifier component is interpreted as different source
code control version of the same component.

•

provider−name − user−displayable name of the provider supplying the plug−in.•
class − name of the plug−in class for this plug−in. The class must be a subclass of
org.eclipse.core.runtime.Plugin.

•

Eclipse platform plug−in manifest 542

The XML DTD construction rule element* means zero or more occurrences of the element; element?
means zero or one occurrence of the element; and element+ (used below) means one or more occurrences
of the element. Based on the <plugin> definition above, this means, for example, that a plug−in containing
only a run−time definition and no extension point declarations or extension configurations is valid (for
example, common libraries that other plug−ins depend on). Similarly, a plug−in containing only extension
configurations and no runtime or extension points of its own is also valid (for example, configuring classes
delivered in other plug−ins into extension points declared in other plug−ins).

The <requires> section of the manifest declares any dependencies on other plug−ins.

<!ELEMENT requires (import+)>
<!ELEMENT import EMPTY>
<!ATTLIST import
 plugin CDATA #REQUIRED
 version CDATA #IMPLIED
 match (perfect | equivalent | compatible | greaterOrEqual) "compatible"
 export (true | false) "false"
 optional (true | false) "false"
>

Each dependency is specified using an <import> element. It contains the following attributes:

plugin − identifier of the required plug−in•
version − optional version specification•
match − version matching rule. Ignored if version attribute is not specified. Determines whether the
dependency is satisfied only with a plug−in that has this exact specified version, with a plug−in that
has a service or qualifier more recent than this one, with any compatible version (including a more
recent minor version of the plug−in) or with any more recent version of this plug−in

•

export − specifies whether the dependent plug−in classes are made visible (are (re)exported) to users
of this plug−in. By default, dependent classes are not exported (are not made visible)

•

optional − specifies whether or not this dependency will be strictly enforced. If set to <true> and this
dependency cannot be satisfied, the dependency will be ignored

•

The <runtime> section of the manifest contains a definition of one or more libraries that make up the plug−in
runtime. The referenced libraries are used by the platform execution mechanisms (the plug−in class loader) to
load and execute the correct code required by the plug−in.

<!ELEMENT runtime (library+)>
<!ELEMENT library (export*, packages?)>
<!ATTLIST library
 name CDATA #REQUIRED

type (code | resource) "code"
>
<!ELEMENT export EMPTY>
<!ATTLIST export
 name CDATA #REQUIRED
>
<!ELEMENT packages EMPTY>
<!ATTLIST packages
 prefixes CDATA #REQUIRED
>

The <runtime> element has no attributes.

 Welcome to Eclipse

Eclipse platform plug−in manifest 543

The <library> elements collectively define the plug−in runtime. At least one <library> must be specified.
Each <library> element has the following attributes:

name − string reference to a library file or directory containing classes (relative to the plug−in install
directory). Directory references must contain trailing file separator.

•

type − specifies whether this library contains executable code (<code>) or just resources. If the
library is of type <code> accessing anything in this library will cause activation of the plug−in.
Accessing a <resource> will not cause plug−in activation (a potential for significant performance
improvement). It should be noted that specifying a library of type <code> allows it to contain both
code and resources. But specifying a library of type <resource> assumes it will only be used for
resources.

•

Each <library> element can specify which portion of the library should be exported. The export rules are
specified as a set of export masks. By default (no export rules specified), the library is considered to be
private. Each export mask is specified using the name attribute, which can have the following values:

* − indicates all contents of library are exported (public)•
package.name.* − indicates all classes in the specified package are exported. The matching rules are
the same as in the Java import statement.

•

package.name.ClassName− fully qualified java class name•

Eclipse 2.1 plug−ins only: Each library can also specify the package prefixes. These are used to enhance the
classloading performance for the plug−in and/or fragment. If the <packages> element is not specified, then by
default the classloading enhancements are not used. The <packages> element has the following attribute:

prefixes − a comma−separated list of package prefixes for the runtime library•

The platform's architecture is based on the notion of configurable extension points. The platform itself
predefines a set of extension points that cover the task of extending the platform and desktop (for example,
adding menu actions, contributing embedded editor). In addition to the predefined extension points, each
supplied plug−in can declare additional extension points. By declaring an extension point the plug−in is
essentially advertising the ability to configure the plug−in function with externally supplied extensions. For
example, the Page Builder plug−in may declare an extension point for adding new Design Time Controls
(DTCs) into its builder palette. This means that the Page Builder has defined an architecture for what it means
to be a DTC and has implemented the code that looks for DTC extensions that have been configured into the
extension points.

<!ELEMENT extension−point EMPTY>
<!ATTLIST extension−point
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 schema CDATA #IMPLIED
>

The <extension−point> element has the following attributes:

name − user−displayable (translatable) name for the extension point•
id − simple id token, unique within this plug−in. The token cannot contain dot (.) or whitespace.•

[production rule: ExtensionPointId]•
schema − schema specification for this extension point. The exact details are being defined as part of
the Plug−In Development Environment (PDE). The schema is currently not used at runtime. The
reference is a file name relative to the plug−in installation location.

•

 Welcome to Eclipse

Eclipse platform plug−in manifest 544

Actual extensions are configured into extension points (predefined, or newly declared in this plug−in) in the
<extension> section. The configuration information is specified as well−formed XML contained between the
<extension> and </extension> tags. The platform does not specify the actual form of the configuration
markup (other than requiring it to be well−formed XML). The markup is defined by the supplier of the
plug−in that declared the extension point. The platform does not actually interpret the configuration markup.
It simply passes the configuration information to the plug−in as part of the extension point processing (at the
time the extension point logic queries all of its configured extensions).

<!ELEMENT extension ANY>
<!ATTLIST extension
 point CDATA #REQUIRED
 id CDATA #IMPLIED
 name CDATA #IMPLIED
>

The <extension> element has the following attributes:

point − reference to an extension point being configured. The extension point can be one defined in
this plug−in or another plug−in

•

[production rule: ExtensionPointReference]•
id − optional identifier for this extension point configuration instance. This is used by extension
points that need to uniquely identify (rather than just enumerate) the specific configured extensions.
The identifier is specified as a simple token unique within the definition of the declaring plug−in.
When used globally, the extension identifier is qualified by the plug−in identifier

•

[production rule: ExtensionId]•
name − user−displayable (translatable) name for the extension•

Important: The content of the <extension> element is declared using the ANY rule. This means that any
well−formed XML can be specified within the extension configuration section (between <extension> and
</extension> tags).

Fragments are used to increase the scope of a plug−in. An example would be to incorporate data such as
messages or labels in another language.

<?xml encoding="US−ASCII"?>
<!ELEMENT fragment (requires?, runtime?, extension−point*, extension*)>
<!ATTLIST fragment
 name CDATA #REQUIRED
 id CDATA #REQUIRED
 version CDATA #REQUIRED
 provider−name CDATA #IMPLIED

plugin−id CDATA #REQUIRED
plugin−version CDATA #REQUIRED
match (perfect | equivalent | compatible | greaterOrEqual) "compatible"

>

Each fragment must be associated with a specific plug−in. The associated plug−in is identified with
<plugin−id>, <plugin−version> and optionally, <match>. Note that if this specification matches more than
one plug−in, the matching plug−in with the highest version number will be used.

The <requires>, <runtime>, <extension−point>, and <extension> components of a fragment will be logically
added to the matching plug−in.

<fragment> attributes are as follows:

 Welcome to Eclipse

Eclipse platform plug−in manifest 545

name − user displayable (translatable) name for the fragment•
id − unique identifier for the fragment.•

To minimize potential for naming collisions, the identifier should be derived from the id of
the associated plug−in in addition to something which identifies the scope of this fragment.
For example, org.eclipse.core.runtime.nl1 could define a natural language fragment for the
org.eclipse.core.runtime plug−in

•

[production rule: PlugInId]•
version − fragment version number. See org.eclipse.core.runtime.PluginVersionIdentifier for details.
Fragment version format is the same as plug−in version format.

•

provider−name − user−displayable name of the provider supplying the fragment.•
plugin−id − matches the id of the associated plug−in•
plugin−version − matches the version of the associated plug−in•
match − the matching rule used to find an associated plug−in using <plugin−id> and
<plugin−version>. See the definition of <match> in the <requires> clause for complete details.

•

<?xml encoding="US−ASCII"?>

<!ELEMENT plugin (requires?, runtime?, extension−point*, extension*)> <!ATTLIST plugin name CDATA
#REQUIRED id CDATA #REQUIRED version CDATA #REQUIRED provider−name CDATA #IMPLIED
class CDATA #IMPLIED >

<!ELEMENT fragment (requires?, runtime?, extension−point*, extension*)> <!ATTLIST fragment name
CDATA #REQUIRED id CDATA #REQUIRED version CDATA #REQUIRED provider−name CDATA
#IMPLIED plugin−id CDATA #REQUIRED plugin−version CDATA #REQUIRED match (perfect |
equivalent | compatible | greaterOrEqual) "compatible" >

<!ELEMENT requires (import+)> <!ELEMENT import EMPTY> <!ATTLIST import plugin CDATA
#REQUIRED version CDATA #IMPLIED match (perfect | equivalent | compatible | greaterOrEqual)
"compatible" export (true | false) "false" optional (true | false) "false" >

<!ELEMENT runtime library+)>

<!ELEMENT library (export*, packages?)> <!ATTLIST library name CDATA #REQUIRED type (code |
resource) "code" >

<!ELEMENT export EMPTY> <!ATTLIST export name CDATA #REQUIRED >

<!ELEMENT packages EMPTY>
<!ATTLIST packages
 prefixes CDATA #REQUIRED
>

<!ELEMENT extension−point EMPTY> <!ATTLIST extension−point name CDATA #REQUIRED id
CDATA #REQUIRED schema CDATA #IMPLIED >

<!ELEMENT extension ANY> <!ATTLIST extension point CDATA #REQUIRED name CDATA
#IMPLIED id CDATA #IMPLIED >

 Welcome to Eclipse

Eclipse platform plug−in manifest 546

Eclipse platform feature manifest
Version 3.0 − Last revised June 22, 2004

The feature manifest format is defined by the following dtd:

<?xml encoding="ISO−8859−1"?>

<!ELEMENT feature (install−handler? | description? | copyright? |
license? | url? | includes* | requires? | plugin* | data*)>
<!ATTLIST feature
 id CDATA #REQUIRED
 version CDATA #REQUIRED
 label CDATA #IMPLIED
 provider−name CDATA #IMPLIED
 image CDATA #IMPLIED
 os CDATA #IMPLIED
 arch CDATA #IMPLIED
 ws CDATA #IMPLIED
 nl CDATA #IMPLIED
 colocation−affinity
 CDATA #IMPLIED
 primary (true | false) "false"
 exclusive (true | false) "false"
 plugin CDATA #IMPLIED
 application CDATA #IMPLIED
>

<!ELEMENT install−handler EMPTY>
<!ATTLIST install−handler
 library CDATA #IMPLIED
 handler CDATA #IMPLIED
>

<!ELEMENT description (#PCDATA)>
<!ATTLIST description
 url CDATA #IMPLIED
>

<!ELEMENT copyright (#PCDATA)>
<!ATTLIST copyright
 url CDATA #IMPLIED
>

<!ELEMENT license (#PCDATA)>
<!ATTLIST license
 url CDATA #IMPLIED
>

<!ELEMENT url (update?, discovery*)>

 Eclipse platform feature manifest 547

<!ELEMENT update EMPTY>
<!ATTLIST update
 url CDATA #REQUIRED
 label CDATA #IMPLIED
>

<!ELEMENT discovery EMPTY>
<!ATTLIST discovery
 type (web | update) "update"
 url CDATA #REQUIRED
 label CDATA #IMPLIED
>

<!ELEMENT includes EMPTY>
<!ATTLIST includes
 id CDATA #REQUIRED
 version CDATA #REQUIRED
 name CDATA #IMPLIED
 optional (true | false) "false"
 search−location (root | self | both) "root"
 os CDATA #IMPLIED
 arch CDATA #IMPLIED
 ws CDATA #IMPLIED
 nl CDATA #IMPLIED
>

<!ELEMENT requires (import+)>

<!ELEMENT import EMPTY>
<!ATTLIST import
 plugin CDATA #IMPLIED
 feature CDATA #IMPLIED
 version CDATA #IMPLIED
 match (perfect | equivalent | compatible | greaterOrEqual)
"compatible"
 patch (true | false) "false"
>

<!ELEMENT plugin EMPTY>
<!ATTLIST plugin
 id CDATA #REQUIRED
 version CDATA #REQUIRED
 fragment (true | false) "false"
 os CDATA #IMPLIED
 arch CDATA #IMPLIED
 ws CDATA #IMPLIED
 nl CDATA #IMPLIED
 download−size CDATA #IMPLIED
 install−size CDATA #IMPLIED
 unpack (true | false) "true"
>

 Welcome to Eclipse

 Eclipse platform feature manifest 548

<!ELEMENT data EMPTY>
<!ATTLIST data
 id CDATA #REQUIRED
 os CDATA #IMPLIED
 arch CDATA #IMPLIED
 ws CDATA #IMPLIED
 nl CDATA #IMPLIED
 download−size CDATA #IMPLIED
 install−size CDATA #IMPLIED
>

The element and attribute definitions are as follows:

<feature> − defines the feature•
id − required feature identifier (eg. com.xyz.myfeature)♦
version − required component version (eg. 1.0.3)♦
label − optional displayable label (name). Intended to be translated.♦
provider−name − optional display label identifying the organization providing this
component. Intended to be translated.

♦

image − optional image to use when displaying information about the feature. Specified
relative to the feature.xml.

♦

os − optional operating system specification. A comma−separated list of os designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this feature should only be installed on one of the specified os systems. If this
attribute is not specified, the feature can be installed on all systems (portable
implementation). This information is used as a hint by the installation and update support
(user can force installation of feature regardless of this setting).

♦

arch − optional machine architecture specification. A comma−separated list of architecture
designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform). Indicates this feature should only be
installed on one of the specified systems. If this attribute is not specified, the feature can be
installed on all systems (portable implementation). This information is used as a hint by the
installation and update support (user can force installation of feature regardless of this
setting).

♦

ws − optional windowing system specification. A comma−separated list of ws designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this feature should only be installed on one of the specified ws systems. If this
attribute is not specified, the feature can be installed on all systems (portable
implementation). This information is used as a hint by the installation and update support
(user can force installation of feature regardless of this setting).

♦

nl − optional locale specification. A comma−separated list of locale designators defined by
Java. Indicates this feature should only be installed on a system running with a compatible
locale (using Java locale−matching rules). If this attribute is not specified, the feature can be
installed on all systems (language−neutral implementation). This information is used as a hint
by the installation and update support (user can force installation of feature regardless of this
setting).

♦

colocation−affinity − optional reference to another feature identifier used to select the default
installation location for this feature. When this feature is being installed as a new feature (no
other versions of it are installed), an attempt is made to install this feature in the same
installation location as the referenced feature.

♦

 Welcome to Eclipse

 Eclipse platform feature manifest 549

primary − optional indication specifying whether this feature can be used as a primary
feature. Default if false (not a primary feature).

♦

application − optional identifier of the Eclipse application that is to be used during startup
when the declaring feature is the primary feature. The application identifier must represent a
valid application registered in the org.eclipse.core.runtime.applications
extension point. Default is org.eclipse.ui.ide.workbench.

♦

plugin − optional identifier that represents the id of the plug−in listed in the feature that is
used to carry branding information for the feature (images, translations, splash screens in case
of primary feature etc.). If not specified, the assumption will be made the attribution plug−in
has the same id as the feature.

♦

exclusive − optional flag that, if "true", indicates that the feature cannot be installed in a
group with other features.

♦

<install−handler>•
library − optional .jar library containing the install handler classes. If specified, the referenced
.jar must be contained in the feature archive. It is specified as a path within the feature
archive, relative to the feature.xml entry. If not specified, the feature archive itself is used to
load the install handler classes. This attribute is only interpreted if class attribute is also
specified

♦

handler − optional identifier of the install handler. The value is interpreted depending on the
value of the library attribute. If library is specified, the value is interpreted as a fully
qualified name of a class contained in the specified library. If library is not specified, the
value is is interpreted as an extension identifier of an extension registered in the
org.eclipse.update.installHandlers extension point. In either case, the resulting class must
implement the IInstallHandler interface. The class is dynamically loaded and called at
specific points during feature processing. When the handler is specified as a class, it has
visibility to the API classes from the org.eclipse.update.core plug−in, and Eclipse plug−ins
required by this plug−in; otherwise, when is specified as extension, it has access to all the
classes as the plug−in defining the extension.

♦

<description> − brief component description as simple text. Intended to be translated.•
url − optional URL for the full description as HTML. The URL can be specified as absolute
of relative. If relative, it is assumed to be relative to (and packaged in) the feature archive.
Note, that for NL handling the URL value should be separated to allow alternate URLs to be
specified for each national language.

♦

<copyright> − feature copyright as simple text. Intended to be translated.•
url − optional URL for the full description as HTML. The URL can be specified as absolute
of relative. If relative, it is assumed to be relative to (and packaged in) the feature archive.
Note, that for NL handling the URL value should be separated to allow alternate URLs to be
specified for each national language.

♦

<license> − feature "click−through" license as simple text. Intended to be translated. It is displayed in
a standard dialog with [Accept] [Reject] actions during the download/ installation process. Note, that
click−through license must be specified for any feature that will be selected for installation or update
using the Eclipse update manager. When using nested features, only the nesting parent (i.e. the feature
selected for installation or update) must have click−through license text defined. The license text is
required even if the optional url attribute is specified.

•

url − optional URL for the full description as HTML. The URL can be specified as absolute
of relative. If relative, it is assumed to be relative to (and packaged in) the feature archive.
Note, that for NL handling the URL value should be separated to allow alternate URLs to be
specified for each national language. Note, that the "content" of this URL is not what is
presented as the click−through license during installation processing. The click−through
license is the actual value of the <license> element (eg. <license>click through
text</license>)

♦

 Welcome to Eclipse

 Eclipse platform feature manifest 550

<url> − optional URL specifying site(s) contain feature updates, or new features•
<update> − URL to go to for updates to this feature♦

url − actual URL◊
label − displayable label (name) for the referenced site◊

<discovery> − URL to go to for new features. In general, a provider can use this element to
reference its own site(s), or site(s) of partners that offer complementary features. Eclipse uses
this element simply as a way to distribute new site URLs to the clients. Sites that belong to
root features (at the top of the hierarchy) typically appear in "Sites to Visit" in Update
Manager.

♦

url − actual URL◊
label − displayable label (name) for the referenced site◊
type (new in 2.1) − by default, discovery sites are assumed to be update sites
("update"). By setting the value of this attribute to "web", it is possible to indicate to
Eclipse that the URL should be treated as a regular Web hyperlink that can be
directly displayed in a suitable browser.

◊

<includes> − optional reference to a nested feature that is considered to be part of this feature. Nested
features must be located on the same update site as this feature

•

id − required nested feature identifier. If the feature is a patch (see the <requires> section
below), this must be the id of another patch.

♦

version − required nested feature version♦
optional − it is possible to include a feature as optional when this attribute is "true". Users are
allowed to not install optional features, disable them if they are installed, and install them
later. A missing optional feature is not treated as an error.

♦

name − if an optional feature is missing, Eclipse cannot render its name properly. This
attribute can be used as a 'place holder' to allow Eclipse to render the name of the optional
feature when it is not installed.

♦

search−location − an included feature can be updated by patches. By default, search location
is "root" which means that URL specified in the "update" element within the "url" element of
the parent will be considered. If an included feature has its own "update" element defined, it
will be ignored by default. If the parent feature wants to allow the child to be updated from its
own location, it can set this attribute to "both" or "self".

♦

os − optional operating system specification. A comma−separated list of os designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified os systems. If this
attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force
installation of entry regardless of this setting).

♦

arch − optional machine architecture specification. A comma−separated list of architecture
designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform). Indicates this feature should only be
installed on one of the specified systems. If this attribute is not specified, the feature can be
installed on all systems (portable implementation). This information is used as a hint by the
installation and update support (user can force installation of feature regardless of this
setting).

♦

ws − optional windowing system specification. A comma−separated list of ws designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified ws systems. If this
attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force
installation of entry regardless of this setting).

♦

 Welcome to Eclipse

 Eclipse platform feature manifest 551

nl − optional locale specification. A comma−separated list of locale designators defined by
Java. Indicates this entry should only be installed on a system running with a compatible
locale (using Java locale−matching rules). If this attribute is not specified, the entry can be
installed on all systems (language−neutral implementation). This information is used as a hint
by the installation and update support (user can force installation of entry regardless of this
setting).

♦

<requires> − optional feature dependency information. Is expressed in terms of plug−in dependencies.
If specified, is enforced by the installation and update support at the time of installation

•

<import> − dependency entry. Specification and processing is a subset of the <import>
specification in plugin.xml

♦

plugin − identifier of dependent plug−in, if plug−in is used to express dependency◊
feature (new in 2.1) − identifier of dependent feature, if feature is used to express
dependency. Either plugin or feature attribute must be set, but not both. If
"patch" is "true", feature attribute must be used.

◊

version − optional plug−in version specification. If "patch" is "true", version must be
set.

◊

match − optional matching rule. Valid values and processing are as follows:◊
if version attribute is not specifies, the match attribute (if specified) is
ignored.

⋅

perfect − dependent plug−in version must match exactly the specified
version. If "patch" is "true", "perfect" is assumed and other values cannot be
set.

⋅

equivalent − dependent plug−in version must be at least at the version
specified, or at a higher service level (major and minor version levels must
equal the specified version).

⋅

compatible − dependent plug−in version must be at least at the version
specified, or at a higher service level or minor level (major version level must
equal the specified version).

⋅

greaterOrEqual − dependent plug−in version must be at least at the version
specified, or at a higher service, minor or major level.

⋅

patch − if "true", this constraint declares the enclosing feature to be a patch for the
referenced feature. Certain rules must be followed when this attribute is set:

feature attribute must be used to identifier of feature being patched⋅
version attribute must be set⋅
match attribute should not be set and "perfect" value will be assumed.⋅
if other features are <include>'ed, they must also be patches.⋅

A patch is a special feature that carries newer versions of plug−ins for the feature it is
patching. It does not replace the feature. A patch can also carry other patches by
inclusion.

◊

<plugin> − identifies referenced plug−in•
id − required plug−in identifier (from plugin.xml)♦
version − required plug−in version (from plugin.xml)♦
fragment − optional specification indicating if this entry is a plug−in fragment. Default is
"false"

♦

os − optional operating system specification. A comma−separated list of os designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified os systems. If this
attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force

♦

 Welcome to Eclipse

 Eclipse platform feature manifest 552

installation of entry regardless of this setting).
arch − optional machine architecture specification. A comma−separated list of architecture
designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform). Indicates this feature should only be
installed on one of the specified systems. If this attribute is not specified, the feature can be
installed on all systems (portable implementation). This information is used as a hint by the
installation and update support (user can force installation of feature regardless of this
setting).

♦

ws − optional windowing system specification. A comma−separated list of ws designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified ws systems. If this
attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force
installation of entry regardless of this setting).

♦

nl − optional locale specification. A comma−separated list of locale designators defined by
Java. Indicates this entry should only be installed on a system running with a compatible
locale (using Java locale−matching rules). If this attribute is not specified, the entry can be
installed on all systems (language−neutral implementation). This information is used as a hint
by the installation and update support (user can force installation of entry regardless of this
setting).

♦

download−size − optional hint supplied by the feature packager, indicating the download size
in KBytes of the referenced plug−in archive. If not specified, the download size is not known
(Implementation Note: the implementation needs to distinguish between "not known" and 0
size)

♦

install−size − optional hint supplied by the feature packager, indicating the install size in
KBytes of the referenced plug−in archive. If not specified, the install size is not known
(Implementation Note: the implementation needs to distinguish between "not known" and 0
size)

♦

unpack (new in 3.0) − optional specification supplied by the feature packager, indicating that
plugin is capable of running from a jar, and contents of plug−in jar should not be unpacked
into a directory. Default is "true". (Implementation Note: partial plug−ins − delivered in a
feature specifying org.eclipse.update.core.DeltaInstallHandler as an
install handler should not set unpack to "false")

♦

<data> − identifies non−plugin data that is part of the feature•
id − required data identifier in the form of a relative path.♦
os − optional operating system specification. A comma−separated list of os designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified os systems. If this
attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force
installation of entry regardless of this setting).

♦

arch − optional machine architecture specification. A comma−separated list of architecture
designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform). Indicates this feature should only be
installed on one of the specified systems. If this attribute is not specified, the feature can be
installed on all systems (portable implementation). This information is used as a hint by the
installation and update support (user can force installation of feature regardless of this
setting).

♦

ws − optional windowing system specification. A comma−separated list of ws designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this entry should only be installed on one of the specified ws systems. If this

♦

 Welcome to Eclipse

 Eclipse platform feature manifest 553

attribute is not specified, the entry can be installed on all systems (portable implementation).
This information is used as a hint by the installation and update support (user can force
installation of entry regardless of this setting).
nl − optional locale specification. A comma−separated list of locale designators defined by
Java. Indicates this entry should only be installed on a system running with a compatible
locale (using Java locale−matching rules). If this attribute is not specified, the entry can be
installed on all systems (language−neutral implementation). This information is used as a hint
by the installation and update support (user can force installation of entry regardless of this
setting).

♦

download−size − optional hint supplied by the feature packager, indicating the download size
in KBytes of the referenced data archive. If not specified, the download size is not known
(Implementation Note: the implementation needs to distinguish between "not known" and 0
size)

♦

install−size − optional hint supplied by the feature packager, indicating the install size in
KBytes of the referenced data archive. If not specified, the install size is not known
(Implementation Note: the implementation needs to distinguish between "not known" and 0
size)

♦

When interacting with the update site, the feature implementation maps the <plugin> and <data>
elements into path identifiers used by the site to determine the actual files to download and install. The default
feature implementation supplied by Eclipse constructs the path identifiers as follows:

<plugin> element results in a path entry in the form
"plugins/<pluginId>_<pluginVersion>.jar" (for example,
"plugins/org.eclipse.core.boot_2.0.0.jar")

•

<data> element results in a path entry in the form
"features/<featureId>_<featureVersion>/<dataId>" (for example,
"features/com.xyz.tools_1.0.3/examples.zip")

•

Note, that in general the feature.xml manifest documents should specify UTF−8 encoding. For example

<?xml version="1.0" encoding="UTF−8"?>

Translatable text contained in the feature.xml can be separated into feature<_locale>.properties files using
Java property bundle conventions. Note that the translated strings are used at installation time (i.e. do not
employ the plug−in fragment runtime mechanism).

Primary feature

In Eclipse 2.1, the notion of a primary feature was used to customize the product−branding aspects of a
product. This mechanism is still supported in Eclipse 3.0, but is effectively deprecated. Newly developed
products should use the products extension point to define a product.

The remainder of this discussion describes the legacy product definition using primary features.

When the Eclipse platform is started, exactly one feature can control the overall "personality" or "branding" of
the platform, including the splash screen, window images, about box, welcome page, and other customizable
aspects of the platform. This feature is called the product's primary feature.

 Welcome to Eclipse

Primary feature 554

Let's look again at the description of the platform feature from Eclipse 2.1:

<?xml version="1.0" encoding="UTF−8"?>
<feature
 id="org.eclipse.platform"
 label="%featureName"
 version="2.1.0"
 provider−name="%providerName"
 plugin=""
 image="eclipse_update_120.jpg"

primary="true"
 application="org.eclipse.ui.ide.workbench">
 ...

The platform feature has been designated as a primary feature. Although it's possible to designate many
features as primary features in their feature.xml files, only one primary feature gets control when the platform
is launched. This is controlled by setting the eclipse.product property in the product's config.ini file
underneath the eclipse/configuration directory. If there are multiple eligible primary features, the −product
command line option for eclipse.exe overrides the choice made in config.ini.

Project−scoped preferences

In Runtime preferences, we looked at the infrastructure for defining and storing preferences with different
scopes. We also saw that the org.eclipse.core.runtime.preferences extension can be used to define additional
scopes for preferences. The platform resources plug−in defines its own preference scope, called "Project," in
order to define project−scoped preferences. Project−scoped preferences are stored in a file located inside the
project. This makes it easy to store a set of preferences and exchange them with other users using
resource−oriented mechanisms such as a version control system.

Specifying the scope

The definition for new scopes is pretty simple. The plug−in defines the name of the scope, as well as the class
that implements it. The resources plug−in defines the project scope as follows:

 <extension id="preferences" point="org.eclipse.core.runtime.preferences" name="preferences">
 <scope name="project" class="org.eclipse.core.internal.resources.ProjectPreferences"/>
 </extension>

The specified class must implement the IScope interface, which means it must be capable of creating
preference nodes for the scope.

Project−scoped preference nodes

Since the project scope for preferences is not one of the standard runtime scopes, the node representing a
project−level preference must be obtained specifically. From the root preference node, you must navigate to
the project−scoped preference. This can be achieved using the ProjectScope:

 IScopeContext projectScope = new ProjectScope(MyProject);

Once the project scope for a particular is project is found, the preference values can be obtained using the
same mechanisms seen earlier. Preferences are named using the string name of the preference. The names are

 Welcome to Eclipse

 Project−scoped preferences 555

qualified with another string (often a plug−in id) that qualifies the namespace of the preference. The following
snippet gets a preference node from the project scope. You'll notice that once the correct scope is obtained,
working with the nodes is no different than with nodes from other scopes.

 ...
 Preferences projectNode = projectScope.node("com.example.myplugin");
 if (projectNode != null) {
 value = node.getBoolean("MyPreference", "true");
 //do something with the value.
 }
 ...

To save the value to a file in the project, the node is flushed. The resources plug−in handles the logistics for
managing the project−level preferences file.

 projectNode.flush();

Content types

The org.eclipse.core.runtime.content package provides support for defining content−types for data streams.
Content types are used by several content−sensitive features of Eclipse, such as automatic encoding
determination, comparison editor selection, and menu contributions. A central content registry managed by an
IContentTypeManager allows plug−ins to define content types and specify a class that knows how to read
and describe the content. In order to contribute content types, a basic understanding of the content framework
is necessary.

Note: For this discussion, we specifically avoid the use of the word file when talking about
content. The runtime content engine does not assume that content is contained in a file in the
file system. However, it does include protocol that allows content types to be associated with
file−naming patterns. In practice, these file names represent files in the file system, but
nothing in the implementation of the content system assumes that the content is located in the
file system. File encoding and content types discusses the file−oriented content types
contributed by the platform resources plug−in.

Defining and describing content

The platform defines some fundamental content types, such as plain text and XML data streams. These
content types are defined the same way as those contributed by other plug−ins. We'll look at how the platform
defines the text content type in order to better understand the content type framework.

Plug−ins define content types by contributing an extension for the extension point
org.eclipse.core.runtime.contentTypes. In this extension, a plug−in specifies an id and name for the content
type, and an IContentDescriber which can read an input stream and supply a description of the content. The
following snippet is the runtime plug−in's contribution for the text content type:

 <extension point="org.eclipse.core.runtime.contentTypes">
 <content−type id="text" name="%textContentTypeName">
 priority="high"
 file−extensions="txt">
<describer class="org.eclipse.core.internal.content.TextContentDescriber"/>
 </content−type>

 Welcome to Eclipse

 Content types 556

 ...

The TextContentDescriber is responsible for reading an input stream and quickly determining whether the
supplied content is a valid sample of text. The method describe(inputStream, description) is called
whenever the platform is trying to determine the content for a particular data stream. The IContentDescriber
is responsible for quickly determining whether the contents represent a valid sample for its content type and
returning a constant that indicates whether the content matches its type. If the content does match its type, the
describer should also fill in the supplied IContentDescription with information about the data.

The IContentDescription stores content−specific attributes in key/value pairs. These attributes are specific to
the particular content type. The platform specifies attributes for the character set and the byte order of a text
file, but others can be defined.

Finding out about content types

IContentTypeManager defines the protocol for the content registry. Clients can use this class to test a
content stream or to find out about other content types in the system.

findContentType... methods allow clients to obtain the content type (or types) for a stream and
file−name pattern.

•

getAllContentTypes allows clients to get all of the content types defined in the platform.•
getContentType allows clients to obtain a content type by its unique identifier.•
getDescriptionFor... methods allow clients to obtain a content description for a given stream and
file−name pattern.

•

Content types are represented by IContentType. This class represents a unique content type that knows how
to read a data stream and interpret content type−specific information. Content types are hierarchical in nature.
For example, a content type for XML data is considered a child of the text content type.

 <content−type id="xml" name="%xmlContentTypeName"
base−type="text"
 priority="high"
 file−extensions="xml"
 default−charset="UTF−8">
 <describer class="org.eclipse.core.internal.content.XMLContentDescriber"/>
 </content−type>

This allows new content types to leverage the attributes or behavior of more general content types.

Character sets

The platform text content type does not define a character set for text content. Children of the text content
type are free to specify different default character sets when appropriate, as the XML content type does. The
default character set for XML streams is UTF−8, which means that when an XML file does not have its
encoding explicitly stated in its contents, its encoding will be deemed as UTF−8.

Content type collisions

It is conceivable that two independent plug−ins contribute a content type for the same kind of content. In this
case, the platform will select only one content describer for the content. The describer selected is determined
using a priority attribute that can be specified in the contentTypes extension. If two plug−ins contribute a
content type for the same content with the same priority, it is indeterminate which content describer will be

 Welcome to Eclipse

Finding out about content types 557

selected. Once a content describer is selected, however, all registry references to the "losing" content describer
will be aliased to the one that was chosen.

Concurrency infrastructure

One of the major challenges of a complex system is to remain responsive while tasks are being performed.
This challenge is even greater in an extensible system, when components that weren't designed to run together
are sharing the same resources. The org.eclipse.core.runtime.jobs package addresses this challenge by
providing infrastructure for scheduling, executing, and managing concurrently running operations. This
infrastructure is based on the use of jobs to represent a unit of work that can run asynchronously.

Jobs

The Job class represents a unit of asynchronous work running concurrently with other jobs. To perform a
task, a plug−in creates a job and then schedules it. Once a job is scheduled, it is added to a job queue managed
by the platform. The platform uses a background scheduling thread to manage all of the pending jobs. As a
running job completes, it is removed from the queue and the platform decides which job to run next. When a
job becomes active, the platform invokes its run() method. Jobs are best demonstrated with a simple example:

 class TrivialJob extends Job {
 public TrivialJob() {
 super("Trivial Job");
 }
 public IStatus run(IProgressMonitor monitor) {
 System.out.println("This is a job");
 return Status.OK_STATUS;
 }
 }

The job is created and scheduled in the following snippet:

 TrivialJob job = new TrivialJob();
 System.out.println("About to schedule a job");
 job.schedule();
 System.out.println("Finished scheduling a job");

The output of this program is timing dependent. That is, there is no way to be sure when the job's run method
will execute in relation to the thread that created the job and scheduled it. The output will either be:

 About to schedule a job
 This is a job
 Finished scheduling a job

or:

 About to schedule a job
 Finished scheduling a job
 This is a job

If you want to be certain that a job has completed before continuing, you can use the join() method. This
method will block the caller until the job has completed, or until the calling thread is interrupted. Let's rewrite
our snippet from above in a more deterministic manner:

 Welcome to Eclipse

 Concurrency infrastructure 558

 TrivialJob job = new TrivialJob();
 System.out.println("About to schedule a job");
 job.schedule();
 job.join();
 if (job.getResult().isOk())
 System.out.println("Job completed with success");
 else
 System.out.println("Job did not complete successfully");

Assuming the join() call is not interrupted, this method is guaranteed to return the following result:

 About to schedule a job
 This is a job
 Job completed with success

Of course, it is generally not useful to join a job immediately after scheduling it, since you obtain no
concurrency by doing so. In this case you might as well do the work from the job's run method directly in the
calling thread. We'll look at some examples later on where the use of join makes more sense.

The last snippet also makes use of the job result. The result is the IStatus object that is returned from the
job's run() method. You can use this result to pass any necessary objects back from the job's run method. The
result can also be used to indicate failure (by returning an IStatus with severity IStatus.ERROR), or
cancellation (IStatus.CANCEL).

Common job operations

We've seen how to schedule a job and wait for it complete, but there are many other interesting things you can
to do jobs. If you schedule a job but then decide it is no longer needed, the job can be stopped using the
cancel() method. If the job has not yet started running when canceled, the job is immediately discarded and
will not run. If, on the other hand, the job has already started running, it is up to the job whether it wants to
respond to the cancellation. When you are trying to cancel a job, waiting for it using the join() method comes
in handy. Here is a common idiom for canceling a job, and waiting until the job is finished before proceeding:

 if (!job.cancel())
 job.join();

If the cancellation does not take effect immediately, then cancel() will return false and the caller will use
join() to wait for the job to successfully cancel.

Slightly less drastic than cancellation is the sleep() method. Again, if the job has not yet started running, this
method will cause the job to be put on hold indefinitely. The job will still be remembered by the platform, and
a wakeUp() call will cause the job to be added to the wait queue where it will eventually be executed.

Job states

A job goes through several states during its lifetime. Not only can it be manipulated through API such as
cancel() and sleep(), but its state also changes as the platform runs and completes the job. Jobs can move
through the following states:

WAITING indicates that the job been scheduled to run, but is not running yet.•
RUNNING indicates that the job is running.•
SLEEPING indicates that the job is sleeping due to a sleep request or because it was scheduled to run
after a certain delay.

•

 Welcome to Eclipse

Common job operations 559

NONE indicates that the job is not waiting, running, or sleeping. A job is in this state when it has
been created but is not yet scheduled. It is also in this state after it is finished running or when it has
been canceled.

•

A job can only be put to sleep if it is currently WAITING. Waking up a sleeping job will put it back in the
WAITING state. Canceling a job will return it to the NONE state.

If your plug−in needs to know the state of a particular job, it can register a job change listener that is notified
as the job moves through its life−cycle. This is useful for showing progress or otherwise reporting on a job.

Job change listeners

The Job method addJobChangeListener can be used to register a listener on a particular job.
IJobChangeListener defines protocol for responding to the state changes in a job:

aboutToRun is sent when the job is about to be run.•
awake is sent when a previously sleeping job is now waiting to be run.•
done is sent when a job finishes execution.•
running is sent when a job starts running.•
scheduled is sent when a job is scheduled and waiting in the queue of jobs.•
sleeping is sent when a waiting job is put to sleep.•

In all of these cases, the listener is provided with an IJobChangeEvent that specifies the job undergoing the
state change and status on its completion (if it is done).

Note: Jobs also define the getState() method for obtaining the (relatively) current state of a
job. However, this result is not always reliable since jobs run in a different thread and may
change state again by the time the call returns. Job change listeners are the recommended
mechanism for discovering state changes in a job.

The job manager

IJobManager defines protocol for working with all of the jobs in the system. Plug−ins that show progress or
otherwise work with the job infrastructure can use IJobManager to perform tasks such as suspending all jobs
in the system, finding out which job is running, or receiving progress feedback about a particular job. The
platform's job manager can be obtained using Platform API:

 IJobManager jobMan = Platform.getJobManager();

Plug−ins interested in the state of all jobs in the system can register a job change listener on the job manager
rather than registering listeners on many individual jobs.

Job families

It is sometimes easier for a plug−in to work with a group of related jobs as a single unit. This can be
accomplished using job families. A job declares that it belongs to a certain family by overriding the
belongsTo method:

 public static final String MY_FAMILY = "myJobFamily";
 ...
 class FamilyJob extends Job {

 Welcome to Eclipse

Job change listeners 560

 ...
 public boolean belongsTo(Object family) {
 return family == MY_FAMILY;
 }
 }

IJobManager protocol can be used to cancel, join, sleep, or find all jobs in a family:

 IJobManager jobMan = Platform.getJobManager();
 jobMan.cancel(MY_FAMILY);
 jobMan.join(MY_FAMILY, null);

Since job families are represented using arbitrary objects, you can store interesting state in the job family
itself, and jobs can dynamically build family objects as needed. It is important to use family objects that are
fairly unique, to avoid accidental interaction with the families created by other plug−ins.

Families are also a convenient way of locating groups of jobs. The method IJobManager.find(Object
family) can be used to locate instances of all running, waiting, and sleeping jobs at any given time.

Reporting progress

Long running jobs (those lasting more than a second) should report progress to the IProgressMonitor that is
passed to the job's run method. The workbench progress view will show all progress messages and units of
completed work given to this monitor.

The supplied progress monitor should also be used to check for cancellation requests made from the progress
view. When a user (or plug−in using job API) attempts to cancel a job, the IProgressMonitor method
isCanceled() will return true. It is the job's responsibility to frequently check the cancellation status of a job
and respond to a cancellation by exiting the run method as soon as possible once it detects a cancellation. The
following run method reports progress and responds to job cancellation:

 public IStatus run(IProgressMonitor monitor) {
 final int ticks = 6000;
 monitor.beginTask("Doing some work", ticks);
 try {
 for (int i = 0; i < ticks; i++) {
 if (monitor.isCanceled())
 return Status.CANCEL_STATUS;
 monitor.subTask("Processing tick #" + i);
 //... do some work ...
 monitor.worked(1);
 }
 } finally {
 monitor.done();
 }
 return Status.OK_STATUS;
 }

The beginTask method is used to name the task in the corresponding progress view and to establish the total
amount of work to be done so that the view can compute progress. The subTask messages will appear as a
child in the progress tree as work is done. The progress view will calculate and display a percent completion
based on the amount of work reported in the worked calls.

 Welcome to Eclipse

 Reporting progress 561

Progress monitors and the UI

As you can see, the IProgressMonitor class is designed with corresponding UI support in mind. The
platform's UI plug−in provides support so that the workbench can show progress for jobs that are running.
You can set up your jobs with this in mind, so that you can control how they are presented.

See Workbench Concurrency Support for a detailed look at the APIs available for showing progress for jobs.

System jobs

What if your job is a low−level implementation detail that you don't want to show to users? You can flag your
job as a system job. A system job is just like any other job, except the corresponding UI support will not set up
a progress view or show any other UI affordances associated with running a job. If your job is not either
directly initiated by a user, or a periodic task that can be configured by a user, then your job should be a
system job. The protocol for setting a system job is simple:

 class TrivialJob extends Job {
 public TrivialJob() {
 super("Trivial Job");

setSystem(true);
 }
 ...
 }

The setSystem call must be made before the job is scheduled. An exception will be triggered if you attempt
this call on a job that is currently waiting, sleeping, or running.

User jobs

If your job is a long running operation that is initiated by a user, then you should flag your job as a user job. A
user job will appear in a modal progress dialog that provides a button for moving the dialog into the
background. The workbench defines a user preference that controls whether these dialogs are ever modal. By
defining your job as a user job, your progress feedback will automatically conform with the user preference
for progress viewing. The protocol for setting a user job is similar:

 class TrivialJob extends Job {
 public TrivialJob() {
 super("Trivial Job");

setUser(true);
 }
 ...
 }

The setUser call must also be made before the job is scheduled.

Progress groups

Progress groups are another mechanism that can be used to influence the way that a job is shown in the UI.
When it is more appropriate to show the aggregate progress of several related jobs in the UI, a special
IProgressMonitor that represents a group of related jobs can be created. This monitor is created using
IJobManager protocol. The following snippet shows how to create a progress group and associate it with a
job.

 Welcome to Eclipse

Progress monitors and the UI 562

 ...
 IJobManager jobMan = Platform.getJobManager();
 myGroup = jobMan.createProgressGroup();
 job.setProgressGroup(myGroup, 600); // specify the units of work the job needs to show.
 job.schedule()
 ...

The group facility allows plug−ins to break tasks into multiple jobs if needed, but to report them to the user as
if they are a single task. The progress group monitor will handle the details for computing the percentage
completion relative to all of the jobs in the group.

A job must be placed into the progress group before it is scheduled. After a job finishes running, its reference
to the progress group is lost. If the job is to be scheduled again, it must be set into the group once again before
it is scheduled.

Workbench concurrency support

We've seen that the JFace UI framework provides basic support for showing task progress in a dialog (see
Long running operations for details). In Concurrency infrastructure, we reviewed the platform runtime support
for concurrency and long running operations. Now we will look at how the platform UI enhances this
infrastructure in the org.eclipse.ui.progress package. This package supplies the UI for showing job progress
in the workbench and defines additional support for jobs that run in the UI thread.

Before we introduce the new APIs let's start by reviewing some concepts. We first have to distinguish
between different kinds of background operations:

User initiated. These jobs are set to be user jobs (Job#setUser). The workbench will automatically
show user jobs in a modal progress dialog with a button to allow the user to run the operation in the
background and continue working. A global preference is used to indicate if user jobs should always
run in the background.

Examples of user jobs include building, checking out a project, synchronizing with the repository,
exporting a plug−in and searching.

•

Automatically triggered. These operations have a meaning for users but were not initiated by the user.
This is the default variety of job. These jobs are shown in the progress view and in the status line but
the modal progress dialog won't show when they are run. Examples include autobuild and scheduled
synchronization.

•

System operations. Operations that are not triggered by the user and can be considered as an
implementation detail. These jobs are created by setting the system flag (Job#setSystem). Examples
of system jobs include jobs that lazily populate widgets or compute decorations and annotations for
views.

•

Given an environment where several things may be happening at the same time the user needs:

Indication when a long running operation has started.

User jobs are shown to the user in a progress dialog giving immediate feedback, whereas

•

 Welcome to Eclipse

 Workbench concurrency support 563

automatically triggered jobs are shown in the status line and progress view. Also, jobs that affect a
part should be scheduled or registered with the part so that the workbench can provide hints to the
user that something is running that affects the part.

Indication when an operation has ended.

The user can easily know when user jobs ends because the progress dialog closes. But for non−user
jobs there are a couple of feedback mechanisms available. If the job was scheduled or registered with
a part then the parts progress hint will show when it is complete. If a job returns an error, an error
indicator will appear in the bottom right of the status line showing a hint that an error has occured.

•

Indication of interesting new results, or new information, without stealing focus with dialogs shown
by a background operation.

A user job can directly show the results to the user when the operation completes. For non−user jobs,
it is recommended to not interrupt the user with a dialog. Instead, if the jobs results are shown in a
view, the view can be opened when the job starts and the results shown in the view. This won't disrupt
the users workflow. In addition, you can add properties to the job to indicate that it should be kept in
the progress view and has an action that will show the results. A warning indication will appear in the
bottom right corner of the status line when a job remains in the progress view and has results to show
the user.

•

A general feeling of being in control of what is running, with the ability to monitor and cancel
background operations.

User jobs provides the best control to the user since they are easily cancelled and provide strong
indication of blocking or conccurent operations running via the Details tab of the progress dialog.
Note that the enhanced progress dialog that provides the Details area is only shown when users call
IProgressService#busyCursorWhile or IProgressService#runInUI. In addition, the progress view
provides access to jobs that are running.

•

All installed plug−ins must consistently show progress in the same way.

The advantage of using the progress service API is that users get a consistent progress experience.

•

Next we will go into detail on how the new APIs can be used.

Progress service

The workbench progress service (IProgressService) is the primary interface to the workbench progress

 Welcome to Eclipse

Progress service 564

support. It can be obtained from the workbench and then used to show progress for both background
operations and operations that run in the UI thread. The main purpose of this class is to provide one−stop
shopping for running operations, removing the need for plug−in developers to decide what mechanism should
be used for showing progress in a given situation. Another advantage is that the progress dialog shown with
these methods provides good support for indicating when an operation is blocked by another and gives the
user control to resolve the conflict. Where possible, long running operations should be run using
IProgressService#busyCursorWhile:

 IProgressService progressService = PlatformUI.getWorkbench().getProgressService();
 progressService.busyCursorWhile(new IRunnableWithProgress(){
 public void run(IProgressMonitor monitor) {
 //do non−UI work
 }
 });

This method will initially put up a busy cursor, and replace it with a progress dialog if the operation lasts
longer than a specified time threshhold. The advantage of this method over using a progress dialog is that if
the operation is short running the progress dialog won't be shown. If your operation must update the UI, you
can always post an Display.asyncExec or Display.syncExec to run the code that modifies the UI. If an
operation must be run in it's entirety in the UI thread, then you should call IProgressService#runInUI. Again,
the advantage of this method is that it will display a progress dialog if the operation is blocked and give the
user control.

 progressService.runInUI(
 PlatformUI.getWorkbench().getProgressService(),
 new IRunnableWithProgress() {
 public void run(IProgressMonitor monitor) {
 //do UI work
 }
 },
 Platform.getWorkspace().getRoot());

The third parameter can be null, or a scheduling rule for the operation. In this case we are specifying the
workspace root which will essentially lock the workspace while this UI operation is run.

You can also register with the progress service an icon for a job familly so that the progress view can show
the icon next to the running job. Here is an example of how the auto−build is associated with its icon:

 IProgressService service = PlatformUI.getWorkbench().getProgressService();
 ImageDescriptor newImage = IDEInternalWorkbenchImages.getImageDescriptor(
 IDEInternalWorkbenchImages.IMG_ETOOL_BUILD_EXEC);
 service.registerIconForFamily(newImage, ResourcesPlugin.FAMILY_MANUAL_BUILD);
 service.registerIconForFamily(newImage, ResourcesPlugin.FAMILY_AUTO_BUILD);

Showing that a part is busy

IWorkbenchSiteProgressService adds API for scheduling jobs that change the appearance of a workbench
part while the job is running. If your plug−in is running background operations that affect the state of a part
you can schedule the job via the part and the user will get feedback that the part is busy. Here is an example:

 IWorkbenchSiteProgressService siteService =
 (IWorkbenchSiteProgressService)view.getSite().getAdapter(IWorkbenchSiteProgressService.class);
 siteService.schedule(job, 0 /* now */, true /* use half−busy cursor in part */);

 Welcome to Eclipse

Showing that a part is busy 565

Progress Properties for Jobs

There are a set of predefined properties defined in IProgressConstants that can be used to control how a job is
shown in the progress view. These can be used to tell the progress view to keep
(IProgressConstants#KEEP_PROPERTY) your job in the view after it has finished, or only keep one
(IProgressConstants#KEEPONE_PROPERTY) job at a time in the view. You can also associate an action
(IProgressConstants#ACTION_PROPERTY) with a job. When a job has an associated action, the progress
view shows a hyperlink so that a user can run the action. You can also find out if a user job is currently being
shown in a progress dialog (IProgressConstants#PROPERTY_IN_DIALOG). A hint is provided in the bottom
right of the status line when an action is available. Here is an example that uses these properties:

 Job job = new Job("Do Work") {
 public IStatus run(IProgressMonitor monitor) {
 // do some work then only keep the finished job in the progress view if
 // not running in the progress dialog
 Boolean inDialog = (Boolean)getProperty(IProgressConstants.PROPERTY_IN_DIALOG);
 if(!inDialog.booleanValue())

setProperty(IProgressConstants.KEEP_PROPERTY, Boolean.TRUE);
 }
 };
 job.setProperty(IProgressConstants.ICON_PROPERTY, Plugin.getImageDescriptor(WORK_IMAGE));
 IAction gotoAction = new Action("Results") {
 public void run() {
 // show the results
 }
 };
 job.setProperty(IProgressConstants.ACTION_PROPERTY, gotoAction);
 job.setUser(true);
 job.schedule();

Workbench jobs

Where possible, long running operations should be performed outside of the UI thread. However, this cannot
always be avoided when the operation's purpose is to update the UI. SWT threading issues explains how this
can be done using the SWT Display. The workbench defines a special job, UIJob, whose run method runs
inside an SWT asyncExec. Subclasses of UIJob should implement the method runInUIThread instead of
the run method.

WorkbenchJob extends UIJob so that the job can only be scheduled or run when the workbench is running.
As always, you should avoid excessive work in the UI thread because the UI will not refresh for the duration
of the UI Job.

Long−running operations

The org.eclipse.jface.operations package defines interfaces for long−running operations that require progress
indicators or allow user cancellation of the operation.

Runnables and progress

The platform runtime defines a common interface, IProgressMonitor, which is used to report progress to the
user while long running operations are in progress. The client can provide a monitor as a parameter in many

 Welcome to Eclipse

Progress Properties for Jobs 566

platform API methods when it is important to show progress to the user.

JFace defines more specific interfaces for objects that implement the user interface for a progress monitor.

IRunnableWithProgress is the interface for a long−running operation. The run method for this interface has
an IProgressMonitor parameter that is used to report progress and check for user cancelation.

IRunnableContext is the interface for the different places in the UI where progress can be reported. Classes
that implement this interface may choose to use different techniques for showing progress and running the
operation. For example, ProgressMonitorDialog implements this interface by showing a progress dialog.
IWorkbenchWindow implements this interface by showing progress in the workbench window's status line.
WizardDialog implements this interface to show long running operations inside the wizard status line.

Note: The workbench UI provides additional support for operations in
WorkspaceModifyOperation. This class simplifies the implementation of long−running
operations that modify the workspace. It maps between IRunnableWithProgress and
IWorkspaceRunnable. See the javadoc for further detail.

Modal operations

The ModalContext class is provided to run an operation that is modal from the client code's perspective. It is
used inside the different implementations of IRunnableContext. If your plug−in needs to wait on the
completion of a long−running operation before continuing execution, ModalContext can be used to
accomplish this while still keeping the user interface responsive.

When you run an operation in a modal context, you can choose to fork the operation in a different thread. If
fork is false, the operation will be run in the calling thread. If fork is true, the operation will be run in a new
thread, the calling thread will be blocked, and the UI event loop will be run until the operation terminates.

For more information on the UI event loop, see Threading issues for clients.

IProgressService

New in Eclipse 3.0 is support for long−running operations without having to worry about which runnable
context to use run a long running operation. In addition the new IProgressService APIs provide progress
dialogs that have details areas that allow the user to have control over background operations that may be
blocking the given operation. See the Workbench Concurrency Support documentation.

Threading issues

When working with a widget toolkit, it is important to understand the underlying thread model that is used for
reading and dispatching platform GUI events. The implementation of the UI thread affects the rules that
applications must follow when using Java threads in their code.

Native event dispatching

Underneath any GUI application, regardless of its language or UI toolkit, the OS platform detects GUI events
and places them in application event queues. Although the mechanics are slightly different on different OS

 Welcome to Eclipse

Modal operations 567

platforms, the basics are similar. As the user clicks the mouse, types characters, or surfaces windows, the OS
generates application GUI events, such as mouse clicks, keystrokes, or window paint events. It determines
which window and application should receive each event and places it in the application's event queue.

The underlying structure for any windowed GUI application is an event loop. Applications initialize and then
start a loop which simply reads the GUI events from the queue and reacts accordingly. Any work that is done
while handling one of these events must happen quickly in order to keep the GUI system responsive to the
user.

Long operations triggered by UI events should be performed in a separate thread in order to allow the event
loop thread to return quickly and fetch the next event from the application's queue. However, access to the
widgets and platform API from other threads must be controlled with explicit locking and serialization. An
application that fails to follow the rules can cause an OS call to fail, or worse, lock up the entire GUI system.

Toolkit UI threads

Native GUI programmers using C are quite familiar with the design considerations for working with the
platform event loop. However, higher level widget toolkits in Java often attempt to shield application
developers from UI threading issues by hiding the platform event loop.

A common way to achieve this is to set up a dedicated toolkit UI thread for reading and dispatching from the
event loop, and posting the events to an internal queue that is serviced by applications running in separate
threads. This allows the toolkit to respond in sufficient time to the operating system, while not placing any
restrictions on the application's timing in handling the event. Applications must still use special locking
techniques to access UI code from their application thread, but it is done consistently throughout the code
since all application code is running in a non−UI thread.

Although it sounds tempting to "protect" applications from UI threading issues, it causes many problems in
practice.

It becomes difficult to debug and diagnose problems when the timing of GUI events is dependent on the Java
threading implementation and application performance.

Modern GUI platforms perform many optimizations with the event queue. A common optimization is to
collapse consecutive paint events in the queue. Every time that part of a window must be repainted, the queue
can be checked for overlapping or redundant paint events that have not been dispatched yet. These events can
be merged into one paint event, causing less flicker and less frequent execution of the application's paint code.
This optimization will be defeated if the widget toolkit is pulling the events off the queue quickly and posting
them to an internal queue.

Changing the developer's perception of the threading model causes confusion for programmers that have
experience with programming the native GUI system in other languages and toolkits.

SWT UI thread

SWT follows the threading model supported directly by the platforms. The application program runs the event
loop in its main thread and dispatches events directly from this thread. This is the application's "UI thread."

Note: Technically, the UI thread is the thread that creates the Display. In practice, this is
also the thread that runs the event loop and creates the widgets.

 Welcome to Eclipse

 Toolkit UI threads 568

Since all event code is triggered from the application's UI thread, application code that handles events can
freely access the widgets and make graphics calls without any special techniques. However, the application is
responsible for forking computational threads when performing long operations in response to an event.

Note: SWT will trigger an SWTException for any calls made from a non−UI thread that
must be made from the UI thread.

The main thread, including the event loop, for an SWT application looks like the following:

 public static void main (String [] args) {
 Display display = new Display ();
 Shell shell = new Shell (display);
 shell.open ();
 // start the event loop. We stop when the user has done
 // something to dispose our window.
 while (!shell.isDisposed ()) {
 if (!display.readAndDispatch ())
 display.sleep ();
 }
 display.dispose ();
 }

Once the widgets are created and the shell is opened, the application reads and dispatches events from the OS
queue until the shell window is disposed. If there are no events available for us in the queue, we tell the
display to sleep to give other applications a chance to run.

Note: The most common threading model for an SWT application is to run a single UI thread
and perform long operations in computational threads. However, SWT does not restrict
developers to this model. An application could run multiple UI−threads with a separate event
loop in each thread.

SWT provides special access methods for calling widget and graphics code from a background thread.

Executing code from a non−UI thread

Applications that wish to call UI code from a non−UI thread must provide a Runnable that calls the UI code.
The methods syncExec(Runnable) and asyncExec(Runnable) in the Display class are used to execute these
runnables in the UI thread at an appropriate time.

syncExec(Runnable) should be used when the application code in the non−UI thread depends on the
return value from the UI code or otherwise needs to ensure that the runnable is run to completion
before returning to the thread. SWT will block the calling thread until the runnable has been run from
the application's UI thread. For example, a background thread that is computing something based on a
window's current size would want to synchronously run the code to get the window's size and then
continue with its computations.

•

asyncExec(Runnable) should be used when the application needs to perform some UI operations, but
is not dependent upon the operations being completed before continuing. For example, a background
thread that updates a progress indicator or redraws a window could request the update asynchronously
and continue with its processing. In this case, there is no guaranteed relationship between the timing
of the background thread and the execution of the runnable.

•

The following code snippet demonstrates the pattern for using these methods:

 Welcome to Eclipse

 Executing code from a non−UI thread 569

 // do time−intensive computations
 ...
 // now update the UI. We don't depend on the result,
 // so use async.
 display.asyncExec (new Runnable () {
 public void run () {
 myWindow.redraw ();
 }
 });
 // now do more computations
 ...

The workbench and threads

The threading rules are very clear when you are implementing an SWT application from the ground up since
you control the creation of the event loop and the decision to fork computational threads in your application.

If you are contributing plug−in code to the workbench, there is no threading "magic" hidden in the JFace or
workbench code. The rules are straightforward:

Your workbench plug−in code executes in the workbench's UI thread.•
If you receive an event from the workbench, it is always executing in the UI thread of the workbench.•
If your plug−in forks a computational thread, it must use the Display asyncExec(Runnable) or
syncExec(Runnable) methods when calling any API for the workbench, JFace, or SWT.

•

Workbench and JFace API calls do not check that the caller is executing in the UI thread. However,
SWT triggers an SWTException for all API calls made from a non−UI thread.

•

If your plug−in uses the JFace IRunnableContext interface to invoke a progress monitor and run an
operation, it supplies an argument to specify whether a computational thread is forked for running the
operation.

•

Job scheduling

Our examples so far have demonstrated simple job creation, scheduling, and progress reporting. The job
scheduling mechanism is actually more powerful than we've shown so far. You can have more fine−grained
control over the way your job is scheduled by using priorities, delays, and custom scheduling conditions.

Job priorities

A job priority can be used to establish the importance of a job relative to other jobs in the system. Setting the
priority of a job won't affect a job that is already running, but it will affect how a waiting job is scheduled
relative to other jobs. The priority of a job can be one of several pre−defined priority constants:

INTERACTIVE jobs generally have priority over other jobs. They should be short−running or low
on processor usage, so that they don't block other INTERACTIVE jobs from running.

•

SHORT jobs typically complete within a second, but may take a little longer. They run in the
background and have priority over all jobs except INTERACTIVE jobs.

•

LONG jobs are for longer running background jobs. They run only after INTERACTIVE and
SHORT jobs have been run.

•

BUILD jobs are for jobs associated with building tasks. They are a lower priority than LONG.
BUILD jobs only run when all LONG jobs are complete.

•

 Welcome to Eclipse

 The workbench and threads 570

DECORATE jobs are the lowest priority in the system. They are used for tasks that provide
information that may help supplement the UI, but that the user is not generally waiting for.

•

The default priority for a job is LONG. The following snippet creates the trivial job we used earlier, but sets
the priority to DECORATE to indicate that it is the lowest level priority:

 TrivialJob job = new TrivialJob();
job.setPriority(Job.DECORATE);

 job.schedule();

Scheduling with a delay

Another technique for controlling how a job is scheduled is to use a scheduling delay. A scheduling delay can
be specified when the job is scheduled. The job will be delayed for the specified number of milliseconds
before it is scheduled.

 TrivialJob job = new TrivialJob();
job.schedule(1000); // wait one second before scheduling

Rescheduling a job

Scheduling a job that is already waiting or is sleeping has no effect. However, scheduling a job that is already
running will cause it to be rescheduled after it is finished. This is a convenient mechanism for repetitive jobs
such as background polling loops. If the job is rescheduled multiple times while it is running, it will only be
rescheduled once with the most recently supplied delay. The following snippet defines a job that reschedules
itself to run 10 seconds after it finishes the current iteration.

 class RepetitiveTrivialJob extends Job {
 public RepetitiveTrivialJob() {
 super("Repetitive Trivial Job");
 }
 public IStatus run(IProgressMonitor monitor) {
 System.out.println("Running the job.");
 // reschedule after 10 seconds

schedule(10000);
 return Status.OK_STATUS;
 }
 }

Custom scheduling conditions

Additional protocol in the Job class allows a job to check for preconditions just before it is scheduled or run.
This is best demonstrated by example:

class JobWithPreconditions extends Job {
 ...
 public boolean shouldSchedule() {
 return super.shouldSchedule() && checkJobPreconditions();
 }
 public boolean shouldRun() {
 return super.shouldRun() && checkJobPreconditions();
 }
 ...
}

 Welcome to Eclipse

Job scheduling 571

The shouldSchedule method is called just before the job manager places the job in the queue. This allows the
job to cancel itself if basic preconditions for scheduling are not met. The job should return false it is
inappropriate to schedule it. Likewise, the shouldRun method is called just before the job manager runs the
job. Any additional conditions that must be met before the job is run must be checked at this time.

Scheduling rules

Job scheduling rules can be used to control when your jobs run in relation to other jobs. In particular,
scheduling rules allow you to prevent multiple jobs from running concurrently in situations where
concurrency can lead to inconsistent results. They also allow you to guarantee the execution order of a series
of jobs. The power of scheduling rules is best illustrated by an example. Let's start by defining two jobs that
are used to turn a light switch on and off concurrently:

 public class LightSwitch {
 private boolean isOn = false;
 public boolean isOn() {
 return isOn;
 }
 public void on() {
 new LightOn().schedule();
 }
 public void off() {
 new LightOff().schedule();
 }
 class LightOn extends Job {
 public LightOn() {
 super("Turning on the light");
 }
 public IStatus run(IProgressMonitor monitor) {
 System.out.println("Turning the light on");
 isOn = true;
 return Status.OK_STATUS;
 }
 }
 class LightOff extends Job {
 public LightOff() {
 super("Turning off the light");
 }
 public IStatus run(IProgressMonitor monitor) {
 System.out.println("Turning the light off");
 isOn = false;
 return Status.OK_STATUS;
 }
 }
 }

Now we create a simple program that creates a light switch and turns it on and off again:

 LightSwitch light = new LightSwitch();
 light.on();
 light.off();
 System.out.println("The light is on? " + switch.isOn());

If we run this little program enough times, we will eventually obtain the following output:

 Turning the light off

 Welcome to Eclipse

 Scheduling rules 572

 Turning the light on
 The light is on? true

How can that be? We told the light to turn on and then off, so its final state should be off! The problem is that
there was nothing preventing the LightOff job from running at the same time as the LightOn job. So,
even though the "on" job was scheduled first, their concurrent execution means that there is no way to predict
the exact execution order of the two concurrent jobs. If the LightOff job ends up running before the
LightOn job, we get this invalid result. What we need is a way to prevent the two jobs from running
concurrently, and that's where scheduling rules come in.

We can fix this example by creating a simple scheduling rule that acts as a mutex (also known as a binary
semaphore):

 class Mutex implements ISchedulingRule {
 public boolean isConflicting(ISchedulingRule rule) {
 return rule == this;
 }
 public boolean contains(ISchedulingRule rule) {
 return rule == this;
 }
 }

This rule is then added to the two light switch jobs from our previous example:

 public class LightSwitch {
final MutextRule rule = new MutexRule();

 ...
 class LightOn extends Job {
 public LightOn() {
 super("Turning on the light");

setRule(rule);
 }
 ...
 }
 class LightOff extends Job {
 public LightOff() {
 super("Turning off the light");

setRule(rule);
 }
 ...
 }
 }

Now, when the two light switch jobs are scheduled, the job infrastructure will call the isConflicting
method to compare the scheduling rules of the two jobs. It will notice that the two jobs have conflicting
scheduling rules, and will make sure that they run in the correct order. It will also make sure they never run at
the same time. Now, if you run the example program a million times, you will always get the same result:

 Turning the light on
 Turning the light off
 The light is on? false

Rules can also be used independently from jobs as a general locking mechanism. The following example
acquires a rule within a try/finally block, preventing other threads and jobs from running with that rule for the
duration between invocations of beginRule and endRule.

 IJobManager manager = Platform.getJobManager();

 Welcome to Eclipse

 Scheduling rules 573

 try {
 manager.beginRule(rule, monitor);
 ... do some work ...
 } finally {
 manager.endRule(rule);
 }

You should exercise extreme caution when acquiring and releasing scheduling rules using such a coding
pattern. If you fail to end a rule for which you have called beginRule, you will have locked that rule
forever.

Making your own rules

Although the job API defines the contract of scheduling rules, it does not actually provide any scheduling rule
implementations. Essentially, the generic infrastructure has no way of knowing what sets of jobs are ok to run
concurrently. By default, jobs have no scheduling rules, and a scheduled job is executed as fast as a thread can
be created to run it.

When a job does have a scheduling rule, the isConflicting method is used to determine if the rule
conflicts with the rules of any jobs that are currently running. Thus, your implementation of
isConflicting can define exactly when it is safe to execute your job. In our light switch example, the
isConflicting implementation simply uses an identity comparison with the provided rule. If another job
has the identical rule, they will not be run concurrently. When writing your own scheduling rules, be sure to
read and follow the API contract for isConflicting carefully.

If your job has several unrelated constraints, you can compose multiple scheduling rules together using a
MultiRule. For example, if your job needs to turn on a light switch, and also write information to a network
socket, it can have a rule for the light switch and a rule for write access to the socket, combined into a single
rule using the factory method MultiRule.combine.

Rule hierarchies

We have discussed the isConflicting method on ISchedulingRule, but thus far have not mentioned the
contains method. This method is used for a fairly specialized application of scheduling rules that many
clients will not require. Scheduling rules can be logically composed into hierarchies for controlling access to
naturally hierarchical resources. The simplest example to illustrate this concept is a tree−based file system. If
an application wants to acquire an exclusive lock on a directory, it typically implies that it also wants
exclusive access to the files and sub−directories within that directory. The contains method is used to
specify the hierarchical relationship among locks. If you do not need to create hierarchies of locks, you can
implement the contains method to simply call isConflicting.

Here is an example of a hierarchical lock for controlling write access to java.io.File handles.

 public class FileLock implements ISchedulingRule {
 private String path;
 public FileLock(java.io.File file) {
 this.path = file.getAbsolutePath();
 }
 public boolean contains(ISchedulingRule rule) {
 if (this == rule)
 return true;
 if (rule instanceof FileLock)
 return path.startsWith(((FileLock) rule).path);

 Welcome to Eclipse

Making your own rules 574

 if (rule instanceof MultiRule) {
 MultiRule multi = (MultiRule) rule;
 ISchedulingRule[] children = multi.getChildren();
 for (int i = 0; i < children.length; i++)
 if (!contains(children[i]))
 return false;
 return true;
 }
 return false;
 }
 public boolean isConflicting(ISchedulingRule rule) {
 if (!(rule instanceof FileLock))
 return false;
 String otherPath = ((FileLock)rule).path;
 return path.startsWith(otherPath) || otherPath.startsWith(path);
 }
 }

The contains method comes into play if a thread tries to acquire a second rule when it already owns a rule.
To avoid the possibility of deadlock, any given thread can only own one scheduling rule at any given time. If
a thread calls beginRule when it already owns a rule, either through a previous call to beginRule or by
executing a job with a scheduling rule, the contains method is consulted to see if the two rules are
equivalent. If the contains method for the rule that is already owned returns true, the beginRule
invocation will succeed. If the contains method returns false an error will occur.

To put this in more concrete terms, say a thread owns our example FileLock rule on the directory at
"c:\temp". While it owns this rule, it is only allowed to modify files within that directory subtree. If it tries to
modify files in other directories that are not under "c:\temp", it should fail. Thus a scheduling rule is a
concrete specification for what a job or thread is allowed or not allowed to do. Violating that specification will
result in a runtime exception. In concurrency literature, this technique is known as two−phase locking. In a
two−phase locking scheme, a process much specify in advance all locks it will need for a particular task, and
is then not allowed to acquire further locks during the operation. Two−phase locking eliminates the
hold−and−wait condition that is a prerequisite for circular wait deadlock. Therefore, it is impossible for a
system using only scheduling rules as a locking primitive to enter a deadlock.

Locks

It's possible that multiple jobs in the system need to access and manipulate the same object. ILock defines
protocol for granting exclusive access to a shared object. When a job needs access to the shared object, it
acquires a lock for that object. When it is finished manipulating the object, it releases the lock.

A lock is typically created when the shared object is created or first accessed by a plug−in. That is, code that
has a reference to the shared object also has a reference to its lock. We'll start by creating a lock, myLock,
that will be used to control access to myObject:

 ...
 myObject = initializeImportantObject();
 IJobManager jobMan = Platform.getJobManager();

myLock = jobMan.newLock();
 ...

A robust implementation of ILock is provided by the platform. The job manager provides instances of this
lock for use by clients. These locks are aware of each other and can avoid circular deadlock.(We'll explain

 Welcome to Eclipse

 Locks 575

more about that statement in a moment.)

Whenever code in a job requires access to myObject, it must first acquire the lock on it. The following
snippet shows a common idiom for working with a lock:

...
// I need to manipulate myObject, so I get its lock first.
try {
myLock.acquire();
 updateState(myObject); // manipulate the object
} finally {
lock.release();
}
...

The acquire() method will not return until the calling job can be granted exclusive access to the lock. In other
words, if some other job has already acquired the lock, then this code will be blocked until the lock is
available. Note that the code that acquires the lock and manipulates myObject is wrapped in a try block, so
that the lock can be released if any exceptions occur while working with the object.

Seems simple enough, right? Fortunately, locks are pretty straightforward to use. They are also reentrant,
which means you don't have to worry about your job acquiring the same lock multiple times. Each lock keeps
a count of the number of acquires and releases for a particular thread, and will only release from a job when
the number of releases equals the number of acquires.

Deadlock

Earlier we noted that locks provided by the job manager are aware of each other and can avoid circular
deadlock. To understand how deadlock occurs, let's look at a simple scenario. Suppose "Job A" acquires
"Lock A" and subsequently tries to acquire "Lock B." Meanwhile, "Lock B" is held by "Job B" which is now
blocked waiting on "Lock A." This kind of deadlock indicates an underlying design problem with the use of
the locks between the jobs. While this simple case can be avoided easily enough, the chances of accidentally
introducing deadlock increase as the number of jobs and locks used in your design increase.

Fortunately, the platform will help you in identifying deadlocks. When the job manager detects a deadlock
condition, it prints diagnostic information to the log describing the deadlock condition. Then it breaks the
deadlock by temporarily granting access to the locks owned by a blocked job to other jobs that are waiting on
them. It is important to carefully test any implementation involving multiple locks and fix any deadlock
conditions that are reported by the platform.

Workbench under the covers

The workbench provides an extensive set of classes and interfaces for building complex user interfaces.
Fortunately you don't need to understand all of them to do something simple. We'll start by looking at some
concepts that are exposed in the workbench user interface and their corresponding structure under the covers.

Workbench

We've been using the term workbench loosely to refer to "that window that opens when you start the
platform." Let's drill down a little and look at some of the visual components that make up the workbench.

 Welcome to Eclipse

Locks 576

For the rest of this discussion, when we use the term workbench, we will be referring to the workbench
window (IWorkbenchWindow). The workbench window is the top−level window in a workbench. It is the
frame that holds the menu bar, tool bar, status line, short cut bar, and pages. In general, you don't need to
program to the workbench window. You just want to know that it's there.

Note: You can open multiple workbench windows; however each workbench window is a
self−contained world of editors and views, so we'll just focus on a single workbench window.

From the user's point of view, a workbench contains views and editors. There are a few other classes used to
implement the workbench window.

Page

Inside the workbench window, you'll find one page (IWorkbenchPage) that in turn contains parts. Pages are
an implementation mechanism for grouping parts. You typically don't need to program to the page, but you'll
see it in the context of programming and debugging.

 Welcome to Eclipse

 Page 577

Perspectives

Perspectives provide an additional layer of organization inside the workbench page. A perspective defines an
appropriate collection of views, their layout, and applicable actions for a given user task. Users can switch
between perspectives as they move across tasks. From an implementation point of view, the user's active
perspective controls which views are shown on the workbench page and their positions and sizes. Editors are
not affected by a change in perspective.

Views and editors

Views and editors are where we move beyond implementation details into some common plug−in
programming. When you add a visual component to the workbench, you must decide whether you want to
implement a view or an editor. How do you decide this?

A view is typically used to navigate a hierarchy of information, open an editor, or display properties
for the active editor. For example, the navigator view allows you to navigate the workspace
hierarchy. The properties and outline views show information about an object in the active editor.
Any modifications that can be made in a view (such as changing a property value) are saved
immediately.

•

An editor is typically used to edit or browse a document or input object. Modifications made in an
editor follow an open−save−close model, much like an external file system editor. The platform text
editor and Java editor are examples of workbench editors.

•

In either case, you will be building your view or editor according to a common lifecycle.

You implement a createPartControl method to create the SWT widgets that represent your visual
component. You must determine which widgets to use and allocate any related UI resources needed to
display your view or editor.

•

When your view or editor is given focus, you'll receive a setFocus notification so that you can set the
focus to the correct widget.

•

When the view or editor is closed, you will receive a dispose message to signify that the view or
editor is being closed. At this point the controls allocated in createPartControl have already been
disposed for you, but you must dispose of any graphics resources (such as cursors, icons, or fonts) that
you allocated for the view or editor.

•

Throughout this lifecycle, events will fire from the containing workbench page to notify interested parties
about the opening, activation, deactivation, and closing of the views and editors.

Seem simple? It can be. That's the beauty of workbench views and editors. They're just widget holders, and
can be as simple or complex as you need them to be. We saw the simplest of views earlier when we built a
hello world view. Let's look at it again now that we've explained more about what's going on.

 package org.eclipse.examples.helloworld;

 import org.eclipse.swt.widgets.Composite;
 import org.eclipse.swt.widgets.Label;
 import org.eclipse.swt.SWT;
 import org.eclipse.ui.part.ViewPart;

 public class HelloWorldView extends ViewPart {
 Label label;
 public HelloWorldView() {

 Welcome to Eclipse

 Perspectives 578

 }
 public void createPartControl(Composite parent) {
 label = new Label(parent, SWT.WRAP);
 label.setText("Hello World");
 }
 public void setFocus() {
 // set focus to my widget. For a label, this doesn't
 // make much sense, but for more complex sets of widgets
 // you would decide which one gets the focus.
 }
 }

Notice that we didn't have to implement a dispose() method since we didn't do anything but create a label in
the createPartControl(parent) method. If we had allocated any UI resources, such as images or fonts, we
would have disposed of them here. Since we extended the ViewPart class, we inherit the "do nothing"
implementation of dispose().

org.eclipse.ui.views

A view is a workbench part that can navigate a hierarchy of information or display properties for an object.
Only one instance of any given view is open in a workbench page. When the user makes selections or other
changes in a view, those changes are immediately reflected in the workbench. Views are often provided to
support a corresponding editor. For example, an outline view shows a structured view of the information in
an editor. A properties view shows the properties of an object that is currently being edited.

The extension point org.eclipse.ui.views allows plug−ins to add views to the workbench. Plug−ins that
contribute a view must register the view in their plugin.xml file and provide configuration information about
the view, such as its implementation class, the category (or group) of views to which it belongs, and the name
and icon that should be used to describe the view in menus and labels.

The interface for views is defined in IViewPart, but plug−ins can choose to extend the ViewPart class rather
than implement an IViewPart from scratch.

We implemented a minimal view extension in the hello world example. Now we'll look at one that is aware of
other workbench views and responds to user navigation and selection changes in the workbench. First, let's
take a look at the declaration of the extension in the plugin.xml.

<extension
 point="org.eclipse.ui.views">
 <category
 id="org.eclipse.ui.examples.readmetool"
 name="%Views.category">
 </category>
 <view
 id="org.eclipse.ui.examples.readmetool.views.SectionsView"
 name="%Views.ReadmeSections"
 icon="icons/view16/sections.gif"
 category="org.eclipse.ui.examples.readmetool"
 class="org.eclipse.ui.examples.readmetool.ReadmeSectionsView">
 </view>
</extension>

This should look pretty familiar. We see that a new view, ReadmeSectionsView, is contributed to the

 Welcome to Eclipse

 org.eclipse.ui.views 579

workbench. The view id, name, and category are specified as we've seen before. An icon is also provided for
the view, using a path relative to the plug−in's installation directory.

Let's look at the ReadmeSectionsView. You can show any view in the workbench by choosing
Window−>Show View−>Other... and selecting the view from the Show View list.

When we show the ReadmeSectionsView, a view with a list in it pops up. The list is empty unless we click
on a file with an extension of .readme, in which case the list is populated with sections from the readme file.

How does the plug−in recognize the readme file and how did it know about selection changes? If we can track
down the answers to these questions, we are well on our way to understanding how to build integrated
workbench plug−ins.

We'll start with the familiar createPartControl method. As we saw in the Hello World example, this is
where the widgets that represent a view are created. We'll ignore some of the code to get started.

 public void createPartControl(Composite parent) {
 viewer = new ListViewer(parent);
 ...
 // add myself as a global selection listener
 getSite().getPage().addSelectionListener(this);

 // prime the selection
 selectionChanged(null, getSite().getPage().getSelection());
 }

The view creates and stores a ListViewer and registers itself as a selection listener on its page. It obtains the
page from an IViewSite, which contains information about the view's context, such as its workbench window,
its containing page, and its plug−in. When we are notified of a selection change, what happens? The
following code is executed:

 public void selectionChanged(IWorkbenchPart part, ISelection sel) {
 //if the selection is a readme file, get its sections.
 AdaptableList input = ReadmeModelFactory.getInstance().getSections(sel);
 viewer.setInput(input);
 }

It looks like the ReadmeModelFactory class is responsible for turning the selection into readme sections and
these sections are input for the viewer that we created in the createPartControl method.

But how did the viewer populate its list widgets? For now, let's assume that once the viewer was told its input
element, it knew how to populate its list widget with the information − it is a ListViewer, after all. If you
must know right now what this viewer is all about, go to Viewers.

 Welcome to Eclipse

 org.eclipse.ui.views 580

We still do not know how readme files are detected or where the file's section information comes from. A
quick look at the ReadmeModelFactory sheds some light.

 public AdaptableList getSections(ISelection sel) {
 // If sel is not a structured selection just return.
 if (!(sel instanceof IStructuredSelection))
 return null;
 IStructuredSelection structured = (IStructuredSelection)sel;

 //if the selection is a readme file, get its sections.
 Object object = structured.getFirstElement();
 if (object instanceof IFile) {
 IFile file = (IFile) object;
 String extension = file.getFileExtension();
 if (extension != null && extension.equals(IReadmeConstants.EXTENSION)) {
 return getSections(file);
 }
 }

 //the selected object is not a readme file
 return null;
 }

We check the selection to see if it is a structured (multiple) selection. (The concept of a structured selection
comes from JFace viewers.) For the first object in the selection, we check to see whether it is a file (IFile)
resource. If it is, we check its extension to see if it matches the ".readme" extension. Once we know we have
a readme file, we can use other methods to parse the sections. You can browse the rest of
ReadmeModelFactory, MarkElement, and DefaultSectionsParser for the details about the file parsing.

We've covered a lot of common workbench concepts by studying this extension. Now we'll move on to some
other workbench extensions and examine how your plug−in can further contribute to the workbench UI.

Viewers

Why would you ever want to use a viewer when we have already seen that workbench UI contributions like
views, editors, wizards, and dialogs can be implemented directly with SWT widgets?

Viewers allow you to create widgets while still using your model objects. If you use an SWT widget directly,
you have to convert your objects into the strings and images expected by SWT. Viewers act as adapters on
SWT widgets, handling the common code for handling widget events that you would otherwise have to
implement yourself.

We first saw a viewer in the readme tool's view contribution, inside the ReadmeSectionsView.

 public void createPartControl(Composite parent) {
 viewer = new ListViewer(parent);
 ...
 }

Note: Viewers can be used to provide the implementation for both workbench views and
editors. The term viewer does not imply that they are only useful for implementing views. For
example, the TextViewer is used in the implementation in many of the workbench and
plug−in editors.

 Welcome to Eclipse

 Viewers 581

Standard viewers

JFace provides viewers for most of the non−trivial widgets in SWT. Viewers are most commonly used for list,
tree, table, and text widgets.

Each viewer has an associated SWT widget. This widget can be created implicitly by supplying the parent
Composite in a convenience viewer constructor, or explicitly by creating it first and supplying it to the viewer
in its constructor.

List−oriented viewers

Lists, trees, and tables share many common capabilities from a user's point of view, such as population with
objects, selection, sorting, and filtering.

These viewers keep a list of domain objects (called elements) and display them in their corresponding SWT
widget. A list viewer knows how to get a text label from any element in the list. It obtains the label from an
ILabelProvider which can be set on the viewer. List viewers know how to map from the widget callbacks
back into the world of elements known by the viewer client.

Clients that use a plain SWT widget have to operate at the SWT level − where items are strings and events
often relate to an index within the list of strings. Viewers provide higher level semantics. Clients are notified
of selections and changes to the list using the elements they provided to the viewer. The viewer handles all the
grunt work for mapping indexes back to elements, adjusting for a filtered view of the objects, and re−sorting
when necessary.

Filtering and sorting capability is handled by designating a viewer sorter (ViewerSorter) and/or viewer filter
(ViewerFilter) for the viewer. (These can be specified for tree and table viewers in addition to list viewers.)
The client need only provide a class that can compare or filter the objects in the list. The viewer handles the
details of populating the list according to the specified order and filter, and maintaining the order and filter as
elements are added and removed.

Viewers are not intended to be extended by clients. To customize a viewer, you can configure it with your
own content and label providers.

A ListViewer maps elements in a list to an SWT List control.

A TreeViewer displays hierarchical objects in an SWT Tree widget. It handles the details for expanding and
collapsing items. There are several different kinds of tree viewers for different SWT tree controls (plain tree,
table tree, checkbox tree).

A TableViewer is very similar to a list viewer, but adds the ability to view multiple columns of information
for each element in the table. Table viewers significantly extend the function of the SWT table widget by
introducing the concept of editing a cell. Special cell editors can be used to allow the user to edit a table cell
using a combo box, dialog, or text widget. The table viewer handles the creation and placement of these
widgets when needed for user editing. This is done using the CellEditor classes, such as TextCellEditor and
CheckboxCellEditor.

 Welcome to Eclipse

 Standard viewers 582

Text viewer

Text widgets have many common semantics such as double click behavior, undo, coloring, and navigating by
index or line. A TextViewer is an adapter for an SWT StyledText widget. Text viewers provide a document
model to the client and manage the conversion of the document to the styled text information provided by the
text widget.

Text viewers are covered in more detail in Workbench Editors.

Viewer architecture

To understand a viewer, you must become familiar with the relationship between a viewer's input element, its
contents, its selection, and the information actually displayed in the widget that it is manipulating.

Input elements

An input element is the main object that the viewer is displaying (or editing). From the viewer's point of
view, an input element can be any object at all. It does not assume any particular interface is implemented by
the input element. (We'll see why in a moment when we look at content providers.)

A viewer must be able to handle a change of input element. If a new input element is set into a viewer, it must
repopulate its widget according to the new element, and disassociate itself from the previous input element.
The semantics for registering as a listener on an input element and populating the widget based on the element
are different for each kind of viewer.

Content viewers

A content viewer is a viewer that has a well defined protocol for obtaining information from its input
element. Content viewers use two specialized helper classes, the IContentProvider and ILabelProvider, to
populate their widget and display information about the input element.

IContentProvider provides basic lifecycle protocol for associating a content provider with an input element
and handling a change of input element. More specialized content providers are implemented for different
kinds of viewers. The most common content provider is IStructuredContentProvider, which can provide a
list of objects given an input element. It is used in list−like viewers, such as lists, tables, or trees. In general,
the content provider knows how to map between the input element and the expected viewer content.

ILabelProvider goes a step further. Given the content of a viewer (derived from the input element and
content provider), it can produce the specific UI elements, such as names and icons, that are needed to display
the content in the viewer. Label providers can aid in saving icon resources since they can ensure the same
instance of the icon is used for all like types in a viewer.

Note: Instances of particular content and label providers are not intended to be shared
across multiple viewers. Even if all your viewers use the same type of content or label
provider, each viewer should be initialized with its own instance of the provider class. The
provider life cycle protocol is designed for a 1−to−1 relationship between a provider and its
viewer.

Input elements, content providers, and label providers allow viewers to hide most of the implementation
details for populating widgets. Clients of a viewer need only worry about populating a viewer with the right

 Welcome to Eclipse

Standard viewers 583

kind of input and content provider. The label provider must know how to derive the UI information from the
viewer content.

Viewers and the workbench

The flexibility provided by viewers, content providers, and label providers can be demonstrated by looking at
how the workbench uses them.

The WorkbenchContentProvider is a structured content provider that obtains contents from an input
element by asking for its children. The concept of adapters is used again in order to implement generic
function. When asked for the list of elements from its input element, the WorkbenchContentProvider
obtains an IWorkbenchAdapter for the input element. If an IWorkbenchAdapter has been registered for
the input element, then the content provider can safely assume that the element can be queried for its
children. WorkbenchContentProvider also does the work needed to keep its viewer up to date when the
workspace changes.

The WorkbenchLabelProvider is a label provider that obtains an IWorkbenchAdapter from an object in
order to find its text and image. The concept of a label provider is particularly helpful for workbench objects
because it allows a single label provider to cache images that are commonly used in a viewer. For example,
once the WorkbenchLabelProvider obtains an image to use for an IProject, it can cache that image and use
it for all IProject objects shown in the viewer.

By defining a common adapter, IWorkbenchAdapter, and registering it for many of the platform types, we
make it possible for these types to be represented correctly in many of the common viewers and the
workbench views that contain them.

org.eclipse.ui.viewActions

It is common for plug−ins to contribute behavior to views that already exist in the workbench. This is done
through the org.eclipse.ui.viewActions extension point. This extension point allows plug−ins to contribute
menu items, submenus and tool bar entries to an existing view's local pull−down menu and local tool bar.

You may have noticed an item in the navigator's local tool bar that becomes enabled whenever a readme file is
selected. This item also appears in the navigator's local pull−down menu. These actions appear because the
readme tool plug−in contributes them using the viewActions extension.

The relevant plugin.xml contribution is below.

<extension

 Welcome to Eclipse

 Viewers and the workbench 584

 point = "org.eclipse.ui.viewActions">
 <viewContribution
 id="org.eclipse.ui.examples.readmetool.vc1"
 targetID="org.eclipse.ui.views.ResourceNavigator">
 <action id="org.eclipse.ui.examples.readmetool.va1"
 label="%PopupMenu.ResourceNav.label"
 menubarPath="additions"
 toolbarPath="additions"
 icon="icons/obj16/editor.gif"
 tooltip="%PopupMenu.ResourceNav.tooltip"
 helpContextId="org.eclipse.ui.examples.readmetool.view_action_context"
 class="org.eclipse.ui.examples.readmetool.ViewActionDelegate"
 enablesFor="1">
 <selection class="org.eclipse.core.resources.IFile" name="*.readme"/>
 </action>
 </viewContribution>
 </extension>

A view contribution with a unique id is specified. The view to which we are adding the action is specified in
the targetID. We are contributing to the resource navigator's menu. We specify the label and the menu bar
and tool bar locations for the new action. (For a complete discussion of menu and toolbar locations, see Menu
and toolbar paths).

We also specify the conditions under which the action should be enabled. You can see that this action will be
enabled when there is one selection (enablesFor="1") of type IFile
(class="org.eclipse.core.resources.IFile"), whose name has ".readme" in the file extension
(name="*.readme"). Sure enough, that's exactly what happens when you click around in the resource
navigator.

The information in the plugin.xml is all that's needed to add items to menus and tool bars since plug−in code
will only run when the action is actually selected from the menu or toolbar. To provide the action behavior,
the implementation class specified in the plugin.xml must implement the IViewActionDelegate interface.

In this example, the readme plug−in supplies ViewActionDelegate to implement the action. If you browse
this class you will see that it includes methods for remembering its view, handling selection changes, and
invoking its action. When invoked the action itself simply launches a dialog that announces it was executed.

public void run(org.eclipse.jface.action.IAction action) {
 MessageDialog.openInformation(view.getSite().getShell(),
 MessageUtil.getString("Readme_Editor"),
 MessageUtil.getString("View_Action_executed"));
}

Although this action is simple, we can imagine how using selections and more functional dialogs could make
this action do something more interesting.

org.eclipse.ui.editors

An editor is a workbench part that allows a user to edit an object (often a file). Editors operate in a manner
similar to file system editing tools, except that they are tightly integrated into the platform workbench UI. An
editor is always associated with an input object (IEditorInput). You can think of the input object as the
document or file that is being edited. Changes made in an editor are not committed until the user saves them.

 Welcome to Eclipse

 org.eclipse.ui.editors 585

Only one editor can be open for any particular editor input in a workbench page. For example, if the user is
editing readme.txt in the workbench, opening it again in the same perspective will activate the same editor.
(You can open another editor on the same file from a different workbench window or perspective). Unlike
views, however, the same editor type, such as a text editor, may be open many times within one workbench
page for different inputs.

The workbench extension point org.eclipse.ui.editors is used by plug−ins to add editors to the workbench.
Plug−ins that contribute an editor must register the editor extension in their plugin.xml file, along with
configuration information for the editor. Some of the editor information, such as the implementation class and
the name and the icon to be used in the workbench menus and labels, is similar to the view information. In
addition, editor extensions specify the file extensions or file name patterns of the file types that the editor
understands. Editors can also define a contributorClass, which is a class that adds actions to workbench
menus and tool bars when the editor is active.

The interface for editors is defined in IEditorPart, but plug−ins can choose to extend the EditorPart class
rather than implement an IEditorPart from scratch.

Note: An editor extension can also be configured to launch an external program or to call
pre−existing java code. In this discussion, we are focusing on those editors that are actually
tightly integrated with the workbench and are implemented using IEditorPart.

The readme tool provides a custom editor primarily for the purpose of contributing its own content outliner
page to the workbench outline view.

The configuration for the editor extension is defined as follows.

<extension
 point = "org.eclipse.ui.editors">
 <editor
 id = "org.eclipse.ui.examples.readmetool.ReadmeEditor"
 name="%Editors.ReadmeEditor"
 icon="icons/obj16/editor.gif"
 class="org.eclipse.ui.examples.readmetool.ReadmeEditor"
 extensions="readme"
 contributorClass="org.eclipse.ui.examples.readmetool.ReadmeEditorActionBarContributor">
 </editor>
</extension>

We see the familiar configuration markup for id, name, icon, and class. The extensions attribute describes
the file types that the editor understands. (You could also specify filenames if you need to be more specific.)
The class implements the editor, and the contributorClass is responsible for providing editor−related
actions. Let's look at the contributor in more detail.

Editor action contributors

The contributor class adds editor−related actions to the workbench menu and toolbar. It must implement the
IEditorActionBarContributor interface. The contributor is separate from the editor itself since any given
workbench page can have multiple editors of the same type. A single contributor is shared by all the editors of
a specific type, rather than having each instance of an editor create actions and images.

In ReadmeEditorActionBarContributor, we contribute three actions, "Editor Action1," "Editor Action2,"
and "Editor Action3." These are set up in the constructor.

 Welcome to Eclipse

org.eclipse.ui.editors 586

 public ReadmeEditorActionBarContributor() {
 ...
 action1 = new EditorAction(MessageUtil.getString("Editor_Action1"));
 action1.setToolTipText(MessageUtil.getString("Readme_Editor_Action1"));
 action1.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION1_IMAGE_DISABLE);
 action1.setImageDescriptor(ReadmeImages.EDITOR_ACTION1_IMAGE_ENABLE);
 ...
 action2 = new RetargetAction(IReadmeConstants.RETARGET2, MessageUtil.getString("Editor_Action2"));
 action2.setToolTipText(MessageUtil.getString("Readme_Editor_Action2"));
 action2.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION2_IMAGE_DISABLE);
 action2.setImageDescriptor(ReadmeImages.EDITOR_ACTION2_IMAGE_ENABLE);
 ...
 action3 = new LabelRetargetAction(IReadmeConstants.LABELRETARGET3, MessageUtil.getString("Editor_Action3"));
 action3.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION3_IMAGE_DISABLE);
 action3.setImageDescriptor(ReadmeImages.EDITOR_ACTION3_IMAGE_ENABLE);
 ...
 }

The names and icons for the actions are set up in the code rather than in the plugin.xml. (We'll ignore the
differences in the action classes for now until we look at retargetable actions.)

Note how similar the action information is to the viewActions information we saw in the markup for the view
action. The actions are set up in code since we have to manage the sharing of the actions among different
instances of the same editor. When the actions are created in the constructor, they are independent of any
particular instance of the editor.

When an editor becomes active and it has actions that need to be installed in the workbench menus and tool
bar, the setActiveEditor message is sent to the contributor. The contributor connects the editor actions to a
specific editor.

 public void setActiveEditor(IEditorPart editor) {
 ...
 action1.setActiveEditor(editor);
 ...
 }

As you can see, the actions show up in the workbench menu and tool bar when a readme editor is active.

These menu and tool bar items are only shown when the editor is active. The location for the menu and tool
bar items can be specified as described in Menu and toolbar paths.

Editors and content outliners

The readme editor itself, ReadmeEditor, is not very complicated. It extends the TextEditor class so that it
can contribute a customized content outliner page to the outline view when a readme file is being edited. It

 Welcome to Eclipse

org.eclipse.ui.editors 587

does not change any behavior inside the text editor.

Editors often have corresponding content outliners that provide a structured view of the editor's contents and
assist the user in navigating through the contents of the editor. See Content outliners for more detail.

We'll look at the implementation of text editors in Text editors and platform text.

Contributing new retargetable actions

The workbench is not the only plug−in that can create retargetable actions. Your plug−in can define its own
retargetable action, so that views and editors within your plug−in can share the same menu actions. There are
two ways to contribute retargetable actions from your plug−in:

An editor can define a retargetable action for which the editor and related views can hook handlers.
The action is only available in the menu bar when the editor is open.

•

An action set can define a retargetable action for which editors and views can hook handlers. The
action will be visible as long as the action set is visible, but it will only be enabled if the active part
has hooked a handler for the action.

•

This mechanism is useful for providing tight integration between editors and related views. For example, a
content outline view can implement a handler for an action defined by its associated editor.

The readme tool example demonstrates both of these techniques.

Content outliners

Editors often have corresponding content outliners that provide a structured view of the editor contents and
assist the user in navigating through the contents of the editor.

The workbench provides a standard Outline view for this purpose. The workbench user controls when this
view is visible using the Window > Show View menu.

Since the generic TextEditor doesn't know anything about the structure of its text, it cannot provide behavior
for an interesting outline view. Therefore, the default Outline view, shown below, doesn't do much.

 Welcome to Eclipse

Contributing new retargetable actions 588

Editors in the text framework can supply their own content outliner page to the outline view. The outliner for
an editor is specified when the workbench requests an adapter of type IContentOutlinePage.

public Object getAdapter(Class required) {
 if (IContentOutlinePage.class.equals(required)) {
 if (fOutlinePage == null) {
 fOutlinePage= new JavaContentOutlinePage(getDocumentProvider(), this);
 if (getEditorInput() != null)
 fOutlinePage.setInput(getEditorInput());
 }
 return fOutlinePage;
 }
 return super.getAdapter(required);
}

A content outliner page must implement IContentOutlinePage. This interface combines the ability to notify
selection change listeners (ISelectionProvider) with the behavior of being a page in a view (IPage). Content
outliners are typically implemented using JFace viewers. The default implementation of a content outliner
(ContentOutlinePage) uses a JFace tree viewer to display a hierarchical representation of the outline. This
representation is suitable for many structured outliners, including JavaContentOutlinePage.

Let's take a look at the implementation of the page. When the outline page is created by the editor in the
snippet above, its input element is set to the editor's input element. This input can often be passed directly to
the outline page's viewer, as is done below.

public void createControl(Composite parent) {

 super.createControl(parent);

 TreeViewer viewer= getTreeViewer();
 viewer.setContentProvider(new ContentProvider());
 viewer.setLabelProvider(new LabelProvider());
 viewer.addSelectionChangedListener(this);

 if (fInput != null)
 viewer.setInput(fInput);
}

The tree viewer creation is inherited from ContentOutlinePage. The standard label provider is used. The
content provider is provided inside JavaContentOutlinePage and is responsible for parsing the editor input
into individual segments whenever it changes.

 Welcome to Eclipse

Contributing new retargetable actions 589

 public void inputChanged(Viewer viewer, Object oldInput, Object newInput) {
 ...
 if (newInput != null) {
 IDocument document= fDocumentProvider.getDocument(newInput);
 if (document != null) {
 document.addPositionCategory(SEGMENTS);
 document.addPositionUpdater(fPositionUpdater);
 parse(document);
 }
 }
 }

The text is parsed into ranges, called segments, within the document. These segments are displayed by name
in the outline view.

When the selection changes, the selected segment is retrieved. Its offsets are used to set the highlight range in
the editor.

public void selectionChanged(SelectionChangedEvent event) {

 super.selectionChanged(event);

 ISelection selection= event.getSelection();
 if (selection.isEmpty())
 fTextEditor.resetHighlightRange();
 else {
 Segment segment= (Segment) ((IStructuredSelection) selection).getFirstElement();
 int start= segment.position.getOffset();
 int length= segment.position.getLength();
 try {
 fTextEditor.setHighlightRange(start, length, true);
 } catch (IllegalArgumentException x) {
 fTextEditor.resetHighlightRange();
 }
 }
}

Text editors and platform text

The platform text facility is used to implement the default text editor for the workbench. The interface for text
editing is defined in ITextEditor as a text specific extension of IEditorPart.

 Welcome to Eclipse

Text editors and platform text 590

The implementation of ITextEditor in the platform is structured in layers. AbstractTextEditor defines the
framework for extending the editor to support source code style editing of text. This framework is defined in
org.eclipse.ui.texteditor.

The concrete implementation class TextEditor defines the behavior for the standard platform text editor. It is
defined in the package org.eclipse.ui.editors.text.

The text editor framework provides a model−independent editor that supports the following features:

presentation and user modification of text•
standard text editing operations such as cut/copy/paste, find/replace•
support for context and pulldown menus•
visual presentation of text annotations in rulers or as squigglies in the text•
automatic update of annotations as the user edits text•
presentation of additional information such as line numbers•
syntax highlighting•
content assist•
text outlining pages that show the hierarchical structure of the text•
context sensitive behavior•
hover support over rulers and text•
key binding contexts•
preference handling•

We will explore how these features can be implemented in an editor by studying the
org.eclipse.ui.examples.javaeditor example. This example shows how complex features like text coloring,
hover help, and automatic indenting can be implemented.

In discussing these features we will be moving between the abstract framework, the platform editor
TextEditor, and the example's subclass, JavaEditor.

org.eclipse.ui.editorActions

We've just seen how editors can contribute their own actions to the workbench menus and tool bar when they
become active. The org.eclipse.ui.editorActions extension point allows a plug−in to add to the workbench
menus and tool bar when another plug−in's editor becomes active.

In the readme example, the plug−in uses the editorActions extension point to contribute additional actions to
the menu contributed by the readme editor. The definition in our plugin.xml should look pretty familiar by
now.

<extension
 point = "org.eclipse.ui.editorActions">
 <editorContribution
 id="org.eclipse.ui.examples.readmetool.ec1"
 targetID="org.eclipse.ui.examples.readmetool.ReadmeEditor">
 <action id="org.eclipse.ui.examples.readmetool.ea1"
 label="%Editors.Action.label"
 toolbarPath="ReadmeEditor"
 icon="icons/obj16/editor.gif"
 tooltip="%Editors.Action.tooltip"
 class="org.eclipse.ui.examples.readmetool.EditorActionDelegate"

 Welcome to Eclipse

 org.eclipse.ui.editorActions 591

 />
 </editorContribution>
 </extension>

Similar to a view action, the extension must specify the targetID of the editor to which it is contributing
actions. The action itself is very similar to a view action (id, label, icon, toolbarPath, ...), except that the
specified class must implement IEditorActionDelegate.

Note that a menu bar path is not specified in this markup. Therefore, the action will appear in the workbench
tool bar when the editor is active, but not in the workbench menu bar. (See Menu and toolbar paths for a
discussion of toolbar and menu paths.)

Sure enough, when the editor is active, we see our editor action on the tool bar next to the actions that were
contributed by the editor itself.

The readme tool supplies EditorActionDelegate to implement the action. This class is very similar to the
view action delegate we saw earlier.

public void run(IAction action) {
 MessageDialog.openInformation(editor.getSite().getShell(),
 MessageUtil.getString("Readme_Editor"),
 MessageUtil.getString("Editor_Action_executed"));
}

org.eclipse.ui.popupMenus

The org.eclipse.ui.popupMenus extension point allows a plug−in to contribute to the popup menus of other
views and editors.

You can contribute an action to a specific popup menu by its id (viewerContribution), or by associating it
with a particular object type (objectContribution).

An objectContribution will cause the menu item to appear in popup menus for views or editors
where objects of the specified type are selected.

•

A viewerContribution will cause the menu item to appear in the popup menu of a view or editor
specified by id in the markup.

•

The readme tool defines both. Let's look at the object contribution first.

<extension point = "org.eclipse.ui.popupMenus">
 <objectContribution
 id="org.eclipse.ui.examples.readmetool"
 objectClass="org.eclipse.core.resources.IFile"
 nameFilter="*.readme">
 <action id="org.eclipse.ui.examples.readmetool.action1"
 label="%PopupMenus.action"
 icon="icons/ctool16/openbrwsr.gif"

 Welcome to Eclipse

 org.eclipse.ui.popupMenus 592

 menubarPath="additions"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 class="org.eclipse.ui.examples.readmetool.PopupMenuActionDelegate"
 enablesFor="1">
 </action>
 </objectContribution>
 ...

Object contribution

The action "Show Readme Action" is contributed for the object class IFile. This means that any view
containing IFile objects will show the contribution if IFile objects are selected. We see that the selection
criteria is restricted further with a name filter (nameFilter="*.readme") and for single selections
(enablesFor="1"). As we've discussed before, the registration of this menu does not run any code from our
plug−in until the menu item is actually selected.

When the menu item is selected, the workbench will run the specified class. Since the popup is declared as an
objectContribution, the supplied class must implement IObjectActionDelegate.

The action is implemented in PopupMenuActionDelegate.

 public void run(IAction action) {
 MessageDialog.openInformation(
 this.part.getSite().getShell(),
 "Readme Example",
 "Popup Menu Action executed");
 }

We can see the popup menu contribution when we select a readme file from the resource navigator.

 Welcome to Eclipse

org.eclipse.ui.popupMenus 593

Viewer contribution

A viewer contribution is used to contribute to a specific view or editor's popup menu by using its id. Here is
the readme tool's viewer contribution:

 ...
 <viewerContribution
 id="org.eclipse.ui.examples.readmetool2"
 targetID="org.eclipse.ui.examples.readmetool.outline">
 <action id="org.eclipse.ui.examples.readmetool.action1"
 label="%PopupMenus.action"
 icon="icons/ctool16/openbrwsr.gif"
 menubarPath="additions"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 class="org.eclipse.ui.examples.readmetool.ViewActionDelegate">
 </action>
 </viewerContribution>
</extension>

Note: The name viewerContribution is somewhat misleading, as it does not relate to JFace
viewers. A better name would be popupMenuContribution .

 Welcome to Eclipse

org.eclipse.ui.popupMenus 594

When the extension is a viewerContribution, the supplied class must implement the IEditorActionDelegate
or IViewActionDelegate interface, depending on whether the action is contributed to an editor's or view's
popup menu.

The targetID specifies the view whose popup menu will be altered. In this case, we are adding an action to
one of the readme tool views, the outliner. The action itself is similar to others that we've seen. We specify
the id, label, and icon of the action, and the path within the popup for our contribution. The action will be
shown only in the readme outline view's popup menu.

The interfaces required to contribute a viewerContribution to the popupMenus extension point are the same
as those required by the viewActions and editorActions extension points. If you want to contribute the same
action to the popup menu and the local menu of a view or editor, you can use the same class for both
extensions.

org.eclipse.ui.actionSets

Your plug−in can contribute menus, menu items, and tool bar items to the workbench menus and toolbar by
using the org.eclipse.ui.actionSets extension point. In order to reduce the clutter that would be caused by
having every plug−in's menu contributions shown at once, the contributions are grouped into action sets
which can be made visible by user preference.

You can see which action sets have been contributed to your workbench by choosing Window−>Customize
Perspective... from the workbench menu. This option will show you a dialog that lists action sets as groups of
commands. A checkmark by a command group means that the menu and tool bar actions are visible in the
workbench. You can select the name of the command group to see the list of available menu and toolbar
actions to the right. The figure below shows the list of command groups available in our workbench. (Your
workbench may look different depending on which plug−ins you have installed and which perspective is
active.)

 Welcome to Eclipse

 org.eclipse.ui.actionSets 595

The readme tool uses an action set to contribute several different "Open Readme Browser" actions to the
workbench menu. (We contributed a similar action to the popup menu of the resource navigator.) The
markup follows:

<extension point = "org.eclipse.ui.actionSets">
 <actionSet id="org_eclipse_ui_examples_readmetool_actionSet"
 label="%ActionSet.name"
 visible="true">
 <menu id="org_eclipse_ui_examples_readmetool"
 label="%ActionSet.menu"
 path="window/additions">
 <separator name="slot1"/>
 <separator name="slot2"/>
 <separator name="slot3"/>
 </menu>
 <action id="org_eclipse_ui_examples_readmetool_readmeAction"
 menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"
 toolbarPath="readme"
 label="%ReadmeAction.label"
 tooltip="%ReadmeAction.tooltip"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 icon="icons/ctool16/openbrwsr.gif"
 class="org.eclipse.ui.examples.readmetool. WindowActionDelegate"
 enablesFor="1">
 <selection class="org.eclipse.core.resources.IFile"
 name="*.readme">
 </selection>
 </action>

 Welcome to Eclipse

 org.eclipse.ui.actionSets 596

 ...
 </actionSet>
 </extension>

Wow, there's a lot going on here! Let's take it a step at a time, looking only at the first action for now.

First, the action set is declared and given a label. The label "ReadMe Actions" (defined for
%ActionSet.name key in the plug−in's properties file) is used to display the action set in the dialog shown
above. Since we set visible to true, the workbench will initially have the action set checked in the action set
list and the actions will be visible.

The rest of the action set declaration is concerned with defining the menu in which the actions appears and the
actions themselves.

We define a menu whose label appears in the workbench menus. The menu's path tells the workbench to
place the new menu in the additions slot of the window menu. (For a discussion of menu paths and slots, see
Menu and toolbar paths.) We also define some slots in our new menu so that actions can be inserted at
specific locations in our menu.

This markup alone is enough to cause the menu to appear in the workbench Window menu.

Next, we define the actions themselves.

The action definition (id, label, icon, class) is similar to the other actions we've seen in views, editors, and
popups. We'll focus here on what's different: where does the action go? We use menubarPath and
toolbarPath to indicate its location. First, we define the menubarPath to add the action to a slot in the menu
that we just defined ("window/org_eclipse_ui_examples_readmetool/slot1").

 Welcome to Eclipse

 org.eclipse.ui.actionSets 597

Then, we define a new toolbarPath to insert our actions in the workbench tool bar. Since we've defined a
new tool path, "readme", the workbench will decide where it goes relative to other plug−in's toolbar
contributions.

What happens when the action is selected by the user? The action is implemented by the class specified in the
class attribute. The action class must implement IWorkbenchWindowActionDelegate, or
IWorkbenchWindowPulldownDelegate if the action will be shown as a pull−down tool item in the tool bar.
Since we are not creating a pull−down tool item, we provide WindowActionDelegate. This class is similar to
ObjectActionDelegate. It launches the readme sections dialog when the user chooses the action. (We'll
discuss the sections dialog in Application dialogs.)

The action also supplies enabling conditions for its menu item and tool bar item. The menu and tool bar items
will only be enabled when a single (enablesFor="1") readme file (selectionClass
="org.eclipse.core.resources.IFile" name="*.readme") is selected. This action's menu and toolbar item
appear and are enabled by virtue of the markup in the plugin.xml file. None of the plug−in code will execute
until the user chooses the action and the workbench runs the action class.

We'll look at the other two actions later in the context of retargetable actions.

Application dialogs

When a standard dialog is too simple for your plug−in, you can build your own dialog using the Dialog class.
Earlier, we saw how the readme tool contributed an "Open Readme Browser" action in an action set. This
action set is shown in the workbench tool bar and Window−>Readme File Editor menu.

Now we are ready to look at the implementation of this action in the readme tool's WindowActionDelegate.

 public void run(IAction action) {

 Welcome to Eclipse

 Application dialogs 598

 SectionsDialog dialog = new SectionsDialog(window.getShell(),
 ReadmeModelFactory.getInstance().getSections(selection));
 dialog.open();
 }

The window action delegate for the action set uses the current selection in the resource navigator view (the
.readme file) to get a list of sections in the readme file. This list and the workbench window's shell are passed
to the SectionsDialog.

When the user selects the action, the SectionsDialog is opened.

The SectionsDialog is implemented in the readme tool plug−in by subclassing the Dialog class in the
org.eclipse.jface.dialogs package.

The Dialog class provides basic support for building a dialog shell window, creating the common dialog
buttons, and launching the dialog. The subclasses are responsible for handling the content of the dialog itself:

createDialogArea creates the SWT controls that represent the dialog contents. This is similar to
creating the controls for a view or editor.

The SectionsDialog creates an SWT list to display the list of sections. It uses a JFace viewer to
populate the list. (We'll look at JFace viewers in Viewers.) Note that our dialog does not have to
create any of the buttons for the dialog since this is done by our superclass.

 protected Control createDialogArea(Composite parent) {
 Composite composite = (Composite)super.createDialogArea(parent);
 List list = new List(composite, SWT.BORDER);
 ...
 ListViewer viewer = new ListViewer(list);
 ...
 return composite;
 }

•

configureShell is overridden to set an appropriate title for the shell window.

 protected void configureShell(Shell newShell) {
 super.configureShell(newShell);
 newShell.setText(MessageUtil.getString("Readme Sections"));
 ...
 }

•

 Welcome to Eclipse

 Application dialogs 599

okButtonPressed is overridden to perform whatever action is necessary when the user presses the
OK button. (You can also override cancelButtonPressed or buttonPressed(int) depending on the
design of your dialog.)

•

SectionsDialog does not implement an okButtonPressed method. It inherits the "do−nothing"
implementation from Dialog. This is not typical. Your dialog usually performs some processing in response to
one of the dialog buttons being pressed.

Dialogs can be as simple or as complicated as necessary. When you implement a dialog, most of your dialog
code is concerned with creating the SWT controls that represent its content area and handling any events
necessary while the dialog is up. Once a button is pressed by the user, the dialog can query the state of the
various controls (or viewers) that make up the dialog to determine what to do.

Preference pages

The platform UI provides support for storing plug−in preferences and showing them to the user on pages in
the workbench Preferences dialog. Plug−in preferences are key/value pairs, where the key describes the name
of the preference, and the value is one of several different types. (See Runtime preferences for a detailed
description of the runtime preferences infrastructure.)

How does a plug−in contribute a page for showing its preferences? We will use the readme tool example to
see how it contributes a preference page to the workbench and then look at some of the underlying support for
building preference pages.

Contributing a preference page

The org.eclipse.ui.preferencePages extension point allows you to contribute pages to the workbench
preferences (Window−>Preferences) dialog. The preferences dialog presents a hierarchical list of user
preference entries. Each entry displays a corresponding preference page when selected.

The readme tool uses this extension point to add the Readme Example preferences page.

 <extension
 point = "org.eclipse.ui.preferencePages">
 <page id="org.eclipse.ui.examples.readmetool.Page1"
 class="org.eclipse.ui.examples.readmetool.ReadmePreferencePage"
 name="%PreferencePage.name">
 </page>
 </extension>

This markup defines a preference page named "Readme Example" which is implemented by the class
ReadmePreferencePage. The class must implement the IWorkbenchPreferencePage interface.

The workbench uses the core runtime's preference mechanisms to access all nodes in the preference tree and
their corresponding pages. This list can be initialized from information in the preferences service without
running any plug−in code.

 Welcome to Eclipse

 Preference pages 600

The "Readme Example" preference is added to the top level of the preference tree on the left. Why? Because
a preference page contribution will be added as a root of the tree unless a category attribute is specified. (The
name category is somewhat misleading. Perhaps a better name is path.) The category attribute specifies the
id (or a sequence of ids from the root) of the parent page. For example, the following markup would create a
second readme tool preference page, "Readme Example Child Page," as a child of the original page.

 <extension
 point = "org.eclipse.ui.preferencePages">
 <page
 id="org.eclipse.ui.examples.readmetool.Page1"
 class="org.eclipse.ui.examples.readmetool.ReadmePreferencePage"
 name="%PreferencePage.name">
 </page>
 <page
 id="org.eclipse.ui.examples.readmetool.Page2"
 class="org.eclipse.ui.examples.readmetool.ReadmePreferencePage2"
 name="Readme Example Child Page"
 category="org.eclipse.ui.examples.readmetool.Page1>
 </page>
 </extension>

Once the user selects the entry for a preference page in the tree on the left, the workbench will create and
display a preference page using the class specified in the extension definition. This action is what activates

 Welcome to Eclipse

 Preference pages 601

the plug−in (if it wasn't already activated due to another user operation).

Implementing a preference page

Defining the page

Implementing a preference page is similar to creating a page for a wizard. The preference page supplies a
createContents method that creates the SWT controls representing the page content and adds listeners for any
events of interest. The page is responsible for creating and returning the composite that will parent all of the
controls in the page. The following snippet shows the highlights:

protected Control createContents(Composite parent)
{
 ...
 //composite_textField << parent
 Composite composite_textField = createComposite(parent, 2);
 Label label_textField = createLabel(composite_textField, MessageUtil.getString("Text_Field"));
 textField = createTextField(composite_textField);
 pushButton_textField = createPushButton(composite_textField, MessageUtil.getString("Change"));

 //composite_tab << parent
 Composite composite_tab = createComposite(parent, 2);
 Label label1 = createLabel(composite_tab, MessageUtil.getString("Radio_Button_Options"));

 //
 tabForward(composite_tab);
 //radio button composite << tab composite
 Composite composite_radioButton = createComposite(composite_tab, 1);
 radioButton1 = createRadioButton(composite_radioButton, MessageUtil.getString("Radio_button_1"));
 radioButton2 = createRadioButton(composite_radioButton, MessageUtil.getString("Radio_button_2"));
 radioButton3 = createRadioButton(composite_radioButton, MessageUtil.getString("Radio_button_3"));

 //composite_tab2 << parent
 Composite composite_tab2 = createComposite(parent, 2);
 Label label2 = createLabel(composite_tab2, MessageUtil.getString("Check_Box_Options")); //$NON−NLS−1$

 //
 tabForward(composite_tab2);
 //composite_checkBox << composite_tab2
 Composite composite_checkBox = createComposite(composite_tab2, 1);
 checkBox1 = createCheckBox(composite_checkBox, MessageUtil.getString("Check_box_1"));
 checkBox2 = createCheckBox(composite_checkBox, MessageUtil.getString("Check_box_2"));
 checkBox3 = createCheckBox(composite_checkBox, MessageUtil.getString("Check_box_3"));

 initializeValues();

 return new Composite(parent, SWT.NULL);
}

Most of the code in this method is concerned with creating and laying out the controls, so we won't dissect it
here. Here is what the corresponding page looks like:

 Welcome to Eclipse

Implementing a preference page 602

The other primary responsibility of a preference page is to react to the performOk message. Typically, this
method updates and stores the user preferences and, if necessary, updates any other plug−in objects to reflect
the change in preferences. The performDefaults method is used to restore preferences to their default state
when the user presses the Restore Defaults button.

You may override performApply if you have additional processing when the user selects Apply. The default
implementation is to call performOk.

Preference pages should override the doGetPreferenceStore() method to return a preference store for storing
their values.

Plug−in preference store

Preference stores are similar in nature to dialog settings. In Dialog settings, we saw how the
AbstractUIPlugin class maintains dialog settings during the lifetime of a plug−in. A similar strategy is
employed for user preferences. Preference stores are merely a convenience mechanism − they provide plug−in
level access to preferences that are actually stored using the runtime preferences service. Your plug−in can
add entries to a preference store and update the values as the user changes the settings in your preferences
page. Since preference stores use the platform preferences service, they will take care of saving these values at
the appropriate scope and location, and initializing the preference store using the appropriate mechanisms.

 Welcome to Eclipse

Implementing a preference page 603

The following code in the ReadmePreferencePage obtains the preference store for the ReadmePlugin.

 protected IPreferenceStore doGetPreferenceStore() {
 return ReadmePlugin.getDefault().getPreferenceStore();
 }

Because ReadmePlugin extends the AbstractUIPlugin class, it automatically inherits a preference store.
This preference store is initialized using the platform preferences service. The only thing the ReadmePlugin
has to do is implement a method that initializes the preference controls to their default values. These values
are used the first time the preference page is shown or when the user presses the Defaults button in the
preferences page.

protected void initializeDefaultPreferences(IPreferenceStore store) {
 // These settings will show up when Preference dialog
 // opens up for the first time.
 store.setDefault(IReadmeConstants.PRE_CHECK1, true);
 store.setDefault(IReadmeConstants.PRE_CHECK2, true);
 store.setDefault(IReadmeConstants.PRE_CHECK3, false);
 store.setDefault(IReadmeConstants.PRE_RADIO_CHOICE, 2);
 store.setDefault(IReadmeConstants.PRE_TEXT, MessageUtil.getString("Default_text")); //$NON−NLS−1$
}

Note: If there are no preferences saved anywhere for a plug−in, the plug−in will get an
empty preference store.

Retrieving and saving preferences

Once you've associated your plug−in's preference store with your preference page, you can implement the
logic for retrieving and saving the preferences.

Preference pages are responsible for initializing the values of their controls using the preferences settings from
the preference store. This process is similar to initializing dialog control values from dialog settings. The
ReadmePreferencePage initializes all of its controls in a single method, initializeValues, which is called
from its createContents method.

private void initializeValues() {
 IPreferenceStore store = getPreferenceStore();
 checkBox1.setSelection(store.getBoolean(IReadmeConstants.PRE_CHECK1));
 checkBox2.setSelection(store.getBoolean(IReadmeConstants.PRE_CHECK2));
 checkBox3.setSelection(store.getBoolean(IReadmeConstants.PRE_CHECK3));
 ...
}

When the OK (or Apply) button is pressed, the current values of the controls on the preference page should
be stored back into the preference store. The ReadmePreferencePage implements this logic in a separate
method, storeValues.

private void storeValues() {
 IPreferenceStore store = getPreferenceStore();
 store.setValue(IReadmeConstants.PRE_CHECK1, checkBox1.getSelection());
 store.setValue(IReadmeConstants.PRE_CHECK2, checkBox2.getSelection());
 store.setValue(IReadmeConstants.PRE_CHECK3, checkBox3.getSelection());
 ...
}

 Welcome to Eclipse

Implementing a preference page 604

When the user presses the Defaults button, the platform will restore all preference store values to the default
values specified in the plug−in class. However, your preference page is responsible for reflecting these default
values in the controls on the preference page. The ReadmePreferencePage implements this in
initializeDefaults.

 private void initializeDefaults() {
 IPreferenceStore store = getPreferenceStore();
 checkBox1.setSelection(store.getDefaultBoolean(IReadmeConstants.PRE_CHECK1));
 checkBox2.setSelection(store.getDefaultBoolean(IReadmeConstants.PRE_CHECK2));
 checkBox3.setSelection(store.getDefaultBoolean(IReadmeConstants.PRE_CHECK3));
 ...
 }

Field editors

The implementation of a preference page is primarily SWT code. SWT code is used to create the preference
page controls, set the values of the controls, and retrieve the values of the controls. The
org.eclipse.jface.preference package provides helper classes, called field editors, that create the widgets and
implement the value setting and retrieval code for the most common preference types. The platform provides
field editors for displaying and updating many value types, including booleans, colors, strings, integers, fonts,
and file names.

FieldEditorPreferencePage implements a page that uses these field editors to display and store the
preference values on the page. Instead of creating SWT controls to fill its contents, a
FieldEditorPreferencePage subclass creates field editors to display the contents. All of the fields on the
page must be implemented as field editors. The following is a snippet from the debug UI preferences page:

protected void createFieldEditors() {
 addField(new BooleanFieldEditor(IDebugUIConstants.PREF_BUILD_BEFORE_LAUNCH,
 DebugPreferencesMessages.getString("DebugPreferencePage.auto_build_before_launch"),
 SWT.NONE, getFieldEditorParent()));
 ...
 String[][] perspectiveNamesAndIds = getPerspectiveNamesAndIds();
 addField(new ComboFieldEditor(IDebugUIConstants.PREF_SHOW_DEBUG_PERSPECTIVE_DEFAULT,
 DebugPreferencesMessages.getString("DebugPreferencePage.Default_perspective_for_Debug_2"), //$NON−NLS−1$
 perspectiveNamesAndIds,
 getFieldEditorParent()));
 ...
}

Each field editor is assigned the name of its corresponding preference key and the text label for the SWT
control that it will create. The kind of control created depends on the type of field editor. For example, a
boolean field editor creates a checkbox.

Since the preference page is associated with a preference store (specified in the doGetPreferenceStore
method), the code for storing the current values, for initializing the control values from the preference store,
and for restoring the controls to their default values can all be implemented in the
FieldEditorPreferencePage.

The FieldEditorPreferencePage will use a grid layout with one column as the default layout for field editor
widgets. For special layout requirements, you can override the createContents method.

 Welcome to Eclipse

 Field editors 605

The plug−in class

So far, we've been looking at the different extensions that are provided by the readme tool. Let's look at the
general definition of the readme tool plug−in.

Plug−in definition

The readme tool plug−in is defined at the top of the plugin.xml file.

<?xml version="1.0" encoding="UTF−8"?>
<?eclipse version="3.0"?>
<plugin
 id="org.eclipse.ui.examples.readmetool"
 name="%Plugin.name"
 version="2.1.0"
 provider−name="%Plugin.providerName"
 class="org.eclipse.ui.examples.readmetool.ReadmePlugin">

 <runtime>
 <library name="readmetool.jar"/>
 </runtime>
 <requires>
 <import plugin="org.eclipse.ui"/>
 <import plugin="org.eclipse.core.resources"/>
 <import plugin="org.eclipse.core.runtime.compatibility"/>
 <import plugin="org.eclipse.ui.views"/>
 <import plugin="org.eclipse.ui.ide"/>
 <import plugin="org.eclipse.jface.text"/>
 <import plugin="org.eclipse.text"/>
 <import plugin="org.eclipse.ui.workbench.texteditor"/>
 <import plugin="org.eclipse.ui.editors"/>
 </requires>
 ...

The plug−in definition includes the name, id, version, and provider name of the plug−in. We saw most of
these parameters before in our hello world plug−in. The readme tool also defines a specialized plug−in class,
ReadmePlugin.

The name of the jar file is also provided. File names specified in a plugin.xml file are relative to the plug−in's
directory, so the readme tool's jar file should be located directly in the plug−in's directory.

The requires element informs the platform of the readme tool's dependencies. The workbench UI plug−ins
are listed as required plug−ins, along with the various core, jface, and text plug−ins.

AbstractUIPlugin

The ReadmePlugin class represents the readme tool plug−in and manages the life cycle of the plug−in. As
we saw in the Hello World example, you don't have to specify a plug−in class. The platform will provide one
for you. In this case, our plug−in needs to initialize UI related data when it starts up. The platform class
AbstractUIPlugin provides a structure for managing UI resources and is extended by ReadmePlugin.

AbstractUIPlugin uses the generic startup and shutdown methods to manage images, dialog settings, and a

 Welcome to Eclipse

 The plug−in class 606

preference store during the lifetime of the plug−in. We'll look at the specifics of the ReadmePlugin class
when we work with dialogs and preferences.

 Welcome to Eclipse

 The plug−in class 607

Dialogs and wizards
We've seen how to extend the workbench UI by adding views, editors, and actions to the workbench. Now
we can tie it all together by launching our own dialogs in response to these actions.

The JFace UI framework provides several standard dialogs and a framework for building your own dialogs
and wizards. We'll look at the different kinds of dialogs and wizards and how to build them.

We'll also cover some simple workbench extensions for contributing wizards.

Standard dialogs

The package org.eclipse.jface.dialogs defines the basic support for dialogs. This package provides standard
dialogs for displaying user messages and obtaining simple input from the user.

MessageDialog displays a message to the user. You can set the dialog title, image, button text, and
message in the constructor for this dialog.

•

ErrorDialog displays information about an error. You can set the dialog title and message for the
dialog. You can also supply an IStatus object which the dialog will use to obtain an error message.

•

InputDialog allows the user to enter text. You can set the dialog title, default text value, and supply
an object that will validate the text input.

•

ProgressMonitorDialog shows progress to the user during the running of a long operation.•

The standard dialogs are designed so that you can completely specify the dialog in its constructor. We saw a
MessageDialog in action in the readme tool's view action:

 MessageDialog.openInformation(
 view.getSite().getShell(),"Readme Editor","View Action executed");

Dialog settings

The org.eclipse.jface.dialogs package provides a utility class, DialogSettings, for storing and retrieving
keyed values. You can use this class to save and retrieve primitive data types and string values that you
associate with key names. The settings are loaded and saved using an XML file.

AbstractUIPlugin provides support for plug−in wide dialog settings stored in an XML file in your plug−in's
directory. If a dialog settings file is not found in your plug−in directory, an empty DialogSettings will be
created for you. When the plug−in is shut down, any settings that were added to it will be saved in an XML
file and retrieved the next time the plug−in is started up.

You can access your dialog settings anywhere in your plug−in code. The following snippet shows how you
could obtain the dialog settings for the readme tool.

 IDialogSettings settings = ReadmePlugin.getDefault().getDialogSettings();

Dialogs and wizards 608

Values are stored and retrieved using get and put methods. The get methods are named after the type of
primitive that is being accessed. You can store and retrieve boolean, long, double, float, int, array, and string
values. The following snippet shows how we could use dialog settings to initialize control values in a dialog.

 protected Control createDialogArea(Composite parent) {
 IDialogSettings settings = ReadmePlugin.getDefault().getDialogSettings();
 checkbox = new Button(parent,SWT.CHECK);
 checkbox.setText("Generate sample section titles");
 // initialize the checkbox according to the dialog settings
 checkbox.setSelection(settings.getBoolean("GenSections"));
 }

The value of the setting can be stored later when the ok button is pressed.

 protected void okPressed() {
 IDialogSettings settings = ReadmePlugin.getDefault().getDialogSettings();
 // store the value of the generate sections checkbox
 settings.put("GenSections", checkbox.getSelection());
 super.okPressed();
 }

Wizards

Wizards are used to guide the user through a sequenced set of tasks. Your plug−in can contribute wizards at
predefined extension points in the workbench. It can also create and launch its own wizards.

When you contribute to a workbench wizard extension point, the actions that launch the wizard are already set
up by the workbench. You need only supply the wizard that will be used.

If you need to launch other wizards that are not already defined in workbench wizard extension points, you
must launch them yourself. You can launch your own wizards by adding an action to a view, editor, popup, or
an action set.

A wizard is composed of several different underlying parts.

 Welcome to Eclipse

 Wizards 609

Wizard dialog

The wizard dialog (WizardDialog) is the top level dialog in a wizard. It defines the standard wizard buttons
and manages a set of pages that are provided to it.

When you contribute to a workbench wizard extension, you do not have to create a wizard dialog. One is
created on your behalf by the workbench, and your wizard is set into it.

The wizard dialog performs the enabling and disabling of the Next, Back, and Finish buttons based on
information it obtains from the wizard and the current wizard page.

Wizard

The wizard (IWizard) controls the overall appearance and behavior of the wizard, such as title bar text,
image, and the availability of a help button. Wizards often use a corresponding DialogSettings to obtain (and
store) the default values for the settings of controls on the wizard pages.

The Wizard class implements many of the details for standard wizard behavior. You typically extend this
class to implement behavior specific to your wizard. The primary responsibilities of your wizard will include:

Creating and adding your pages to your wizard•
Implementing the behavior that should occur when the user presses the Finish button.•

Wizard page

The wizard page (IWizardPage) defines the controls that are used to show the content of the wizard page. It
responds to events in its content areas and determines when the page is completed.

Your wizard page typically extends the WizardPage class. The primary responsibilities of your wizard page
will include:

creating the SWT controls that represent the page•
determing when the user has supplied enough information to complete the page (that is, when the user
can move to the next page.)

•

org.eclipse.ui.newWizards

You can add a wizard to the File > New > menu options in the workbench using the
org.eclipse.ui.newWizards extension point. The readme tool example uses this extension point definition to
add the Readme File wizard:

<extension
 point = "org.eclipse.ui.newWizards">
 <category
 id = "org.eclipse.ui.examples.readmetool.new"
 parentCategory="org.eclipse.ui.Examples"
 name="%NewWizard.category">

 Welcome to Eclipse

 Wizard dialog 610

 </category>
 <wizard
 id = "org.eclipse.ui.examples.readmetool.wizards.new.file"
 name = "%NewWizard.name"
 class="org.eclipse.ui.examples.readmetool.ReadmeCreationWizard"
 category="org.eclipse.ui.Examples/org.eclipse.ui.examples.readmetool.new"
 icon="icons/obj16/newreadme_wiz.gif">
 <description>%NewWizard.desc</description>
 <selection class="org.eclipse.core.resources.IResource"/>
 </wizard>
</extension>

The category describes the grouping for the wizard. An optional parentCategory establishes the new
category as a child of an existing category.

Top level categories will appear in the File > New menu. In this example, the parentCategory is set to an
"Examples" category. Where did the parent category come from? The org.eclipse.ui plug−in defines a
standard examples category in its markup:

<extension
 point="org.eclipse.ui.newWizards">
 <category
 name="%NewWizards.Category.Examples"
 id="org.eclipse.ui.Examples">
 </category>
 ...

This category appears in the File > New menu.

The readme tool's category name defines the label that is used for the next layer of grouping underneath the
parent category. These categories are shown as the second level in the tree shown in the New Example
wizard. The wizard's name and icon are shown underneath when you expand the category. The description
of the selected wizard is shown at the top of the wizard when you select it.

 Welcome to Eclipse

 Wizard dialog 611

This information about the wizard appears solely because of the markup in the plugin.xml file. None of the
plug−in code runs until the user chooses the Next button. Once this happens, the workbench will instantiate
the wizard class specified in the markup and pass it an expected selection class.

The class identified in this extension (ReadmeCreationWizard) must implement the INewWizard interface.
Most wizards do so by extending the platform Wizard class although this is an implementation mechanism
and not required by the extension point.

The wizard itself does little but create the pages inside of it. Let's look at the implementation of the page first,
and then come back to the wizard.

Pages

The workbench provides base wizard page classes that support the type of processing performed for each
wizard extension point. You can use these pages, or extend them to add additional processing.

The goal of the ReadmeCreationWizard is to create a new file, add the required content to the file, and as an
option, open an editor on the file. Our page needs to define the controls that let the user specify what content
goes in the file and whether an editor should be launched.

We create the wizard page, ReadmeCreationPage, by extending WizardNewFileCreationPage. The
controls for a wizard page are defined in a fashion similar to the definition of the controls for a view or an
editor. The page implements a createControl method, creating the necessary SWT widgets as children of the

 Welcome to Eclipse

org.eclipse.ui.newWizards 612

supplied Composite. Since the superclass already adds widgets that support new file processing, we need only
extend the createControl method in our wizard page to add the additional checkboxes that control generation
of sections and opening of the editor.

 public void createControl(Composite parent) {
 // inherit default container and name specification widgets
 super.createControl(parent);
 Composite composite = (Composite)getControl();
 ...
 // sample section generation group
 Group group = new Group(composite,SWT.NONE);
 group.setLayout(new GridLayout());
 group.setText(MessageUtil.getString("Automatic_sample_section_generation"));
 group.setLayoutData(new GridData(GridData.GRAB_HORIZONTAL |
 GridData.HORIZONTAL_ALIGN_FILL));
 ...
 // sample section generation checkboxes
 sectionCheckbox = new Button(group,SWT.CHECK);
 sectionCheckbox.setText(MessageUtil.getString("Generate_sample_section_titles"));
 sectionCheckbox.setSelection(true);
 sectionCheckbox.addListener(SWT.Selection,this);

 subsectionCheckbox = new Button(group,SWT.CHECK);
 subsectionCheckbox.setText(MessageUtil.getString("Generate_sample_subsection_titles"));
 subsectionCheckbox.setSelection(true);
 subsectionCheckbox.addListener(SWT.Selection,this);
 ...
 // open file for editing checkbox
 openFileCheckbox = new Button(composite,SWT.CHECK);
 openFileCheckbox.setText(MessageUtil.getString("Open_file_for_editing_when_done"));
 openFileCheckbox.setSelection(true);
 ...
 }

You should be able to follow this code if you understand the concepts in Standard Widget Toolkit.

The basic patterns for implementing a page include:

Add listeners to any controls that affect dynamic behavior of the page. For example, if selecting an
item in a list or checking a box affects the state of other controls of the page, add a listener so you can
change the state of the page.

•

Populate the controls with data based on the current selection when the wizard was launched. Some of
the data may depend on the values in other controls. Some of the controls may use dialog settings to
initialize their values.

•

Use setPageComplete(true) when enough information is provided by the user to exit the page (and
move to the next page or finish the wizard.)

•

The ReadmeCreationPage class inherits a lot of this behavior from the WizardNewFileCreationPage.
Browse the implementation of these classes for further information.

Now that we understand what a page does, let's look again at the wizard.

Wizard

The wizard is responsible for creating the pages and providing the "finish" logic.

 Welcome to Eclipse

org.eclipse.ui.newWizards 613

The basic patterns for implementing a wizard include:

Implement the init method to set up local variables for context information such as the workbench
and the current selection.

•

 public void init(IWorkbench workbench,IStructuredSelection selection) {
 this.workbench = workbench;
 this.selection = selection;
 setWindowTitle(MessageUtil.getString("New_Readme_File"));
 setDefaultPageImageDescriptor(ReadmeImages.README_WIZARD_BANNER);
 }

Implement addPages by creating instances of the pages.•

 public void addPages() {
 mainPage = new ReadmeCreationPage(workbench, selection);
 addPage(mainPage);
 }

Implement performFinish to finish the task.•

Multi−page wizards typically handle the finish logic in the wizard itself, since each page will
contribute information that determines how the task is implemented. Single page wizards can
implement the logic in the wizard or ask the page to finish the job. The approach you take largely
depends on where your important state is kept. In the case of the readme wizard, we are going to ask
our page to handle the finish processing.

 public boolean performFinish() {
 return mainPage.finish();
 }

The completed wizard looks like this:

 Welcome to Eclipse

org.eclipse.ui.newWizards 614

org.eclipse.ui.importWizards

You can add a wizard to the File > Import menu option in the workbench using the
org.eclipse.ui.importWizards extension point. The process for defining the extension and implementing the
wizard is similar to org.eclipse.ui.newWizards. The primary difference in the markup is that import wizards
do not define or assign categories for the wizards themselves. The wizards appear uncategorized in a wizard
dialog.

 Welcome to Eclipse

 org.eclipse.ui.importWizards 615

The wizard supplied in the class parameter of the markup must implement IImportWizard. Its pages are
typically extended from WizardImportPage.

org.eclipse.ui.exportWizards

You can add a wizard to the File > Export menu option in the workbench using the
org.eclipse.ui.exportWizards extension point. The process for defining the extension and implementing the
wizard is similar to org.eclipse.ui.newWizards. The primary difference in the markup is that export wizards
do not define or assign categories for the wizards themselves. The wizards appear uncategorized in a wizard
dialog.

 Welcome to Eclipse

 org.eclipse.ui.exportWizards 616

The wizard supplied in the class parameter of the markup must implement IExportWizard. Its pages are
typically extended from WizardExportPage.

Wizard dialogs

The previous example supplied a wizard for a specified extension point. Another, perhaps more common, case
is that you want to launch your own plug−in's wizard from some action that you have defined. (In Workbench
menu contributions, we discuss the ways you can contribute actions to the workbench.)

Wizards are displayed in the UI by placing them in a containing dialog. This detail is handled for you when
you contribute to a wizard extension. When you are launching your own wizard, you must display it yourself
by wrapping it in a WizardDialog.

For example, the ReadmeCreationWizard could be launched independently by creating a wizard dialog and
associating it with the ReadmeCreationWizard. The following code snippet shows how this could be done
from some action delegate. (The method assumes that we know the workbench and the selection.)

 public void run(IAction action) {

 Welcome to Eclipse

 Wizard dialogs 617

 // Create the wizard
 ReadmeCreationWizard wizard = new ReadmeCreationWizard();
 wizard.init(getWorkbench(), selection);

 // Create the wizard dialog
 WizardDialog dialog = new WizardDialog
 (getWorkbench().getActiveWorkbenchWindow().getShell(),wizard);
 // Open the wizard dialog
 dialog.open();
 }

If you need to embed a wizard anywhere else in your plug−in's user interface, the interface
IWizardContainer defines the necessary protocol for hosting a wizard.

Multi−page wizards

If your wizard implements a complex task, you may want to use more than one page to obtain information
from the user.

In general, the implementation pattern is the same as for a single page wizard.

Create a WizardPage subclass for each page in your wizard. Each wizard page should use
setPageComplete(true) when it has enough information.

•

Create a Wizard subclass which adds each page to the wizard.•
Implement a performFinish method to perform the finish logic.•

When you design a wizard, it's good practice to put all the required information on the first page if possible.
This way, the user does not have to traverse the entire set of pages in order to finish the task. Optional
information can go on subsequent pages.

When a page requires input from the user before it can be considered complete, use setPageComplete(false)
to signify that it is not complete. As the page receives events from its controls, it rechecks to see if the page is
complete. Once the required input is provided, setPageComplete(true) signals completion.

The Wizard class handles the logic required to enable and disable the Finish button according to the
completion state of the pages. The Finish button is only enabled for a wizard when each of its pages have set
its completion state to true.

Validation and page control

The classes WizardNewFileCreationPage and CreateReadme1 show a common pattern for implementing
page validation.

WizardNewFileCreationPage defines a common event handler for all SWT events which validates the page.
This means the page will be validated whenever an event is received from a widget to which the page added a
listener.

 public void handleEvent(Event event) {
 setPageComplete(validatePage());
 }

 Welcome to Eclipse

 Multi−page wizards 618

Once the ReadmeCreationPage creates its controls, it sets the state of the page using validatePage.

 public void createControl(Composite parent) {
 super.createControl(parent);
 // create controls, add listeners, and layout the page
 ...
 // sample section generation checkboxes
 sectionCheckbox = new Button(group,SWT.CHECK);
 sectionCheckbox.setText(MessageUtil.getString("Generate_sample_section_titles"));
 sectionCheckbox.setSelection(true);
 sectionCheckbox.addListener(SWT.Selection,this);

 subsectionCheckbox = new Button(group,SWT.CHECK);
 subsectionCheckbox.setText(MessageUtil.getString("Generate_sample_subsection_titles"));
 subsectionCheckbox.setSelection(true);
 subsectionCheckbox.addListener(SWT.Selection,this);
 ...

setPageComplete(validatePage());
 }

Using this pattern, a wizard page can put all of its page validation code in one method, validatePage(). This
method determines the initial state of the page and recalculates the state any time it receives an event from a
widget on its page.

Since we added a listener to the section checkbox, we will recompute the valid state of the page whenever that
checkbox receives a selection event. Note that the page's handleEvent method must call super to ensure that
the inherited page validation behavior occurs in addition to any specific event handling for this page.

 public void handleEvent(Event e) {
 Widget source = e.widget;
 if (source == sectionCheckbox) {
 if (!sectionCheckbox.getSelection())
 subsectionCheckbox.setSelection(false);
 subsectionCheckbox.setEnabled(sectionCheckbox.getSelection());
 }
 super.handleEvent(e);
 }

Actions and contributions

The action classes allow you to define user commands independently from their presentation in the UI. This
gives you the flexibility to change the presentation of an action in your plug−in without changing the code
that actually performs the command once it has been chosen. The contribution classes are used to manage the
actual UI items representing the commands. You don't program to the contribution classes, but you will see
them in some of the workbench and JFace API.

Actions

An action (IAction) represents a command that can be triggered by the end user. Actions are typically
associated with buttons, menu items, and items in tool bars.

Although actions do not place themselves in the UI, they do have UI oriented properties, such as tool tip text,
label text, and an image. This allows other classes to construct widgets for the presentation of the action.

 Welcome to Eclipse

 Actions and contributions 619

When the user triggers the action in the UI, the action's run method is invoked to do the actual work. A
common pattern in the run method is to query the workbench selections and manipulate the objects that are
selected. Another common pattern is to launch a wizard or dialog when an action is chosen.

You should not directly implement the IAction interface. Instead, you should subclass the Action class.
Browse the subclasses of this class to see many of the common patterns for actions. The code below
implements the "About" action. It is one of the simpler actions in the workbench.

 public void run() {
 new AboutDialog(workbenchWindow.getShell()).open();
 }

Earlier we saw the workbench interfaces IViewActionDelegate and IEditorActionDelegate. These interfaces
are used when contributing view actions or editor actions to the workbench. The workbench action delegates
are initialized with a reference to their associated view or editor. With this knowledge, they can navigate to
the workbench page or window, accessing selections or any other information needed to perform the action.

You will implement your own action classes whenever you want to define a command in your plug−in. If you
are contributing actions to other views and editors, you will implement action delegates.

Contribution items

A contribution item (IContributionItem) represents the UI portion of an action. More specifically, it
represents an item that is contributed to a shared UI resource such as a menu or tool bar.

Contribution items know how to fill a specific SWT widget with the appropriate SWT item that represents the
contribution.

You don't have to worry about creating a contribution item when you are contributing actions to the
workbench UI. This is done on your behalf when the workbench creates UI items for the actions that you have
defined.

Contribution managers

A contribution manager (IContributionManager) represents a collection of contribution items that will be
presented in the UI. You can add and insert contribution items using named contribution ids to place the items
in the appropriate order. You can also find items by id and remove individual items.

Each implementation of IContributionManager knows how to fill a specific SWT widget with its items.
JFace provides contribution managers for menus (IMenuManager), tool bars (IToolBarManager), and
status lines (IStatusLineManager).

As a plug−in developer, you do not need to implement these interfaces, but you will see references to some of
these managers in API methods.

User interface resources

The org.eclipse.jface.resource package defines classes that help plug−ins manage UI resources such as fonts

 Welcome to Eclipse

 Contribution items 620

and icons.

Many of the workbench extension points allow plug−ins to supply icons that can be used to show their
contributions in the workbench. Since GUI operating systems support a limited number of images or fonts in
memory at once, a plug−in's UI resources must be carefully managed and sometimes shared between widgets.

We've already seen several references to icons in the readme tool plug−in. Some of its icons are specified in
the plugin.xml markup.

<extension
 point="org.eclipse.ui.views">
 <category
 id="org.eclipse.ui.examples.readmetool"
 name="%Views.category">
 </category>
 <view
 id="org.eclipse.ui.examples.readmetool.views.SectionsView"
 name="%Views.ReadmeSections"

icon="icons/view16/sections.gif"
 category="org.eclipse.ui.examples.readmetool"
 class="org.eclipse.ui.examples.readmetool.ReadmeSectionsView">
 </view>
</extension>

We've also seen code that describes images on the fly. The following is from the readme tool's
ReadmeEditorActionBarContributor.

public ReadmeEditorActionBarContributor() {
 ...
 action1 = new EditorAction(MessageUtil.getString("Editor_Action1"));
 action1.setToolTipText(MessageUtil.getString("Readme_Editor_Action1"));
 action1.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION1_IMAGE_DISABLE);
 action1.setImageDescriptor(ReadmeImages.EDITOR_ACTION1_IMAGE_ENABLE);
 ...

JFace provides the basic support classes that allow plug−ins to manage their icons and fonts without worrying
about when the corresponding platform graphics objects are created and destroyed. These support classes are
used directly by plug−ins as shown above, or indirectly when the workbench uses these classes to obtain
images that are described in extension point markup.

Image descriptors and the registry

The SWT Image class represents an image from the operating system's perspective. Because most GUI
operating systems have a limit on the number of images that can be open at once, plug−ins should be very
careful when creating them, and ensure that they also dispose of them properly when finished using them. By
using the JFace ImageDescriptor and ImageRegistry classes instead of the SWT image, plug−ins can
generally avoid creating, managing, and disposing these images directly.

Image descriptor

The ImageDescriptor class can be used as a lightweight description of an image. It specifies everything that
is needed to create an image, such as the URL or filename where the image can be obtained.
ImageDescriptors do not allocate an actual platform image unless specifically requested using the
createImage() method.

 Welcome to Eclipse

 Image descriptors and the registry 621

Image descriptors are the best strategy when your code is structured such that it defines all the icons in one
place and allocates them as they are needed. Image descriptors can be created at any time without concern for
OS resources, making it convenient to create them all in initialization code.

Image registry

The ImageRegistry class is used to keep a list of named images. Clients can add image descriptors or SWT
images directly to the list. When an image is requested by name from the registry, the registry will return the
image if it has been created, or create one from the descriptor. This allows clients of the registry to share
images.

Images that are added to or retrieved from the registry must not be disposed by any client. The registry is
responsible for disposing of the image since the images are shared by multiple clients. The registry will
dispose of the images when the platform GUI system shuts down.

Plug−in patterns for using images

Specifying the image in the plugin.xml

Where possible, specify the icon for your plug−in's UI objects in the plugin.xml file. Many of the workbench
extension points include configuration parameters for an icon file. By defining your icons in your extension
contribution in the plugin.xml, you leave the image management strategy up the platform. Since the icons are
typically kept in your plug−in's directory, this allows you to specify the icons and manage the files all in one
place.

The other patterns should only be considered when you can't specify the icon as part of your extension
contribution.

Explicit creation

Explicitly creating an image is the best strategy when the image is infrequently used and not shared. The
image can be created directly in SWT and disposed after it is used.

Images can also be created explicitly using an ImageDescriptor and invoking the createImage() method. As
in the first case, the dispose() method for the image must be invoked after the image is no longer needed. For
example, if a dialog creates an image when it is opened, it should dispose the image when it is closed.

Image registry

When an image is used frequently in a plug−in and shared across many different objects in the UI, it is useful
to register the image descriptor with an ImageRegistry. The images in the registry will be shared with any
object that queries an image by the same name. You must not dispose any images in the registry since they are
shared by other objects.

Adding an image to the image registry is the best strategy when the image is used frequently, perhaps through
the lifetime of the plug−in, and is shared by many objects. The disadvantage of using the registry is that
images in the registry are not disposed until the GUI system shuts down. Since there is a limit on the number
of platform (SWT) images that can be open at one time, plug−ins should be careful not to register too many
icons in a registry.

 Welcome to Eclipse

Image descriptors and the registry 622

The class AbstractUIPlugin includes protocol for creating a plug−in wide image registry.

Label providers

When an icon is used frequently to display items in a particular viewer, it can be shared among similar items
in the viewer using a label provider. Since a label provider is responsible for returning an image for any object
in a viewer, it can control the creation of the image and any sharing of images across objects in the viewer.

The label provider can use any of the previously discussed techniques to produce an image. If you browse the
various implementations of getImage() in the LabelProvider subclasses, you will see a variety of approaches
including caching a single icon for objects and maintaining a table of images by type. Images created by a
label provider must be disposed in the provider's dispose() method, which is called when the viewer is
disposed.

Using a label provider is a good compromise between explicit creation and the image registry. It promotes
sharing of icons like the image registry, yet still maintains control over the creation and disposal of the actual
image.

Plug−in wide image class

When fine−tuning a plug−in, it is common to experiment with all of these different image creation patterns. It
can be useful to isolate the decision making regarding image creation in a separate class and instruct all clients
to use the class to obtain all images. This way, the creation sequence can be tuned to reflect the actual
performance characteristics of the plug−in.

Font registry

Fonts are another limited resource in platform operating systems. The creation and disposal issues are the
same for fonts as for images, requiring similar speed/space tradeoffs. In general, fonts are allocated in SWT
by requesting a font with a platform dependent font name.

The FontRegistry class keeps a table of fonts by their name. It manages the allocation and disposal of the
font.

In general, plug−ins should avoid allocating any fonts or describing fonts with platform specific names.
Although the font registry is used internally in JFace, it is typically not used by plug−ins. The
JFaceResources class should be used to access common fonts.

It is very common to allow users to specify their preferences for the application's fonts in a preference page.
In these cases, the FontFieldEditor should be used to obtain the font name from the user, and a FontRegistry
may be used to keep the font. The FontFieldEditor is only used in preference pages.

JFaceResources

The class JFaceResources controls access to common platform fonts and images. It maintains an internal font
and image registry so that clients can share named fonts and images.

There are many techniques used in the workbench and other plug−ins to share images where required. The
JFaceResources image registry is not widely used across the workbench and plug−in code.

 Welcome to Eclipse

Plug−in patterns for using images 623

Use of fonts is much simpler. The workbench and most plug−ins use the JFaceResources class to request
fonts by logical name. Methods such as getDialogFont() and getDefaultFont() are provided so that plug−ins
can use the expected fonts in their UI.

Widgets

SWT includes many rich features, but a basic knowledge of the system's core − widgets, layouts, and events −
is all that is needed to implement useful and robust applications.

Widget application structure

When you are contributing UI elements using platform workbench extensions, the mechanics of starting up
SWT are handled for you by the workbench.

If you are writing an SWT application from scratch outside of the workbench, you must understand more
about SWT's application structure.

A typical stand−alone SWT application has the following structure:

Create a Display which represents an SWT session.•
Create one or more Shells which serve as the main window(s) for the application.•
Create any other widgets that are needed inside the shell.•
Initialize the sizes and other necessary state for the widgets. Register listeners for widget events that
need to be handled.

•

Open the shell window.•
Run the event dispatching loop until an exit condition occurs, which is typically when the main shell
window is closed by the user.

•

Dispose the display.•

The following code snippet is adapted from the org.eclipse.swt.examples.helloworld.HelloWorld2
application. Since the application only displays the string "Hello World," it does not need to register for any
widget events.

 public static void main (String [] args) {
 Display display = new Display ();
 Shell shell = new Shell (display);
 Label label = new Label (shell, SWT.CENTER);
 label.setText ("Hello_world");
 label.setBounds (shell.getClientArea ());
 shell.open ();
 while (!shell.isDisposed ()) {
 if (!display.readAndDispatch ()) display.sleep ();
 }
 display.dispose ();
 }

Display

The Display represents the connection between SWT and the underlying platform's GUI system. Displays are
primarily used to manage the platform event loop and control communication between the UI thread and other

 Welcome to Eclipse

 Widgets 624

threads. (See Threading issues for clients for a complete discussion of UI threading issues.)

For most applications you can follow the pattern that is used above. You must create a display before creating
any windows, and you must dispose of the display when your shell is closed. You don't need to think about
the display much more unless you are designing a multi−threaded application.

Shell

A Shell is a "window" managed by the OS platform window manager. Top level shells are those that are
created as a child of the display. These windows are the windows that users move, resize, minimize, and
maximize while using the application. Secondary shells are those that are created as a child of another shell.
These windows are typically used as dialog windows or other transient windows that only exist in the context
of another window.

Parents and children

All widgets that are not top level shells must have a parent. Top level shells do not have a parent, but they are
created in association with a particular Display. You can access this display using getDisplay(). All other
widgets are created as descendants (direct or indirect) of top level shells.

Composite widgets are widgets that can have children.

When you see an application window, you can think of it as a widget tree, or hierarchy, whose root is the
shell. Depending on the complexity of the application, there may be a single child of the shell, several
children, or nested layers of composites with children.

Widget life cycle

When your application creates a widget, SWT immediately creates the underlying platform widget. This
eliminates the need for code that operates differently depending upon whether the underlying OS widget
exists. It also allows a majority of the widget's data to be kept in the platform layer rather than replicating it in
the toolkit. This means that the toolkit's concept of a widget lifecycle must conform to the rules of the
underlying GUI system.

Widget creation

Most GUI platforms require you to specify a parent when you create a widget. Since SWT creates a platform
widget as soon as you create a toolkit widget, the parent widget must be specified in the constructor for the
widget.

Style bits

Some widget properties must be set in the OS at the time a widget is created and cannot be subsequently
changed. For example, a list may be single or multi−selection, and may or may not have scroll bars.

These properties, called styles, must be set in the constructor. All widget constructors take an int argument
that specifies the bitwise OR of all desired styles. In some cases, a particular style is considered a hint, which
means that it may not be available on all platforms, but will be gracefully ignored on platforms that do not
support it.

 Welcome to Eclipse

Widget application structure 625

The style constants are located in the SWT class as public static fields. A list of applicable constants for each
widget class is contained in the API Reference for SWT.

Resource disposal

The OS platforms underneath SWT require explicit allocation and freeing of OS resources. In keeping with
the SWT design philosophy of reflecting the platform application structure in the widget toolkit, SWT
requires that you explicitly free any OS resources that you have allocated. In SWT, the Widget.dispose()
method is used to free resources associated with a particular toolkit object.

The rule of thumb is that if you create the object, you must dispose of it. Here are some specific ground rules
that further explain this philosophy:

If you create a widget or graphic object using a constructor, you must dispose of it manually when
you are finished using it.

•

If you get a widget or graphic object without using a constructor, you must not dispose of it manually
since you did not allocate it.

•

If you pass a reference to your widget or graphic object to another object, you must take care not to
dispose of it while it is still being used. (Similar to the rule described in Plug−in patterns for using
images.)

•

When the user closes a Shell, the shell and all of its child widgets are recursively disposed. In this
case, you do not need to dispose of the widgets themselves. However, you must free any graphics
resources allocated in conjunction with those widgets.

•

If you create a graphic object for use during the lifetime of one of your widgets, you must dispose of
the graphic object when the widget is disposed. This can be done by registering a dispose listener for
your widget and freeing the graphic object when the dispose event is received.

•

There is one exception to these rules. Simple data objects, such as Rectangle and Point, do not use operating
system resources. They do not have a dispose() method and you do not have to free them. If in doubt, check
the javadoc for a particular class.

See Managing operating resources for further discussion of this topic.

SWT standalone example − Hello World

The Hello World examples are a set of introductory examples that show how to get started on creating an
application with SWT. They cover the creation of a shell, the use of event listeners, using layouts, processing
events in an event loop, and drawing with a Graphics Context.

Hello World 1

This example demonstrates how to open a Shell and process the events.

Hello World 2

This example builds on HelloWorld1 and demonstrates how to display a Label inside of the Shell.

 Welcome to Eclipse

Widget life cycle 626

http://www.eclipse.org/articles/swt-design-2/swt-design-2.html

Hello World 3

This example builds on HelloWorld2 and demonstrates how to use a listener mechanism to resize the Label
when the Shell size changes.

Hello World 4

This example builds on HelloWorld2 and demonstrates how to use a Layout to resize the Label when the Shell
size changes.

Hello World 5

This example builds on HelloWorld1 and demonstrates how to draw directly on an SWT Control using a
Graphics Context.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.helloworld.HelloWorld[1−5].

This example can also be run using the Example Launcher. Select one of the Hello World items from the
Standalone category and click Run.

SWT standalone examples setup

Importing example source

*** In the following description, substitute the location in which you installed Eclipse for INSTALLDIR ***

Import the example code and all its required resources into your workspace:

Create a Java Project called "SWT Examples".1.
Select the project "SWT Examples" in the Packages view.2.
Select the File > Import menu, then select Zip File from the subsequent dialog and click Next.3.
Locate the source zip file for the SWT examples. For example:

win32:
INSTALLDIR\eclipse\plugins\org.eclipse.sdk.examples.source_3.0.0\src\org.eclipse.swt.examples_3.0.0\swtexamplessrc.zip

♦

*ix:
INSTALLDIR/eclipse/plugins/org.eclipse.sdk.examples.source_3.0.0/src/org.eclipse.swt.examples_3.0.0/swtexamplessrc.zip

♦

4.

Click Finish.5.
Select the File > Import menu, then select Zip File from the subsequent dialog and click Next.6.
Locate the jar file for the SWT examples. For example:

win32:
INSTALLDIR\eclipse\plugins\org.eclipse.swt.examples_3.0.0\swtexamples.jar

♦

*ix:
INSTALLDIR/eclipse/plugins/org.eclipse.swt.examples_3.0.0/swtexamples.jar

♦

7.

Expand the top level directory of the jar file (/), uncheck "META−INF", and click Finish.8.

 Welcome to Eclipse

SWT standalone example − Hello World 627

In the resulting "Overwrite?" prompter click No To All so that only non−class resources will be
imported.

9.

Now you need to compile the SWT examples. In order to do this, you must add the SWT jar(s) to the compile
path:

Select the project "SWT Examples" in the Packages view, and from its context menu select
Properties.

1.

Select the Java Build Path page, and then select its Libraries tab.2.
Click on the Add External JARs... button.3.
Locate the swt jar for the platform on which you wish to run:

win32:
INSTALLDIR\eclipse\plugins\org.eclipse.swt.win32_3.0.0\ws\win32\swt.jar

♦

gtk:
INSTALLDIR/eclipse/plugins/org.eclipse.swt.gtk_3.0.0/ws/gtk/swt.jar

♦

motif:
INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_3.0.0/ws/motif/swt.jar

♦

photon:
INSTALLDIR/eclipse/plugins/org.eclipse.swt.photon_3.0.0/ws/photon/swt.jar

♦

macosx:
INSTALLDIR/eclipse/plugins/org.eclipse.swt.carbon_3.0.0/ws/carbon/swt.jar

♦

4.

Click on OK.5.

NOTE: For some platforms, such as GTK, more than one jar is required to run SWT (on GTK there is a
swt.jar and a swt−pi.jar and a swt−mozilla.jar file). In this case all of the required jars must be added to the
class path. This is done by repeating the steps above for each jar file. All jar files are located in the same
directory/folder.

At this point your SWT examples should be compiled without any errors. Check the Tasks view for errors. If
you get an error like "java.lang.Object not found" it means you have not configured a JRE. Go to the
Window > Preferences dialog and select the Java > Installed JREs preference page and ensure that a JRE is
installed and that the path to the JRE is correct.

Running the Example

Now you have to configure Eclipse to run the example. This requires putting the SWT JNI libraries on the
library path so that the VM can find them:

Open the Java perspective.1.
In the Packages view, select the main class that you want to run. For example, the main class for the
Address Book example is org.eclipse.swt.examples.addressbook.AddressBook.

2.

Select Run > Run... from the main menu.3.
In the Launch Configurations dialog that appears, select Java Application and click on the New
button.

4.

Fill in the Name, Project and Main class fields according to the example that you wish to run.5.
Select the Arguments tab. In the VM Arguments area specify the location of the SWT library
depending on your target platform as follows:

win32:
−Djava.library.path=INSTALLDIR\plugins\org.eclipse.swt.win32_3.0.0\os\win32\x86

♦

linux gtk:♦

6.

 Welcome to Eclipse

Running the Example 628

−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.gtk_3.0.0/os/linux/x86
linux motif:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_3.0.0/os/linux/x86

♦

solaris motif:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_3.0.0/os/solaris/sparc

♦

aix motif:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_3.0.0/os/aix/ppc

♦

hpux motif:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.motif_3.0.0/os/hpux/PA_RISC

♦

photon qnx:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.photon_3.0.0/os/qnx/x86

♦

macosx:
−Djava.library.path=INSTALLDIR/eclipse/plugins/org.eclipse.swt.carbon_3.0.0/os/macosx/ppc

♦

Click on the Run button.7.

Examples Overview

Consult the documentation of each individual example for the name of its main class and additional details.
The following examples are included in the swtexamples.jar:

Address Book•
Clipboard•
Controls•
Custom Controls•
File Viewer•
Hello World [1−5]•
Hover Help•
Image Analyzer•
Java Syntax Viewer•
Layouts•
Text Editor•

SWT standalone example − Address Book

The AddressBook example shows how a Table control can be used to present information in a tabular format.
The application can save and load data from a file, sort the entries, and search for strings within the fields.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.addressbook.AddressBook.

This example can also be run using the Example Launcher. Select the Address Book item from the
Standalone category and click Run.

 Welcome to Eclipse

Examples Overview 629

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

SWT standalone example − Clipboard

The Clipboard example shows the various SWT clipboard transfer types in use. The example can cut, copy
and paste using Text, RTF, Binary and File transfer types.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.clipboard.ClipboardExample.

This example can also be run using the Example Launcher. Select the Clipboard item from the Standalone
category and click Run.

SWT standalone example − File Viewer

The File Viewer example shows how a simple application can be implemented using SWT. This application
provides the ability to navigate files and folders on the local file system and manipulate them using drag and
drop. It uses alternate threads for long actions and demonstrates the use of the Tree, Table, and Toolbar
widgets and the Program class.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.fileviewer.FileViewer.

This example can also be run using the Example Launcher. Select the File Viewer item from the Standalone
category and click Run.

SWT standalone example − Hover Help

The Hover Help example shows how to implement custom tooltips and hover help support on various SWT
controls including Buttons, TableItems, ToolItems and TreeItems. To see the custom tooltips in action, hover
over an item or button in the UI, and notice that images appear in the left−hand corner of the tooltip. To see
the custom hover help in action, hover over an item or button in the UI until the tooltip is displayed. Then,
without moving the mouse, press F1 and a new Shell will be shown with the extended hover help information
for the UI element.

 Welcome to Eclipse

 Notices 630

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.hoverhelp.HoverHelp.

This example can also be run using the Example Launcher. Select the Hover Help item from the Standalone
category and click Run.

SWT standalone example − Image Analyzer

The ImageAnalyzer example opens image files and displays their visual contents and an image data summary.
The user can make adjustments to various elements of the image such as scaling and Alpha blending, and can
save these changes to a file.

The ImageAnalyzer can load and display image files of type GIF, JPEG, BMP, ICO, and PNG. If a loaded file
is an interlaced GIF or PNG, or a progressive JPEG, and Incremental Display is selected, then the
ImageAnalyzer will display the image increments as they are loaded. If the file contains an animated GIF,
then the Next, Previous, and Animate buttons become enabled, and can be used to cycle through and animate
the images in the file. If a GIF defines a background color, as many animated GIFs do, then selecting
Background will use the GIF's background color. If the image has transparency, which is possible with
images of type GIF, PNG, and ICO, then selecting Display Mask will draw the image's transparency mask to
the right of the image. You can change the background color of the ImageAnalyzer in order to see the
transparency work. To turn off transparency, deselect Display Transparency. After an image is loaded, it can
be scaled with the Scale combo, or have alpha transparency applied to it using the Alpha−K combo and Alpha
menu. File > Reopen restores the scaling and alpha attributes to their default values and reloads the current
image file. If the image has transparency, File > Save Mask As... can be used to save the image's transparency
mask.

When SWT loads an image file, an instance of org.eclipse.swt.graphics.ImageData is created
(though in the case of an ICO file or multi−image GIF an array of ImageData instances is created). The
ImageAnalyzer displays all of the data stored in the ImageData instance(s) for the currently loaded image
file, including the pixel data. Hovering over a pixel in the image display will show the RGB color data for that
pixel. For certain images, particularly animated GIFs, additional data is stored in the
org.eclipse.swt.graphics.ImageLoader instance that is used to load the image. The
ImageAnalyzer displays this data as well.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.imageanalyzer.ImageAnalyzer.

This example can also be run using the Example Launcher. Select the Image Analyzer item from the
Standalone category and click Run.

 Welcome to Eclipse

Running the example 631

SWT standalone example − Java Syntax Viewer

This example shows how to implement a user−defined line styler for the StyledText widget. The example
provides a typical editor interface. To see the effect of the line styler, open a *.java file, and when the contents
of the file are displayed in the editor area, notice that the keywords have been highlighted.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.javaviewer.JavaViewer.

This example can also be run using the Example Launcher. Select the Java Syntax Viewer item from the
Standalone category and click Run.

SWT standalone example − Text Editor

This example demonstrates how to use a StyledText widget to implement a text editor with formatting
support. The example has a typical text editor interface. The Edit menu contains Cut, Copy, Paste and Set
Font items. The toolbar provides a bold text toggle, three colour tools, and a reset button, all of which operate
on the current selection.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.texteditor.TextEditor.

This example can also be run using the Example Launcher. Select the Text Editor item from the Standalone
category and click Run.

Controls

So far we have used the term widget without a formal definition. In the SWT class hierarchy, a Widget is the
abstract class for any UI object that can be placed inside another widget. A Control is a widget that typically
has a counterpart representation, denoted by an OS window handle, in the underlying platform.

We tend to use the terms widget and control interchangeably. Although the distinction matters in the SWT
implementation, we don't focus on this difference from an application's point of view. If you review the SWT
widget hierarchy, you will see that a Control is something that you can create and place anywhere you want in
your widget parent/child tree. Widgets that are not controls are typically more specialized UI objects that can
be created only for certain types of parents.

The SWT API reference and examples are full of information about the different kinds of controls and their
usage. The org.eclipse.swt.widgets package defines the core set of widgets in SWT. The following table

 Welcome to Eclipse

SWT standalone example − Java Syntax Viewer 632

summarizes the concrete types of controls provided in this package and their purpose. (Abstract classes are
eliminated from this list).

Widget Purpose Styles Events

Button
Selectable control that issues
notification when pressed and/or
released.

BORDER, CHECK, PUSH,
RADIO, TOGGLE, FLAT,
LEFT, RIGHT, CENTER,
ARROW (with UP, DOWN)

Dispose, Control*,
Selection

Canvas

Composite control that provides a
surface for drawing arbitrary
graphics. Often used to implement
custom controls.

BORDER, H_SCROLL,
V_SCROLL,
NO_BACKGROUND,
NO_FOCUS,
NO_MERGE_PAINTS,
NO_REDRAW_RESIZE,
NO_RADIO_GROUP

Dispose, Control*

Caret
An i−beam that is typically used as
the insertion point for text.

Dispose

Combo

Selectable control that allows the
user to choose a string from a list of
strings, or optionally type a new
value into an editable text field.
Often used when limited space
requires a pop−down presentation of
the available strings rather than
using a single selection list box.

BORDER, DROP_DOWN,
READ_ONLY, SIMPLE

Dispose, Control*,
DefaultSelection,
Modify, Selection

Composite
Control that is capable of containing
other widgets.

BORDER, H_SCROLL,
V_SCROLL

Dispose, Control*

CoolBar
Composite control that allows users
to dynamically reposition the cool
items contained in the bar.

BORDER Dispose, Control*

CoolItem
Selectable user interface object that
represents a dynamically
positionable area of a cool bar.

DROP_DOWN Dispose

Group
Composite control that groups other
widgets and surrounds them with an
etched border and/or label.

BORDER,
SHADOW_ETCHED_IN,
SHADOW_ETCHED_OUT,
SHADOW_IN,
SHADOW_OUT,
SHADOW_NONE

Dispose, Control*

Label
Non−selectable control that displays
a string or an image.

BORDER, CENTER, LEFT,
RIGHT, WRAP,
SEPARATOR (with
HORIZONTAL,
SHADOW_IN,
SHADOW_OUT,
SHADOW_NONE,
VERTICAL)

Dispose, Control*

 Welcome to Eclipse

SWT standalone example − Java Syntax Viewer 633

List
Selectable control that allows the
user to choose a string or strings
from a list of strings.

BORDER, H_SCROLL,
V_SCROLL, SINGLE,
MULTI

Dispose, Control*,
Selection,
DefaultSelection

Menu
User interface object that contains
menu items.

BAR, DROP_DOWN,
NO_RADIO_GROUP,
POP_UP

Dispose, Help, Hide,
Show

MenuItem
Selectable user interface object that
represents an item in a menu.

CHECK, CASCADE, PUSH,
RADIO, SEPARATOR

Dispose, Arm, Help,
Selection

ProgressBar
Non−selectable control that displays
progress to the user, typically in the
form of a bar graph.

BORDER,
INDETERMINATE,
SMOOTH, HORIZONTAL,
VERTICAL

Dispose, Control*

Sash

Selectable control that allows the
user to drag a rubber banded outline
of the sash within the parent
window. Used to allow users to
resize child widgets by
repositioning their dividing line.

BORDER, HORIZONTAL,
VERTICAL

Dispose, Control*,
Selection

Scale
Selectable control that represents a
range of numeric values.

BORDER, HORIZONTAL,
VERTICAL

Dispose, Control*,
Selection

ScrollBar

Selectable control that represents a
range of positive numeric values.
Used in a Composite that has
V_SCROLL and/or H_SCROLL
styles.

HORIZONTAL, VERTICAL Dispose, Selection

Shell

Window that is managed by the OS
window manager. Shells can be
parented by a Display (top level
shells) or by another shell
(secondary shells).

BORDER, H_SCROLL,
V_SCROLL, CLOSE, MIN,
MAX, NO_TRIM, RESIZE,
TITLE (see also
SHELL_TRIM,
DIALOG_TRIM)

Dispose, Control*,
Activate, Close,
Deactivate, Deiconify,
Iconify

Slider

Selectable control that represents a
range of numeric values. A slider is
distinguished from a scale by
providing a draggable thumb that
can adjust the current value along
the range.

BORDER, HORIZONTAL,
VERTICAL

Dispose, Control*,
Selection

TabFolder
Composite control that groups pages
that can be selected by the user
using labeled tabs.

BORDER
Dispose, Control*,
Selection

TabItem
Selectable user interface object
corresponding to a tab for a page in
a tab folder.

Dispose

Table Selectable control that displays a list
of table items that can be selected
by the user. Items are presented in
rows that display multiple columns
representing different aspects of the

BORDER, H_SCROLL,
V_SCROLL, SINGLE,
MULTI, CHECK,
FULL_SELECTION,
HIDE_SELECTION,

Dispose, Control*,
Selection,
DefaultSelection

 Welcome to Eclipse

SWT standalone example − Java Syntax Viewer 634

items. VIRTUAL

TableColumn
Selectable user interface object that
represents a column in a table.

LEFT, RIGHT, CENTER
Dispose, Move, Resize,
Selection

TableItem
Selectable user interface object that
represents an item in a table.

Dispose

Text
Editable control that allows the user
to type text into it.

BORDER, SINGLE,
READ_ONLY, LEFT,
CENTER, RIGHT, WRAP,
MULTI (with H_SCROLL,
V_SCROLL)

Dispose, Control*,
DefaultSelection,
Modify, Verify

ToolBar
Composite control that supports the
layout of selectable tool bar items.

BORDER, FLAT, WRAP,
RIGHT, SHADOW_OUT
HORIZONTAL, VERTICAL

Dispose, Control*,

ToolItem
Selectable user interface object that
represents an item in a tool bar.

PUSH, CHECK, RADIO,
SEPARATOR,
DROP_DOWN

Dispose, Selection

Tracker
User interface object that
implements rubber banding
rectangles.

LEFT, RIGHT, UP, DOWN,
RESIZE

Dispose, Move, Resize

Tree
Selectable control that displays a
hierarchical list of tree items that
can be selected by the user.

BORDER, H_SCROLL,
V_SCROLL, SINGLE,
MULTI, CHECK

Dispose, Control*,
Selection,
DefaultSelection,
Collapse, Expand

TreeItem
Selectable user interface object that
represents a hierarchy of tree items
in a tree.

Dispose

Control* = Events inherited from Control: FocusIn, FocusOut, Help, KeyDown, KeyUp, MouseDoubleClick,
MouseDown, MouseEnter, MouseExit, MouseHover, MouseUp, MouseMove, Move, Paint, Resize

Events

Once we create a display and some widgets, and start up the application's message loop, where does the real
work happen? It happens every time an event is read from the queue and dispatched to a widget. Most of the
application logic is implemented as responses to user events.

The basic pattern is that you add a listener to some widget that you have created, and when the appropriate
event occurs the listener code will be executed. This simple example is adapted from
org.eclipse.swt.examples.helloworld.HelloWorld3:

 Display display = new Display ();
 Shell shell = new Shell (display);
 Label label = new Label (shell, SWT.CENTER);
 ...
 shell.addControlListener (new ControlAdapter () {
 public void controlResized (ControlEvent e) {
 label.setBounds (shell.getClientArea ());
 }
 });

 Welcome to Eclipse

 Events 635

For each type of listener, there is an interface that defines the listener (XyzListener), a class that provides
event information (XyzEvent), and an API method to add the listener (addXyzListener). If there is more than
one method defined in the listener interface then an adapter (XyzAdapter) that implements the listener
interface and provides empty methods is provided as well. All of the events, listeners, and adapters are defined
in the package org.eclipse.swt.events.

The following table summarizes the events that are available and the widgets that support each event.

Event Type
Description Widgets

Arm
Generated when a widget, such as a
menu item, is armed.

MenuItem

Control
Generated when a control is moved
or resized.

Control, TableColumn, Tracker

Dispose
Generated when a widget is
disposed, either programmatically
or by the user.

Widget

Focus
Generated when a control gains or
loses focus.

Control

Help
Generated when the user requests
help for a widget, such as pressing
the F1 key.

Control, Menu, MenuItem

Key
Generated when the user presses or
releases a keyboard key when the
control has keyboard focus.

Control

Menu
Generated when a menu is hidden
or shown.

Menu

Modify
Generated when a widget's text is
modified.

CCombo, Combo, Text, StyledText

Mouse
Generated when the user presses,
releases, or double clicks the mouse
over the control.

Control

MouseMove
Generated as the user moves the
mouse across the control.

Control

MouseTrack
Generated when the mouse enters,
exits, or hovers over the control.

Control

Paint
Generated when the control needs
to be repainted.

Control

Selection
Generated when the user selects an
item in the control.

Button, CCombo, Combo, CoolItem,
CTabFolder, List, MenuItem, Sash,
Scale, ScrollBar, Slider, StyledText,
TabFolder, Table, Table Cursor,
TableColumn, TableTree, Text,
ToolItem, Tree

Shell
Generated when a shell is
minimized, maximized, activated,
deactivated, or closed.

Shell

Traverse Generated when a control is Control

 Welcome to Eclipse

 Events 636

traversed by the user using
keystrokes.

Tree
Generated when the user expands or
collapses items in the tree.

Tree, TableTree

Verify

Generated when a widget's text is
about to be modified. Gives the
application a chance to alter the text
or prevent the modification.

Text, StyledText

Untyped events

The typed event system described above is implemented with a low level, untyped widget event mechanism.
This mechanism is not intended to be used by applications, but you will see it used inside of the SWT
implementation. It is also used in many of the workbench wizard page implementations.

The untyped mechanism relies on a constant to identify the event type and defines a generic listener that is
supplied with this constant. This allows the listener to implement a "case style" listener. In the following
snippet, we define a generic event handler and add several listeners to a shell.

 Shell shell = new Shell ();
 Listener listener = new Listener () {
 public void handleEvent (Event e) {
 switch (e.type) {
 case SWT.Resize:
 System.out.println ("Resize received");
 break;
 case SWT.Paint:
 System.out.println ("Paint received");
 break;
 default:
 System.out.println ("Unknown event received");
 }
 }
 };
 shell.addListener (SWT.Resize, listener);
 shell.addListener (SWT.Paint, listener);

Custom widgets

Occasionally, you may find that none of the controls provided in SWT meet the need of your application. In
these cases, you may want to extend SWT by implementing your own custom widget. SWT itself provides a
package, org.eclipse.swt.custom, which contains custom controls that are not in the core set of SWT controls
but are needed to implement the platform workbench.

Control Purpose Styles Events

CCombo

Similar to Combo, but custom
drawn to allow for using a combo
without a border. This class was
developed for using combos inside
table cells.

BORDER, FLAT,
READ_ONLY

Dispose, Control*,
Selection

 Welcome to Eclipse

Events 637

CLabel

Similar to Label, but supports
clipping of text with ellipsis. Also
supports a gradient effect for the
background color as seen in the
active workbench view. Does not
support wrapping.

CENTER, LEFT, RIGHT,
SHADOW_IN,
SHADOW_OUT,
SHADOW_NONE

Dispose, Control*

CTabFolder

Similar to TabFolder, but supports
additional configuration of the
visual appearance of tabs (top or
bottom) and borders.

BORDER, FLAT,
BOTTOM, TOP

Dispose, Control*,
Selection

CTabItem
Selectable user interface object
corresponding to a tab for a page in
a CTabFolder.

Dispose, Control*

SashForm

Composite control that lays out its
children in a row or column
arrangement and uses a Sash to
separate them so that the user can
resize them.

BORDER, HORIZONTAL,
VERTICAL

Dispose, Control*

ScrolledComposite
Composite control that scrolls its
contents and optionally stretches its
contents to fill the available space.

BORDER, H_SCROLL,
V_SCROLL

Dispose, Control*

StyledText

Editable control that allows the user
to type text. Ranges of text inside
the control can have distinct colors
(foreground and background) and
font styles (bold and regular).

BORDER,
FULL_SELECTION,
MULTI, SINGLE, WRAP,
READ_ONLY

Dispose, Control*,
ExtendedModify,
LineGetBackground,
LineGetSegments,
LineGetStyle, Modify,
Selection, Verify,
VerifyKey

TableTree

Selectable control that displays a
hierarchical list of items that can be
selected by the user. Items are
presented in rows that display
multiple columns representing
different aspects of the items.

BORDER, SINGLE,
MULTI, CHECK,
FULL_SELECTION

Dispose, Control*,
Selection,
DefaultSelection,
Collapse, Expand

TableTreeItem
Selectable user interface object that
represents a hierarchy of tree items
in a TableTree.

ViewForm

Composite control that lays out
three children horizontally and
allows programmatic control of
layout and border parameters. Used
in the workbench to implement a
view's label/toolbar/menu local bar.

BORDER, FLAT Dispose, Control*

Control* = Events inherited from Control: FocusIn, FocusOut, Help, KeyDown, KeyUp, MouseDoubleClick,
MouseDown, MouseEnter, MouseExit, MouseHover, MouseUp, MouseMove, Move, Paint, Resize

Before implementing a custom widget, you should consider several important issues:

 Welcome to Eclipse

Events 638

Can an existing SWT control be used as a simpler or plainer version of your widget? If so, consider
using the existing control and finishing your application. You can always write a custom widget later
that is API compatible with the simpler control.

•

Does the widget have to be portable? If so, does a native widget exist on all platforms? If you are
comfortable writing native platform code, you can provide a native implementation for each platform
that your application supports. If it does not exist on any (or all) platforms, you will also have to
provide a portable implementation.

•

Can the function be achieved by extending the behavior of an existing control? If so, consider using
an existing control and wrapping it with additional behavior.

•

Will your widget contain other controls from the user's point of view? It's useful to think about this
issue in advance because it influences your implementation and API.

•

Once you've determined that you need a custom widget and have decided which platforms must be supported,
you can consider several implementation techniques for your widget. These techniques can be mixed and
matched depending on what is available in the underlying OS platform.

Native implementation

If your application requires a native widget that is not provided by SWT, you will need to implement it
natively. This may be a platform widget, a third party widget, or any other widget in a platform shared library.

Each SWT platform is shipped with both a shared library (for example, a DLL on Windows) and a JAR (for
the Java class files). The shared library contains all of the native function required for SWT, but it was not
meant to be a complete set of the functions available on the platform. To expose native function or native
widgets that were not exposed by SWT, you need to write your own shared library. If you are using a
combination of native code on one platform and portable code on another, make sure you call your shared
library on the platform with the native widget, and your jar on the platform with the portable widget.

To implement a native widget, you must understand the Java Native Interface (JNI), the API of the widget in
the shared library, and the underlying OS platform APIs in C.

The basic process for implementation is to decide which part of the API of the native widget will be exposed
in the Java API and writing the Java code that calls the natives to implement the behavior. JNI C code must be
written to call the shared library.

It is a good idea to follow the design principles used to implement SWT when building your own native
widget implementation. For example, your JNI natives should map one to one with the API calls being made
into the shared library.

A complete example of a native custom widget implementation can be found in Creating Your Own Widgets
using SWT..

Extending an existing widget

If your new widget is similar in concept or implementation to an existing widget, you may want to wrap an
existing SWT widget. This technique is used for the implementation of TableTree.

To wrap a widget, you create a subclass of the Composite or Canvas widget (depending on whether your
control will have children). In the constructor for the custom widget, create the wrapped widget. The resulting
widget will be 100% Java portable since you are calling the wrapped widget's API for your implementation.

 Welcome to Eclipse

Custom widgets 639

http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm

Wrapping a widget is often a simpler way to implement custom widgets than starting from scratch. However,
you must be careful in designing the API of your new widget. Here are some important tips:

Consider whether your widget is a "kind of" wrapped widget or whether it just uses one for its
implementation. For example, a table tree is not a kind of table. It doesn't refer to items by row number index.
The TableTree just uses a table to implement the presentation and adds tree behavior. If you are wrapping a
widget purely for implementation reasons, then your API may not look similar to the underlying widget's API.

Forward as few methods and events as possible. Don't reimplement the entire API of the wrapped widget or
you'll be constantly playing catch−up when the wrapped API changes in a future release. Methods that are
common to most widgets, such as setFont, setForeground, setBackground, should be forwarded.

If you find yourself implementing most of the wrapped widget's API, consider exposing the wrapped widget
at the API level and letting the application code use the wrapped widget directly. In this case, you may want to
reconsider whether providing a new widget makes sense at all. It may be better to implement your feature as
an "adapter" which adds behavior to a widget but does not pretend to be a widget. (JFace viewers follow this
pattern.)

Note: This discussion has focused solely on extending the behavior of a widget by wrapping
it. Extending a widget by subclassing it is highly discouraged, since it will make your widget
dependent on the implementation of the superclass.

Custom drawn implementation

In some cases, you don't have any native code or existing widgets that help you in the implementation of your
new widget. This means you must draw the widget yourself using SWT graphics calls. Although this
technique can become quite complicated, it has the advantage of producing a completely portable
implementation.

Custom drawn controls are implemented by subclassing the Canvas or Composite class using these rules:

Subclass Canvas if your widget will not have any children. This means you do not intend to allow
applications to create children of your widget, and that you do not intend to create any children in
order to implement your widget. Canvas is used for both simple controls, such as stylized labels, and
for more complex controls, such as the styled text editor. In both cases, the widget is implemented
completely internally using graphics calls and no children are added by applications.

•

Subclass Composite if your widget will have children from the application's perspective, or if you will
be creating children to implement your widget. Composite is used when you are combining widgets to
create a new widget, such as using a text and list to implement a combo control. It is also used when
you implement a widget without children that allows clients to add children. This is the case with the
ViewForm control. The SashForm widget represents both cases: it uses widgets (sashes) internally
for its implementation and allows clients to add their own children.

•

In a custom drawn control, your internal state is kept in Java instance variables. You define your API and
styles according to the requirements of your widget.

The internal implementation of a custom drawn widget usually involves these major tasks:

Create any graphics objects needed in your constructor and store them in an instance variable.
Register a listener for the dispose event on your canvas or composite so that you can free these objects
when the widget is destroyed.

•

 Welcome to Eclipse

Custom widgets 640

Add a paintListener to your canvas or composite and paint the widget according to your design. For
complex widgets, a lot of work goes into optimizing this process by calculating and repainting only
what's absolutely necessary.

•

Ensure that any API calls that affect the appearance of your widget trigger a repaint of the widget. In
general, you should use redraw to damage your widget when you know you must repaint, rather than
call your internal painting code directly. This gives the platform a chance to collapse the paint you
want to generate with any other pending paints and helps streamline your code by funneling all
painting through one place.

•

If your widget defines events in its API, determine what low level Canvas or Composite events will
trigger your widget's events. For example, if you have a clicked event, you will want to register a
mouse event on your canvas and perform calculations (such as hit testing) to determine whether the
mouse event in your canvas should trigger your widget event.

•

Many of the widgets implemented in the org.eclipse.swt.custom use this approach. A simple example can be
found in CLabel.

Further information on custom widgets can be found in Creating your own widgets using SWT.

Layouts

We have seen some simple examples that show how to size or position child widgets based on the size of the
parent. So far, this kind of computation has occurred in response to a resize listener. This is often the best way
to handle simple widget positioning. However, there are common patterns used by applications when placing
widgets. These patterns can be structured as configurable layout algorithms that can be reused by many
different applications.

SWT defines layouts that provide general purpose positioning and sizing of child widgets in a composite.
Layouts are subclasses of the abstract class Layout. The SWT standard layouts can be found in the
org.eclipse.swt.layout package.

You should understand some general definitions when resizing and positioning widgets:

The location of a widget is its x,y coordinate location within its parent widget.•
The preferred size of a widget is the minimum size needed to show its content. This is computed
differently for each kind of widget. In the case of a composite, the preferred size is the minimum size
that contains the composite and all of its children at their preferred sizes.

•

The clientArea is the size of a widget's content area.•
The trim is the distance between a widget's client area and its actual border. Trim is occupied by the
widget's borders or extra space at its edge. The size and appearance of the trim is widget and platform
dependent.

•

These concepts are relevant for applications regardless of whether a layout is used. You can think of a layout
as a convenient way to package resize functionality for reuse.

Some additional concepts are introduced by layouts:

Some layouts support spacing between widgets in the layout. •
Some layouts support a margin between the edge of the layout and the widget adjacent to the edge.•

 Welcome to Eclipse

 Layouts 641

http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm

See Understanding layouts in SWT for further discussion and pictures demonstrating these concepts.

The following code snippet shows the simple case of an application using a resize callback to size a label to
the size of its parent shell:

 Display display = new Display ();
 Shell shell = new Shell (display);
 Label label = new Label (shell, SWT.CENTER);
 shell.addControlListener (new ControlAdapter () {
 public void controlResized (ControlEvent e) {
 label.setBounds (shell.getClientArea ());
 }
 });

The next snippet uses a layout to achieve the same effect:

 Display display = new Display ();
 Shell shell = new Shell (display);
 Label label = new Label (shell, SWT.CENTER);
 shell.setLayout (new FillLayout ());

Even for this simple example, using a layout reduces the application code. For more complex layouts, the
simplification is much greater.

SWT provides four default layout classes that can be used for many situations.

FillLayout

FillLayout is the simplest layout class. It lays out widgets in a single row or column, forcing them all to be the
same size. Initially, the widgets will all be as tall as the tallest widget and as wide as the widest. FillLayout
does not wrap, and you cannot specify margins or spacing.

You might use a FillLayout to lay out buttons in a task bar or tool bar, or to stack checkboxes in a Group.
FillLayout can also be used when a Composite only has one child. In the example above, the FillLayout
forces the label to completely the fill its parent shell.

The following table summarizes the attributes of FillLayout.

Attribute
Description

type Can be one of HORIZONTAL (layout in a row), VERTICAL (layout in a column).

RowLayout

RowLayout lays out widgets in rows, but is more flexible than FillLayout. The type field controls whether the
widgets will be placed in horizontal rows or vertical columns.

 Welcome to Eclipse

 FillLayout 642

http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm

It can optionally wrap the widgets, creating as many rows or columns as are needed to display them. It also
provides configurable margins on each edge of the layout, and configurable spacing between widgets within
the layout. You can pack a RowLayout, which will force all widgets to be the same size. If you justify a
RowLayout, extra space remaining in the Composite will be allocated as margins between the widgets.

The height and width of each widget in a RowLayout can be specified in a RowData object which should be
set in the widget using setLayoutData(Object).

The following table summarizes the attributes of RowLayout.

Attribute
Description

justify Can be one of HORIZONTAL (layout in a row), VERTICAL (layout in a column).

marginBottom Specifies the number of pixels to be placed along the bottom edge of the layout.

marginLeft Specifies the number of pixels to be placed along the left edge of the layout.

marginRight Specifies the number of pixels to be placed along the right edge of the layout.

marginTop Specifies the number of pixels to be placed along the top edge of the layout.

pack Specifies whether all widgets should be forced to be the same size.

spacing Specifies the number of pixels between one cell and its adjacent cells

type Can be one of HORIZONTAL (layout in rows), VERTICAL (layout in columns).

wrap
Specifies whether a control will be wrapped to the next row or column if there is
insufficient space in
the current row or column.

The following table summarize the attributes of RowData.

Attribute
Description

width Specifies the width of the cell in pixels.

height Specifies the height of the cell in pixels.

FormLayout

FormLayout lays out widgets using an attachment model. A FormAttachment can be defined for each side
of a widget and stored in its layout data (FormData). The FormData can be used to designate a requested
width and height for the widget, provided that these values do not conflict with the attachment constraints.

A FormAttachment is used to attach a designated side of the widget to the parent Composite or another
widget in the layout. You typically do not set attachments on all sides of a widget. It is very common to
specify only one horizontal (left or right) attachment and one vertical (top or bottom) attachment and allow
the widgets to take the size specified in their FormData, or their preferred size if no size is specified in the
FormData.

Attachments can be configured in a variety of ways:

 Welcome to Eclipse

 FormLayout 643

You can attach the specified side of a widget to a position (percentage value 0−100) in the parent
widget. An optional pixel offset can be added.

•

You can attach the specified side of a widget to the adjacent side of a target widget inside the
composite. An optional pixel offset can be added. The side where the target widget is attached is
inferred based upon the side specified in the source widget. For example, attaching the top edge to a
widget implies that it is being attached to the bottom edge of the adjacent widget.

•

You can attach the specified side of a widget to a particular side of a target widget inside the
composite. An optional pixel offset can be added. This can be used, for example, to align the top of a
widget with the top of another widget so that they will always line up vertically.

•

You can center the widget relative to a target widget. The center need only be specified for one side
(left or right, top or bottom) in the direction being centered.

•

The following table summarizes the attributes of a FormLayout:

Attribute
Description

marginHeight
Specifies the number of pixels of vertical margin that will be placed along the
top and bottom edges of the layout.

marginWidth
Specifies the number of pixels of horizontal margin that will be placed along
the left and right edges of the layout.

The following table summarizes the attributes of a FormData:

Attribute
Description

top Specifies the attachment for the top side of the control.

left Specifies the attachment for the left side of the control.

bottom Specifies the attachment for the bottom side of the control.

right Specifies the attachment for the right side of the control.

width Specifies the preferred width in pixels of the control in the form.

height Specifies the preferred height in pixels of the control in the form.

The following table summarizes the attributes of a FormAttachment:

Attribute
Description

alignment

Specifies the alignment of the control side that is attached to a control.
DEFAULT indicates that the widget should be attached to the adjacent side
of the specified control. For top and bottom attachments, TOP, BOTTOM,
and CENTER are used to indicate attachment of the specified side of the
widget to the specified side of the control. For left and right attachments,
LEFT, RIGHT, and CENTER are used to indicate attachment of the
specified side of the widget to the specified side of the control. (For
example, using TOP indicates that the top side of the attachment's widget
should be attached to the top side of the specified control.)

control Specifies the target control to which the attachment's widget is attached.

denominator
Specifies the denominator of the "a" term in the equation, y=ax+b, which
defines the attachment.

numerator
Specifies the numerator of the "a" term in the equation y=ax+b, which
defines the attachment.

 Welcome to Eclipse

 FormLayout 644

offset
Specifies the offset in pixels of the control side from the attachment position.
Can be positive or negative. This is the "b" term in the equation y=ax+b,
which defines the attachment.

See Understanding layouts in SWT for further descriptions and example screen captures using the various
attachment styles.

GridLayout

GridLayout is one of the more powerful and complex layouts. GridLayout lays out widgets in a grid,
providing many configurable parameters that control the sizing behavior of the grid rows and columns when
the composite is resized.

The GridLayout defines API that controls the overall strategy of the layout. The most important attribute is
numColumns, which determines the horizontal size of the grid. Typically you decide on this value when you
first design your window's appearance. The order of the widgets in the grid is the same as the order in which
you create them. To change the order of the widgets in the grid, you can use the Control methods
moveAbove(Control) and moveBelow(Control). These methods allow widgets to be inserted before or after
each other in the layout. (The "above" and "below" refer to the widget Z ordering, not to the location in the
grid itself).

The following table summarizes the configurable parameters for a GridLayout:

Attribute
Description

horizontalSpacing
Number of pixels between the right edge of one cell and the left edge of its
neighboring cell.

makeColumnsEqualWidthSpecifies whether all columns should be forced to the same width.

marginWidth Number of pixels used for margin on the right and left edge of the grid.

marginHeight Number of pixels used for margin on the top and bottom edge of the grid.

numColumns Number of columns that should be used to make the grid.

verticalSpacing
Number of pixels between the bottom edge of one cell and the top edge of its
neighboring cell.

GridLayout supports many other layout parameters for each widget in the grid. These properties are specified
in a GridData object. You must set a GridData as the layout data for each widget in the grid.

The GridData class defines style constants that let you specify commonly used combinations of layout
parameters in the GridData constructor. You can also set these attributes individually using the public
methods in GridData.

You can achieve some highly dynamic and complex layouts using the GridData. Tweaking these values for
different widgets in the grid can produce many different combinations of layouts. The ability to allow widgets
to span across cells produces many layouts that don't even look like a grid.

 Welcome to Eclipse

 GridLayout 645

http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm

The following table summarizes the configurable parameters for GridData. See Understanding layouts in
SWT for further description and example screen captures using the various grid parameters.

Attribute
Description

grabExcessHorizontalSpace

Specifies whether a cell should grow to use any extra horizontal space
available in the grid. After the cell sizes in the grid are calculated based on the
widgets and their grid data, any extra space remaining in the Composite will be
allocated to those cells that grab excess space.

grabExcessVerticalSpace
Specifies whether a cell should grow to use any extra vertical space available
in the grid.

heightHint
Specifies a minimum height for the widget (and therefore for the row that
contains it).

horizontalAlignment
Can be one of BEGINNING, CENTER, END, FILL. FILL means that the
widget will be sized to take up the entire width of its grid cell.

horizontalIndent Number of pixels between the widget and the left edge of its grid cell.

horizontalSpan
Specifies the number of columns in the grid that the widget should span. By
default, a widget takes up one cell in the grid. It can take additional cells
horizontally by increasing this value.

verticalAlignment
Can be one of BEGINNING, CENTER, END, FILL. FILL means that the
widget will be sized to take up the entire height of its grid cell.

verticalSpan
Specifies the number of rows in the grid that the widget should span. By
default, a widget takes up one cell in the grid. It can take additional cells
vertically by increasing this value.

widthHint
Specifies a minimum width for the widget (and therefore the column that
contains it).

StackLayout

StackLayout creates a conceptual stack of widgets. The widgets are all set to have the same size and location,
and the one that is designated as being on top is shown.

The designated top widget can be changed by setting the layout's topControl field to the desired widget and
then invoking layout() on the Composite with the stack layout. The height and width of the margins used by
the layout can be specified by setting the layout's marginHeight and marginWidth attributes accordingly.

The following table summarizes the attributes of StackLayout.

Attribute
Description

marginHeight Specifies the number of pixels to be placed along the top and bottom edges of the layout.

marginWidth Specifies the number of pixels to be placed along the left and right edges of the layout.

topControl Specifies the conceptual top control in the stack. All other controls will not be shown.

 Welcome to Eclipse

 StackLayout 646

http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm

Custom layouts

Occasionally you may need to write your own custom Layout class. This is most appropriate when you have a
complex layout that is used in many different places in your application. It may be appropriate when you can
optimize layout using application specific knowledge. Before building a custom layout you should consider
the following:

Can the layout be achieved with an existing layout such as GridLayout or by nesting several different
layouts?

•

Can the layout be isolated into a common resize listener?•
Are you defining a general layout algorithm with programmer supplied configuration parameters or
just positioning widgets specifically for your application?

•

Unless you are writing a very generic layout that will be used by several Composite widgets, it is often
simpler and easier to calculate sizes and position children in a resize listener. Many of the SWT custom
widgets were written this way. Although a new widget can be implemented as a Composite/Layout pair,
implementing it as a Composite that does its layout in a resize listener and computes its preferred size in
computeSize(...) is clearer, and does not require the writing of an extra class.

If you still believe that you need a custom layout class then it is a good idea to first implement the layout
algorithm in a resize listener. This makes for simpler debugging of the algorithm itself. Be sure to test the
various cases for layout, which are resizing smaller, resizing larger, wrapping, and clipping. Once you have
the algorithm working, the code can be refactored into a subclass of Layout.

Layouts are responsible for implementing two methods:

computeSize(...) calculates the width and height of a rectangle that encloses all of the composite's
children once they have been sized and placed according to the layout algorithm. The hint parameters
allow the width and/or height to be constrained. For example, a layout may choose to grow in one
dimension if constrained in another.

•

layout(...) positions and sizes the composite's children. A layout can choose to cache layout−related
information, such as the preferred extent of each of the children. The flushCache parameter tells the
Layout to flush cached data, which is necessary when other factors besides the size of the composite
have changed, such as the creation of removal of children, or a change in the widget's font.

•

Further discussion of custom layouts can be found in Understanding layouts in SWT.

Error handling

SWT has a well defined strategy for triggering errors and exceptions. Where possible, exceptions are triggered
consistently across platforms. However, some errors are specific to an SWT implementation on a particular
platform.

SWT can trigger three types of exceptions: IllegalArgumentException, SWTException, and SWTError.
Applications should not have to catch any other kind of exception or error when calling SWT.

Note: If any other exception besides these three is thrown from SWT, it should be considered
a bug in the SWT implementation.

 Welcome to Eclipse

 Custom layouts 647

http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm

IllegalArgumentException

The arguments passed in SWT API methods are checked for appropriate state and range before any other
work is done. An IllegalArgumentException will be thrown when it is determined that an argument is
invalid.

SWT throws this exception consistently across all platforms. Code that causes an IllegalArgumentException
on one platform will cause the same exception on a different platform.

SWTException

SWTException is thrown when a recoverable error occurs internally in SWT. The error code and message text
provide a further description of the problem.

SWT throws this exception consistently across all platforms. On all platforms, SWT remains in a known
stable state after throwing the exception. For example, this exception is thrown when an SWT call is made
from a non−UI thread.

SWTError

SWTError is thrown when an unrecoverable error occurs inside SWT.

SWT will throw this error when an underlying platform call fails, leaving SWT in an unknown state, or when
SWT is known to have an unrecoverable error, such as running out of platform graphics resources.

Once an SWT error has occurred, there is little that an application can do to correct the problem. These errors
should not be encountered during normal course of operation in an application, but high reliability
applications should still catch and report the errors.

Graphics

SWT provides a robust graphics engine for drawing graphics and displaying images in widgets. You can get
pretty far without ever programming to the graphics interface, since widgets handle the painting of icons, text,
and other data for you. However, if your application displays custom graphics, or if you are implementing a
custom drawn widget, then you will need to understand some basic drawing objects in SWT.

Graphics context

The graphics context, GC, is the focal point for SWT graphics support. Its API describes all of the drawing
capabilities in SWT.

A GC can be used for drawing on a control (the most common case), on an image, on a display, or to a printer.
When drawing on a control, you use the GC supplied to you in the control's paint event. When drawing on an
image, display, or printer, you must create a GC configured for it, and dispose of the GC when you are
finished using it.

Once you've got a GC, you can set its attributes, such as color, line width, and font, which control the

 Welcome to Eclipse

 IllegalArgumentException 648

appearance of the graphics drawn in the GC.

The API Reference for GC describes the complete set of graphics functions.

Fonts

The Font and FontData classes are used when manipulating fonts in SWT.

FontData describes the characteristics of a font. You can create a FontData by specifying a font name, style,
and size. FontData includes API for querying these attributes. Since FontData does not allocate any OS
resources, you do not need to dispose of it.

The Font is the actual graphic object representing a font that is used in the drawing API. You create a Font
for a Display by specifying the Display and the FontData of the font that you want. You can also query a
Font for its FontData.

You must dispose of an allocated Font when you are finished using it.

Colors

Colors are similar to fonts. You create a Color for a Display by specifying the RGB values for the desired
color. You must dispose of an allocated color when you are finished using it.

The Display method getSystemColor(int) allows you to query the predefined system colors for the OS
platform. You should not free colors obtained using this technique.

The color model is discussed in detail in the article SWT color model.

Images

The Image, ImageData, and ImageLoader classes are used when manipulating Images in SWT.

ImageData describes the actual pixels in the image, using the PaletteData class to describe the utilized color
values. ImageData is a device− and platform−independent description of an image.

ImageLoader loads and saves ImageData in different file formats. SWT currently supports loading and
saving of BMP (Windows Bitmap), ICO (Windows Icon), JPEG, GIF, and PNG image formats.

The Image is the actual graphic object representing the image that is used in the drawing API. You create an
image for a particular Display. Images can be created in several ways:

use an ImageData to initialize the image's contents•
copy an existing Image•
load an Image from a file•

Regardless of how you create the Image, you are responsible for disposing it.

 Welcome to Eclipse

 Fonts 649

http://www.eclipse.org/articles/SWT%20Color%20Model/swt-color-model.htm

Graphics object lifecycle

Most of the graphics objects used for drawing in SWT allocate resources in the underlying OS and must be
explicitly freed. The same rule discussed earlier applies here. If you create it using a constructor, you should
free it. If you get access to it from somewhere else, do not free it.

Creation

Graphics objects such as graphics contexts, fonts, colors, and images are allocated in the OS as soon as the
object is created. How you plan to use your graphics objects determines when you should create them.

For graphics objects that are used heavily throughout the application, you can create them at the time that you
create your widgets. This is commonly done for colors and fonts. In other cases, it is more appropriate to
create your graphics objects on the fly. For example, you might create a graphics context in one of your
widget event handlers in order to perform some calculations.

If you are implementing a custom widget, you typically allocate graphics objects in the constructor if you
always make use of them. You might allocate them on the fly if you do not always use them or if they are
dependent upon the state of some attribute.

Painting

Once you have allocated your graphics objects, you are ready to paint. You should always do your painting
inside of a paint listener. There are rare cases, particularly when implementing custom widgets, when you
paint while responding to some other event. However this is generally discouraged. If you think you need to
paint while handling some other event, you should first try to use the redraw() method, which will generate
another paint event in the OS. Drawing outside of the paint method defeats platform optimizations and can
cause bugs depending upon the number of pending paints in the event queue.

When you receive a paint event, you will be supplied with a GC pre−configured for drawing in the widget. Do
not free this GC! You did not create it.

Any other graphics objects must be allocated while handling the event (or beforehand). Below is a snippet
based on the org.eclipse.swt.examples.HelloWorld5 sample. The color red was previously allocated when
creating the widget, so it can be used here.

 shell.addPaintListener (new PaintListener () {
 public void paintControl (PaintEvent event) {
 GC gc = event.gc;
 gc.setForeground (red);
 Rectangle rect = event.widget.getClientArea ();
 gc.drawRectangle (rect.x + 10, rect.y + 10, rect.width − 20, rect.height − 20);
 gc.drawString (resHello.getString("Hello_world"), rect.x + 20, rect.y + 20);
 }
 });

Disposal

Every graphics object that you allocate must be freed when you are finished using it.

The timing of the disposal depends upon when you created the object. If you create a graphics object while
creating your widget, you should generally add a dispose listener onto the widget and dispose of the graphics

 Welcome to Eclipse

 Graphics object lifecycle 650

when the widget is disposed. If you create an object on the fly while painting, you should dispose of it when
finished painting.

The next code snippet shows a slightly modified version of our paint listener. In this example, it allocates and
frees the color red while painting.

 shell.addPaintListener (new PaintListener () {
 public void paintControl (PaintEvent event) {
 GC gc = event.gc;
 Color red = new Color (event.widget.getDisplay (), 0xFF, 0, 0);
 gc.setForeground (red);
 Rectangle rect = event.widget.getClientArea ();
 gc.drawRectangle (rect.x + 10, rect.y + 10, rect.width − 20, rect.height − 20);
 gc.drawString (resHello.getString ("Hello_world"), rect.x + 20, rect.y + 20);
 red.dispose ();
 }
 });

Resources and the workspace

The central hub for your user's data files is called a workspace. You can think of the platform workbench as a
tool that allows the user to navigate and manipulate the workspace. The resources plug−in provides APIs for
creating, navigating, and manipulating resources in a workspace. The workbench uses these APIs to provide
this functionality to the user. Your plug−in can also use these APIs.

From the standpoint of a resource−based plug−in, there is exactly one workspace, and it is always open for
business as long as the plug−in is running. The workspace gets opened automatically when the resources
plug−in is activated, and closed when the platform is shut down. If your plug−in requires the resources
plug−in, then the resources plug−in will be started before your plug−in, and the workspace will be available to
you.

The workspace contains a collection of resources. From the user's perspective, there are three different types
of resources: projects, folders, and files. A project is a collection of any number of files and folders. It is a
container for organizing other resources that relate to a specific area. Files and folders are just like files and
directories in the file system. A folder contains other folders or files. A file contains an arbitrary sequence of
bytes. Its content is not interpreted by the platform.

A workspace's resources are organized into a tree structure, with projects at the top, and folders and files
underneath. A special resource, the workspace root resource, serves as the root of the resource tree. The
workspace root is created internally when a workspace is created and exists as long as the workspace exists.

A workspace can have any number of projects.

A sample resource tree

The tree below (represented in the workbench navigator view) illustrates a typical hierarchy of resources in a
workspace. The (implied) root of the tree is the workspace root. The projects are immediate children of the
workspace root. Each node (other than the root) is one of the three kinds of resources, and each has a name
that is different from its siblings.

 Welcome to Eclipse

 Resources and the workspace 651

Resource names are arbitrary strings (almost −− they must be legal file names). The platform itself does not
dictate resource names, nor does it specify any names with special significance. (One exception is that you
cannot name a project ".metadata" since this name is used internally.)

Projects contain files and folders, but not other projects. Projects and folders are like directories in a file
system. When you delete a project, you will be asked whether you want to delete all of the files and folders
that it contains. Deleting a folder from a project will delete the folder and all of its children. Deleting a file is
analogous to deleting a file in the file system.

Resources and the local file system

When the platform is running and the resources plug−in is active, the workspace is represented by an instance
of IWorkspace, which provides protocol for accessing the resources it contains. An IWorkspace instance
represents an associated collection of files and directories in the local file system. You can access the
workspace from the resources plug−in class (defined in org.eclipse.core.resources).

 IWorkspace workspace = ResourcesPlugin.getWorkspace();

When the resources plug−in is not running, the workspace exists solely in the local file system and is viewed
or manipulated by the user via standard file−based tools. Let's look at what a workspace looks like on disk as
we explain the resources plug−in API.

Our sample tree on disk

When you installed the platform SDK, you unzipped the files into a directory of your choosing. We will call
this directory the platform root directory. This is the directory that contains the plugins directory, among
others. Inside the platform root directory, there is a workspace directory which is used to hold the resources
that are created and manipulated by the platform. If you look in your workspace directory, you'll see separate
subdirectories for each project that exists in the workspace. Within these subdirectories are the folders and
files that each project contains.

If the SDK in our example is installed in c:\MySDK, then inside the c:\MySDK\workspace directory we find
subdirectories named after the workspace's projects, MyWeb and MyServlet. These are called the projects'
content directories. Content directories are created by the platform when the user creates a project.

Inside each directory, we find the files and folders within the project, laid out exactly the same as they are in
the workspace's resource tree. All file names are the same, and the files' contents are the same whether

 Welcome to Eclipse

 Resources and the local file system 652

accessed from the file system or from the workspace. The only surprise is the .project file, explained in a
moment.

 C:\MySDK\workspace (workspace root)
 .metadata\ (platform metadata directory
 MyWeb\ (project content directory for MyWeb)
 .project
 index.html
 images\
 logo.gif
 MyServlet\ (project content directory for MyServlet)
 .project
 src\
 main.java
 bin\
 main.class

The platform has a special .metadata directory for holding platform internal information. The .metadata
directory of a workspace is considered to be a "black box." Important information about the workspace
structure, such as a project's references or a resource's properties, is stored in the metadata portion of the
workspace and should only be accessed by tools through the platform API. These files should never be edited
or manipulated using generic file system API.

In addition, each project has its own .project file, where metadata about the project is kept. This file is
basically an on−disk equivalent of the information found in a project's IProjectDescription.

Apart from the .metadata directory and the .project files, the folders and files in the workspace directory are
fair game for other tools. The files and folders can be manipulated by non−integrated tools, such as text
editors and file system utilities. The only issue is that the user must be careful when editing these files both in
the workbench and externally. (This is no different than when a user edits a file using two independent
stand−alone tools.) The workbench provides refresh operations to reconcile the workspace view of resources
with the actual state in the file system and periodically refreshes the workspace based on the state of the file
system.

Our sample tree in code

The resource API allows us to manipulate this resource tree in code. Here we will look at some code snippets
for a quick taste of the resource API. The resource API is defined in a series of interfaces in
org.eclipse.core.resources. There are interfaces for all of the resource types, such as IProject, IFolder, and
IFile. Extensive common protocol is defined in IResource. We also make use of the
org.eclipse.core.runtime interface IPath, which represents segmented paths such as resource or file system
paths.

Manipulating resources is very similar to manipulating files using java.io.File. The API is based on handles.
When you use API like getProject or getFolder, you are returned a handle to the resource. There is no
guarantee or requirement that the resource itself exists until you try to do something with the handle. If you
expect a resource to exist, you can use exists method to ensure this is the case.

To navigate the workspace from a plug−in, we must first obtain the IWorkspaceRoot, which represents the
top of the resource hierarchy in the workspace.

 IWorkspaceRoot myWorkspaceRoot = ResourcesPlugin.getWorkspace().getRoot();

 Welcome to Eclipse

 Our sample tree in code 653

Once we have a workspace root, we can access the projects in the workspace.

 IProject myWebProject = myWorkspaceRoot.getProject("MyWeb");
 // open if necessary
 if (myWebProject.exists() && !myWebProject.isOpen())
 myWebProject.open(null);

Before we can manipulate a project, we must open it. Opening the project reads the project's structure from
disk and creates the in−memory object representation of the project's resource tree. Opening a project is an
explicit operation since each open project consumes memory to represent the resource tree internally and open
projects participate in various resource lifecycle events (such as building) which can be lengthy. In general,
closed projects cannot be accessed and will appear empty even though the resources are still present in the file
system.

You'll notice that many of these resource examples pass a null parameter when manipulating resources. Many
resource operations are potentially heavyweight enough to warrant progress reporting and user cancellation. If
your code has a user interface, you will typically pass an IProgressMonitor, which allows the resources
plug−in to report progress as the resource is manipulated and allows the user to cancel the operation if
desired. For now, we simply pass null, indicating no progress monitor.

Once we have an open project, we can access its folders and files, as well as create additional ones. In the
following example we create a file resource from the contents of a file located outside of our workspace.

 IFolder imagesFolder = myWebProject.getFolder("images");
 if (imagesFolder.exists()) {
 // create a new file
 IFile newLogo = imagesFolder.getFile("newLogo.gif");
 FileInputStream fileStream = new FileInputStream(
 "c:/MyOtherData/newLogo.gif");
 newLogo.create(fileStream, false, null);
 // create closes the file stream, so no worries.
 }

In the example above, the first line obtains a handle to the images folder. We must check that the folder exists
before we can do anything interesting with it. Likewise, when we get the file newLogo, the handle does not
represent a real file until we create the file in the last line. In this example, we create the file by populating it
with the contents of logo.gif.

The next snippet is similar to the previous one, except that it copies the newLogo file from the original logo
rather than create a new one from its contents.

 IFile logo = imagesFolder.getFile("logo.gif");
 if (logo.exists()) {
 IPath newLogoPath = new Path("newLogo.gif");
 logo.copy(newLogoPath, false, null);
 IFile newLogo = imagesFolder.getFile("newLogo.gif");
 ...
 }

Finally, we'll create another images folder and move the newly created file to it. We rename the file as a side
effect of moving it.

 ...
 IFolder newImagesFolder = myWebProject.getFolder("newimages");
 newImagesFolder.create(false, true, null);

 Welcome to Eclipse

 Our sample tree in code 654

 IPath renamedPath = newImagesFolder.getFullPath().append("renamedLogo.gif");
 newLogo.move(renamedPath, false, null);
 IFile renamedLogo = newImagesFolder.getFile("renamedLogo.gif");

Many of the resource API methods include a force boolean flag which specifies whether resources that are out
of synch with the corresponding files in the local file system will be updated anyway. See IResource for
more information. You can also use IResource.isSynchronized to determine whether a particular resource is
in synch with the file system.

Mapping resources to disk locations

In the sample resource tree, we've assumed that all of the project content directories are in the workspace
directory underneath the platform root directory (C:\MySDK\workspace). This is the default configuration
for projects. However, a project's content directory can be remapped to any arbitrary directory in the file
system, perhaps on a different disk drive.

The ability to map the location of a project independent of other projects allows the user to store the contents
of a project in a place that makes sense for the project and the project team. A project's content directory
should be considered "out in the open." This means that users can create, modify, and delete resources by
using the workbench and plug−ins, or by directly using file system based tools and editors.

Resource path names are not complete file system paths. Resource paths are always based on the project's
location (usually the workspace directory). To obtain the full file system path to a resource, you must query
its location using IResource.getLocation. Howevever, you cannot use IProjectDescription.setLocation to
change its location, because that method is just a simple setter for a data structure.

Conversely, if you want to get the corresponding resource object given a file system path, you can use
IWorkspaceRoot.getFileForLocation or IWorkspaceRoot.getContainerForLocation.

Resource API and the file system

When we use the resources API to modify our workspace's resource tree, the files are changed in the file
system in addition to updating our resource objects. What about changes to resource files that happen outside
of the platform's API?

External changes to resources will not be reflected in the workspace and resource objects until detected by the
resources plug−in. The resources plug−in also uses a mechanism appropriate for each particular native
operating system for discovering external changes made in the file system. In addition, clients can use
resource API to reconcile workspace and resource objects with the local file system quietly and without user
intervention. The user can also explicitly force a refresh in the resource navigator view of the workbench.

Many of the methods in the resource APIs include a force parameter which specifies how resources that are
out of sync with the file system should be handled. The API Reference for each method provides specific
information about this parameter. Additional methods in the API allow programmatic control of file system
refresh, such as IResource.refreshLocal(int depth, IProgressMonitor monitor). See IResource for
information on correct usage and costs.

Plug−ins that wish to supply their own mechanism for periodically refreshing the workspace based on the
state of the external file system may do so using the org.eclipse.core.resources.refreshProviders extension
point. See Refresh providers for more information.

 Welcome to Eclipse

 Mapping resources to disk locations 655

Refresh providers

The org.eclipse.core.resources.refreshProviders extension point allows plug−ins to register and implement
their own mechanisms for monitoring the external file system and refreshing the workspace appropriately.
This extension point is intended for plug−ins that implement specialized, often native, schemes for monitoring
file system changes.

The plug−in fragment org.eclipse.core.resources.win32 implements a native refresh monitor based on file
system callbacks. A more naive refresh monitor based on polling is defined for other platforms.

The following snippet shows the definition for this extension in the org.eclipse.core.resources.win32
fragment.

 <extension
 id="win32"
 point="org.eclipse.core.resources.refreshProviders">
 <refreshProvider
 name="%win32MonitorFactoryName"

class="org.eclipse.core.internal.resources.refresh.win32.Win32RefreshProvider">
 </refreshProvider>
 </extension>

The class attribute must be a class that extends RefreshProvider. This class is responsible for installing a
monitor on a specific resource and its resource subtree if it is a project or folder. The monitor must implement
IRefreshMonitor.

File encoding and content types

The platform runtime plug−in defines infrastructure for defining and discovering content types for data
streams. (See Content types for an overview of the content framework.) An important part of the content type
system is the ability to specify different encodings (character sets) for different kinds of content. The
resources API further allows default character sets to be established for projects, folders, and files. These
default character sets are consulted if the content of the file itself does not define a particular encoding inside
its data stream.

Setting a character set

We've seen in Content types that default file encodings can be established for content types. More
fine−grained control is provided by the resources API.

IContainer defines protocol for setting the default character set for a particular project or folder. This gives
plug−ins (and ultimately the user) more freedom in determining an appropriate character set for a set of files
when the default character sets from the content type may not be appropriate.

IFile defines API for setting the default character set for a particular file. If no encoding is specified inside the
file contents, then this character set will be used. The file's default character set takes precedence over any
default character set specified in the file's folder, project, or content type.

 Welcome to Eclipse

 Refresh providers 656

Both of these features are available to the end−user in the properties page for a resource.

Querying the character set

IFile also defines API for querying the character set of a file. A boolean flag specifies whether only the
character set explicitly defined for the file should be returned, or whether an implied character set should be
returned. For example:

 String charset = myFile.getCharset(false);

returns null if no character set was set explicitly on myFile. However,

 String charset = myFile.getCharset(true);

will first check for a character set that was set explicitly on the file. If none is found, then the content of the
file will be checked for a description of the character set. If none is found, then the file's containing folders
and projects will be checked for a default character set. If none is found, the default character set defined for
the content type itself will be checked. And finally, the platform default character set will be returned if there
is no other designation of a default character set. The convenience method getCharset() is the same as using
getCharset(true).

Resource markers

We know that plug−ins can define specialized file extensions and contribute editors that provide specialized
editing features for these file types. During the course of editing (or building) a resource, a plug−in may need
to tag resources to communicate problems or other information to the user. The resource marker mechanism is
used to manage this kind of information.

A marker is like a yellow sticky note stuck to a resource. On the marker you can record information about a
problem (e.g., location, severity) or a task to be done. Or you can simply record a location for a marker as a
bookmark.

Users can quickly jump to the marked location within a resource. The workbench UI supports presentation of
bookmarks, breakpoints, tasks, and problems along the side of the editor. These markers can also be shown as
items in views, such as the tasks or bookmarks view.

The platform resources API defines methods for creating markers, setting marker values, and extending the
platform with new marker types. While the platform manages markers, it is the plug−ins that control their
creation, removal and attribute values.

Markers are intended to be small, lightweight objects. There could be hundreds, even thousands of markers in
a single project. For example, the Java compiler uses a marker to flag each problem it finds in source code.

The platform will throw away markers attached to resources that are deleted, but plug−ins are responsible for
removing their stale markers when they no longer apply to a resource that still exists.

 Welcome to Eclipse

 Querying the character set 657

Marker operations

Manipulating a marker is similar to manipulating a resource. Markers are handle objects. You can obtain a
marker handle from a resource, but you don't know if it actually exists until you use exists() protocol or
otherwise try to manipulate it. Once you've established that a marker exists, you can query named attributes
that may have been assigned to it.

Markers are owned and managed by the platform, which takes care of making markers persistent and
notifying listeners as markers are added, deleted, or changed. Plug−ins are responsible for creating any
necessary markers, changing their attributes, and removing them when they are no longer needed.

Marker creation

Markers are not directly created using a constructor. They are created using a factory method
(IResource.createMarker()) on the associated resource.

 IMarker marker = file.createMarker(IMarker.TASK);

To create a marker that has global scope (not associated with any specific resource), you can use the
workspace root (IWorkspace.getRoot()) as the resource.

Marker deletion

The code for deleting a marker is straightforward.

 try {
 marker.delete();
 } catch (CoreException e) {
 // Something went wrong
 }

When a marker is deleted, its marker object (handle) becomes "stale." Plug−ins should use the
IMarker.exists() protocol to make sure a marker object is still valid.

Markers can be deleted in batch by asking a resource to delete its markers. This method is useful when
removing many markers at once or if individual marker references or ids are not available.

 int depth = IResource.DEPTH_INFINITE;
 try {
 resource.deleteMarkers(IMarker.PROBLEM, true, depth);
 } catch (CoreException e) {
 // something went wrong
 }

When deleting a group of markers, you specify a marker type to delete, such as IMarker.PROBLEM, or
null to delete all markers. The second argument indicates whether you want to delete subtype markers. (We'll
look a subtypes in a moment when we define new marker types.) The depth argument controls the depth of
deletion.

You can also delete markers using IWorkspace.deleteMarkers(IMarker []).

 Welcome to Eclipse

 Marker operations 658

Marker attributes

Given a marker, you can ask for its associated resource, its id (unique relative to that resource), and its type.
You can also access additional information via generic attributes.

Each type of marker has a specific set of attributes that are defined by the creator of the marker type using
naming conventions. The IMarker interface defines a set of constants containing the standard attribute
names (and some of the expected values) for the platform marker types. The following method manipulates
attributes using the platform constants.

 IMarker marker = file.createMarker(IMarker.TASK);
 if (marker.exists()) {
 try {
 marker.setAttribute(IMarker.MESSAGE, "A sample marker message");
 marker.setAttribute(IMarker.PRIORITY, IMarker.PRIORITY_HIGH);
 } catch (CoreException e) {
 // You need to handle the case where the marker no longer exists }
 }

Attributes are maintained generically as name/value pairs, where the names are strings and a value can be any
one of the supported value types (boolean, integer, string). The limitation on value types allows the platform
to persist the markers quickly and simply.

Querying markers

Resources can be queried for their markers and the markers of their children. For example, querying the
workspace root with infinite depth considers all of the markers in the workspace.

 IMarker[] problems = null;
 int depth = IResource.DEPTH_INFINITE;
 try {
 problems = resource.findMarkers(IMarker.PROBLEM, true, depth);
 } catch (CoreException e) {
 // something went wrong
 }

The result returned by findMarkers depends on the arguments passed. In the snippet above, we are looking
for all markers of type PROBLEM that appear on the resource and all of its direct and indirect descendants.

If you pass null as the marker type, you will get all the marker types associated with the resource. The second
argument specifies whether you want to look at the resource's children. The depth argument controls the
depth of the search when you are looking at the resource's children. The depth can be DEPTH_ZERO (just
the given resource), DEPTH_ONE (the resource and all of its direct children) or DEPTH_INFINITE (the
resource and all of its direct and indirect descendants).

Marker persistence

The platform standard markers (task, problem, and bookmark) are persistent. This means that their state will
be saved across workbench shutdown and startup. However, markers of a persistent type may be selectively
made transient by setting the reserved attribute transient to true.

New marker types declared by plug−ins are not persistent unless they are declared as such.

 Welcome to Eclipse

Marker operations 659

Extending the platform with new marker types

Plug−ins can declare their own marker types using the org.eclipse.core.resources.markers extension point.
The standard marker types for problems, tasks and bookmarks are declared by the platform in the resources
plug−in's markup.

 <extension
 id="problemmarker"
 point="org.eclipse.core.resources.markers"
 name="%problemName">
 <super type="org.eclipse.core.resources.marker"/>
 <persistent value="true"/>
 <attribute name="severity"/>
 <attribute name="message"/>
 <attribute name="location"/>
 </extension>
 <extension
 id="taskmarker"
 point="org.eclipse.core.resources.markers"
 name="%taskName">
 <super type="org.eclipse.core.resources.marker"/>
 <persistent value="true"/>
 <attribute name="priority"/>
 <attribute name="message"/>
 <attribute name="done"/>
 <attribute name="userEditable"/>
 </extension>
 <extension
 id="bookmark"
 point="org.eclipse.core.resources.markers"
 name="%bookmarkName">
 <super type="org.eclipse.core.resources.marker"/>
 <persistent value="true"/>
 <attribute name="message"/>
 <attribute name="location"/>
 </extension>

New marker types are derived from existing ones using multiple inheritance. New marker types inherit all of
the attributes from their super types and add any new attributes defined as part of the declaration. They also
transitively inherit attributes from the super types of their super types. The following markup defines a new
kind of marker in a hypothetical com.example.markers plug−in.

 <extension
 id="mymarker"
 point="org.eclipse.core.resources.markers" />
 <extension
 id="myproblem"
 point="org.eclipse.core.resources.markers">
 <super type="org.eclipse.core.resources.problemmarker"/>
 <super type="com.example.markers.mymarker"/>
 <attribute name="myAttribute" />
 <persistent value="true" />
 </extension>

Note that the type org.eclipse.core.resources.problemmarker is actually one of the pre−defined types (aka
IMarker.PROBLEM).

 Welcome to Eclipse

 Extending the platform with new marker types 660

The only aspect of a marker super type that is not inherited is its persistence flag. The default value for
persistence is false, so any marker type that should be persistent must specify <persistent value="true"/>.

After declaring the new marker type in your plug−in manifest file, you can create instances of
com.example.markers.myproblem marker type and freely set or get the myAttribute attribute.

Declaring new attributes allows you to associate data with markers that you plan to use elsewhere (in your
views and editors). Markers of a particular type do not have to have values for all of the declared attributes.
The attribute declarations are more for solving naming convention problems (so everyone uses "message" to
talk about a marker's description) than for constraining content.

 public IMarker createMyMarker(IResource resource) {
 try {
 IMarker marker = resource.createMarker("com.example.markers.myproblem");
 marker.setAttribute("myAttribute", "MYVALUE");
 return marker;
 } catch (CoreException e) {
 // You need to handle the cases where attribute value is rejected
 }
 }

You can query your own marker types in the same way you query the platform marker types. The method
below finds all mymarkers associated with the given target resource and all of its descendents. Note that this
will also find all myproblems since true is passed for the includeSubtypes argument.

 public IMarker[] findMyMarkers(IResource target) {
 String type = "com.example.markers.mymarker";
 IMarker[] markers = target.findMarkers(type, true, IResource.DEPTH_INFINITE);
 }

Modifying the workspace

In the course of performing its function, your plug−in may need to make changes to resources in the
workspace. The workspace is an important data model for many plug−ins in the system, many of which rely
on keeping up with the current state of the workspace. Plug−ins may even be concurrently updating the
workspace. It's important for your plug−in to act as a responsible workspace citizen when making changes to
resources. What makes a plug−in a good workspace citizen?

Batching of changes where possible to avoid flooding the system with unnecessary events or
triggering unnecessary processing on an interim state.

•

Listening to resource change events and updating models as the workspace changes.•
Fine−grained locking of the workspace when making modifications instead of locking the entire
workspace.

•

The next few sections look at these concepts in more detail.

 Welcome to Eclipse

 Modifying the workspace 661

Batching resource changes

When you need to modify resources in the workspace, it is important to keep in mind that other plug−ins
might be working with the same resources. The resources API provides robust mechanisms for keeping
plug−ins informed about changes in the workspace, and for making sure that multiple plug−ins do not modify
the same resource at the same time. Where possible, your plug−in's modifications to the workspace should be
batched in units of work inside a workspace runnable. These runnables help to reduce the amount of change
notifications generated by changes. They also allow you to declare which part of the workspace is to be
modified, so that other plug−ins can be locked out of changing the same part of the workspace.

The protocol for IWorkspaceRunnable is fairly simple. A workspace runnable looks just like a long−running
operation or platform job. The actual work is done inside a run method, with progress reported to the supplied
IProgressMonitor. Code that manipulates the workspace is performed inside the run method.

IWorkspaceRunnable myRunnable =
 new IWorkspaceRunnable() {
public void run(IProgressMonitor monitor) throws CoreException {
 //do the actual work in here
 ...
 }
}

When it is time to the run the code, your plug−in tells the workspace to run the code on its behalf. This way,
the workspace can generate any necessary change events and ensure that no two plug−ins are modifying the
same resource at the same time. (Even if your plug−in is not using background jobs and the concurrency
framework to modify the workspace, other plug−ins may be doing so.)

Scheduling rules and locking

IWorkspace protocol is used to run a workspace runnable. The preferred technique is using the long form of
the run method which supplies a scheduling rule and specifies how resource change events are broadcast.

Specifying a scheduling rule when running a workspace runnable allows the workspace to determine whether
the resource changes will conflict with workspace changes happening in other threads. (See Scheduling rules
for an overview of scheduling rules and ISchedulingRule protocol.) Fortunately, IResource protocol
includes the protocol for ISchedulingRule, which means that a resource can often be used as a scheduling
rule for itself.

Confused? Code can help to clarify this point. Suppose your plug−in is getting ready to modify a bunch of
resources in a particular project. It can use the project itself as the scheduling rule for making the changes.
The following snippet runs the workspace runnable that we created earlier:

IWorkspace workspace = ResourcesPlugin.getWorkspace();
workspace.run(myRunnable, myProject, IWorkspace.AVOID_UPDATE, null);

The runnable is passed to the workspace, followed by the project that the code is manipulating. This tells the
workspace that all of the changes in the runnable are confined to myProject. Any requests by other threads
to change myProject will be blocked until this runnable completes. Likewise, this call will block if some
other thread is already modifying myProject. By specifying which part of the resource tree will be
modified by the runnable, you are allowing other threads to continue modifying other portions of the
workspace. It is important to be sure that your resource rule matches the work being done inside the runnable.
Any attempt to access a resource outside the scope of the scheduling rule will trigger an exception.

 Welcome to Eclipse

 Batching resource changes 662

The third parameter to the run method specifies whether any periodic resource change events should be
broadcast during the scope of this call. Using IWorkspace.AVOID_UPDATE tells the platform to suppress
any resource change events while the runnable is running and to broadcast one event at the end of the changes.
During this call, any other runnables created in the runnable will be considered part of the parent batch
operation. Resource changes made in those runnables will appear in the parent's resource change notification.

Resource rule factory

In the example above, we assumed that the code inside our runnable only modified resources in a particular
project. This made it very easy to specify a scheduling rule for the runnable. In practice, it can be more
difficult to compute what parts of the workspace are affected by a particular change. For example, moving a
resource from one project to another affects both projects. IResourceRuleFactory can be used to help
compute an appropriate resource rule for certain kinds of resource changes. You can get a resource rule
factory from the workspace itself.

IWorkspace workspace = ResourcesPlugin.getWorkspace();
IResourceRuleFactory ruleFactory = workspace.getRuleFactory();

The factory can supply rules appropriate for many kinds of operations. If your runnable is moving a resource
from one location to another, it can obtain a rule appropriate for this operation:

ISchedulingRule movingRule = ruleFactory.moveResource(sourceResource, destinationResource);
workspace.run(myRunnable, movingRule, IWorkspace.AVOID_UPDATE, null);

See the javadoc for IResourceRuleFactory for the list of available rules. The resources plug−in uses these
rules itself to implement most resource operations. Browsing the code that references these rule methods will
help demonstrate how they are used in practice.

Multiple rules can be combined using MultiRule.

ISchedulingRule movingRule = ruleFactory.moveResource(sourceResource, destinationResource);
ISchedulingRule modifyRule = ruleFactory.modifyResource(destinationResource);
workspace.run(myRunnable, MultiRule.combine(movingRule, modifyRule), IWorkspace.AVOID_UPDATE, null);

Ignoring the rules

The short form of the run method in IWorkspace is also available. It is retained for backward compatibility.
The short form does not include a rule or an update flag.

workspace.run(myRunnable, null);

is effectively the same as calling

workspace.run(myRunnable, workspace.getRoot(), IWorkspace.AVOID_UPDATE, null);

Specifying the workspace root as the scheduling rule will put a lock on the entire workspace until the runnable
is finished. This is the most conservative way to perform a workspace update, but it is not very friendly to
other concurrency−minded plug−ins.

 Welcome to Eclipse

Batching resource changes 663

Tracking resource changes

We've just seen how to batch resource changes in a runnable (Batching resource changes). Let's look at the
other side of the coin. What if you want to keep track of all of the changes to the workspace that happen while
your plug−in is running? You can register an IResourceChangeListener with the workspace. Your listener
will be notified of the changes via an IResourceChangeEvent object, which describes the changes.

Registering a listener

First, you must register a resource change listener with the workspace.

 IResourceChangeListener listener = new MyResourceChangeReporter();
 ResourcesPlugin.getWorkspace().addResourceChangeListener(
 listener, IResourceChangeEvent.POST_CHANGE);

Your listener will be notified after modifications to the workspace resources have been made. Resource API
methods that modify resources trigger these events as part of their documented behavior. The method
comment for a resource API method explicitly states whether or not it triggers a resource change event. For
example, the following is included in the IFile.setContents() comment:

 This method changes resources; these changes will be reported in a subsequent
 resource change event, including an indication that this file's content have
 been changed.

Methods that create, delete, or change a resource typically trigger these events. Methods that read, but do not
write, resources typically do not trigger these events.

Resource change events

The resource change event describes the specifics of the change (or set of changes) that have occurred in the
workspace. The event contains a resource delta that describes the net effect of the changes. For example, if
you add a resource and later delete it during one batch of changes, the resource will not appear in the delta.

The resource delta is structured as a tree rooted at the workspace root. The resource delta tree describes these
types of changes:

Resources that have been created, deleted, or changed. If you have deleted (or added) a folder, the
resource delta will include the folder and all files contained in the folder.

•

Resources that have been moved or renamed using the IResource.move() API.•
Markers that have been added, removed, or changed. Marker modification is considered to be a
workspace modification operation.

•

Files that have been modified. Changed files are identified in the resource delta, but you do not have
access to the previous content of the file in the resource delta.

•

To traverse a resource delta tree, you may implement the IResourceDeltaVisitor interface or traverse the tree
explicitly using IResource.getAffectedChildren. Resource delta visitors implement a visit method that is
called by the resource delta as it enumerates each change in the tree.

Note: Changes made to resource session properties or resource persistent properties are not
identified in the resource delta.

 Welcome to Eclipse

 Tracking resource changes 664

Resource change events are sent whenever a change (or batched set of changes) is made to the workspace. In
addition, resource change events are sent for certain specific workspace operations. The table below
summarizes the types of resource change events and when they are reported.

Event type
Description

PRE_CLOSE

Notifies listeners that a project is about to be closed. This event can be used to
extract and save necessary information from the in−memory representation (e.g.,
session properties) of a project before it is closed. (When a project is closed, the
in−memory representation is disposed). The workspace is locked (no resources can
be updated) during this event. The event contains the project that is being closed.

PRE_DELETE

Notifies listeners that a project is about to deleted. This event can be used to perform
clean−up operations, such as removing any saved state that is related to the project
from your plug−in's directory. The workspace is locked (no resources can be
updated) during this event. The event contains the project that is being deleted.

PRE_AUTOBUILD

Notifies listeners before any auto−building occurs. This event is broadcast when the
platform detects an auto−build needs to occur, regardless of whether auto−building is
actually enabled. The workspace is not locked during this event (resources can be
updated). The event contains a resource delta describing the changes that have
occurred since the last POST_CHANGE event was reported.

POST_AUTOBUILD

Notifies listeners after any auto−building has occurred. This event is broadcast after
the platform would have performed an auto−build, regardless of whether
auto−building is actually enabled. The workspace is not locked during this event
(resources can be updated). The event contains a resource delta describing the
changes that have occurred since the last POST_CHANGE event was reported.

POST_CHANGE

Describes a set of changes that have occurred to the workspace since the last
POST_CHANGE event was reported. Triggered after a resource change API is used
individually or in a batched set of workspace changes. Also triggered after any
PRE_AUTOBUILD or POST_AUTOBUILD notification is complete. The event
contains a resource delta describing the net changes since the last POST_CHANGE
event. The workspace is locked (no resources can be updated) during this event.

Implementing a resource change listener

The following example implements a console−based resource change listener. A resource change listener is
registered for specific types of events and information about these events is printed to the console:

 IResourceChangeListener listener = new MyResourceChangeReporter();
 ResourcesPlugin.getWorkspace().addResourceChangeListener(listener,
 IResourceChangeEvent.PRE_CLOSE
 | IResourceChangeEvent.PRE_DELETE
 | IResourceChangeEvent.PRE_AUTO_BUILD
 | IResourceChangeEvent.POST_AUTO_BUILD
 | IResourceChangeEvent.POST_CHANGE);

The listener checks for each event type and reports information about the resource that was changed and the
kinds of changes that occurred. Although this example is designed to show a general listener that handles all
the types of resource events, a typical listener would register for just one type of event.

The implementation for POST_CHANGE uses another class that can be used to visit the changes in the
resource delta.

 Welcome to Eclipse

Tracking resource changes 665

 import org.eclipse.resources.*;
 import org.eclipse.runtime.*;

 public class MyResourceChangeReporter implements IResourceChangeListener {
 public void resourceChanged(IResourceChangeEvent event) {
 IResource res = event.getResource();
 switch (event.getType()) {
 case IResourceChangeEvent.PRE_CLOSE:
 System.out.print("Project ");
 System.out.print(res.getFullPath());
 System.out.println(" is about to close.");
 break;
 case IResourceChangeEvent.PRE_DELETE:
 System.out.print("Project ");
 System.out.print(res.getFullPath());
 System.out.println(" is about to be deleted.");
 break;
 case IResourceChangeEvent.POST_CHANGE:
 System.out.println("Resources have changed.");
 event.getDelta().accept(new DeltaPrinter());
 break;
 case IResourceChangeEvent.PRE_AUTO_BUILD:
 System.out.println("Auto build about to run.");
 event.getDelta().accept(new DeltaPrinter());
 break;
 case IResourceChangeEvent.POST_AUTO_BUILD:
 System.out.println("Auto build complete.");
 event.getDelta().accept(new DeltaPrinter());
 break;
 }
 }
 }

The DeltaPrinter class implements the IResourceDeltaVisitor interface to interrogate the resource delta.
The visit() method is called for each resource change in the resource delta. The visitor uses a return value to
indicate whether deltas for child resources should be visited.

 class DeltaPrinter implements IResourceDeltaVisitor {
 public boolean visit(IResourceDelta delta) {
 IResource res = delta.getResource();
 switch (delta.getKind()) {
 case IResourceDelta.ADDED:
 System.out.print("Resource ");
 System.out.print(res.getFullPath());
 System.out.println(" was added.");
 break;
 case IResourceDelta.REMOVED"
 System.out.print("Resource ");
 System.out.print(res.getFullPath());
 System.out.println(" was removed.");
 break;
 case IResourceDelta.CHANGED:
 System.out.print("Resource ");
 System.out.print(res.getFullPath());
 System.out.println(" has changed.");
 break;
 }
 return true; // visit the children
 }
 }

 Welcome to Eclipse

Tracking resource changes 666

Further information can be obtained from the supplied resource delta. The following snippet shows how the
IResourceDelta.CHANGED case could be implemented to further describe the resource changes.

 ...
 case IResourceDelta.CHANGED:
 System.out.print("Resource ");
 System.out.print(delta.getFullPath());
 System.out.println(" has changed.");
 int flags = delta.getFlags();
 if ((flags & IResourceDelta.CONTENT) != 0) {
 System.out.println("−−> Content Change");
 }
 if ((flags & IResourceDelta.REPLACED) != 0) {
 System.out.println("−−> Content Replaced");
 }
 if ((flags & IResourceDelta.MARKERS) != 0) {
 System.out.println("−−> Marker Change");
 IMarkerDelta[] markers = delta.getMarkerDeltas();
 // if interested in markers, check these deltas
 }
 break;
 ...

For a complete description of resource deltas, visitors, and marker deltas, consult the API specification for
IResourceDelta, IResourceDeltaVisitor, and IMarkerDelta.

Note: Resource change listeners are useful for tracking changes that occur to resources
while your plug−in is activated. If your plug−in registers a resource change listener during
its startup code, it's possible that many resource change events have been triggered before
the activation of your plug−in. The resource delta contained in the first resource change
event received by your plug−in will not contain all of the changes made since your plug−in
was last activated. If you need to track changes made between activations of your plug−in,
you should use the support provided for workspace saving. This is described in Workspace
save participation.

Note: Some resource change events are triggered during processing that occurs in a
background thread. Resource change listeners should be thread−safe. See Threading issues
for a discussion about thread safety with the UI.

Concurrency and the workspace

We've already seen that workspace code must be aware of concurrency even if it is not using the concurrency
framework. Batching of workspace changes and use of scheduling rules helps in sharing the workspace with
other plug−ins (and their threads) that are modifying the workspace. Once your plug−in is using batching and
rules (see Batching resource changes), it is easy to perform the same work using the platform concurrency
mechanisms.

Workspace jobs

A Job is a basic unit of asynchronous work running concurrently with other jobs. The resources plug−in
defines WorkspaceJob as a convenient mechanism for defining asynchronous resource modifications. Code
that would normally be batched in an IWorkspaceRunnable is instead put in the runInWorkspace method

 Welcome to Eclipse

Concurrency and the workspace 667

of a workspace job subtype. Instead of running the code using IWorkspace protocol, the job is scheduled just
like any other job. The appropriate scheduling rules must be added on the job before it is scheduled.

Let's look at an example workspace runnable and what we should do to make it a job:

IWorkspaceRunnable myRunnable =
 new IWorkspaceRunnable() {
 public void run(IProgressMonitor monitor) throws CoreException {
 //do the actual work in here
 doSomeWork();
 ...
 }
}

The work is moved to the appropriate method of our WorkspaceJob subtype.

class MyWorkspaceJob extends WorkspaceJob {
 public MyWorkspaceJob() {
 super("My Workspace Job");
 }
 public IStatus runInWorkspace(IProgressMonitor monitor) {
 //do the actual work in here
 doSomeWork();
 return Status.OK_STATUS;
 }
}

Our runnable had to be invoked specifically:

IWorkspace workspace = ResourcesPlugin.getWorkspace();
workspace.run(myRunnable, myProject, IWorkspace.AVOID_UPDATE, null);

Our job is scheduled like any other job. The platform job manager will run it according to its priority, other
jobs in the queue, and the scheduling rules. Note that we must attach the scheduling rule to the job in order to
prevent simultaneous modification of myProject.

MyWorkspaceJob job = new MyWorkspaceJob();
job.setRule(myProject);
job.schedule();

Now that the operation has been structured as a job, all of the scheduling mechanisms (priority, delay,
rescheduling) can be used. Resource change events will be batched until the job is finished running.

Incremental project builders

An incremental project builder is an object that manipulates the resources in a project in a particular way.
Incremental project builders are often used to apply a transformation on a resource to produce a resource or
artifact of another kind.

Plug−ins contribute incremental project builders to the platform in order to implement specialized resource
transformations. For example, the Java development tools (JDT)define an incremental project builder that
compiles a Java source file into a class file any time a file is added or modified in a Java project. It also keeps
track of dependent files and recompiles them when necessary.

 Welcome to Eclipse

 Incremental project builders 668

From an API point of view, the platform defines two basic types of builds:

A full build performs a build from scratch. It treats all resources in a project as if they have never
been seen by the builder.

•

An incremental build uses a "last build state," maintained internally by the builder, to do an
optimized build based on the changes in the project since the last build.

•

Incremental builds are seeded with a resource change delta. The delta reflects the net effect of all resource
changes since the builder last built the project. This delta is similar to the one used inside resource change
events.

Projects can be periodically cleaned by the user in order to force a rebuild of a complete project the next time
an incremental build is performed on that project. Cleaning a project removes build information such as
problem markers and class files.

Builders are best understood by example. The JDT Java compiler is driven by a Java incremental project
builder which recompiles the files in a project that are affected by changes. When a full build is triggered, (or
an incremental build after a clean), all of the .java files in the project are compiled. Any compile problems
encountered are added as problem markers on the affected .java files. When an incremental build is triggered,
the builder selectively recompiles the added, changed, or otherwise affected .java files that are described in
the resource delta and updates the problem markers as necessary. Any .class files or markers that are no
longer appropriate are removed.

Incremental building has obvious performance benefits for projects with hundreds or thousands of resources,
most of which are unchanging at any given point in time.

The technical challenge for incremental building is to determine exactly what needs to be rebuilt. For
example, the internal state maintained by the Java builder includes things like a dependency graph and a list of
compilation problems reported. This information is used during an incremental build to identify which classes
need to be recompiled in response to a change in a Java resource.

Although the basic structure for building is defined in the platform, the real work is done in the builder code.
Patterns for implementing complex incremental builders are beyond the scope of this discussion, since the
implementation is dependent on the specific builder design.

Invoking a build

A builder can be invoked explicitly in one of the following ways:

IProject.build() runs the build processing on the receiving project according to the build method's
arguments.

•

IWorkspace.build() runs the build processing on all open projects in the workspace.•

In practice, the workbench user triggers a build by selecting corresponding commands in the resource
navigator menu.

Incremental project builders are also invoked implicitly by the platform during an auto−build. If enabled,
auto−builds run whenever the workspace is changed.

 Welcome to Eclipse

 Invoking a build 669

Defining an incremental project builder

The org.eclipse.core.resources.builders extension point is used to contribute an incremental project builder
to the platform. The following markup shows how the hypothetical plug−in com.example.builders could
contribute an incremental project builder.

 <extension
 id="mybuilder" name="My Sample Builder" point="org.eclipse.core.resources.builders">
 <builder
 <run

class="com.example.builders.BuilderExample">
 <parameter name="optimize" value="true" />
 <parameter name="comment" value="Builder comment" />
 </run>
 </builder>
 </extension>

The class identified in the extension point must extend the platform class IncrementalProjectBuilder.

 public class BuilderExample extends IncrementalProjectBuilder {
 IProject[] build(int kind, Map args, IProgressMonitor monitor)
 throws CoreException {
 // add your build logic here
 return null;
 }
 protected void startupOnInitialize() {
 // add builder init logic here
 }
 protected void clean(IProgressMonitor monitor) {
 // add builder clean logic here
 }
 }

Build processing begins with the build() method, which includes information about the kind of build that has
been requested. The build is one of the following values:

FULL_BUILD indicates that all resources in the project should be built.•
INCREMENTAL_BUILD indicates that the build is incremental.•
AUTO_BUILD indicates that an incremental build is being triggered automatically because a
resource has changed and the autobuild feature is on.

•

If an incremental build has been requested, a resource delta is provided to describe the changes in the
resources since the last build. The following snippet further refines the build() method.

 protected IProject[] build(int kind, Map args, IProgressMonitor monitor
 throws CoreException {
 if (kind == IncrementalProjectBuilder.FULL_BUILD) {
 fullBuild(monitor);
 } else {
 IResourceDelta delta = getDelta(getProject());
 if (delta == null) {
 fullBuild(monitor);
 } else {
 incrementalBuild(delta, monitor);
 }
 }
 return null;

 Welcome to Eclipse

 Defining an incremental project builder 670

 }

It sometimes happens that when building project "X," a builder needs information about changes in some
other project "Y." (For example, if a Java class in X implements an interface provided in Y.) While building
X, a delta for Y is available by calling getDelta(Y). To ensure that the platform can provide such deltas, X's
builder must have declared the dependency between X and Y by returning an array containing Y from a
previous build() call. If a builder has no dependencies, it can simply return null. See
IncrementalProjectBuilder for further information.

Full build

The logic required to process a full build request is specific to the plug−in. It may involve visiting every
resource in the project or even examining other projects if there are dependencies between projects. The
following snippet suggests how a full build might be implemented.

 protected void fullBuild(final IProgressMonitor monitor) throws CoreException {
 try {
 getProject().accept(new MyBuildVisitor());
 } catch (CoreException e) { }
 }

The build visitor would perform the build for the specific resource (and answer true to continue visiting all
child resources).

 class MyBuildVisitor implements IResourceVisitor {
 public boolean visit(IResource res) {
 //build the specified resource.
 //return true to continue visiting children.
 return true;
 }
 }

The visit process continues until the full resource tree has been traveled.

Incremental build

When performing an incremental build, the builder works with a resource change delta instead of a complete
resource tree.

 protected void incrementalBuild(IResourceDelta delta,
 IProgressMonitor monitor) throws CoreException {
 // the visitor does the work.
 delta.accept(new MyBuildDeltaVisitor());
 }

The visit process continues until the complete resource delta tree has been traveled. The specific nature of
changes is similar to that described in Implementing a resource change listener. One important difference is
that with incremental project builders, you are working with a resource delta based on a particular project, not
the entire workspace.

Cleaning before a build

The workbench allows users to clean a project or set of projects before initiating a build. This feature allows
the user to force a rebuild from scratch on only certain projects. Builders should implement this method to

 Welcome to Eclipse

Defining an incremental project builder 671

clean up any problem markers and derived resources in the project.

Associating an incremental project builder with a project

To make a builder available for a given project, it must be included in the build spec for the project. A
project's build spec is a list of commands to run, in sequence, when the project is built. Each command names
a single incremental project builder.

The following snippet adds a new builder as the first builder in the existing list of builders.

 IProjectDescription desc = project.getDescription();
 ICommand[] commands = desc.getBuildSpec();
 boolean found = false;

 for (int i = 0; i < commands.length; ++i) {
 if (commands[i].getBuilderName().equals(BUILDER_ID)) {
 found = true;
 break;
 }
 }
 if (!found) {
 //add builder to project
 ICommand command = desc.newCommand();
 command.setBuilderName(BUILDER_ID);
 ICommand[] newCommands = new ICommand[commands.length + 1];

 // Add it before other builders.
 System.arraycopy(commands, 0, newCommands, 1, commands.length);
 newCommands[0] = command;
 desc.setBuildSpec(newCommands);
 project.setDescription(desc, null);
 }

Configuring a project's builder is done just once, usually as the project is being created.

Derived resources

Many resources get created in the course of translating, compiling, copying, or otherwise processing files that
the user creates and edits. Derived resources are resources that are not original data, and can be recreated
from their source files. It is common for derived files to be excluded from certain kinds of processing.

For example, derived resources are typically not kept in a team repository, since they clutter the repository,
change regularly, and can be recreated from their source files. It is not practical for team providers to make
decisions about which files are derived. The resource API provides a common mechanism for plug−ins to
indicate the resources they create that are derived.

Plug−ins may use IResource.setDerived(boolean) to indicate that a resource is derived from other resources.
Newly created resources are not derived by default, so this method must be used to explicitly mark the
resource as derived. A common use is to mark a subfolder of the project as derived when an "output" folder
(such as the "bin" folder in Java projects) is created by the plug−in.

 Welcome to Eclipse

 Associating an incremental project builder with a project 672

Other plug−ins, usually team providers, can use IResource.isDerived to determine whether a particular
resource should be managed by the repository. Attempts to mark projects or the workspace root as derived
will be ignored.

Note: The concept of derived resources is provided for other (non−team) plug−ins to
indicate which resources are inappropriate for repository management. Special files created
by team implementations to manage their data should not be marked as derived resources.
See Team private resources for a technique for marking team−related implementation
resources hidden.

Team private resources

It is common for repository implementations to use extra files and folders to store information specific about
the repository implementation. Although these files may be needed in the workspace, they are of no interest
to other plug−ins or to the end user.

Team providers may use IResource.setTeamPrivateMember(boolean) to indicate that a resource is private
to the implementation of a team provider. Newly created resources are not private members by default, so this
method must be used to explicitly mark the resource as team private. A common use is to mark a subfolder of
the project as team private when the project is configured for team and the subfolder is created.

Other resource API that enumerates resources (such as resource delta trees) will exclude team private
members unless explicitly requested to include them. This means that most clients will not "see" the team
private resources and they will not be shown to the user. The resource navigator does not show team private
members by default, but users can indicate via Preferences that they would like to see team private resources.

Attempts to mark projects or the workspace root as team private will be ignored.

Workspace save participation

Workspace save processing is triggered when the workbench is shut down by the user and at other times
periodically by the platform. Plug−ins can participate in the workspace save process so that critical plug−in
data is saved to disk whenever the rest of the workspace's persistent data is saved.

The workspace save process can also be used to track changes that occur between activations of your plug−in.

Implementing a save participant

To participate in workspace saving, you must add a save participant to the workspace. This is typically done
during your plug−in's startup method. This is also where you read any state that you might have saved when
your plug−in was last shut down.

Let's look at a simple plug−in which will demonstrate the save process.

 Welcome to Eclipse

Team private resources 673

 package com.example.saveparticipant;

 import org.eclipse.core.runtime.*;
 import org.eclipse.core.resources.*;
 import java.io.File;
 import java.util.*;

 public class MyPlugin extends Plugin {
 private static MyPlugin plugin;

 public MyPlugin(IPluginDescriptor descriptor) {
 super(descriptor);
 plugin = this;
 }

 public static MyPlugin getDefault() {
 return plugin;
 }

 protected void readStateFrom(File target) {
 }

 public void startup() throws CoreException {
 super.startup();
 ISaveParticipant saveParticipant = new MyWorkspaceSaveParticipant();
 ISavedState lastState =

ResourcesPlugin.getWorkspace().addSaveParticipant(this, saveParticipant);
 if (lastState == null)
 return;
 IPath location = lastState.lookup(new Path("save"));
 if (location == null)
 return;
 // the plugin instance should read any important state from the file.
 File f = getStateLocation().append(location).toFile();
 readStateFrom(f);
 }

 protected void writeImportantState(File target) {
 }
 }

ISaveParticipant defines the protocol for a workspace save participant. Implementors of this interface can
provide behavior for different stages of the save process. Let's look at the stages and how our class
WorkspaceSaveParticipant implements each of these steps.

prepareToSave notifies the participant that the workspace is about to be saved and that it should
suspend normal operation until further notice. Our save particpant does nothing here.

•

 public void prepareToSave(ISaveContext context) throws CoreException {
 }

saving tells the participant to save its important state.•

 public void saving(ISaveContext context) throws CoreException {
 switch (context.getKind()) {
 case ISaveContext.FULL_SAVE:
 MyPlugin myPluginInstance = MyPlugin.getDefault();
 // save the plug−in state

int saveNumber = context.getSaveNumber();
 String saveFileName = "save−" + Integer.toString(saveNumber);

 Welcome to Eclipse

Team private resources 674

 File f = myPluginInstance.getStateLocation().append(saveFileName).toFile();
// if we fail to write, an exception is thrown and we do not update the path
myPluginInstance.writeImportantState(f);

 context.map(new Path("save"), new Path(saveFileName));
 context.needSaveNumber();
 break;
 case ISaveContext.PROJECT_SAVE:
 // get the project related to this save operation
 IProject project = context.getProject();
 // save its information, if necessary
 break;
 case ISaveContext.SNAPSHOT:
 // This operation needs to be really fast because
 // snapshots can be requested frequently by the
 // workspace.
 break;
 }
 }

The ISaveContext describes information about the save operation. There are three kinds of
save operations: FULL_SAVE, SNAPSHOT, and PROJECT_SAVE. Save participants
should be careful to perform the processing appropriate for the kind of save event they have
received. For example, snapshot events may occur quite frequently and are intended to allow
plug−ins to save their critical state. Taking a long time to save state which can be recomputed
in the event of a crash will slow down the platform.

A save number is used to create data save files that are named using sequential numbers
(save−1, save−2, etc.) Each save file is mapped to a logical file name (save) that is
independent of the save number. Plug−in data is written to the corresponding file and can be
retrieved later without knowing the specific save number of the last successful save
operation. Recall that we saw this technique in our plug−in's startup code:

IPath location = lastState.lookup(new Path("save"));

After we have saved our data and mapped the file name, we call needSaveNumber to
indicate that we have actively participated in a workspace save and want to assign a number
to the save activity. The save numbers can be used to create data files as above.

doneSaving notifies the participant that the workspace has been saved and the participant can
continue normal operation.

•

 public void doneSaving(ISaveContext context) {
 MyPlugin myPluginInstance = MyPlugin.getDefault();

 // delete the old saved state since it is not necessary anymore
 int previousSaveNumber = context.getPreviousSaveNumber();
 String oldFileName = "save−" + Integer.toString(previousSaveNumber);
 File f = myPluginInstance.getStateLocation().append(oldFileName).toFile();
 f.delete();
 }

Here, we clean up the save information from the previous save operation. We use
getPreviousSaveNumber to get the save number that was assigned in the previous save
operation (not the one we just completed). We use this number to construct the name of the
file that we need to delete. Note that we do not use the save state's logical file map since
we've already mapped our current save file number.

 Welcome to Eclipse

Team private resources 675

rollback tells the participant to rollback the important state because the save operation has failed.•

 public void rollback(ISaveContext context) {
 MyPlugin myPluginInstance = MyPlugin.getDefault();

 // since the save operation has failed, delete the saved state we have just written
 int saveNumber = context.getSaveNumber();
 String saveFileName = "save−" + Integer.toString(saveNumber);
 File f = myPluginInstance.getStateLocation().append(saveFileName).toFile();
 f.delete();
 }

Here, we delete the state that we just saved. Note that we use the current save number to
construct the file name of the file we just saved. We don't have to worry about the fact that
we mapped this file name into the ISaveContext. The platform will discard the context when
a save operation fails.

If your plug−in throws an exception at any time during the save lifecycle, it will be removed from the current
save operation and will not get any of the remaining lifecycle methods. For example, if you fail during your
saving method, you will not receive a rollback or doneSaving message.

Using previously saved state

When you add a save participant to the workspace, it will return an ISavedState object, which describes what
your plug−in saved during its last save operation (or null if your plug−in has not previously saved any state).
This object can be used to access information from the previous save file (using the save number and file
map) or to process changes that have occurred between activations of a plug−in.

Accessing the save files

If a file map was used to save logically named files according to the save number, this same map can be used
to retrieve the data from the last known save state.

 ISaveParticipant saveParticipant = new MyWorkspaceSaveParticipant();
 ISavedState lastState =
 ResourcesPlugin.getWorkspace().addSaveParticipant(myPluginInstance, saveParticipant);

 if (lastState != null) {
 String saveFileName = lastState.lookup(new Path("save")).toString();
 File f = myPluginInstance.getStateLocation().append(saveFileName).toFile();
 // the plugin instance should read any important state from the file.
 myPluginInstance.readStateFrom(f);
 }

Processing resource deltas between activations

Recall that any number of resource change events could occur in the workspace before your plug−in is ever
activated. If you want to know what changes have occurred since your plug−in was deactivated, you can use
the save mechanism to do so, even if you don't need to save any other data.

The save participant must request that the platform keep a resource delta on its behalf. This is done as part of
the save operation.

 public void saving(ISaveContext context) throws CoreException {

 Welcome to Eclipse

 Using previously saved state 676

 // no state to be saved by the plug−in, but request a
 // resource delta to be used on next activation.
 context.needDelta();
 }

During plug−in startup, the previous saved state can be accessed and change events will be created for all
changes that have occurred since the last save.

 ISaveParticipant saveParticipant = new MyWorkspaceSaveParticipant();
 ISavedState lastState =
 ResourcesPlugin.getWorkspace().addSaveParticipant(myPluginInstance, saveParticipant);
 if (lastState != null) {
 lastState.processResourceChangeEvents(new MyResourceChangeReporter());
 }

The provided class must implement IResourceChangeListener, as described in Tracking resource changes.
The changes since the last save are reported as part of the POST_AUTO_BUILD resource change event.

Note: Marker changes are not reported in the change events stored in an ISavedState. You
must assume that any or all markers have changed since your last state was saved.

Menu and toolbar paths

We've seen many action contributions that specify the path for the location of their action. Let's take a close
look at what these paths mean.

Menu paths

We'll look at menu paths first by looking at the workbench Help menu.

Named groups in the workbench

The locations for inserting new menus and menu items are defined using named groups. You can think of a
named group as a slot or placeholder that allows you to insert your menu items at certain points in a menu bar
or pulldown menu.

The workbench defines all of its group slot names in the classes IWorkbenchActionConstants and
IIDEActionConstants. (Two different classes are used since resource−related menu items are factored out of
the generic workbench). For each workbench menu, named groups are placed in the menu at locations where
it is expected that plug−ins will insert new actions.

The following description of the help menu is adapted from the IWorkbenchActionConstants class
definition.

 Standard Help menu actions
 Start group − HELP_START − "start"
 End group − HELP_END − "end"

The standard workbench help menu defines a named group called "start," followed by a named group called
"end,". Defining two groups gives plug−ins a little more control over where their contributed items will be

 Welcome to Eclipse

 Menu and toolbar paths 677

positioned within the help menu. When you define a menu, you can define as many slots as you like. Adding
more slots gives other plug−ins more control over where their contributions appear relative to existing
contributions.

Plug−ins that add a menu item to the help menu can use these group names to decide where their menu item
will go. For example, the cheatsheet plug−in adds an action set containing the "Cheat Sheets..." menu to the
workbench. Here's the markup from the org.eclipse.ui.cheatsheets plug−in's plugin.xml.

<extension
 point="org.eclipse.ui.actionSets">
 <actionSet
 label="%CHEAT_SHEETS"
 visible="true"
 id="org.eclipse.ui.cheatsheets.actionSet">
 <action
 label="%CHEAT_SHEETS_MENU"
 class="org.eclipse.ui.internal.cheatsheets.actions.CheatSheetHelpMenuAction"
menubarPath="help/helpStart"
 id="org.eclipse.ui.cheatsheets.actions.CheatSheetHelpMenuAction">
 </action>
 </actionSet>
</extension>

The new help action will be placed in the help menu, inside the helpStart group.

Fully qualified menu paths

A complete menu path is simply "menu name/group name." Most menu names for the workbench are defined
in IWorkbenchActionConstants. (Resource−related menu names are defined in IIDEActionConstants.) If
we look for the name of the help menu in this class, we'll find that the fully qualified path name for our help
action is "help/helpEnd."

Some menus have nested submenus. This is where longer paths come into play. If the help menu had defined
a submenu called "submenu" with a named group called "submenuStart," then the fully qualified menu path
for an action in the new submenu would be "help/submenu/submenuStart."

Externalizing UI labels

The example above demonstrates a technique for externalizing strings that appear in the UI. Externalized
strings are used to make translating the plug−in's UI to other languages simpler. We can externalize the
strings in our plugin.xml files by replacing the string with a key (%CHEAT_SHEETS_MENU) and
creating entries in the plugin.properties file of the form:

 CHEAT_SHEETS_MENU = Cheat Sheets...

The plugin.properties file can be translated for different languages and the plugin.xml will not need to be
modified.

Adding new menus and groups

In many of the examples we've seen so far, the actions contributed by the sample plug−ins have been added to
existing named groups within menus.

 Welcome to Eclipse

Menu paths 678

The actionSets, viewActions, editorActions, and popupMenus extension points also allow you to define
new menus and groups within your contribution. This means that you can define new submenus or new
pull−down menus and contribute your actions to these new menus. In this case, the path for your new action
will contain the name of your newly defined menu.

We saw this technique when the readme tool defined a new menu for its action set. Let's look at the markup
one more time now that we've looked at menu paths in more detail.

 <extension point = "org.eclipse.ui.actionSets">
 <actionSet id="org_eclipse_ui_examples_readmetool_actionSet"
 label="%ActionSet.name"
 visible="true">
 <menu id="org_eclipse_ui_examples_readmetool"
 label="%ActionSet.menu"

path="window/additions">
 <separator name="slot1"/>
 <separator name="slot2"/>
 <separator name="slot3"/>
 </menu>
 <action id="org_eclipse_ui_examples_readmetool_readmeAction"

menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"
 toolbarPath="readme"
 label="%ReadmeAction.label"
 tooltip="%ReadmeAction.tooltip"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 icon="icons/ctool16/openbrwsr.gif"
 class="org.eclipse.ui.examples.readmetool.WindowActionDelegate"
 enablesFor="1">
 <selection class="org.eclipse.core.resources.IFile"
 name="*.readme">
 </selection>
 </action>
 ...

We added a new menu called "org_eclipse_ui_examples_readmetool" whose label is defined in by the key
"%ActionSet.name" in the properties file. Within this menu, we define three named groups: "slot1," "slot2,"
and "slot3." We add this new menu to the path "window/additions."

If we go back to IWorkbenchActionConstants, we see this definition of the window menu in the javadoc:

 * <h3>Standard Window menu actions</h3>
 *
 * Extra Window−like action group (<code>WINDOW_EXT</code>)

If we look further at the class definition, we will see these related definitions:

 public static final String MENU_PREFIX = "";
 ...
 public static final String M_WINDOW = MENU_PREFIX+"window";
 ...
 public static final String MB_ADDITIONS = "additions"; // Group.
 ...
 public static final String WINDOW_EXT = MB_ADDITIONS; // Group.

From this information, we can piece together the path for adding something to the workbench "Window"
menu. The menu itself is called "window" and it defines one slot called "additions." We use the path
"window/additions" to add our new menu.

 Welcome to Eclipse

Menu paths 679

In the action set declaration, we add an action to our newly defined menu, using the path
"window/org_eclipse_ui_examples_readmetool/slot1."

Other plug−ins could add to our menu by using this same path (or perhaps one of the other slots) to add one of
their own menus.

In the readme tool example, we use the separator attribute to identify the group names. This will cause a
separator line to appear between these groups when they contain items. We could instead use the
groupMarker attribute if we want to define a named group without showing any separators in the menu to
distinguish between the groups.

Tool bar paths

Tool bar paths work similarly to menu paths.

Named tool bars in the workbench

The workbench tool bar is composed of tool bars contributed by different plug−ins, including the workbench
itself. Within any particular tool bar, there are named groups or slots that can be used for inserting new tool
bar items.

The following description of the workbench tool bars is adapted from the IWorkbenchActionConstants
class definition.

// Workbench toolbar ids
public static final String TOOLBAR_FILE = "org.eclipse.ui.workbench.file"
public static final String TOOLBAR_NAVIGATE = "org.eclipse.ui.workbench.navigate";

// Workbench toolbar group ids. To add an item at the beginning of the group,
// use the GROUP id. To add an item at the end of the group, use the EXT id.
public static final String PIN_GROUP = "pin.group";
public static final String HISTORY_GROUP = "history.group";
public static final String NEW_GROUP = "new.group";
public static final String SAVE_GROUP = "save.group";
public static final String BUILD_GROUP = "build.group";

 Welcome to Eclipse

Tool bar paths 680

In the simplest case, a plug−in can contribute a tool bar item in its own tool bar. For example, the readme tool
actions contributed to the menu are also given a tool bar path:

...
<action id="org_eclipse_ui_examples_readmetool_readmeAction"
 menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"

toolbarPath="readme"
...

Since there is no reference to the workbench tool bar paths or groups, the readme actions appear in their own
group on the tool bar. Specifying the following path would instead place the item in the file tool bar in the
save group:

...
<action id="org_eclipse_ui_examples_readmetool_readmeAction"
 menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"

toolbarPath="org.eclipse.ui.workbench.file/save.group"
...

The paths defined in IWorkbenchActionConstants may be referenced in the tool bar paths of other plug−ins.

Adding to action sets of another plug−in

Suppose a plug−in wants its tool bar items better integrated with actions from a different plug−in? Let's look
at how the external tools plug−in (org.eclipse.ui.externaltools) integrates its action with the debugger tool
bar. The debugger (org.eclipse.debug.ui) defines its tool bar actions like this:

<extension
 point="org.eclipse.ui.actionSets">
 <actionSet
 label="%LaunchActionSet.label"
 visible="false"
 id="org.eclipse.debug.ui.launchActionSet">
 ...
 <action

toolbarPath="debug"
 id="org.eclipse.debug.internal.ui.actions.RunDropDownAction"
 hoverIcon="icons/full/ctool16/run_exc.gif"
 class="org.eclipse.debug.internal.ui.actions.RunToolbarAction"
 disabledIcon="icons/full/dtool16/run_exc.gif"
 icon="icons/full/etool16/run_exc.gif"
 helpContextId="run_action_context"
 label="%RunDropDownAction.label"
 pulldown="true">
 </action>
 ...

Just like the readme tool, the debugger plug−in defines its own tool bar path, which means its tool bar items
will be inside their own tool bar on the workbench. What does the external tools plug−in do?

<extension point="org.eclipse.ui.actionSets">
 <actionSet
 id="org.eclipse.ui.externaltools.ExternalToolsSet"
 label="%ActionSet.externalTools"
 visible="true">
 ...
 <action
 id="org.eclipse.ui.externaltools.ExternalToolMenuDelegateToolbar"

 Welcome to Eclipse

Tool bar paths 681

 definitionId= "org.eclipse.ui.externaltools.ExternalToolMenuDelegateToolbar"
 label="%Action.externalTools"
toolbarPath="org.eclipse.debug.ui.launchActionSet/debug"
 disabledIcon="icons/full/dtool16/external_tools.gif"
 icon="icons/full/etool16/external_tools.gif"
 hoverIcon="icons/full/ctool16/external_tools.gif"
 tooltip="%Action.externalToolsTip"
 pulldown="true"
 class="org.eclipse.ui.externaltools.internal.menu.ExternalToolMenuDelegate">
 </action>
 </actionSet>
</extension>

Note the use of the action set ID of the debugger in the tool bar path. Using an action set ID in the path
denotes that the tool bar item should be placed in the tool bar used by the referenced action set. Within a
toolbar group, items are ordered by action set id, so for our example, the external tools action will appear after
the debugger actions.

When adding to an action set's tool bar, new groups can also be defined. If the external tools plug−in defined
its toolbarpath as "org.eclipse.debug.ui.launchActionSet/external" a new group would be created for the
action on the tool bar. As with menus, tool bar groups are delineated by separators.

Using paths from another plug−in

In general, it's not good practice to contribute to another plug−in's menu or tool bar by deriving the path name
from the plugin.xml unless it has been marked specifically as being available for clients. It's possible that a
future version of the plug−in could change the names of the paths. Two common ways to mark your plug−in's
action set ids and paths as fair game are:

annotate the XML with comments that explicitly mark the menu path or action set as usable by clients•
define a public interface (much like IWorkbenchActionConstants) which specifies exactly which
menus, tool bar groups, and slots are considered fair game for use by other plug−ins

•

Action set part associations

Once your plug−in defines an action set, it can use the org.eclipse.ui.actionSetPartAssociations extension
point to specify that an action set should be made visible when a particular view or editor is active.

Ultimately, the user controls the appearance of action sets using Window−>Customize Perspectives... in the
workbench menu. If the user marks an action set visible, it will always be visible when the perspective is
active, regardless of the active view or editor. Likewise, if the user marks the action set as hidden, it will
always be hidden when the perspective is active. If the user does not change the state of an action set in this
dialog, then the action set part associations are used to determine the visibility of the action set.

The markup for an action set part association is straightforward. The following example comes from the Java
development tools (JDT) UI plug−in.

 <extension point="org.eclipse.ui.actionSetPartAssociations">
 <actionSetPartAssociation
targetID="org.eclipse.jdt.ui.CodingActionSet">
 <part id="org.eclipse.jdt.ui.PackageExplorer"/>

 Welcome to Eclipse

Using paths from another plug−in 682

 <part id="org.eclipse.jdt.ui.TypeHierarchy" />
 <part id="org.eclipse.jdt.ui.CompilationUnitEditor"/>
 <part id="org.eclipse.jdt.ui.ClassFileEditor"/>
 <part id="org.eclipse.jdt.ui.ProjectsView"/>
 <part id="org.eclipse.jdt.ui.PackagesView"/>
 <part id="org.eclipse.jdt.ui.TypesView"/>
 <part id="org.eclipse.jdt.ui.MembersView"/>
 </actionSetPartAssociation>
</extension>

The targetID specifies the action set. (The CodingActionSet was previously defined in the JDT plug−in
manifest.) One or more part attributes can be specified to indicate which views and editors will cause the
action set to become visible in the menus and toolbar. The effect of this extension contribution is that the
actions associated with writing Java code will only be visible when one of the specified views is active.

Boolean expressions and action filters

When a plug−in contributes an action to the workbench UI using one of the menu extension points, it can
specify the conditions under which the menu item is visible and/or enabled in the menu. In addition to
supplying simple enabling conditions, such as selection counts and selection classes, plug−ins can use
boolean expressions to make an action visible or enabled.

Boolean expressions

The boolean expressions can contain simple boolean operators (NOT, AND, OR) and predefined expressions
that can evaluate the following conditions:

objectClass − true if each object in the selection subclasses or implements the class.•
objectState − true if the named attribute equals the specified value. IActionFilter assists in
evaluating the expression. An action filter dynamically computes the enablement criteria for an
action based on the target selection and the value of named attributes.

•

systemProperty − true if the named system property equals the specified value.•
pluginState − specifies whether the specified plugin (by id) should be installed or activated•

For example, the following snippets represent enablement expressions that could be used on a hypothetical
action in an action set:

<action id="org.eclipse.examples.actionEnablement.class"
 label="Red Element"
 menubarPath="additions"
 class="org.eclipse.examples.actionEnablement.ObjectTestAction">
 <enablement>
 <and>
 <objectClass name="org.eclipse.examples.actionEnablement.TestElement"/>
 <objectState name="name" value="red"/>
 </and>
 </enablement>
</action>

<action id="org.eclipse.examples.actionEnablement.property"
 label="Property"
 menubarPath="additions"
 class="org.eclipse.examples.actionEnablement.PropertyTestAction">

 Welcome to Eclipse

 Boolean expressions and action filters 683

 <enablement>
 <systemProperty name="MyTestProperty" value="puppy"/>
 </enablement>
</action>

<action id="org.eclipse.examples.actionEnablement.pluginState"
 label="Installed"
 menubarPath="additions"
 class="org.eclipse.examples.actionEnablement.PluginTestAction">
 <enablement>

<pluginState id="x.y.z.anotherPlugin" value="installed"/>
 </enablement>
</action>

See the reference documentation of the extension points below for more elaborate samples of these
expressions and a complete description of the XML.

The following table lists extension points that contribute actions and summarizes how XML markup attributes
and boolean expressions can be used to affect enablement.

Extension point
name

Attributes affecting enablement Boolean expressions

viewActions,

editorActions,

actionSets

enablesFor − specifies the selection count
that must be met for the action to be enabled

selection class − the class that the selected
objects must subclass or implement in order
for the action to be enabled

selection name − a wild card filter that can
be applied to the objects in the selection.

visibility − a boolean expression. Controls
whether the menu item is visible in the
menu.

enablement − a boolean expression.
Controls whether the menu item is enabled
in the menu. The enablesFor attribute and
the selection class and name, and must be
satisfied before applying the enablement
expression.

popupMenus

(For object contributions only.)

objectClass − specifies the class that objects
in the selection must subclass or implement

(For both object and viewer contributions)

enablesFor − specifies the selection count
that must be met for the action to be enabled

selection class − the class that the selected
objects must subclass or implement to enable
the action

selection name − a wild card filter that can
be applied to the objects in the selection.

(For both object and viewer contributions)

visibility − a boolean expression. Controls
whether the menu item is visible in the
menu.

enablement − a boolean expression.
Controls whether the menu item is enabled
in the menu. The enablesFor attribute and
the selection class and name, and must be
satisfied before applying the enablement
expression.

 Welcome to Eclipse

 Boolean expressions and action filters 684

Using objectState with content types

The ability to define content types (see Content types) can be combined with boolean expressions to define
very specific enablement or visibility conditions based on the content type of a resource. For example, the
following snippet makes a popup menu item visible only if the selected file's content matches the plug−in's
specialized content types.

<extension point="org.eclipse.ui.popupMenus">
 <objectContribution
 id="com.example.objectContributions"
 objectClass="org.eclipse.core.resources.IFile"
 nameFilter="*.xml">
 <visibility>
 <or>
 <objectState

name="contentTypeId"
 value="com.example.employeeRecordContentType"/>
 <objectState

name="contentTypeId"
 value="com.example.customerRecordContentType"/>
 </or>
 </visibility>
 <action id="com.example.action1"
 ...

The contentTypeId attribute can be used in an objectState expression to check the content type of the
selected xml file. This allows a plug−in to apply very specific content checking before enabling or showing
menu actions related to specific types of files. See Content types for more detail about the content type
extension.

Retargetable actions

It is common for a plug−in's views and editors to implement actions that are semantically similar to existing
workbench actions, such as clipboard cut/copy/paste, view refresh, or properties. The popup menu for views
and editors can become quite cluttered if every view or editor has to define unique actions for these operations
and include them in their menus.

To solve this problem, the workbench defines retargetable (also called global) actions that can be handled by
any view or editor. When a view or editor is active, its handler will be run when the user chooses the action
from the workbench menu or toolbar. This allows views and editors to share workbench menu space for
semantically similar actions.

IWorkbenchActionConstants documents all of the workbench actions and denotes retargetable actions as
global. For example, here is the definition of the Properties action.

public static final String PROPERTIES = "properties"; // Global action.

The following table summarizes some of the more common retargetable actions that are implemented by
views and editors:

File menu Edit menu Navigate Project

 Welcome to Eclipse

Using objectState with content types 685

menu menu

views

move
rename
refresh
properties

go into
go to
resource
sync with
editor
back
forward
up
next
previous

open
close
build
rebuild

editors
revert
print

find

views and
editors

cut
copy
paste
delete
select all
undo
redo

Retargetable actions are created using RetargetAction. The following snippet is from
WorkbenchActionBuilder.

 propertiesAction = createGlobalAction(IWorkbenchActionConstants.PROPERTIES, "file", false);

The createGlobalAction method shows us exactly how to make a RetargetAction.

private RetargetAction createGlobalAction(String id, String actionDefPrefix, boolean labelRetarget) {
 RetargetAction action;
 if (labelRetarget) {
 action = new LabelRetargetAction(id, WorkbenchMessages.getString("Workbench." + id));
 }
 else {
 action = new RetargetAction(id, WorkbenchMessages.getString("Workbench." + id));
 }
 ...
 return action;
}

When creating a retargetable action, the workbench assigns the id for the action and the default label. Note
that there are two styles of retarget actions. RetargetAction simply allows a view or editor to reimplement an
action. LabelRetargetAction also allows views and editors to reset the label of the action. This is useful for
making the menu label more specific, such as relabeling an Undo action as Undo Typing.

Now we know how the retarget actions are defined by the workbench. Let's look next at how your view or
editor can provide an implementation for a retargetable action. This is done by setting a global action handler.

 Welcome to Eclipse

Using objectState with content types 686

Setting a global action handler

A plug−in contributes a retargetable action for a view or editor part by implementing an IAction and
registering it as a global action handler with the part's action bars. This is usually done at the time that the
part creates its actions and controls. The name of the retargeted action (as defined in
IWorkbenchActionConstants) is used to specify which action the handler is intended for. The following
shows how the workbench task list registers its handler for the PROPERTIES action.

public void createPartControl(Composite parent) {
 ...
makeActions();
 ...

 // Add global action handlers.
 ...
 getViewSite().getActionBars(). setGlobalActionHandler(
 IWorkbenchActionConstants.PROPERTIES,
 propertiesAction);
 ...

The properties action is created in the local method makeActions:

void makeActions() {
 ...
 // properties
 propertiesAction = new TaskPropertiesAction(this, "properties");
 propertiesAction.setText(TaskListMessages.getString("Properties.text"));
 propertiesAction.setToolTipText(TaskListMessages.getString("Properties.tooltip"));
 propertiesAction.setEnabled(false);
}

That's all that is needed. Your action will be run when the user chooses the action from the workbench menu
bar or tool bar and your view or editor is active. The workbench handles the details of ensuring that the
retargeted action is always associated with the currently active view or editor.

Retargetable editor actions

Recall that the readme tool defines its own editor which contributes actions to the workbench menu bar using
its ReadmeEditorActionBarContributor.

<extension
 point = "org.eclipse.ui.editors">
 <editor
 id = "org.eclipse.ui.examples.readmetool.ReadmeEditor"
 name="%Editors.ReadmeEditor"
 icon="icons/obj16/editor.gif"
 class="org.eclipse.ui.examples.readmetool.ReadmeEditor"
 extensions="readme"

contributorClass="org.eclipse.ui.examples.readmetool.ReadmeEditorActionBarContributor">
 </editor>
</extension>

Let's look closer at what happens in the contributor class.

 Welcome to Eclipse

Setting a global action handler 687

public ReadmeEditorActionBarContributor() {
 ...
 action2 = new RetargetAction(IReadmeConstants.RETARGET2, MessageUtil.getString("Editor_Action2"));
 action2.setToolTipText(MessageUtil.getString("Readme_Editor_Action2"));
 action2.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION2_IMAGE_DISABLE);
 action2.setImageDescriptor(ReadmeImages.EDITOR_ACTION2_IMAGE_ENABLE);
 ...
 action3 = new LabelRetargetAction(IReadmeConstants.LABELRETARGET3, MessageUtil.getString("Editor_Action3"));
 action3.setDisabledImageDescriptor(ReadmeImages.EDITOR_ACTION3_IMAGE_DISABLE);
 action3.setImageDescriptor(ReadmeImages.EDITOR_ACTION3_IMAGE_ENABLE);
 ...
handler2 = new EditorAction(MessageUtil.getString("Editor_Action2"));
 ...
handler3 = new EditorAction(MessageUtil.getString("Editor_Action3"));
 ...

When the contributor is created, it creates two retargetable actions (one that allows label update and one that
does not). Creation of the actions uses the same technique that the workbench uses. It also creates two
handlers that will be used for the actions when the editor is the active part.

But where are the handlers for the actions registered? Setting the global handlers is done a little differently
when your editor defines the retargeted actions. Why? Because your contributor is in charge of tracking the
active view and hooking different handlers as different views or the editor itself becomes active. (The
workbench does this for you when you set a handler for one of its global actions). Here's how the
ReadmeEditorActionBarContributor sets things up:

public void init(IActionBars bars, IWorkbenchPage page) {
 super.init(bars, page);
 bars.setGlobalActionHandler(IReadmeConstants.RETARGET2, handler2);
 bars.setGlobalActionHandler(IReadmeConstants.LABELRETARGET3, handler3);
 ...

First, the contributor registers its handlers for the retargeted actions. This ensures that the contributor's
actions will be run when the editor itself is active. The next step is to register each RetargetAction as a part
listener on the page.

 ...
 // Hook retarget actions as page listeners
 page.addPartListener(action2);
 page.addPartListener(action3);
 IWorkbenchPart activePart = page.getActivePart();
 if (activePart != null) {
 action2.partActivated(activePart);
 action3.partActivated(activePart);
 }
}

Adding each RetargetAction as a part listener means that it will be notified when the active part changes.
The action can get the correct global handler from the newly activated part. (See the implementation of
RetargetAction for all the details.) Note that to start, the action is seeded with the currently active part.

When the editor contributor is disposed, it should unhook the retargetable actions as page listeners.

public void dispose() {
 // Remove retarget actions as page listeners
 getPage().removePartListener(action2);
 getPage().removePartListener(action3);

 Welcome to Eclipse

Setting a global action handler 688

}

Finally, recall that action bar contributors are shared among instances of the same editor class. For this
reason, the handlers must be notified when the active editor changes so that they can connect to the proper
editor instance.

public void setActiveEditor(IEditorPart editor) {
 ...
 handler2.setActiveEditor(editor);
 handler3.setActiveEditor(editor);
 ...
}

That completes the setup on the editor side. When the editor is open and active, the handlers (and their labels)
as defined by the ReadmeEditorActionBarContributor will appear in the workbench menu bar.

Now that the editor's contributions are in place, what does a view do to register a handler? The code on the
client side is similar to registering a handler for a workbench action, except that the action id is the one
defined by the plug−in's editor. The ReadmeContentOutlinePage registers a handler for these actions.

public void createControl(Composite parent) {
 super.createControl(parent);
 ...
 getSite().getActionBars(). setGlobalActionHandler(
 IReadmeConstants.RETARGET2,
 new OutlineAction(MessageUtil.getString("Outline_Action2")));

 OutlineAction action = new OutlineAction(MessageUtil.getString("Outline_Action3"));
action.setToolTipText(MessageUtil.getString("Readme_Outline_Action3"));
 getSite().getActionBars(). setGlobalActionHandler(
 IReadmeConstants.LABELRETARGET3,
 action);
 ...

Note that the outliner sets tool tip text and a label on the second action, since it allows relabeling. When the
readme outliner view is made active, its handlers (and their labels) will now appear in the workbench menu
bar.

Note that the relabeled action shows the new label.

Retargetable action set actions

The readme tool action set also defines retargetable actions. The action remains visible as long as the readme
action set is visible, but it is only enabled when a view or editor that implements the action is active. When

 Welcome to Eclipse

Setting a global action handler 689

using action sets to define retargetable actions, the actions are created in the action set markup rather than in
code. The following is from the readme tool's action set definition:

<extension point = "org.eclipse.ui.actionSets">
 <actionSet id="org_eclipse_ui_examples_readmetool_actionSet"
 label="%ActionSet.name"
 visible="true">
...
<action id="org_eclipse_ui_examples_readmetool_readmeRetargetAction"
 menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"
 toolbarPath="readme"
 label="%ReadmeRetargetAction.label"
 tooltip="%ReadmeRetargetAction.tooltip"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 icon="icons/ctool16/openbrwsr.gif"

retarget="true">
</action>
<action id="org_eclipse_ui_examples_readmetool_readmeRelabelRetargetAction"
 menubarPath="window/org_eclipse_ui_examples_readmetool/slot1"
 toolbarPath="readme"
 label="%ReadmeRelabelRetargetAction.label"
 tooltip="%ReadmeRelabelRetargetAction.tooltip"
 helpContextId="org.eclipse.ui.examples.readmetool.open_browser_action_context"
 icon="icons/ctool16/openbrwsr.gif"

retarget="true"
allowLabelUpdate="true">

</action>
...

Retargeted actions are specified by using the retarget="true" attribute. This will cause a RetargetAction to
be created in the action set. Note that the retargetable actions do not specify an implementing class since it is
up to each view or editor in the plug−in to set up a handler that implements each action. If the
allowLabelUpdate is true, then a LabelRetargetAction will be created instead.

The retargeted actions will be visible in the window menu when the readme action set is visible. However,
they will not be enabled if the readme tool's editor or outline view are not active.

 Welcome to Eclipse

Setting a global action handler 690

What do the editor and view have to do? Again, the client side is similar to registering a handler for the
workbench or an editor's retargetable action. The action id specified in the markup must be used when
registering a global action handler.

The ReadmeEditorActionBarContributor takes care of this for the editor. First, it defines the handlers for
the actions.

public ReadmeEditorActionBarContributor() {
 ...
 handler4 = new EditorAction(MessageUtil.getString("Editor_Action4"));
 handler5 = new EditorAction(MessageUtil.getString("Editor_Action5"));
 handler5.setToolTipText(MessageUtil.getString("Readme_Editor_Action5"));
 ...
}

The handlers are registered at the same time that the handlers for the editor retargetable actions were
registered.

public void init(IActionBars bars, IWorkbenchPage page) {
 ...
 bars.setGlobalActionHandler(IReadmeConstants.ACTION_SET_RETARGET4, handler4);
 bars.setGlobalActionHandler(IReadmeConstants.ACTION_SET_LABELRETARGET5, handler5);
 ...
}

Recall that action bar contributors are shared among different instances of the same editor. This means the
handlers must be notified if the active editor for the ReadmeEditorActionBarContributor changes.

public void setActiveEditor(IEditorPart editor) {
 ...
 handler4.setActiveEditor(editor);
 handler5.setActiveEditor(editor);
 ...
}

That's it for the editor. We should see these actions enable when the editor is activated.

 Welcome to Eclipse

Setting a global action handler 691

Note that the label for the first retargetable action ("Editor Action 4") was not used since the action set XML
markup did not set allowLabelUpdate.

The ReadmeContentOutlinePage defines its handlers in the same place it defined handlers for the editor's
retargetable actions:

public void createControl(Composite parent) {
 ...
 action = new OutlineAction(MessageUtil.getString("Outline_Action4"));
 getSite().getActionBars().setGlobalActionHandler(
 IReadmeConstants.ACTION_SET_RETARGET4,
 action);
 action = new OutlineAction(MessageUtil.getString("Outline_Action5"));
 action.setToolTipText(MessageUtil.getString("Readme_Outline_Action5"));
 getSite().getActionBars().setGlobalActionHandler(
 IReadmeConstants.ACTION_SET_LABELRETARGET5,
 action);
}

We should see its relabeled action when the content outliner is active.

Perspectives

We've already seen some ways the workbench allows the user to control the appearance of plug−in
functionality. Views can be hidden or shown using the Window >Show View menu. Action sets can be
hidden or shown using the Window >Customize Perspective... menu. These features help the user organize
the workbench.

Perspectives provide an additional layer of organization inside a workbench window. Users can switch
between perspectives as they move across tasks. A perspective defines a collection of views, a layout for the
views, and the visible action sets that should be used when the user first opens the perspective.

 Welcome to Eclipse

Setting a global action handler 692

Perspectives are implemented using IPerspectiveFactory. Implementors of IPerspectiveFactory are
expected to configure an IPageLayout with information that describes the perspective and its perspective
page layout.

Workbench part layout

One of the main jobs of an IPageLayout is to describe the placement of the editor and the views in the
workbench window. Note that these layouts are different than the Layout class in SWT. Although
IPageLayout and Layout solve a similar problem (sizing and positioning widgets within a larger area), you
do not have to understand SWT layouts in order to supply a perspective page layout.

A perspective page layout is initialized with one area for displaying an editor. The perspective factory is
responsible for adding additional views relative to the editor. Views are added to the layout relative to (top,
bottom, left, right) another part. Placeholders (empty space) can also be added for items that are not initially
shown.

To organize related views and reduce clutter, you can use IFolderLayout to group views into tabbed folders.
For example, the Resource perspective places the resource navigator inside a folder at the top left corner of
the workbench. Placeholders are commonly used with folder layouts. The Resource perspective defines a
placeholder for the bookmarks view in the same folder as the resource navigator. If the user shows the
bookmarks view, it will appear in the same folder with the navigator, with a tab for each view.

IPageLayout also allows you to define the available actions and shortcuts inside a perspective.

addActionSet is used to add action sets to a perspective. •
addNewWizardShortcut adds a new entry to the File >New menu for a perspective.•
addShowViewShortcut adds the names of views that should appear in the Window >Show View
menu when the perspective is active.

•

addPerspectiveShortcut adds the names of perspectives that should appear in the Window >Open
Perspective menu when the perspective is active.

•

Linking views and editors with "show−in"

Another valuable service provided by perspectives and the IPageLayout is to aid in navigation between an
editor and its related views. We typically think of views as helping the user find the objects to work with in
editors. However, the converse operation is also useful: a user working with an object in an editor may need
to navigate to that object inside a view. This can be accomplished using the workbench Navigate > Show In
menu. This command allows the user to jump to one of any number of related views in the context of the
currently edited (or selected) object. For example, a user editing a file may want to jump over to that file in
the resource navigator.

The plug−in architecture of the workbench allows developers to contribute views and editors in different
plug−ins that are not even aware of each other. By implementing support for "show in," your view or editor
can support convenient navigation to or from the views and editors contributed by other plug−ins.

This navigation allows users to move quickly between views and to easily open a view that is not usually
shown in a particular perspective. For example, a user working in the Java perspective can use Navigate >
Show In to view the currently edited Java file in the Navigator view.

 Welcome to Eclipse

 Workbench part layout 693

Show−in source

If you want to allow users to use Navigate > Show In from your editor or view to jump to another view, you
must implement IShowInSource. Your part can supply its IShowInSource directly using protocol
(getShowInSource()) or as an adapter. IShowInSource allows your part to supply a context
(ShowInContext) which is used by the target to decide how to show the source. The show in context for an
editor is typically its input element. For a view, the context is typically its selection. Both a selection and an
input element are provided in a ShowInContext to give the target flexibility in determining how to show the
source.

A default context for editors is provided, so that your editor can participate in "show−in" without any special
coding. For editors, the input element and selection are used to create an appropriate context.

For views, IShowInSource must be implemented by the view in order to offer Navigate > Show In
functionality.

Show−in target

You must implement IShowInTarget if you want your view to be a valid target for a "show in" operation.
The target is responsible for showing a given context in a manner appropriate for its presentation. For
example, the Navigator view expands its tree to select and reveal a resource specified in the context.

A target should check the selection in the ShowInContext first in deciding what to show, since this is the
more specific information. It should show the input element only if no selection is indicated.

Presenting appropriate targets

How is the list of available targets determined? You can specify the available targets for your perspective in
its IPageLayout. Recall that a "show in" navigation may open a view that is not already present in the
perspective. Using IPageLayout.addShowInPart, you can specify a valid "show in" target by id. In this
way, the valid targets can be established without unnecessarily creating any views.

org.eclipse.ui.perspectives

The platform itself defines one perspective, the Resource perspective. Other platform plug−ins, such as the
help system and the Java tooling, define additional perspectives. Your plug−in can define its own perspective
by contributing to the org.eclipse.ui.perspectives extension point.

The specification of the perspective in the plugin.xml is straightforward. The following markup is used by the
workbench in defining its own resource perspective.

<extension
 point="org.eclipse.ui.perspectives">
 <perspective
 name="%Perspective.resourcePerspective"
 icon="icons/full/cview16/resource_persp.gif"
 class="org.eclipse.ui.internal.ResourcePerspective"
 id="org.eclipse.ui.resourcePerspective">
 </perspective>
 </extension>

 Welcome to Eclipse

Linking views and editors with "show−in" 694

A plug−in must supply an id and name for the perspective, along with the name of the class that implements
the perspective. An icon can also be specified. The perspective class should implement IPerspectiveFactory.

org.eclipse.ui.perspectiveExtensions

Plug−ins can add their own action sets, views, and various shortcuts to existing perspectives by contributing
to the org.eclipse.ui.perspectiveExtensions extension point.

The contributions that can be defined for new perspectives (action sets, wizard entries, view layout, view
shortcuts, and perspective shortcuts) can also be supplied for an existing perspective. One important
difference is that these contributions are specified in the plugin.xml markup instead of configuring them into
an IPageLayout.

The following markup shows how the JDT extends the platform's debug perspective.

<extension point="org.eclipse.ui.perspectiveExtensions">
 <perspectiveExtension
targetID="org.eclipse.debug.ui.DebugPerspective">
 <actionSet id="org.eclipse.jdt.debug.ui.JDTDebugActionSet"/>
 <view id="org.eclipse.jdt.debug.ui.DisplayView"
 relative="org.eclipse.debug.ui.ExpressionView"
 relationship="stack"/>
 <view id="org.eclipse.jdt.ui.PackageExplorer"
 relative="org.eclipse.debug.ui.DebugView"
 relationship="stack"
 visible="false"/>
 <view id="org.eclipse.jdt.ui.TypeHierarchy"
 relative="org.eclipse.debug.ui.DebugView"
 relationship="stack"
 visible="false"/>
 <view id="org.eclipse.search.SearchResultView"
 relative="org.eclipse.debug.ui.ConsoleView"
 relationship="stack"
 visible="false"/>
 <viewShortcut id="org.eclipse.jdt.debug.ui.DisplayView"/>
 </perspectiveExtension>
</extension>

The targetID is the id of the perspective to which the plug−in is contributing new behavior. The actionSet
parameter identifies the id of a previously declared action set that should be added to the target perspective.
This markup is analogous to using IPageLayout.addActionSet in the IPerspectiveFactory.

Contributing a view to a perspective is a little more involved, since the perspective page layout information
must be declared. The visible attribute controls whether the contributed view is initially visible when the
perspective is opened. In addition to supplying the id of the contributed view, the id of a view that already
exists in the perspective (a relative view) must be specified as a reference point for placing the new view.
The relationship parameter specifies the layout relationship between the new view and the relative view.

stack indicates that the view will be stacked with the relative view in a folder•
fast indicates that the view will be shown as a fast view •
left, right, top, or bottom indicate that the new view will be placed beside the relative view. In this
case, a ratio between 0.0 and 1.0 must be defined, which indicates the percentage of area in the
relative view that will be allocated to the new view.

•

 Welcome to Eclipse

 org.eclipse.ui.perspectiveExtensions 695

Specifying a perspectiveShortcut indicates that another perspective (specified by id) should be added to the
Window−>Open Perspective... menu of the target perspective. This markup is analogous to calling
IPageLayout.addPerspectiveShortcut in the original perspective definition in the IPerspectiveFactory.
Plug−ins can also add view shortcuts and new wizard shortcuts in a similar manner.

You can also specify one or more views as a valid showInPart. The views should be specified by the id used
in their org.eclipse.ui.views extension contribution. This controls which views are available as targets in the
Navigate > Show In menu. The ability to specify a "show in" view in the extension markup allows you to
add your newly contributed views as targets in another perspective's "show in" menus. See Linking views and
editors for more information on "show in."

See org.eclipse.ui.perspectiveExtensions for a complete definition of the extension point.

Decorators

Your plug−in can use decorators to annotate the images for resources and other objects that appear in the
workbench views. Decorators are useful when your plug−in adds functionality for existing resource types.
Many of the standard workbench views participate in showing decorations.

For example, PDE contributes decorators that allow you to distinguish between binary and source projects.

The com.example.helloworld project is the only source project shown in the navigator. Note how all of the
other binary projects show the binary decorator at the top left of the Java project icon. This decorator is
contributed by PDE using the org.eclipse.ui.decorators extension point.

<extension
 point="org.eclipse.ui.decorators">
 <decorator

lightweight="true"
quadrant="TOP_LEFT"

 adaptable="true"
 label="%decorator.label"

icon="icons/full/ovr16/binary_co.gif"
 state="false"
 id="org.eclipse.pde.ui.binaryProjectDecorator">
 <description>
 %decorator.desc
 </description>
 <enablement>
 ...

 Welcome to Eclipse

 Decorators 696

 </enablement>
 </decorator>
 </extension>

There are several different ways to supply a decorator implementation. This markup uses the simplest way,
known as a declarative lightweight decorator. When a declarative lightweight decorator is defined, the
markup contains a complete description of the decorator's icon, placement, and enabling conditions.
Declarative decorators are useful when only an icon is used to decorate the label. The plug−in need only
specify the quadrant where the decorator should be overlayed on the regular icon and the icon for the
overlay. As shown in the picture, the PDE binary icon is overlayed in the top left quadrant of the package
icon.

If your plug−in needs to manipulate the label text in addition to the icon, or if the type of icon is determined
dynamically, you can use a non−declarative lightweight decorator. In this case, an implementation class that
implements ILightweightLabelDecorator must be defined. The designated class is responsible for supplying
a prefix, suffix, and overlay image at runtime which are applied to the label. The mechanics of concatenating
the prefix and suffix with the label text and performing the overlay are handled by the workbench code in a
background thread. Thus, any work performed by your plug−in in its ILightweightLabelDecorator
implementation must be UI−thread safe. (See Executing code from a non−UI thread for more details.)

 The following markup shows how the CVS client defines its decorator using this technique:

<extension
 point="org.eclipse.ui.decorators">
 <decorator
 objectClass="org.eclipse.core.resources.IResource"
 adaptable="true"
 label="%DecoratorStandard.name"
 state="false"

lightweight= "true"
quadrant = "BOTTOM_RIGHT"
class="org.eclipse.team.internal.ccvs.ui.CVSLightweightDecorator"

 id="org.eclipse.team.cvs.ui.decorator">
 <description>
 %DecoratorStandard.desc
 </description>
 </decorator>
</extension>

Decorators are ultimately controlled by the user via the workbench Label Decorations preferences page.
Individual decorators can be turned on and off. Even so, it is a good idea to design your decorators so that
they do not overlap or conflict with existing platform SDK decorators. If multiple plug−ins contribute
lightweight decorators to the same quadrant, the conflicts are resolved non−deterministically.

Your plug−in may also do all of the image and label management itself. In this case, the lightweight attribute
should be set to false and the class attribute should name a class that implements ILabelDecorator. This
class allows you to decorate the original label's image and text with your own annotations. It gives you
increased flexibility since you aren't limited to prefixes, suffixes, and simple quadrant overlays.

Other attributes of a decorator are independent of the particular implementation style. The label and
description attributes designate the text that is used to name and describe the decorator in the preferences
dialog. The objectClass names the class of objects to which the decorator should be applied. The
enablement attribute allows you to describe the conditions under which the object should be decorated. The
adaptable flag indicates whether objects that adapt to IResource should also be decorated. The state flag

 Welcome to Eclipse

 Decorators 697

controls whether the decorator is visible by default.

If your decorators include information that is expensive to compute or potentially distracting, you may want to
contribute your own preferences that allow the user to further fine−tune the decorator once it is on. This
technique is used by the CVS client.

Workbench key bindings

The workbench defines many keyboard accelerators for invoking common actions with the keyboard. In early
versions of the platform, plug−ins could define the accelerator key to be used for their action when the action
was defined. However, this strategy can cause several problems:

Different plug−ins may define the same accelerator key for actions that are not related.•
Plug−ins may define different accelerator keys for actions that are semantically the same.•
Plug−ins may define accelerator keys that later conflict with the workbench (as the workbench is
upgraded).

•

 Welcome to Eclipse

Workbench key bindings 698

In order to alleviate these problems, the platform defines a configurable key binding strategy that is
extendable by plug−ins. It solves the problems listed above and introduces new capabilities:

The user can control which key bindings should be used.•
Plug−ins can define key bindings that emulate other tools that may be familiar to users of the plug−in.•
Plug−ins can define scopes for key bindings so that they are only active in certain situations.•

The basic strategy is that plug−ins use commands to define semantic actions. Commands are simply
declarations of an action and its associated category, key binding, and scope. Commands do not define an
implementation for the action. When a plug−in defines an action for an editor, action set, or view, the action
can specify that it is an implementation of one of these commands. This allows semantically similar actions
to be associated with the same command.

Once a command is defined, a key binding may be defined that references the command. The key binding
defines the key sequence that should be used to invoke the command. A key binding may reference a key
configuration which is used to group key bindings into different named configurations that the user may
activate via the Preferences dialog.

This is all best understood by walking through the workbench and looking at how commands and key
bindings are declared. We'll look at all of this from the point of view of defining key bindings for existing
workbench actions.

Commands

A command is the declaration of a user action by id. Commands are used to declare semantic actions so that
action implementations defined in action sets and editors can associate themselves with a particular semantic
command. The separation of the command from the action implementation allows multiple plug−ins to define
actions that implement the same semantic command. The command is what gets associated with a particular
key binding.

The workbench defines many common commands in its plugin.xml file, and plug−ins are encouraged to
associate their own actions with these commands where it makes sense. In this way, semantically similar
actions implemented in different plug−ins may share the same key binding.

Defining a command

Commands are defined using the org.eclipse.ui.commands extension point. The following comes from the
workbench markup:

<extension
 point="org.eclipse.ui.commands">
 ...
 <command
 name="%command.save.name"
 description="%command.save.description"
 categoryId="org.eclipse.ui.category.file"
 id="org.eclipse.ui.file.save">
 </command>
 ...

 Welcome to Eclipse

Commands 699

The command definition specifies a name, description, and id for the action. It also specifies the id of a
category for the command, which is used to group commands in the preferences dialog. The categories are
also defined in the org.eclipse.ui.commands extension point:

 ...
<category

 name="%category.file.name"
 description="%category.file.description"
 id="org.eclipse.ui.category.file">
 </category>
 ...

Note that there is no implementation specified for a command. A command only becomes concrete when a
plug−in associates its action with the command id.

Associating an action with a command

Actions can be associated with a command in code or in the plugin.xml for action sets. Your choice depends
on where the action is defined.

Actions that are instantiated in code can also be associated with an action definition using IAction protocol.
This is typically done when the action is created. The SaveAction uses this technique when it initializes
itself.

public SaveAction(IWorkbenchWindow window) {
 ...
 setText...
 setToolTipText...
 setImageDescriptor...
setActionDefinitionId("org.eclipse.ui.file.save");
}

(Note: The method name setActionDefinitionID could more appropriately be named setCommandID. The
method name reflects the original implementation of key bindings and uses outdated terminology.)

By invoking setActionDefinitionID, the implementation action (SaveAction) is associated with the
command id that was used in the command definition markup. It is good practice to define constants for your
action definitions so that they are easily referenced in code.

If you define an action in an action set, then you typically do not need to instantiate an action yourself. The
workbench will do it for you when the user invokes your action from a menu or the keyboard. In this case,
you can associate your action with a command ID in your XML markup. The following shows a hypothetical
markup for an action set:

<extension point = "org.eclipse.ui.actionSets">
 <actionSet id="com.example.actions.actionSet"
 label="Example Actions"
 visible="true">
 <action id="com.example.actions.action1"
 menubarPath="additions"
 label="Example Save Action"
 class="org.example.actions.ExampleActionDelegate"

definitionID="org.eclipse.ui.file.save">
 </action>
 ...

 Welcome to Eclipse

Commands 700

 </actionSet>
 </extension>

The definitionID attribute is used to declare a command ID for the action.

Using either technique, associating your action with a command ID causes any key bindings that get defined
for the command org.eclipse.ui.file.save to invoke your action when appropriate.

Now let's look at how these key bindings get defined.

Key bindings

The association between a command and the key combinations that should invoke the command is called a
key binding. Plug−ins can define key bindings along with commands in the org.eclipse.ui.commands
extension point. The workbench defines key bindings after it defines the commands in the markup:

...
<keyBinding

string="Ctrl+S"
command="org.eclipse.ui.file.save"

 configuration="org.eclipse.ui.defaultAcceleratorConfiguration">
</keyBinding>
...

There is our friend org.eclipse.ui.file.save. Recall our hypothetical action definition:

<extension point = "org.eclipse.ui.actionSets">
 <actionSet id="com.example.actions.actionSet"
 label="Example Actions"
 visible="true">
 <action id="com.example.actions.action1"
 menubarPath="additions"
 label="Example Save Action"
 class="org.example.actions.ExampleActionDelegate"

definitionID="org.eclipse.ui.file.save">
 </action>
 ...
 </actionSet>
</extension>

The string attribute for a key binding defines the key combination that is used to invoke a command. So, it
follows that when our example action set is active, our save action will be invoked when the user chooses
Ctrl+S.

Likewise, when the workbench SaveAction is active, the same key combination will invoke it instead, since
the workbench uses the same command id for its SaveAction.

To complete the example, we need to understand what the configuration is all about.

 Welcome to Eclipse

Key bindings 701

Key configurations

Key configurations are used to represent a general style or theme of key bindings. For example, the
Workbench provides a "Standard" key configuration and an "Emacs" key configuration. Only one key
configuration is active at any given time. End users control which one is active using the workbench
Preferences dialog.

From an implementation point of view, key configurations are simply named groupings of key bindings. A
key configuration won't accomplish anything on its own unless there are key bindings associated with it.

Let's look again at the workbench markup for org.eclipse.ui.commands to find the key binding definitions
and how a key configuration gets associated with a key binding.

...
<keyBinding
 string="Ctrl+S"

command="org.eclipse.ui.file.save"
configuration="org.eclipse.ui.defaultAcceleratorConfiguration">

</keyBinding>
...
<keyBinding
 string="Ctrl+X Ctrl+S"

command="org.eclipse.ui.file.save"
configuration="org.eclipse.ui.emacsAcceleratorConfiguration">

</keyBinding>
...

There are two different key bindings defined for the "org.eclipse.ui.file.save" command. Note that each one
has a different configuration defined. When the standard configuration is active, the "Ctrl+S" key binding
will invoke the command. When the emacs configuration is active, the sequence "Ctrl+X Ctrl+S" will invoke
the command.

 Welcome to Eclipse

Key configurations 702

Defining new key configurations

When your plug−in defines a key binding, it will most likely assign it to an existing key configuration.
However, your plug−in may want to define a completely new style of key configurations. If this is the case,
you can define a new type of key configuration inside the org.eclipse.ui.commands definition. The
workbench markup that defines the standard and emacs key configurations are shown below:

...
<keyConfiguration
 name="%keyConfiguration.standard.name"
 description="%keyConfiguration.standard.description"

id="org.eclipse.ui.defaultAcceleratorConfiguration">
</keyConfiguration>
<keyConfiguration
 name="%keyConfiguration.emacs.name"
 parent="org.eclipse.ui.defaultAcceleratorConfiguration"
 description="%keyConfiguration.emacs.description"

id="org.eclipse.ui.emacsAcceleratorConfiguration">
</keyConfiguration>
...

Note that the name defined here is the one used in the preferences page in the list of configurations.

Activating a key configuration

The user controls the active configuration via the preferences page. However, you can define the default
active configuration as part of the org.eclipse.ui.commands definition. The workbench establishes the
standard key configuration as the default when it defines the extension:

<extension
 point="org.eclipse.ui.commands">

<activeKeyConfiguration
 value="org.eclipse.ui.defaultAcceleratorConfiguration">
 </activeKeyConfiguration>
 ...

Contexts and key bindings

A context can be specified for a key binding so that the binding is only available when the user is working
within a specific context. Contexts are declared in the org.eclipse.ui.contexts extension point.

A context can be bound to a key binding by specifying the id of the context when the key binding is defined.
For example, if we only wanted the save command to work while the user is editing text, we could specify a
context for the key binding:

<keyBinding
 string="Ctrl+S"
 command="org.eclipse.ui.file.save"

contextId="org.eclipse.ui.textEditorScope"
 configuration="org.eclipse.ui.defaultAcceleratorConfiguration">
</keyBinding>
...

 Welcome to Eclipse

Key configurations 703

(See Contexts) for a more detailed discussion of contexts and how they are defined.

Contexts

A context can be used to influence what commands are available to the user at any given moment. Contexts
are much more dynamic than activities. While an activity represents a broad set of function that is available to
the user most of the time, contexts describe a focus of the user at a specific point in time. For example, the
commands available to a user while editing text might be different than those available to a user while editing
Java text or browsing packages in the package explorer.

Defining a context

Contexts are declared in the org.eclipse.ui.contexts extension point. Consider the following context which is
defined for editing text:

<extension
 point="org.eclipse.ui.contexts">
 <context
 name="%context.editingText.name"
 description="%context.editingText.description"
 id="org.eclipse.ui.textEditorScope"
 parentId="org.eclipse.ui.contexts.window">
 </context>

Contexts are assigned a name and description that are used when showing information about the context to the
user. The id of the context is used when binding UI contributions such as commands to a particular context.

Context hierarchies

Contexts are hierarchical in nature. When a context is active, the commands available in the context and in its
parent contexts are also available. This is useful for defining levels of contexts that move from very general
situations down to more specific contexts. In the context definition above, note that there is an id of a parent
assigned to the context:

 <context
 name="%context.editingText.name"
 description="%context.editingText.description"
 id="org.eclipse.ui.textEditorScope"
parentId="org.eclipse.ui.contexts.window">
 </context>

The parent context defines the more general context of working within a window. Its parent defines an even
more general context of working within a window or a dialog.

<context
 name="%context.window.name"
 description="%context.window.description"
 id="org.eclipse.ui.contexts.window"
parentId="org.eclipse.ui.contexts.dialogAndWindow">
</context>
<context
 name="%context.dialogAndWindow.name"
 description="%context.dialogAndWindow.description"

 Welcome to Eclipse

 Contexts 704

 id="org.eclipse.ui.contexts.dialogAndWindow">
</context>

Associating a contribution with a context

So far, all we've done is define a hierarchy of contexts. The context becomes useful when it is referenced in
the description of another UI contribution. The most common use of contexts is in key bindings. When a
context is associated with a key binding, the key binding will only be active when the user is in that context.
For example, the following markup specifies the root dialog and window context as the context for a key
binding:

<keyBinding
 commandId="org.eclipse.ui.edit.cut"
contextId="org.eclipse.ui.contexts.dialogAndWindow"
 keySequence="M1+X"
 keyConfigurationId="org.eclipse.ui.defaultAcceleratorConfiguration">
</keyBinding>

Using Context API

The workbench context support includes an API for working with the defined contexts and defining criteria
under which a particular context should become enabled. Most plug−ins need not be concerned with this API,
but it is useful when defining specialized views or editors that define new contexts.

The starting point for working with contexts in the workbench is IWorkbenchContextSupport. Plug−ins can
obtain the context support instance from the workbench.

IWorkbenchContextSupport workbenchContextSupport = PlatformUI.getWorkbench().getContextSupport();

The workbench context support API can be used to add or remove an EnabledSubmission, which describes
criteria that should cause a particular context to become enabled. Criteria include information such as the
active part or active shell. The workbench support also provides access to an IContextManager.

IContextManager contextManager = workbenchContextSupport.getContextManager();

IContextManager defines protocol for getting all defined or enabled context ids, and for getting the
associated IContext for a particular id. These objects can be used to traverse the definition for a context in
API, such as getting the id, name, or id of the parent context. Listeners can be registered on the context
manager or on the contexts themselves to detect changes in the definition of a particular context or in the
context manager itself. See the package org.eclipse.ui.contexts for more information.

Element factories

Element factories are used to recreate workbench model objects from data that was saved during workbench
shutdown.

Before we look closely at the element factory extension, we need to review a general technique that is used
throughout the platform to add plug−in specific behavior to common platform model objects.

 Welcome to Eclipse

Contexts 705

IAdaptables and workbench adapters

When browsing the various workbench classes, you will notice that many of the workbench interfaces extend
the IAdaptable interface.

Plug−ins use adapters to add specific behavior to pre−existing types in the system. For example, the
workbench may want resources to answer a label and an image for display purposes. We know that it's not
good design to add UI specific behavior to low−level objects, so how can we add this behavior to the resource
types?

Plug−ins can register adapters that add behavior to pre−existing types. Application code can then query an
object for a particular adapter. If there is one registered for it, the application can obtain the adapter and use
the new behaviors defined in the adapter.

By providing a facility to dynamically query an adapter for an object, we can improve the flexibility of the
system as it evolves. New adapters can be registered for platform types by new plug−ins without having to
change the definitions of the original types. The pattern to ask an object for a particular adapter is as follows:

 //given an object o, we want to do "workbench" things with it.
 if (!(o instanceof IAdaptable)) {
 return null;
 }
 IWorkbenchAdapter adapter = (IWorkbenchAdapter)o.getAdapter(IWorkbenchAdapter.class);
 if (adapter == null)
 return null;
 // now I can treat o as an IWorkbenchAdapter
 ...

If there is no adapter registered for the object in hand, null will be returned as the adapter. Clients must be
prepared to handle this case. There may be times when an expected adapter has not been registered.

The workbench uses adapters to obtain UI information from the base platform types, such as IResource.
Adapters shield the base types from UI−specific knowledge and allow the workbench to evolve its interfaces
without changing the definitions of the base.

Without adapters, any class that might be passed around in the workbench API would have to implement the
UI interfaces, which would increase the number of class definitions, introduces tight coupling, and create
circular dependencies between the core and UI classes. With adapters, each class implements IAdaptable and
uses the adapter registry to allow plug−ins to extend the behavior of the base types.

Throughout the workbench code, you'll see cases where a platform core type is queried for an adapter. The
query is used to obtain an object that knows how to answer UI oriented information about the type.

Element factories

When the workbench is shut down by the user, it must save the current state of the IAdaptable objects that
are shown in the workbench. An object's state is stored by saving the primitive data parameters of the object
in a special format, an IMemento. The id of a factory that can recreate the object from an IMemento is also
stored and the data is saved in the file system.

When the platform is restarted, the workbench finds the element factory associated with the IMemento's
factory id. It finds the factory by checking the plug−in registry for contributions to the

 Welcome to Eclipse

Element factories 706

org.eclipse.ui.elementFactories extension.

The markup is pretty simple. We just have to specify the id of the factory and the corresponding class that
implements the factory.

The following code snippet is from the workbench plugin.xml.

<extension
 point="org.eclipse.ui.elementFactories">
 <factory
 class="org.eclipse.ui.internal.model.ResourceFactory"
 id="org.eclipse.ui.internal.model.ResourceFactory">
 </factory>
 <factory
 class="org.eclipse.ui.internal.model.WorkspaceFactory"
 id="org.eclipse.ui.internal.model.WorkspaceFactory">
 </factory>
 <factory
 class="org.eclipse.ui.part.FileEditorInputFactory"
 id="org.eclipse.ui.part.FileEditorInputFactory">
 </factory>
 <factory
 class="org.eclipse.ui.internal.dialogs.WelcomeEditorInputFactory"
 id="org.eclipse.ui.internal.dialogs.WelcomeEditorInputFactory">
 </factory>
 <factory
 class="org.eclipse.ui.internal.WorkingSetFactory"
 id="org.eclipse.ui.internal.WorkingSetFactory">
 </factory>
</extension>

Accessible user interfaces

The term accessible is used to refer to software that has been designed so that people who have disabilities
have a successful interaction with it. Accessible software takes many different kinds of disabilities into
account:

visual − people with color blindness, low vision, or who are completely blind•
audio − people who are hard of hearing or are completely deaf•
mobility − people who have physical impairments that limit their movement and fine motor controls•
cognitive − people who have learning disabilities and may need more consistency or simplicity in
their interfaces

•

Assistive technology

Assistive technology is equipment or software that is used to increase the accessibility of existing operating
systems and applications. While it is beyond the scope of this programmer's guide to cover the broad scope of
assistive technologies, it is important for you to know that they exist. Why? Because simple things you can
do when programming your software or documentation, such as providing alternate text descriptions for
images in your HTML, or keyboard equivalents for all of your software actions, can greatly improve the
effectiveness of assistive technologies that make use of these techniques.

 Welcome to Eclipse

Accessible user interfaces 707

Accessibility resources

There are some basic coding tips you can use when building plug−in user interfaces that will increase the
accessibility of your software. See Tips for Making User Interfaces More Accessible for more information.

IBM's Accessibility Center Website has many useful resources for accessibility, including guidelines and
checklists for developing software and web interfaces.

SWT and accessibility

Because SWT uses the operating system's native widgets, user interfaces built with SWT will inherit any
assistive technologies that have been installed on the host operating system. SWT implements an interface,
AccessibleListener, which provides basic accessibility information, such as descriptions of controls, help
text, and keyboard shortcuts, to clients. If you are developing assistive technologies that need more
information or want to improve upon the basic accessibiliity of the workbench, you can add your own
listeners and override the default accessibility behavior in the platform. See the package
org.eclipse.swt.accessibility for more detail.

 Welcome to Eclipse

Accessibility resources 708

http://www-3.ibm.com/able/index.html
http://www-3.ibm.com/able/guidelines.html
http://www-3.ibm.com/able/guidelines.html

Tips for making user interfaces accessible
Below is a series of tips for making something usable to the IAccessibility interface provided by Windows.

1) Use Groups instead of Labels

If you use a Label to title a group of related widgets remove the label and replace thier parent
composite with a Group whose text is the same as the title Label.

2) Avoid intermediate Composites.

IAccessibility tools will read as far up the parent hierarchy of a widget with focus as there are
widgets to read. Be sure there are no widgets without text anywhere in the tree.

3) Use Read Only Texts instead of Labels

A text can be accessed using the keyboard and should be used if you want the information in
a label to be accessible to keyboard navigation. Please note that a label beside a text will be
treated as a title and so if you have a title:value pair you wish to show it is only required that
you make the value widget a Text.

4) Read and understand the IBM checklist. http://www−3.ibm.com/able/accesssoftware.html

5) Assign mnemonics to all menus and menu items.

Ensure they are unique within a given menu. If a menu is dynamically composed from
multiple plugins, it may be better to not assign mnemonics since conflicts cannot be avoided
in general (e.g. the File > New list, or Window > Show View list)

 6) Assign mnemonics to all labels of controls in dialogs / preference pages / property pages (e.g. buttons,
checkboxes, radio buttons, etc)

Ensure they are unique within the dialog. Be careful to avoid collisions with the default buttons (e.g. Restore
&Defaults, &Apply in preference pages; &Next, &Back, &Finish in wizards). Do not assign mnemonics to
OK and Cancel buttons. If you make OK the default button of the shell, and Cancel is equivalent to closing
the shell, then Enter and Esc map to these by default. Generally doing something with Esc or Enter is a bad
idea.

7) If a control does not have its own label (e.g. a text field), use a preceeding label ending with ':' and assign a
mnemonic to it. Screen readers like JAWS will read this label when the control has focus (e.g. see Window >
Preferences > Workbench)

8) Avoid extra freestanding labels as you cannot navigate to them with the keyboard and screen readers like
JAWS skip these since they don't take focus

9) Do not assign mnemonics on controls in the main window (other than main menus and main menu items),
even if it looks like a dialog (e.g. the form editors in WSAD) as these will usually conflict with menu
mnemonics

10) Assign shortcut keys for frequently used functions (and −only− frequently used functions).

Tips for making user interfaces accessible 709

http://www-3.ibm.com/able/accesssoftware.html

There are currently only two ways to hook shortcut keys in SWT:

by setting an accelerator on a menu item in the main menubar (they are ignored in
context menus)− JFace actions have support for this

♦

by hooking a key listener on a particular control (e.g. in the implementation of a view
or editor)

♦

Consult the table of Eclipse SDK shortcut keys (available off of eclipse.org −> Projects −>
Eclipse Project −> Platform −> UI −> Development Resources −> Accessibility) to avoid
collision.

12) Avoid Alt+{key} combinations since they may conflict with menu mnemonics

13) Avoid Ctrl+Alt+{key} combinations since they often conflict with entering special characters on
international keyboards (alt Gr = Ctrl+Alt)

14) Avoid Ctrl+Space+{key} combinations since Ctrl−Space is used for mode switching in Asian languages.

15) Try to save navigation context.

e.g. in Workbench / Preferences, we now remember which page you had selected last. This
avoids having to navigate through the list each time

16) Assign a specific person on the team to be responsible for accessibility on your project.

17) Test for accessibility.

Have your team hold an occasional "unplug your mouse day" where they try to use the
product using keyboard only. Get a copy of JAWS

TM
 (http://www.freedomscientific.com/)

and ensure that your UI is usable with it

Honoring single click support

The workbench Preferences allow users to specify whether views should open their objects on single or
double click.

Why the disclaimer about this preference not working for all views? Because views contributed by plug−ins
must explicitly support this preference in their implementation.

 Welcome to Eclipse

Honoring single click support 710

Recall that a view can be implemented by creating SWT controls and writing standard SWT code, or by using
JFace viewers to handle the low level details. Honoring the single click preference can be done at either
level. Most views that open other objects present them in a structured, list−like view. We'll focus on that
kind of view for now. If your view displays objects in a different manner, you'll likely use the SWT−level
concepts to support single click.

Single click in JFace viewers

If you are using a JFace list−oriented viewer to present your objects, supporting single click is
straightforward. Instead of using addDoubleClickListener to trigger opening the items in your view, use
addOpenListener. The open listener honors the current workbench preference, firing the open event when
the specified mouse event occurs.

You may still wish to use addDoubleClickListener for non−open actions, such as expanding the items in a
tree on double−click.

Single click in SWT controls

JFace provides a utility class, OpenStrategy, to handle the logistics of single and double click at the SWT
control level. The OpenStrategy is configured by the workbench Preferences dialog so that it honors the
current workbench open preference. In fact, the JFace viewers use this class to implement the open listener.

You must create an OpenStrategy and associate it with your SWT control. The OpenStrategy will hook the
appropriate events and interpret them based on the user preferences. Your job is to add an open listener to the
strategy that implements the code for open. In this way, you are shielded from knowledge about which widget
event triggered the open event.

OpenStrategy openHandler = new OpenStrategy(control);
openHandler.addOpenListener(new IOpenEventListener() {
 public void handleOpen(SelectionEvent e) {
 // code to handle the open event.
 ...
 }
}

The other workbench preferences for open (select on hover, open using arrow keys) are also handled by OpenStrategy. This
means that the "right thing" will happen if you use JFace viewers or the OpenStrategy class to implement
open behavior.

Activating editors on open

When handling an open event, you should use OpenStrategy.activateOnOpen() to determine whether an
opened editor should be activated by default. Activating an editor switches the focus from the view to the
editor, which can be particularly confusing and undesirable in single click mode.

Working sets

Users often find it necessary to filter views such as the navigator view in order to reduce clutter. Plug−ins can
assist in filtering using different techniques.

 Welcome to Eclipse

Single click in JFace viewers 711

Resource filters can be used to filter by file name. Plug−ins contribute resource filters that the user
can enable using a view's filter selection dialog.

•

Working sets can be used to filter resources by only including specified resources. Working sets are
selected using the view's working set dialog.

•

If your plug−in implements a view that shows resources (or objects that are adaptable to IResource), you
should support working sets. IWorkingSetManager provides API for manipulating working sets. You can
obtain an IWorkingSetManager using IWorkbench API.

IWorkingSetManager manager = workbench.getWorkingSetManager();

IWorkingSetManager allows you to manipulate and create working sets:

createWorkingSetSelectionDialog − returns a working set dialog that shows the user the current
working sets. You can get the selected working sets from the dialog once it is closed.

•

createWorkingSetEditWizard − returns a working set edit wizard for editing the specified working
set

•

getWorkingSets() − returns a list of all defined working sets•
getWorkingSet(String name) − returns a working set specified by name•

IWorkingSetManager also provides property change notification as working sets are added, removed, or as
they change. If your view or editor needs to respond to changes in the selected working set, it can add a
listener for CHANGE_WORKING_SET_CONTENT_CHANGE.

Adding new working set types

For many plug−ins, using IWorkingSetManager to provide resource filtering is sufficient. If your plug−in
needs to define working sets differently, it can register a new type of working set using
org.eclipse.ui.workingSets. The Java tooling uses this feature to define a Java working set type. Working

 Welcome to Eclipse

Adding new working set types 712

set types are shown when the user decides to add a working set.

When you define your own type of working set, you can use IWorkingSet.getId protocol to ensure that the
working set matches the type that you have defined. Any working sets that you create programmatically must
have their id set to the id of a working set page that can display the working set elements. This id is used to
ensure that the proper working set edit page is launched when the user edits the working set. A null id
indicates that the working set should use the default resource working set type.

See the org.eclipse.ui.workingSets extension point documentation and IWorkingSet protocol for more
detail.

Contributing resource filters

The resource filters extension allows plug−ins to define filters that are useful for filtering out file types in the
resource navigator view. This extension is useful when special file types are used to represent internal plug−in
information but you do not want the files to be shown in the workbench or manipulated by the user.

The workbench filters out the pattern ".*" to exclude internal files such as .metadata from the resource
navigator. Likewise, the JDT plug−in filters out "*.class" files to hide compiled classes.

The markup for the resource filters extension is simple. The following is from the workbench plugin.xml.

 Welcome to Eclipse

 Contributing resource filters 713

<extension
 point="org.eclipse.ui.ide.resourceFilters">
 <filter
 selected="false"
 pattern=".*">
 </filter>
 </extension>

The filters can be enabled by the user using the resource navigator's local pull−down menu.

In addition to declaring the filter pattern, the plug−in can use the selected attribute to specify whether the
filter should be enabled in the resource navigator. This attribute only determines the initial state of the filter
pattern. The user can control which filter patterns are active.

 Welcome to Eclipse

 Contributing resource filters 714

Filtering large user interfaces

The rich extensibility mechanisms in the workbench provide many ways for plug−ins to contribute to the
platform UI. However, extensibility can introduce its own set of problems. While allowing for a rich set of
features contributed by many different developers, it can also create an overwhelming experience for the new
user who is trying to navigate through vast menus and preferences pages. As the Eclipse platform matures, the
need for filtering mechanisms that help reduce the UI clutter and guide the user to their desired tasks has
become apparent.

The activity and context mechanisms address the problem of too much clutter in the user interface:

Activities allow platform integrators to define large−grained groupings of function that are only
shown when a particular user activity is enabled. Users can explicitly (or implicitly through trigger
points) enable or disable activities.

•

Contexts are used to dynamically enable function while the user is performing a specific task. They
influence what commands are available to the user at any given moment.

•

Activities

An activity is a logical grouping of function that is centered around a certain kind of task. For example,
developing Java software is an activity commonly performed by users of the platform, and the JDT defines
many UI contributions (views, editors, perspectives, preferences, etc.) that are only useful when performing
this activity. Before we look at the mechanics for defining an activity, let's look at how they are used to help
"declutter" the UI.

The concept of an activity is exposed to the user, although perhaps not apparent to a new user. When an
activity is enabled in the platform, the UI contributions associated with that activity are shown. When an
activity is disabled in the platform, its UI contributions are not shown. Users can enable and disable activities
as needed using the Workbench>Capabilities preference page. (Activities are referred to as "capabilities" in
the user interface, even though we use activity terminology in the API).

Certain user operations serve as trigger points for enabling an activity. For example, creating a new Java
project could trigger the enabling of the Java development activity. In this way, users are exposed to new
function as they need it, and gradually learn about the activities that are available to them and how they affect
the UI. When a user first starts the platform, it is desirable for as many activities as possible to be disabled, so
that the application is as simple as possible. Choices made in the welcome page can help determine what
activities should be enabled.

Activities vs. perspectives

We've seen (in Perspectives) how perspectives are used to organize different view layouts and action sets into
tasks. Why do we need activities? While perspectives and activities define similar kinds of tasks, the main
difference is how the UI contributions for a plug−in are associated with them. UI contributions are associated
with perspectives in the extension definition of the contribution. That is, a plug−in is in charge of determining
what perspectives its views and action sets belong to. Plug−ins are also free to define their own perspectives.
Even when a perspective is not active, the user can access the views and actions associated with the
perspective through commands such as Show View.

 Welcome to Eclipse

 Filtering large user interfaces 715

Activities are a higher level of organization. Individual UI contributions are not aware of activities and do not
refer to the activities in their extension definitions. Rather, the activities are expected to be configured at a
higher level such as platform integration/configuration or product install. Individual plug−ins typically do not
define new activities, unless the plug−in is a systems−level plug−in defined by a systems integrator. In a
typical scenario, a systems integrator determines how function is grouped into activities and which ones are
enabled by default. Activities are associated with UI contributions using activity pattern bindings, patterns
that are matched against the id of the UI contributions made by plug−ins. An example will help demonstrate
these concepts.

Defining an activity

Activities are defined using the org.eclipse.ui.activities extension point. Let's look at a simplified version of
how the Eclipse SDK plug−in defines two activities − one for developing Java software and one for
developing plug−ins:

<extension
 point="org.eclipse.ui.activities">
 <activity
 name="Java Activity"
 description="Developing Java Software"
 id="org.eclipse.javaDevelopment">
 </activity>

 <activity
 name="Plug−in Activity"
 description="Developing Eclipse Plug−ins"
 id="org.eclipse.plugInDevelopment">
 </activity>
 ...

Activities are assigned a name and description that can be shown to the user whenever the user is enabling and
disabling activities, or otherwise shown information about an activity. The id of the activity is used when
defining pattern bindings or other relationships between activities. For example, we can decide that one
activity requires another activity.

<activityRequirementBinding
 activityId="org.eclipse.plugInDevelopment"
 requiredActivityId="org.eclipse.javaDevelopment">
</activityRequirementBinding>

The requirement binding states that the plug−in development activity can only be enabled when the Java
development activity is enabled. Related activities can also be bound into categories, that are shown to the
user when the user is working with activities.

<category
 name="Development"
 description="Software Development"
 id="org.eclipse.categories.developmentCategory">
</category>

<categoryActivityBinding
 activityId="org.eclipse.javaDevelopment"
 categoryId="org.eclipse.categories.developmentCategory">
</categoryActivityBinding>

<categoryActivityBinding

 Welcome to Eclipse

Activities vs. perspectives 716

 activityId="org.eclipse.plugInDevelopment"
 categoryId="org.eclipse.categories.developmentCategory">
</categoryActivityBinding>

The category groups the related development activities together. This category is shown to the user when the
user manually configures activities.

Binding activities to UI contributions

Activities are associated with UI contributions using pattern matching. The pattern matching used in activity
pattern bindings follows the rules described in the java.util.regex package for regular expressions. The
patterns used by the workbench are composed of two parts. The first part uses the identifier of the plug−in that
is contributing the UI extension. The second part is the id used by plug−in itself when defining the
contribution (which may or may not also include the plug−in id as part of the identifier). The following format
is used:

plug−in−identifier + "/" + local−identifier

For example, the following activity pattern binding states that a UI contribution from any JDT plug−in id
(org.eclipse.jdt.*) is associated with the Java development activity regardless of its local identifier
(.*).

<activityPatternBinding
 activityId="org.eclipse.javaDevelopment"
 pattern="org\.eclipse\.jdt\..*/.*">
</activityPatternBinding>

The next binding is more specific. It states that the contribution named javanature defined in the JDT core
(org.eclipse.jdt.core) is associated with the Java development activity.

<activityPatternBinding
 activityId="org.eclipse.javaDevelopment"
 pattern="org\.eclipse\.jdt\.core/javanature">
</activityPatternBinding>

As you can see, activity pattern bindings can be used to associate large groups of contributions with a
particular activity, or to associate very specific contributions to an activity. The following contributions are
affected by activities:

Views and editors•
Perspectives•
Preference and property pages•
Menus and toolbars•
New project wizard•

The convention used by the workbench (plug−in id + local id) allows easy binding to plug−ins that do not
necessarily follow the naming practice of prefixing their UI contribution identifiers with their plug−in's
identifier. Plug−ins that directly interact with the activity API are free to use their own format for identifying
contributions and for pattern−matching against those names.

 Welcome to Eclipse

Activities vs. perspectives 717

Binding activities to help contributions

Activities are associated with help contributions using the same pattern matching scheme used for UI
contributions. The second part of the identifier (the local identifier) indicates the name of the table of contents
(TOC) file. For example, the following activity pattern binding associates all TOC files contributed by JDT
plug−ins (org.eclipse.jdt.*) with the Java development activity:

<activityPatternBinding
 activityId="org.eclipse.javaDevelopment"
 pattern="org\.eclipse\.jdt\..*/.*">
</activityPatternBinding>

When the Java development activity is disabled, help books contributed by JDT plug−ins, or any sub−books
(TOCs linked to, or linked by JDT books), even if contributed by a different plug−in, will not show in the help
UI. The topics defined in these books will also not show in the search results. In the case where JDT TOCs
were not displayed as primary TOCs, but were instead linked from another TOC to appear as sub−trees in a
book, disabling the JDT activity has the effect of hiding the sub−trees. The containing book will appear to
define less topics in the UI.

Using more specific binding, it is possible to associate activities with selected TOCs from plug−ins that
contribute multiple TOCs to the help system. For example, the following activity pattern binding associates
the "Examples" TOC with the Java development examples activity.

<activityPatternBinding
 activityId="org.eclipse.javaDevelopmentExamples"
 pattern="org\.eclipse\.jdt\.doc\.isv\.topics_Samples.xml">
</activityPatternBinding>

With such pattern binding, disabling the Java development examples activity will hide the "Examples" section
from the "JDT Plug−in Developer Guide" book.

Using the activities API

The workbench activity support includes an API for working with the defined activities and changing their
enabled state. Most plug−ins need not be concerned with this API, but it is useful when implementing
function that allows the user to work with activities, or for implementing the trigger points that enable a
particular activity. It is assumed that any plug−in that is manipulating activities through API is quite aware of
the ways that activities are configured for a particular product. For example, the workbench itself uses the API
to trigger the enablement of activities such as Java development. We'll look at how the workbench uses the
generic activity API to implement triggers.

The hub of all activity in the workbench is IWorkbenchActivitySupport. The activity support works in
tandem with an IActivityManager. Plug−ins can obtain the activity support instance from the workbench,
and the activity manager from there.

IWorkbenchActivitySupport workbenchActivitySupport = PlatformUI.getWorkbench().getActivitySupport();
IActivityManager activityManager = workbenchActivitySupport.getActivityManager();

The following snippet enables the Java development activity (if it is not already enabled). It shows a
simplified version of a trigger.

...
//the user did something Java related. Enable the Java activity.

 Welcome to Eclipse

Activities vs. perspectives 718

Set enabledActivityIds = new HashSet(activityManager.getEnabledActivityIds());
if (enabledIds.add("org.eclipse.javaDevelopment"))
 workbenchActivitySupport.setEnabledActivityIds(enabledActivityIds);

IActivityManager also defines protocol for getting all defined activity and category ids, and for getting the
associated IActivity or ICategory for a particular id. These objects can be used to traverse the definition for
an activity or category in API, such as getting the pattern bindings or requirement bindings. Listeners can be
registered on the activity manager or on the activities and categories themselves to detect changes in the
definition of a particular activity or in the activity manager itself. See the package org.eclipse.ui.activities for
more information.

Guiding the user through tasks

Even when the platform UI filters out unneeded functionality, there is still a steep learning curve faced by a
new user. The platform UI introduces several mechanisms for helping the user choose what task needs to be
done and guiding the user through the steps in that task. These mechanisms are used by the workbench itself
to help guide Eclipse SDK users through tasks.

Cheat sheets can help guide the user through a series of complex tasks in order to achieve some
overall goal. Some steps can be performed by the cheat sheet, and some are described so that the user
can manually complete the task.

•

Intro support allows plug−ins to define pages that help introduce the product to the end user the first
time the platform is started. These pages can reference help content or launch the appropriate cheat
sheet for a task.

•

Cheat sheets

Cheat sheets are special views that help guide the user through a series of complex tasks to achieve an overall
goal. For example, a cheat sheet could be used to help guide the user through all the steps needed to create,
compile, and run a simple Java program. Cheat sheets are launched from the Help>Cheat Sheets... menu
item. Cheat sheets can also be launched from an intro page.

Cheat sheets are defined using the org.eclipse.ui.cheatsheets.cheatSheetContent extension point. The cheat
sheet content itself is defined in a separate file so that it can be more easily translated into other languages.

Contributing a cheat sheet

Contributing a cheat sheet is pretty straightforward. Let's look at a cheat sheet contributed by the JDT for
building a simple Java application.

<extension point="org.eclipse.ui.cheatsheets.cheatSheetContent">
 <cheatsheet
 name="%cheatsheet.helloworld.name"
 contentFile="nl/cheatsheets/HelloWorld.xml"
 id="org.eclipse.jdt.helloworld">
 <description>%cheatsheet.helloworld.desc</description>
 </cheatsheet>
 ...

 Welcome to Eclipse

 Guiding the user through tasks 719

Much like other workbench contributions, a name, description, and id can be specified for the cheat sheet. The
name and description are shown when the user accesses the Help>Cheat Sheets... list. A category for the
cheat sheet can also be defined if you want to place several cheat sheets into a logical grouping. If no category
is specified, the cheat sheet will appear in the Other category.

Cheat sheet items

The real work for cheat sheets is done in the content file. The content file is an XML file whose name and
location are specified in the contentFile attribute. The path for the file is relative to the plug−in's directory.
(Note the use of the nl variable in the directory name, which means the file will be located in a directory
specific to the national language of the target environment.)

The file format itself includes overview information about the cheat sheet followed by a description of each
step (called an item) that the user will perform. At its simplest, an item is just a detailed description of the step
that the user should take. However, an item can also specify an action that can be run to perform the step on
behalf of the user. Let's look at the first part of the content file (HelloWorld.xml) for the Java cheat sheet.

<?xml version="1.0" encoding="UTF−8" ?>
<cheatsheet title="Simple Java Application">
 <intro
 href="/org.eclipse.ui.cheatsheets.doc/tasks/tcheatst.htm">
 <description>
Welcome to the Hello, World Java tutorial.
It will help you build the famous "hello world" application and try it out. You will create a java project, and a java class that will print "hello world" in the console when run.
Let's get started!
 </description>
</intro>
 <item
 href="/org.eclipse.platform.doc.user/concepts/concepts−4.htm"
 title="Open the Java Perspective">
<action
 pluginId="org.eclipse.ui.cheatsheets"
 class="org.eclipse.ui.internal.cheatsheets.actions.OpenPerspective"
 param1="org.eclipse.jdt.ui.JavaPerspective"/>
 <description>
Select Window−>Open Perspective−>Java in the menubar at the top of the workbench.
This step changes the perspective to set up the Eclipse workbench for Java development.
You can click the "Click to Perform" button to have the "Java" perspective opened automatically.

 Welcome to Eclipse

Cheat sheets 720

 </description>
</item>
...

The title and intro information are shown at the top of the cheat sheet. Then, the items are described. The first
item for this cheat sheet describes how to open the Java perspective. Better still, the action attribute specifies
a class that can be used to run the action on behalf of the user. The class must implement IAction. This is
rather convenient, as it allows you to reuse the action classes written for menu or toolbar contributions.

The class for the action can optionally implement ICheatSheetAction if the action uses parameters or needs
to be aware of the cheat sheet and its state. In this case, the action will be passed an array of parameters and a
reference to the ICheatSheetManager so that it can request additional information about the cheat sheet. Any
necessary parameters can be passed to the action's run method using the paramN attributes.

It is strongly recommended that actions invoked from cheat sheets report a success/fail outcome if running the
action might fail. (For example, the user might cancel the action from its dialog.) See
IAction.notifyResult(boolean) for more detail.

Items do not have to define actions. If your item must be performed manually by the user, you need not
specify an action at all. Below is the third step of the Java cheat sheet, which merely tells the user how to code
the simple application. When no action is specified, the item description must instruct the user to press the
appropriate button after the task has been completed.

<item
 href="/org.eclipse.jdt.doc.user/tasks/tasks−54.htm"
 title="Add a System.out.println line in your main method">
 <description>
Now that you have your HelloWorld class,
In the "public static void main" method, add the following statement: System.out.println("Hello world!"); and save your changes. Press the "click when done" button below when finished.
 </description>
</item>

Additional attributes control whether the item can be skipped completely and what document should be
launched if the user requests help during the step. See the org.eclipse.ui.cheatsheets.cheatSheetContent

 Welcome to Eclipse

Cheat sheets 721

extension point documentation for a description of all of the attributes that can be defined inside a cheat sheet.

Subitems

Subitems may be defined to further organize the presentation of an item. Unlike items, subitems do not have
to be visited in any particular order. Subitems may also define actions that automatically perform the subtask
for the user. Subitem actions are described in the same way as item actions.

Conditional expressions and cheat sheet variables

Conditional expressions can be used to define cheat sheet elements whose content or behavior depends upon a
particular condition being true. Conditions are described in the condition element of a subitem using arbitrary
string values that are matched against the when attribute for each choice. Conditions typically reference cheat
sheet variables using the form ${var}, where var refers to the name of a cheet sheet variable. A few simple
examples will help demonstrate how conditional expressions work.

Conditional subitems can be used to chose one subitem from a list of possible subitems. Only the first
subitem whose when attribute matches the condition attribute is included in the cheat sheet. For example:

<item ...>
 <conditional−subitem condition="${v1}">
 <subitem when="a" label="Step for A." />
 <subitem when="b" label="Step for B." />
 </conditional−subitem>
</item>

This item specifies two possible subitems that depend on the value of the variable v1. If the variable value is
a, then the first subitem will be included. If the variable value is b, then the second subitem will be included.
If the variable is neither value, it is considered an error.

Conditional actions are similar to conditional subitems. The perform−when element specifies a condition
for performing one action among a list of possible actions. The condition is described the same way, using an
arbitrary string that often references a variable. The action whose when attribute matches the condition is the
one that will be performed. For example:

<item ...>
 <perform−when condition="${v1}">
 <action when="a" class="com.example.actionA" pluginId−"com.example" />
 <action when="b" class="com.example.actionB" pluginId−"com.example" />
 </perform−when>
</item>

The action to be performed is chosen based on the value of the v1 variable. If the variable value is neither a
or b, it is considered an error.

Repeated subitems

Repeated subitems describe a subitem that can can expand into 0, 1, or more similar substeps. The substeps
are individualized using the special variable ${this}. This variable will be replaced by the values specified
in the values attribute. The values attribute is a string of values that are separated by commas. A variable that
expands into a list of values may be used in the values attribute. For example:

<item ...>
 <repeated−subitem values="${v1}">

 Welcome to Eclipse

Cheat sheets 722

 <subitem label="Step ${this}" />
 </repeated−subitem>
</item>

If the value of the variable is 1,b,three, then three subitems will appear in the cheat sheet, each having a
unique label ("Step 1," "Step b," "Step three"). The variable can be used in the label or the action paramater
value. It can also be accessed from the ICheatSheetManager while the action is executing.

Cheat sheet listeners

In some cases, you may want to change other parts of your UI if a cheat sheet is active. For example, you may
have an editor that shows special annotations if a cheat sheet is guiding the user through an editing task. In
this case, a listener can be specified as an attribute of the cheatsheet. The listener attribute must be the fully
qualified name of a Java class that subclasses CheatSheetListener. Listeners will receive notifications along
with an ICheatSheetEvent when there is a change in the cheat sheet's life cycle, such as when it opens,
closes, or completes.

Contributing attributes to an existing cheat sheet

The org.eclipse.ui.cheatsheets.cheatSheetItemExtension extension can be used to contribute arbitrary
attributes to a pre−existing cheat sheet. The purpose of this extension point is to allow a plug−in to add
additional buttons that will aid the user for a given step. These additional buttons are displayed beside the help
icon.

To use this mechanism, you can define any arbitrary attribute inside an item definition in the cheat sheet XML
file. The attribute name will be matched against any attributes contributed in extensions to
org.eclipse.ui.cheatsheets.cheatSheetItemExtension. See the extension point documentation for more detail.

Workbench resource support

The Eclipse platform is structured so that you can develop a workbench application even if your application
has nothing to do with the platform resource model. However, the workbench does provide support for
working with resources in a separate plug−in, org.eclipse.ui.ide. This plug−in contains the parts of the SDK
workbench that focus on IDE building and manipulating the workspace.

If your plug−in uses the platform resource model, you may want to take advantage of the resource−oriented
features in the workbench. These include resource property pages, resource marker UI, resource filtering, and
other utilities.

Contributing a property page

You can contribute a property page for an object by using the org.eclipse.ui.propertyPages extension point.
An object's property page is invoked using the Properties menu in any view that shows objects, such as the
resource navigator view. This menu is available when a single object is selected.

The readme tool contributes two property pages.

 Welcome to Eclipse

Cheat sheets 723

<extension
 point = "org.eclipse.ui.propertyPages">
 <page
 id="org.eclipse.ui.examples.readmetool.FilePage"
 name="%PropertiesPage.filePage"
 objectClass="org.eclipse.core.resources.IFile"
 class="org.eclipse.ui.examples.readmetool.ReadmeFilePropertyPage"
 nameFilter="*.readme">
 </page>
 <page
 id="org.eclipse.ui.examples.readmetool.FilePage2"
 name="%PropertiesPage.filePage2"
 objectClass="org.eclipse.core.resources.IFile"
 class="org.eclipse.ui.examples.readmetool.ReadmeFilePropertyPage2"
 nameFilter="*.readme">
 </page>
 </extension>

When you define a property page, you specify the objectClass for which this page is valid. Objects of this
class will include your page when the properties are shown. You may optionally supply a nameFilter that
further refines the class. In the readme tool example, both pages are contributed for objects of type IFile with
a .readme file extension.

Property pages are not limited to workbench resources. All objects showing up in the workbench (even
domain−specific objects created by other plug−ins) may have property pages. Any plug−in may register
property pages for any object type.

Property pages look a lot like preference pages, except there is no hierarchy or categorization of property
pages. In the dialog below, both readme property pages appear in the main list of pages.

 Welcome to Eclipse

Cheat sheets 724

Implementing a property page

When the workbench creates and launches a properties page, it sets the selected resource into the page. The
page can use the getElement() method to obtain its element, an IAdaptable.

The pattern for creating property pages is similar to that of preference pages, so we will only focus on what is
different. Property pages show information about their element. This information can be obtained by
accessing the element in order to query or compute the relevant information. The information can also be
stored and retrieved from the resource's properties.

The ReadmeFilePropertyPage computes most of its information using its element. The following snippet
shows how the number of sections is computed and displayed in a label.

 ...
 IResource resource = (IResource) getElement();
 ...
 IAdaptable sections = getSections(resource);
 if (sections instanceof AdaptableList) {
 AdaptableList list = (AdaptableList)sections;
 label = createLabel(panel, String.valueOf(list.size()));

 Welcome to Eclipse

Implementing a property page 725

 ...

When a property is computed, there is no need for corresponding logic to save the value, since the user cannot
update this value.

Properties pages are commonly used for viewing and for setting the application−specific properties of a
resource. (See Resource properties for a discussion of session and persistent properties.) Since the property
page knows its resource, the resources API can be used in the page to initialize control values or to set new
property values based on user selections in the properties page.

The following snippet shows a checkbox value being initialized from a property on a property page's element.

 private void initializeValues() {
 ...
 IResource resource = (IResource) getElement();
 label.setText(resource.getPersistentProperty("MyProperty"));
 ...
 }

The corresponding code for saving the checkbox value back into the property looks like this:

 private void storeValues() {
 ...
 IResource resource = (IResource) getElement();
 resource.setPersistentProperty("MyProperty", label.getText());
 ...
 }

Marker help and resolution

In Resource markers, we saw how plug−ins can define specialized marker types in order to annotate resources
with information. The readme tool example defines its own markers in order to demonstrate two
marker−related workbench extensions: marker help and marker resolutions. The marker definition is in
the readme plug−in's manifest markup:

<extension id="readmemarker" point="org.eclipse.core.resources.markers" name="%ReadmeMarker.name">
 <super type="org.eclipse.core.resources.taskmarker"/>
 <super type="org.eclipse.core.resources.textmarker"/>
 <persistent value="true"/>
 <attribute name="org.eclipse.ui.examples.readmetool.id"/>
 <attribute name="org.eclipse.ui.examples.readmetool.level"/>
 <attribute name="org.eclipse.ui.examples.readmetool.department"/>
 <attribute name="org.eclipse.ui.examples.readmetool.code"/>
 <attribute name="org.eclipse.ui.examples.readmetool.language"/>
</extension>

The tool defines a marker that inherits from the platform's text marker and task marker. It also defines named
attributes for the marker. Marker attributes can be set and queried.

Since the new readme marker is a kind of text marker, it inherits the text marker attributes. The text marker
attributes include the character location of the marker.

 Welcome to Eclipse

Marker help and resolution 726

Markers can be added to a .readme file using the readme editor's popup menu. (The popup menu actions are
added dynamically in ReadmeTextEditor.editorContextMenuAboutToShow(IMenuManager parentMenu)). Once
added, the markers appear on the left side of the editor and in the tasks view.

Contributing marker help

Now we are ready to look at how to add help to the readme tool's markers. Adding marker help is done using
the org.eclipse.ui.ide.markerHelp extension point. This extension point allows plug−ins to associate a help
context id with a particular type of marker. The marker can be qualified by marker type only, or it can be
further qualified by the value of one or more of its attributes. The readme tool declares several different help
contexts:

<extension point="org.eclipse.ui.ide.markerHelp">
 <markerHelp

markerType="org.eclipse.ui.examples.readmetool.readmemarker"
 helpContextId="org.eclipse.ui.examples.readmetool.marker_example1_context">

 <attribute name="org.eclipse.ui.examples.readmetool.id" value= "1234"/>
 </markerHelp>
 <markerHelp
 markerType="org.eclipse.ui.examples.readmetool.readmemarker"
 helpContextId="org.eclipse.ui.examples.readmetool.marker_example2_context">

 Welcome to Eclipse

Marker help and resolution 727

 <attribute name="org.eclipse.ui.examples.readmetool.level" value= "7"/>
 </markerHelp>
 <markerHelp
 markerType="org.eclipse.ui.examples.readmetool.readmemarker"
 helpContextId="org.eclipse.ui.examples.readmetool.marker_example3_context">
 <attribute name="org.eclipse.ui.examples.readmetool.level" value= "7"/>
 <attribute name="org.eclipse.ui.examples.readmetool.department" value= "infra"/>
 </markerHelp>
 ...

Each marker help context is defined for the readme marker type. However, each help context is associated
with a different combination of attribute values. The first marker help context will be used for markers whose
id attribute is set to "1234". The help contexts are defined in the plug−in's HelpContexts.xml file:

<context id="marker_example1_context" >

<description>Readme marker example 1 Help id = 1234 </description> </context>

Sure enough, when we select a readme marker with id="1234" and select help using F1, we see our help
description.

Contributing marker resolution

Plug−ins can also define marker resolutions, so that their problem markers can participate in the workbench
Quick Fix feature. Users can select a problem marker and choose a Quick Fix from a popup containing the
list of supplied fixes contributed for the marker.

 Welcome to Eclipse

Marker help and resolution 728

Marker resolutions are contributed using the org.eclipse.ui.ide.markerResolution extension point. This
extension point allows plug−ins to associate a class that implements IMarkerResolutionGenerator with a
particular type of marker. The marker can be qualified by marker type only, or it can be further qualified by
the value of one or more of its attributes. The JDT contributes a marker resolution for Java problems:

<extension
 point="org.eclipse.ui.ide.markerResolution">
 <markerResolutionGenerator
 markerType="org.eclipse.jdt.core.problem"
 class="org.eclipse.jdt.internal.ui.text.correction.CorrectionMarkerResolutionGenerator">
 </markerResolutionGenerator>
</extension>

The marker resolution generator is responsible for returning an array of marker resolutions
(IMarkerResolution) that will be shown in the Quick Fix popup. The resolution will be run() if the user
selects one of the fixes.

Text file encoding

If your plug−in reads text files, it should honor the text file encoding preference in the workbench.

 Welcome to Eclipse

Text file encoding 729

Text files are encoded differently depending on the platform and the locale. Most of the time, using the
default text file encoding for the locale of the host operating system is good enough. However, a user may
want to work with text files that originate from another source. Given the ability to use the platform in a
networked team environment, it's certainly possible that users will want to work with text files that use a
different encoding scheme than their native encoding scheme so that they can easily interchange files with
another team.

For this reason, the workbench defines its own encoding profile that is specified by the user in the
Preferences dialog. Users may choose from the available encoding choices in the Workbench > Editors
preference page or type in their own encoding. Plug−ins that interpret text files, such as editors and builders,
should consult the workbench encoding preference rather than assume that the installed operating system
encoding is in use.

You can obtain the encoding preference using ResourcesPlugin.getEncoding(). This encoding should be
passed to java.io readers instead of using the default system encoding. If you need to track changes to this
preference, you can hook a listener on the ResourcesPlugin preferences and react to changes in
ResourcesPlugin.PREF_ENCODING. The following example comes from the default text editor:

public void initialize(StatusTextEditor textEditor) {

 fTextEditor= textEditor;

 fPropertyChangeListener= new Preferences.IPropertyChangeListener() {
 public void propertyChange(Preferences.PropertyChangeEvent e) {
 if (ResourcesPlugin.PREF_ENCODING.equals(e.getProperty()))
 setEncoding(null, false);
 }
 };

 Preferences p= ResourcesPlugin.getPlugin().getPluginPreferences();
 p.addPropertyChangeListener(fPropertyChangeListener);

 fEncodingActionGroup= new EncodingActionGroup(fTextEditor);
 fEncodingActionGroup.update();
}

Users may also change the encoding for a particular file in the Edit > Encoding menu of an editor. If you are
manipulating text inside an open editor, you should use IEncodingSupport.getEncoding() instead in order to
get the encoding for the particular editor. The following example shows how to obtain this information from
an editor:

IEncodingSupport encodingSupport = (IEncodingSupport) editor.getAdapter(IEncodingSupport.class);
String encoding = encodingSupport.getEncoding();

 Welcome to Eclipse

Text file encoding 730

Editors
We have seen how plug−ins can contribute an editor to the workbench, but we haven't yet looked at the
implementation of an editor.

There is no "typical" implementation pattern for an editor, because editors usually provide
application−specific semantics. A tool that edits and manages a particular content type will provide
customized behavior for manipulating the data represented by the resource.

Editors can come in all shapes and sizes. If a plug−in's editor is text−based, then the editor can either use the
existing default text editor, or create a customized text editor by using the facilities provided in the platform.
The latter approach is used by the Java example editor.

If a plug−in's editor is not text based, then a custom editor must be implemented by the plug−in. There are
several approaches for building custom editors, all of which depend on the look and behavior of the editor.

Form−based editors can layout controls in a fashion similar to a dialog or wizard. The Plug−in
Development Environment (PDE) uses this approach in building its manifest editors.

•

Graphics intensive editors can be written using SWT level code. For example, an editor could create
its own SWT window for displaying the information, or it could use a custom SWT control that is
optimized for the application.

•

List−oriented editors can use JFace list, tree, and table viewers to manipulate their data.•

Once the implementation model for the editor has been determined, implementing the editor is much like
programming a stand−alone JFace or SWT application. Platform extensions are used to add actions,
preferences, and wizards needed to support the editor. But the internals of the editor are largely dependent on
your application design principles and internal model.

Editors 731

Workbench editors

Although the implementation of a workbench editor will be specific to your plug−in and the content that you
want to edit, the workbench provides a general structure for building an editor. The following concepts apply
to all workbench editors.

Editor parts and their inputs

An editor must implement IEditorPart and is often built by extending the EditorPart class. An editor
implements its user interface in the createPartControl method. This method is used to assemble the SWT
widgets or JFace viewers that present the editor contents.

An editor input is a description of something to be edited. You can think of an editor input as a file name,
though it is more general. IEditorInput defines the protocol for an editor input, including the name of the
input and the image that should be used to represent it in the labels at the top of the editor.

Two generic editor inputs are provided in the platform. IFileEditorInput represents an input that is a file in
the file system. IStorageEditorInput represents an input that is a stream of bytes. These bytes may come
from sources other than the file system.

Resetting the editor input

If your editor can support the replacement of the editor's input object on the fly, you should implement
IReusableEditor. Implementing this interface allows the workbench to "recycle" your editor. Workbench
user preferences allow the user to dictate that editors should be reused after a certain number of them are
open.

Navigating the editor input

If you want to implement a navigation history in your editor, you should implement
INavigationLocationProvider. This provides a mechanism for the workbench to request a current
navigation location (INavigationLocation) as needed to keep a navigation history. The workbench handles
the mechanics of the navigation user interface. Your INavigationLocation will be notified when it needs to
restore the editor to the location that it represents.

The rest of your editor's implementation depends on the content that you are trying to present. We'll look next
at the most common type of editor − the text editor.

Documents and partitions

The platform text framework defines a document model for text and provides a viewer that displays text using
this model. We will start by looking at the Java editor example and how it uses this model. We will not focus
on the basic mechanics of registering an editor extension, since we've already seen this in the section

 Welcome to Eclipse

 Workbench editors 732

discussing org.eclipse.ui.editors. Instead, we'll look at the specifics of how the editor class is implemented in
the example.

Document providers and documents

In the workbench, an editor is typically opened when the user selects a domain element (such as a file or an
element stored inside an archive file) and opens it. When the editor is created, it is associated with an editor
input (IEditorInput), which describes the object being edited.

The Java editor example opens when the user opens a file with the "*.jav" extension. In this case, the input to
the editor is an IFileEditorInput. The platform text framework assumes little about the editor input itself. It
works with a presentation model, called an IDocument, for the input, so that it can effectively display and
manipulate text.

This means that there must be a way to map from an expected domain model (the editor input) to the
presentation model. This mapping is defined in an IDocumentProvider. Given an editor input, the
document provider returns an appropriate IDocument.

The Java editor example inherits the TextFileDocumentProvider defined by the plug−in
org.eclipse.ui.editors. The extension org.eclipse.ui.editors.documentProviders is used to define mappings
between editor input types (or file extensions) and document providers. The editors plug−in defines its
document provider as follows:

 <extension
 point="org.eclipse.ui.editors.documentProviders">
 <provider
 class="org.eclipse.ui.editors.text.TextFileDocumentProvider"
 inputTypes="org.eclipse.ui.IStorageEditorInput"
 id="org.eclipse.ui.editors.text.StorageDocumentProvider">
 </provider>
 </extension>

This extension point allows plug−ins to register document providers and associate them with either a file
extension or an editor input class. Since the Java editor example does not define its own document provider
extension, it inherits the generic document provider specified for all input types that are
IStorageEditorInput. When the user opens a file for editing, the platform manages the details of creating the
proper document provider instance. If a specific document provider is registered for the file extension, that
one will be used. If there is no specific document provider for the file extension, then the editor input type will
be used to find the appropriate provider.

By using the generic platform document provider, the Java editor example can take advantage of all of the
features of the document provider, such as file buffering and other optimizations.

Document setup

Since the Java editor uses the platform text document provider, how can it supply any specialized behavior for
handling Java files?

The extension org.eclipse.core.filebuffers.documentSetup is used to define mappings between file
extensions and an IDocumentSetupParticipant. The setup participant will set up the document with any
special features once it has been provided to the editor.

 Welcome to Eclipse

Document providers and documents 733

<extension
 id="ExampleJavaDocumentSetupParticipant"
 name="%documentSetupParticipantName"
 point="org.eclipse.core.filebuffers.documentSetup">
 <participant
 extensions="jav"
class="org.eclipse.ui.examples.javaeditor.JavaDocumentSetupParticipant">
 </participant>
</extension>

This extension definition is what gives the example a chance to setup the document for Java specific tasks. So
what does JavaDocumentSetupParticipant do? We'll look at a simplified version of the setup method.

 public void setup(IDocument document) {
 ...
 IDocumentPartitioner partitioner= new DefaultPartitioner(JavaEditorExamplePlugin.getDefault().getJavaPartitionScanner(), JavaPartitionScanner.JAVA_PARTITION_TYPES);
 partitioner.connect(document);
 ...
 }

The setup code configures an object called a partitioner.

Partitions

The partitioner (IDocumentPartitioner) is responsible for dividing the document into non−overlapping
regions called partitions. Partitions (represented by ITypedRegion) are useful for treating different sections
of the document differently with respect to features like syntax highlighting or formatting.

In the case of the Java editor example, the document is divided into partitions that represent the javadoc
comments, multi line comments, and everything else. Each region is assigned a content type and its position
in the document. Positions are updated as the user edits text.

Rule based document partitioning

It is up to each editor to determine the appropriate implementation for a document partitioner. Support is
provided in org.eclipse.jface.text.rules for rule−based document scanning. Using a rule−based scanner
allows an editor to use the DefaultPartitioner provided by the framework.

IDocumentPartitioner partitioner= new DefaultPartitioner(JavaEditorExamplePlugin.getDefault().getJavaPartitionScanner(), JavaPartitionScanner.JAVA_PARTITION_TYPES);

RuleBasedPartitionScanner is the superclass for rule based scanners. Subclasses are responsible for
enumerating and implementing the rules that should be used to distinguish tokens such as line delimiters,
white space, and generic patterns when scanning a document. The example's JavaPartitionScanner defines
rules for distinguishing single line comments, character constants, javadoc, multi line comments, and words.
This is done in the scanner's constructor:

public JavaPartitionScanner() {
 super();
 IToken javaDoc= new Token(JAVA_DOC);
 IToken comment= new Token(JAVA_MULTILINE_COMMENT);

 List rules= new ArrayList();
 // Add rule for single line comments.
 rules.add(new EndOfLineRule("//", Token.UNDEFINED));

 // Add rule for strings and character constants.

 Welcome to Eclipse

Document providers and documents 734

 rules.add(new SingleLineRule("\"", "\"", Token.UNDEFINED, '\\'));
 rules.add(new SingleLineRule("'", "'", Token.UNDEFINED, '\\'));

 // Add special case word rule.
 rules.add(new WordPredicateRule(comment));

 // Add rules for multi−line comments and javadoc.
 rules.add(new MultiLineRule("/**", "*/", javaDoc, (char) 0, true));
 rules.add(new MultiLineRule("/*", "*/", comment, (char) 0, true));

 IPredicateRule[] result= new IPredicateRule[rules.size()];
 rules.toArray(result);
 setPredicateRules(result);
}

See the classes in org.eclipse.jface.text.rules for more details about defining rules and the types of rules
availables. We'll look at the scanners again when we look at syntax coloring.

Syntax coloring

Syntax coloring is provided in the platform text framework using a model of damage, repair, and reconciling.
For each change applied to a document, a presentation reconciler determines which region of the visual
presentation should be invalidated and how to repair it. Different strategies can be used for different content
types in the document.

Implementing syntax coloring (and doing so with a presentation reconciler) is optional. By default,
SourceViewerConfiguration does not install a presentation reconciler since it does not know the document
model used for a particular editor, and has no generic behavior for syntax highlighting.

In order to use the reconciling classes to implement syntax highlighting, your editor's source viewer
configuration must be configured to define a presentation reconciler. Once again, we start with
JavaSourceViewerConfiguration to see how a presentation reconciler is defined for our editor.

public IPresentationReconciler getPresentationReconciler(ISourceViewer sourceViewer) {

 PresentationReconciler reconciler= new PresentationReconciler();
 ...
 return reconciler;
}

To understand what a presentation reconciler does, we must first look at the concepts of damage, repair, and
reconciling.

Damage, repair, and reconciling

As the user modifies text in an editor, parts of the editor must be redisplayed to show the changes. Computing
the text that must be redisplayed is known as computing damage. When syntax coloring is involved, the
amount of damage caused by an editing operation becomes more extensive, since the presence or absence of a
single character could change the coloring of the text around it.

Damagers (IPresentationDamager) determine the region of a document's presentation which must be rebuilt
because of a document change. A presentation damager is assumed to be specific to a particular document

 Welcome to Eclipse

Syntax coloring 735

content type (or region). It must be able to return a damage region that is valid input for a presentation repairer
(IPresentationRepairer). A repairer must be able to derive all of the information it needs from a damage
region in order to successfully describe the repairs that are needed for a particular content type.

Reconciling describes the overall process of maintaining the presentation of a document as changes are made
in the editor. A presentation reconciler (IPresentationReconciler) monitors changes to the text through its
associated viewer. It uses the document's regions to determine the content types affected by the change and
notifies a damager that is appropriate for the affected content type. Once the damage is computed, it is passed
to the appropriate repairer which will construct repair descriptions that are applied to the viewer to put it back
in sync with the underlying content.

The classes in org.eclipse.jface.text.reconciler define additional support classes for synchronizing a
document model with external manipulation of the document.

Presentation reconcilers should be provided with a repairer and damager pair for each content type to be found
in the document. It is up to each editor to determine the appropriate implementation for a presentation
reconciler. However, the platform provides support in org.eclipse.jface.text.rules for using rule−based
document scanners to compute and repair damage. Default damagers and repairers are defined in this
package. They can be used along with the standard reconcilers in org.eclipse.jface.text.presentation to
implement syntax coloring by defining scanning rules for the document.

Rule based reconciling

Now we have enough background to look in detail at the creation of the example presentation reconciler.
Recall that the Java editor example implements a JavaPartitionScanner which partitions the document into
content types representing javadoc, multi line comments, and everything else.

For each of these content types, a damager/repairer pair must be specified. This is done below using the
PresentationReconciler and the DefaultDamagerRepairer.

 JavaColorProvider provider= JavaEditorEnvironment.getJavaColorProvider();
 PresentationReconciler reconciler= new PresentationReconciler();

 DefaultDamagerRepairer dr= new DefaultDamagerRepairer(JavaEditorEnvironment.getJavaCodeScanner());
 reconciler.setDamager(dr, IDocument.DEFAULT_CONTENT_TYPE);
 reconciler.setRepairer(dr, IDocument.DEFAULT_CONTENT_TYPE);

 dr= new DefaultDamagerRepairer(new SingleTokenScanner(new TextAttribute(provider.getColor(JavaColorProvider.JAVADOC_DEFAULT))));
 reconciler.setDamager(dr, JavaPartitionScanner.JAVA_DOC);
 reconciler.setRepairer(dr, JavaPartitionScanner.JAVA_DOC);

 dr= new DefaultDamagerRepairer(new SingleTokenScanner(new TextAttribute(provider.getColor(JavaColorProvider.MULTI_LINE_COMMENT))));
 reconciler.setDamager(dr, JavaPartitionScanner.JAVA_MULTILINE_COMMENT);
 reconciler.setRepairer(dr, JavaPartitionScanner.JAVA_MULTILINE_COMMENT);

 return reconciler;

Note that the example provide scanners for each content type.

The default content type is set up with a JavaCodeScanner so that keywords can be detected and colored.
The JavaCodeScanner builds rules for detecting different kinds of tokens, such as single line comments,
white space, and words. It describes the colors that should be used for words of different token types.

 Welcome to Eclipse

Damage, repair, and reconciling 736

The other content types are set up with a SingleTokenScanner and given a color to be used for tokens in
these content types.

All of the details for damaging and repairing the proper parts of the documents according to the scanning rules
are handled by DefaultDamagerRepairer. These details typically don't need to be understood by plug−in
code. Your plug−in should focus on building a set of rules that are appropriate for partitioning and scanning
its editor content.

Dynamically installing a reconciler

The Java editor example provides a subclass of SourceViewerConfiguration for installing the presentation
reconciler as seen earlier. A presentation reconciler can also be installed dynamically on a text viewer using
IPresentationReconciler protocol. There is no particular runtime benefit to doing it either way, but putting
all of the pluggable behavior overrides in a subclass of SourceViewerConfiguration provides the advantage
of consolidating all of the behavioral overrides in one place. The dynamic protocol may be useful when
different presentation reconcilers are attached to a viewer throughout the life of an editor.

Configuring a source viewer

So far we've looked at SourceViewer in the context of managing source code annotations.

The SourceViewer is also the central hub for configuring your editor with pluggable behavior such as text
hovering and syntax highlighting. For these features, the editor supplies a SourceViewerConfiguration that
is used to configure the SourceViewer when it is created. The Java example editor need only to supply a
SourceViewerConfiguration appropriate for its needs. The following snippet shows how the
JavaTextEditor creates its configuration:

protected void initializeEditor() {
 super.initializeEditor();
setSourceViewerConfiguration(new JavaSourceViewerConfiguration());
 ...

What does the JavaSourceViewerConfiguration do? Much of its behavior is inherited from
SourceViewerConfiguration, which defines default strategies for pluggable editor behaviors such as auto
indenting, undo behavior, double−click behavior, text hover, syntax highlighting, and formatting. Public
methods in SourceViewerConfiguration provide the helper objects that implement these behaviors.

If the default behavior defined in SourceViewerConfiguration does not suit your editor, you should override
initializeEditor() as shown above and set your own source viewer configuration into the editor. Your
configuration can override methods in SourceViewerConfiguration to supply customized helper objects that
implement behavior for your editor. The following snippet shows two of the ways the
JavaSourceViewerConfiguration supplies customized helper objects for the Java editor example:

public IAnnotationHover getAnnotationHover(ISourceViewer sourceViewer) {
 return new JavaAnnotationHover();
}

public IAutoIndentStrategy getAutoIndentStrategy(ISourceViewer sourceViewer, String contentType) {

 Welcome to Eclipse

Damage, repair, and reconciling 737

 return (IDocument.DEFAULT_CONTENT_TYPE.equals(contentType) ? new JavaAutoIndentStrategy() : new DefaultAutoIndentStrategy());
}

In the first method, a customized helper class is provided for implementing annotation hovering. In the
second method, the default content type of the document is queried to determine whether a customized
auto−indent strategy or the default strategy should be used.

See the API reference for SourceViewerConfiguration for all the ways you can configure a source viewer by
overriding methods.

Source viewers and annotations

The editor and its corresponding text viewer are largely responsible for the implementation of the document's
presentation and the configuration of any needed helper classes. (See Viewers if you are not familiar with the
concept of a viewer.)

A TextViewer handles all of the low level details of mapping the document model and its partitions into the
colored and formatted text that a user sees. For source code style editors, a SourceViewer is provided. A
source viewer introduces the notion of source code annotations. These annotations can be shown in a vertical
ruler on the left side of the text, an overview ruler on the right side of the text, or as colored squigglies
underneath text.

SourceViewer and its helper classes are used throughout the AbstractTextEditor hierarchy. The package
org.eclipse.jface.text.source defines this viewer and the other classes supporting annotation presentation.

Annotations and rulers

Annotations, like partitions, are largely dependent on the kind of document being edited. The
IAnnotationModel for a document is what holds the annotations, enumerates them on request, and listens for
text changes in order to keep the annotations up to date with the text. Annotation models are registered in the
org.eclipse.core.filebuffers.annotationModelCreation extension. This extension point allows plug−ins to
register a class that will create an annotation model appropriate for a given file extension. The Java Editor
example does not use this extension point, so it inherits the annotation model defined by the platform.

<extension
 point="org.eclipse.core.filebuffers.annotationModelCreation">
 <factory
 extensions="*"
class="org.eclipse.ui.texteditor.ResourceMarkerAnnotationModelFactory">
 </factory>
</extension>

The supplied factory class will create a ResourceMarkerAnnotationModel for files with any extension. This
class displays annotations that represent a marker on a resource in the workspace. (See Resource markers for
more information on markers.) It assigns an image and description to each marker and monitors its resource
for changes in the markers.

To see how an annotation model is displayed in a text editor, we'll examine the platform text editor and its use
of rulers and annotations. The specifics of how different annotations are shown in the rulers and text can be
controlled by the user in the Workbench > Editors > Annotations preferences.

 Welcome to Eclipse

Source viewers and annotations 738

Vertical ruler

A vertical ruler to the left of the editing area is used by platform text editors to show text ranges and
line−based annotations adjacent to their text line.

These annotations are described in the supplied ResourceMarkerAnnotationModel. This model is set into
the SourceViewer when the source viewer is initialized by the editor. The following snippet from
AbstractTextEditor shows how the document and the annotation model are associated with the viewer.

private void initializeSourceViewer(IEditorInput input) {

 IAnnotationModel model= getDocumentProvider().getAnnotationModel(input);
 IDocument document= getDocumentProvider().getDocument(input);

 if (document != null) {
fSourceViewer.setDocument(document, model);
 ...

Once the source viewer is configured with the proper document and annotation model, it has enough
information to present the document and ensure the correct annotations are shown in the vertical ruler to the
left. The model is associated with the ruler when the document is set. The following snippet shows what
happens when a document is set into the source viewer. It has been simplified from the actual code in
SourceViewer for clarity:

public void setDocument(IDocument document, IAnnotationModel annotationModel) {
 ...
 // create visual annotation model from the supplied model and store
 // in fVisualAnnotationModel
 ...
 if (fVerticalRuler != null)
fVerticalRuler.setModel(fVisualAnnotationModel);

In this way, the ruler is associated with the appropriate annotation model.

Let's look at the ruler itself. It is created by the text editor and then connected with the editor's viewer. Since
the Java editor example does not define any special behavior for rulers, it inherits the ruler as defined in
TextEditor.

 Welcome to Eclipse

Annotations and rulers 739

protected IVerticalRuler createVerticalRuler() {
 CompositeRuler ruler= new CompositeRuler();
 ruler.addDecorator(0, new AnnotationRulerColumn(VERTICAL_RULER_WIDTH));
 if (isLineNumberRulerVisible())
 ruler.addDecorator(1, createLineNumberRulerColumn());
 return ruler;
}

The text editor uses a CompositeRuler. This ruler does not have a visual presentation of its own. The
presentation is provided by a list of decorators that show columns (IVerticalRulerColumn) in the ruler. In
this example, a ruler column that shows annotations (AnnotationRulerColumn) is always added, and a line
number ruler column is added based on user preferences. The annotation ruler column handles the particulars
of displaying the annotation images in the proper locations.

Despite all the classes involved in showing a ruler, note that the example editor needed only to subclass
framework classes to get ruler behavior. JavaDocumentProvider inherits an appropriate marker annotation
model from FileDocumentProvider. The JavaTextEditor inherits the ruler presentation from TextEditor.

Overview ruler

An overview ruler on the right hand side of the editing area is used to show annotations concerning the entire
document. These annotations are shown relative to their position in the document and do not move as the user
scrolls the document. There usually is a corresponding annotation on the vertical ruler when that portion of
the document is visible.

The vertical ruler below shows that there are two tasks in the document and one bookmark. Since the
bookmarked text is visible, its annotation is also shown on the left.

The user can navigate to the location of the annotation in the code by clicking on the annotation itself.

The types of annotations shown in the overview ruler are determined by adding annotation types to the ruler.
In the following snippet from SourceViewerDecorationSupport, annotation types are dynamically added to
the ruler. (See next section for more information about SourceViewerDecorationSupport.)

private void showAnnotationOverview(Object annotationType) {
 if (fOverviewRuler != null) {
 Color c= getAnnotationTypeColor(annotationType);
 fOverviewRuler.setAnnotationTypeColor(annotationType, c);
 int l= getAnnotationTypeLayer(annotationType);
 fOverviewRuler.setAnnotationTypeLayer(annotationType, l);
 fOverviewRuler.addAnnotationType(annotationType);
 fOverviewRuler.update();
 }
}

 Welcome to Eclipse

Annotations and rulers 740

The overview ruler is also supplied with an IAnnotationAccess that is used to provide information about a
particular annotation, such as its type and how it is to be displayed. The TextEditor uses a
DefaultMarkerAnnotationAccess which interprets annotations according to their marker types and consults
the user preferences to see which marker types should be shown in the overview ruler.

protected IAnnotationAccess createAnnotationAccess() {
 return new DefaultMarkerAnnotationAccess(fAnnotationPreferences);
}

Consult the implementation of DefaultMarkerAnnotationAccess and MarkerAnnotation for more detail
about presenting markers in the overview ruler.

Text annotations

In addition to showing annotations in the rulers, a source viewer can show annotations as colored squiggly
marks in the text.

We'll look again at the creation of the source viewer in TextEditor.

protected ISourceViewer createSourceViewer(Composite parent, IVerticalRuler ruler, int styles) {

 ...
 ISourceViewer sourceViewer= new SourceViewer(parent, ruler, fOverviewRuler, isOverviewRulerVisible(), styles);
fSourceViewerDecorationSupport= new SourceViewerDecorationSupport(sourceViewer, fOverviewRuler, fAnnotationAccess, sharedColors);
 configureSourceViewerDecorationSupport();

 return sourceViewer;
}

The class SourceViewerDecorationSupport handles many of the decorations shown in a source viewer,
including text annotations, colored margins, colored cursor lines, and the like. It is configured with the user
preferences so that it can respond to dynamic updates of user preference changes. Most editors need not be
concerned with the details of how these decorations are painted. (See SourceViewerDecorationSupport and
related classes such as AnnotationPainter if you must!). The important thing to know is what decorations
are available so that the SourceViewer and its supporting SourceViewerDecorationSupport are configured
correctly.

Configuring a SourceViewerDecorationSupport

Let's look at the configuration used by TextEditor for the decoration support.

 Welcome to Eclipse

Annotations and rulers 741

protected void configureSourceViewerDecorationSupport() {

Iterator e= fAnnotationPreferences.getAnnotationPreferences().iterator();
 while (e.hasNext())
 fSourceViewerDecorationSupport.setAnnotationPreference((AnnotationPreference) e.next());
 fSourceViewerDecorationSupport.setAnnotationPainterPreferenceKeys(DefaultMarkerAnnotationAccess.UNKNOWN, UNKNOWN_INDICATION_COLOR, UNKNOWN_INDICATION, UNKNOWN_INDICATION_IN_OVERVIEW_RULER, 0);

 fSourceViewerDecorationSupport.setCursorLinePainterPreferenceKeys(CURRENT_LINE, CURRENT_LINE_COLOR);
 fSourceViewerDecorationSupport.setMarginPainterPreferenceKeys(PRINT_MARGIN, PRINT_MARGIN_COLOR, PRINT_MARGIN_COLUMN);
 fSourceViewerDecorationSupport.setSymbolicFontName(getFontPropertyPreferenceKey());
}

Note that the annotation preferences are used to define annotation types for all of the annotations shown in the
user preferences. This includes annotations contributed by any plug−in and is not limited to the
workbench−supplied annotations. If you do not wish to show all available annotations in your editor, you
should override this method and set up the SourceViewerDecorationSupport with only those types you want
to show.

Text and ruler hover

Hover support is provided in the platform text framework, allowing you to implement informational hovers
(or infopops) over the text and the rulers shown in your editor.

Hover support is optional. By default, SourceViewerConfiguration does not install hover behavior since
there is no useful general information to show. In order to provide text or ruler hover, your editor's source
viewer configuration must be configured to define a pluggable hover object.

Let's look again at JavaSourceViewerConfiguration to see which methods define the hover behavior:

public ITextHover getTextHover(ISourceViewer sourceViewer, String contentType) {
 return new JavaTextHover();
}
public IAnnotationHover getAnnotationHover(ISourceViewer sourceViewer) {
 return new JavaAnnotationHover();
}

Hover helper classes can also be installed dynamically using SourceViewer protocol (setTextHover and
setAnnotationHover). There is no particular runtime benefit to doing it either way, but putting all of the
pluggable behavior overrides in a subclass of SourceViewerConfiguration provides the advantage of
consolidating all of the definitions in one place.

Let's look at the specifics of providing both kinds of hover.

Text hover

Text hover allows you to provide informational text about text shown in the editor. This is done using the
ITextHover interface. A text hover is responsible for computing the region that should be used as the source
of hover information, given an offset into the document. It is also responsible for providing the informational
text about a specific region. JavaTextHover is pretty simple. It checks to see if the supplied offset for hover
is contained inside the text selection. If so, it supplies the selection range as hover region.

public class JavaTextHover implements ITextHover {

 Welcome to Eclipse

Text and ruler hover 742

 ...

 public IRegion getHoverRegion(ITextViewer textViewer, int offset) {
 Point selection= textViewer.getSelectedRange();
 if (selection.x <= offset && offset < selection.x + selection.y)
 return new Region(selection.x, selection.y);
 return new Region(offset, 0);
 }
}

Given its own computed hover region, it obtains the selected text from its document and returns that as the
hover info.

public class JavaTextHover implements ITextHover {

 public String getHoverInfo(ITextViewer textViewer, IRegion hoverRegion) {
 if (hoverRegion != null) {
 try {
 if (hoverRegion.getLength() > −1)
 return textViewer.getDocument().get(hoverRegion.getOffset(), hoverRegion.getLength());
 } catch (BadLocationException x) {
 }
 }
 return JavaEditorMessages.getString("JavaTextHover.emptySelection");
 }
 ...
}

Sure enough, we can see that if we hover over a selection in the editor, the hover text shows the selection.

More complicated contextual information can be used to compute useful hover information. Examples of this
can be found in the JavaTextHover implemented with the JDT editor.

Ruler hover

Hover on the vertical ruler is useful for showing show line−oriented information. The hover class is
configured as described above. IAnnotationHover is the interface for ruler hover objects. Although the
name implies that the hover is designed for annotations in the ruler, it is really up to an individual editor to
detemine what is appropriate. A ruler hover is responsible for returning the info string associated with a
particular line number, regardless of the presence of markers on that line.

The Java example editor's JavaAnnotationHover implements hover for all lines. It uses the line number to
obtain all of the text on the hover line and returning it as the info string.

public String getHoverInfo(ISourceViewer sourceViewer, int lineNumber) {

 Welcome to Eclipse

Ruler hover 743

 IDocument document= sourceViewer.getDocument();

 try {
 IRegion info= document.getLineInformation(lineNumber);
 return document.get(info.getOffset(), info.getLength());
 } catch (BadLocationException x) {
 }
 return null;
}

Since the hover has access to the document and the source viewer, it has all the context needed to make more
complicated contextual decisions about the info that should be shown. For example, the annotation model
could be retrieved from the source viewer in order to provide hover info for any annotations shown in the
vertical ruler. The JavaAnnotationHover provided by the JDT editor provides this capability.

Content assist

Content assist allows you to provide context sensitive content completion upon user request. This
functionality is implemented by the platform text framework in org.eclipse.jface.text.contentassist. Popup
windows (infopops) are used to propose possible text choices to complete a phrase. The user can select these
choices for insertion in the text. Content assist also supports contextual infopops for providing the user with
information that is related to the current position in the document.

Implementing content assist is optional. By default, SourceViewerConfiguration does not install a content
assistant since it does not know the document model used for a particular editor, and has no generic behavior
for content assist.

In order to implement content assist, your editor's source viewer configuration must be configured to define a
content assistant. This is done in the Java editor example inside the JavaSourceViewerConfiguration.

public IContentAssistant getContentAssistant(ISourceViewer sourceViewer) {

 ContentAssistant assistant= new ContentAssistant();
 assistant.setContentAssistProcessor(new JavaCompletionProcessor(), IDocument.DEFAULT_CONTENT_TYPE);
 assistant.setContentAssistProcessor(new JavaDocCompletionProcessor(), JavaPartitionScanner.JAVA_DOC);

 ...
 return assistant;
}

Content assist behavior is defined in the interface IContentAssistant. Setting up a content assistant is
somewhat similar to setting up syntax highlighting. The assistant should be configured with different phrase
completion strategies for different document content types. The completion strategies are implemented using
IContentAssistProcessor. A processor proposes completions and computes context information for an offset
within particular content type.

 Welcome to Eclipse

Content assist 744

Content assist processors

Not all content types need to have content assistance. In the Java example editor, content assist processors are
provided for the default content type and javadoc, but not for multi−line comments. Let's look at each of
these processors.

The JavaCompletionProcessor is quite simple. It can only propose keywords as completion candidates. The
keywords are defined in a field, fgProposals, and these keywords are always proposed as the candidates:

public ICompletionProposal[] computeCompletionProposals(ITextViewer viewer, int documentOffset) {
 ICompletionProposal[] result= new ICompletionProposal[fgProposals.length];
 for (int i= 0; i < fgProposals.length; i++) {
 IContextInformation info= new ContextInformation(fgProposals[i], MessageFormat.format(JavaEditorMessages.getString("CompletionProcessor.Proposal.ContextInfo.pattern"), new Object[] { fgProposals[i] })); //$NON−NLS−1$
 result[i]= new CompletionProposal(fgProposals[i], documentOffset, 0, fgProposals[i].length(), null, fgProposals[i], info, MessageFormat.format(JavaEditorMessages.getString("CompletionProcessor.Proposal.hoverinfo.pattern"), new Object[] { fgProposals[i]})); //$NON−NLS−1$
 }
 return result;
}

Completion can be triggered by user request or can be automatically triggered when the "(" or "." character is
typed:

public char[] getCompletionProposalAutoActivationCharacters() {
 return new char[] { '.', '(' };
}

In addition to proposing completions, the JavaCompletionProcessor defines context information that can be
requested by the user. Context information includes a description of the pieces of information available in a
given context and the detailed information message.

In the Java editor example, the information is not really contextual. An array containing five similar context
information objects is computed for the current offset when the user requests context info. All of these context
information objects define a context that contains the five characters in front of the offset and the five after the
offset. If any one of these five proposals is selected, the detailed information will appear near the cursor and
will stay as long as the cursor is within the context of the five characters around the offset.

public IContextInformation[] computeContextInformation(ITextViewer viewer, int documentOffset) {

 Welcome to Eclipse

Content assist processors 745

 IContextInformation[] result= new IContextInformation[5];
 for (int i= 0; i < result.length; i++)
 result[i]= new ContextInformation(
 MessageFormat.format(JavaEditorMessages.getString("CompletionProcessor.ContextInfo.display.pattern"), new Object[] { new Integer(i), new Integer(documentOffset) }),
 MessageFormat.format(JavaEditorMessages.getString("CompletionProcessor.ContextInfo.value.pattern"), new Object[] { new Integer(i), new Integer(documentOffset − 5), new Integer(documentOffset + 5)}));
 return result;
}

This context information is shown automatically when the "#" character is typed:

public char[] getContextInformationAutoActivationCharacters() {
 return new char[] { '#' };
}

Content assist configuration

The appearance and behavior of content assist can be configured using IContentAssistant. For example, you
can configure the auto activation time out, and the orientation and color of information popups.

public IContentAssistant getContentAssistant(ISourceViewer sourceViewer) {

 ContentAssistant assistant= new ContentAssistant();
...
 assistant.enableAutoActivation(true);
 assistant.setAutoActivationDelay(500);
 assistant.setProposalPopupOrientation(IContentAssistant.PROPOSAL_OVERLAY);
 assistant.setContextInformationPopupOrientation(IContentAssistant.CONTEXT_INFO_ABOVE);
 assistant.setContextInformationPopupBackground(JavaEditorEnvironment.getJavaColorProvider().getColor(new RGB(150, 150, 0)));

 return assistant;
}

 Welcome to Eclipse

Content assist configuration 746

Registering editor actions

The text editor framework provides many utility classes that aid in presenting and updating text and source
code. Now we will turn our attention to the workbench in which the editor is but one part. How does the
editor interact with other workbench features such as context menus, menu bars, and tool bars?

Editor menu bar actions

To understand how editors register themselves with the workbench and provide actions for the workbench
menu bar, see the section discussing org.eclipse.ui.editors. We won't rehash that information here. We'll just
take a quick look at the markup where the Java example editor registers its editor.

<extension
 point="org.eclipse.ui.editors">
 <editor
 name="%javaEditorName"
 icon="icons/obj16/java.gif"
 extensions="jav"

contributorClass="org.eclipse.ui.examples.javaeditor.JavaActionContributor"
 class="org.eclipse.ui.examples.javaeditor.JavaEditor"
 id="org.eclipse.ui.JavaEditor">
 </editor>
</extension>

Workbench menu bar actions are contributed by the JavaActionContributor. It implements actions that are
placed in the workbench Edit menu and the workbench tool bar.

public JavaActionContributor() {
 super();
 fContentAssistProposal= new RetargetTextEditorAction(JavaEditorMessages.getResourceBundle(), "ContentAssistProposal."); //$NON−NLS−1$
 ...
 fContentAssistTip= new RetargetTextEditorAction(JavaEditorMessages.getResourceBundle(), "ContentAssistTip."); //$NON−NLS−1$
 ...
 fTogglePresentation= new PresentationAction();
}

The first two actions are defined as retargetable text editor actions. The principle is similar to the retargetable
actions provided by the workbench. Retargetable text editor actions represent menu entries which the action
contributor dynamically binds to corresponding actions provided by the active editor. When the active editor
changes, the action to which a retargetable text editor action is bound changes as well. The following snippet
shows that the editor action contributor finds the corresponding action by asking the editor for an action of a
given id:

protected final IAction getAction(ITextEditor editor, String actionId) {
 return (editor == null ? null : editor.getAction(actionId));
}

public void setActiveEditor(IEditorPart part) {
 super.setActiveEditor(part);
 ITextEditor editor= null;
 if (part instanceof ITextEditor)
 editor= (ITextEditor) part;
 fContentAssistProposal.setAction(getAction(editor, "ContentAssistProposal"));
 fContentAssistTip.setAction(getAction(editor, "ContentAssistTip"));
 fTogglePresentation.setEditor(editor);
 fTogglePresentation.update();

 Welcome to Eclipse

Registering editor actions 747

}

The id must be the same under which the action is registered with the editor as given here for the
JavaTextEditor. (See also next section.):

protected void createActions() {
 super.createActions();

 IAction a= new TextOperationAction(JavaEditorMessages.getResourceBundle(), "ContentAssistProposal.", this, ISourceViewer.CONTENTASSIST_PROPOSALS); //$NON−NLS−1$
a.setActionDefinitionId(ITextEditorActionDefinitionIds.CONTENT_ASSIST_PROPOSALS);
 setAction("ContentAssistProposal", a);

 a= new TextOperationAction(JavaEditorMessages.getResourceBundle(), "ContentAssistTip.", this, ISourceViewer.CONTENTASSIST_CONTEXT_INFORMATION); //$NON−NLS−1$
 a.setActionDefinitionId(ITextEditorActionDefinitionIds.CONTENT_ASSIST_CONTEXT_INFORMATION);
 setAction("ContentAssistTip", a);
}

The third action in the contributor is a concrete action added to the workbench tool bar. It toggles the state of
the editor between showing the highlighted range (as dictated by the Java example's content outliner) and
showing the entire file. This action only appears in the tool bar.

Editor context menus

The editor context menus are created and managed in the AbstractTextEditor and TextEditor framework.

The method createActions is used to register actions with the editor. This includes actions appropriate for the
editor context menus or any actions contributed in extension definitions. In the Java example editor, only the
actions that get bound to the retargetable actions are created. However, the Java example editor also inherits
the actions created by TextEditor and its superclasses. These actions can be used in the editor context menus.

The TextEditor method editorContextMenuAboutToShow is used in the framework to allow editors to add
actions to the context menu for the editing area. You can use a menu path to decide exactly where your action
should appear. Valid menu paths inside the editor context menu are defined in the implementation of this
method in AbstractTextEditor.

There are several ways to add an action to this menu. The first way is by adding an action using only the id
under which it is registered with the editor. For example, the JavaTextEditor adds its actions for content
assistance to the menu when this method is called. Actions will not appear in the menu when no action is
registered under the used id.

public void editorContextMenuAboutToShow(MenuManager menu) {
 super.editorContextMenuAboutToShow(menu);
 addAction(menu, "ContentAssistProposal");
 addAction(menu, "ContentAssistTip");
}

The superclass TextEditor adds actions a second way − by specifying a menu group in the context menu for
placing the action. In this case the actions (Shift Left, Shift Right) do appear in the context menu in the
group defined by AbstractTextEditor.

protected void editorContextMenuAboutToShow(IMenuManager menu) {
 super.editorContextMenuAboutToShow(menu);
 addAction(menu, ITextEditorActionConstants.GROUP_EDIT, ITextEditorActionConstants.SHIFT_RIGHT);
 addAction(menu, ITextEditorActionConstants.GROUP_EDIT, ITextEditorActionConstants.SHIFT_LEFT);
}

 Welcome to Eclipse

Editor context menus 748

The method rulerContextMenuAboutToShow is used in the same way before the ruler's context menu is
shown. The implementation of this method in AbstractTextEditor defines the groups in which items can be
added to the menu.

Menu ids

The editor context and ruler context menus can be assigned ids so that other plug−ins can contribute to these
menus in their extensions. The scheme for establishing menu ids is more flexible since the original version of
the platform. However, the framework can run in a compatibility mode in order to remain compatible with
plug−ins developed for the original version. You can use AbstractTextEditor.setCompatibilityMode() to
control this behavior. The default setting is true.

1.0 compatible menu ids

When the compatibility mode is true, the ids of the editor and ruler context menus can be set using
AbstractTextEditor protocol. The methods setEditorContextMenuId and setRulerContextMenuId can be
used for this purpose. Resetting the ids can be useful if you want to prevent inheriting menus that were
contributed to superclass menus. For example, the JavaTextEditor in the example resets its context menu ids
to be Java specific in order to prevent inheriting any generic text contributions from other plug−ins.

protected void initializeEditor() {
 super.initializeEditor();
 JavaEditorEnvironment.connect(this);
 setSourceViewerConfiguration(new JavaSourceViewerConfiguration());
setEditorContextMenuId("#JavaEditorContext");
 setRulerContextMenuId("#JavaRulerContext");
}

If no id is set anywhere in the concrete hierarchy, the default ids defined by AbstractTextEditor will be used.

1.0 non−compatible menu ids

The editor context menu id is always <editor id>.EditorContext, where <editor id> is the id
of the editor . The id of an editor is defined in the xml declaration of the editor. The ruler context menu id is
always <editor id>.RulerContext.

 Welcome to Eclipse

Menu ids 749

Other text editor responsibilities

The Java example editor inherits a lot of useful default behavior from AbstractTextEditor. The text editing
framework handles several other responsibilities that you can customize by overriding methods in
AbstractTextEditor. Browse the implementation of this class and its subclasses to see how behavior is
customized in the framework.

The following are some of the useful framework features that can be configured.

Preference handling

Text editors typically contribute user preferences that control the presentation and behavior of the editor. In
the text framework, each text editor instance has an associated preference store that is used for accessing user
preferences. This preference store can be set up by your editor, or you can inherit from preference stores
already used in the framework.

In the case of the Java example editor, it inherits the preference store initialized by TextEditor. This is the
preference store defined by the workbench editors plug−in.

protected void initializeEditor() {
 ...
 setPreferenceStore(EditorsPlugin.getDefault().getPreferenceStore());
}

The editors plug−in preferences can be manipulated in the Workbench > Editors and Workbench > Editors
> Text Editor preference pages.

If you do not want to use the standard workbench text preferences for your editor, you can set a different
preference store. This is typically done by overriding initializeEditor and setting your own preference store.
If you do use your own preference store, you will also need to override the method
handlePreferenceStoreChanged() which is triggered whenever a preference is updated.

Key bindings

Key binding contexts are useful for establishing a lookup order for key bindings. Having contextual key
bindings reduces the chances of different plug−ins contributing conflicting key sequences. By default, the
workbench operates in a generic context for working with windows or dialogs. When a text editor becomes
active, it is responsible for resetting the context to the text editing context, so that editor specific key bindings
will be active.

In the platform text framework, each text editor instance has an associated array of key binding scopes. It is
responsible for setting the correct scopes when it becomes active. AbstractDecoratedTextEditor defines this
scope and takes care of making it active. The scope is assigned in a method that is called from the constructor:

protected void initializeKeyBindingScopes() {
 setKeyBindingScopes(new String[] { "org.eclipse.ui.textEditorScope" });
}

 Welcome to Eclipse

Other text editor responsibilities 750

The argument to the method is an array of ids that have been defined for contexts. If you want your editor to
define its own key binding context, then you can override this method in your editor class, or set the scope
dynamically using setKeybindingScopes.

The context itself must be defined with the corresponding id in the org.eclipse.ui.contexts extension point.
The following is the definition for the text editing context.

<extension
 point="org.eclipse.ui.contexts">
 <context
 name="%context.editingText.name"
 description="%context.editingText.description"
 id="org.eclipse.ui.textEditorScope"
 parentId="org.eclipse.ui.contexts.window">
 </context>
 ...

(Note: We use the terms scope and context interchangeably in this discussion. The method names in the text
classes still refer to key binding contexts as scopes. These method names reflect the original implementation
of contexts as scopes and use outdated terminology.)

Building a help plug−in

In this example, we assume that a documentation author has already supplied you with the raw documentation
in the form of HTML files. The granularity and structure of these files is completely up to the documentation
team. Once the documentation is delivered, setting up the plug−in and topics can be done independently.

We start by assuming that the documentation has already been provided in the following tree.

 html/
 concepts/
 concept1.html
 concept1_1.html
 concept1_2.html
 tasks/
 task1.html
 task2.html
 task3_1.html
 task3_2.html
 ref/
 ref1.html
 ref2.html

We will assume that the plug−in name is com.example.helpexample.

The first step is to create a plug−in directory, com.example.helpexample underneath the platform plugins
directory. The doc\ sub tree shown above should be copied into the directory.

Documentation plug−ins need a manifest just like code plug−ins. The following markup defines the
documentation plug−in.

 <?xml version="1.0" ?>
 <plugin name="Online Help Sample"

 Welcome to Eclipse

 Building a help plug−in 751

 id="com.example.helpexample"
 version="1.0"
 provider−name="MyExample" />

Table of contents (toc) files

Now that we have our sample content files we can create a table of contents (toc) file. A toc file defines the
key entry points into the HTML content files by mapping a topic label to a reference in one of the HTML
files.

Applications that are being migrated to the platform can reuse existing documentation by using the toc file to
define entry points into that documentation.

A plug−in can have one or more toc files. Our example documentation is organized into three main
categories: concepts, tasks and reference. How do we make toc files that represent this structure?

We could make one large toc file, or we could create a separate toc file for each main category of content.
This decision should be made according to the way your documentation teams work together. If a different
author owns each category, it might be preferable to keep separate toc files for each category. It is not
dictated by the platform architecture.

In this example, we will create a toc file for each major content category. For such a small number of files,
having separate toc files for each category may not be necessary. We will build this example as if we had
many more files or had separate authors who own each content category.

Our files look like this:

toc_Concepts.xml

 <toc label="Concepts">
 <topic label="Concept1" href="html/concepts/concept1.html">
 <topic label="Concept1_1" href="html/concepts/concept1_1.html"/>
 <topic label="Concept1_2" href="html/concepts/concept1_2.html"/>
 </topic>
 </toc>

toc_Tasks.xml

 <toc label="Tasks">
 <topic id="plainTasks" label="Plain Stuff">
 <topic label="Task1" href="html/tasks/task1.html"/>
 <topic label="Task2" href="html/tasks/task2.html"/>
 </topic>
 <topic id="funTasks" label="Fun Stuff" >
 <topic label="Task3_1" href="html/tasks/task3_1.html"/>
 <topic label="Task3_2" href="html/tasks/task3_2.html"/>
 </topic>
 </toc>

 Welcome to Eclipse

 Table of contents (toc) files 752

toc_Ref.xml

 <toc label="Reference">
 <topic label="Ref1" href="html/ref/ref1.html"/>
 <topic label="Ref2" href="html/ref/ref2.html"/>
 </toc>

A topic can be a simple link to content. For example, "Task1" provides a label and an href linking to the
content. A topic can also be a hierarchical grouping of sub topics with no content of its own. For example,
"Fun Stuff" has only a label and sub topics, but no href . Topics can do both, too. "Concept1" has an href
and sub topics.

Help server and file locations

The platform utilizes its own documentation server to provide the actual web pages for your plug−in's
documentation. A custom server allows the platform to handle HTML content in a browser independent
manner and to provide plug−in aware support. The main difference to you as a plug−in developer is that you
have a little more flexibility in the way you structure your files and specify your links.

Documentation can be delivered in a zip file, avoiding problems that may result when a large number of files
are present in a plug−in directory. In our example plug−in, we created a sub−directory called html.
Alternatively, we could have placed our html files into a zip file called doc.zip. This zip file must mimic the
file structure underneath the plug−in directory. In our case, it must contain the sub−directory html and all the
contents underneath html.

When resolving file names, the help server looks in the doc.zip file for documents before it looks in the
plug−in directory itself. When used as a link, the argument in an href is assumed to be relative to the current
plug−in. Consider the following link:

 <topic label="Ref1" href="html/ref/ref1.html"/>

The help plug−in will look for this file as follows:

look in doc.zip for the file /html/ref/ref1.html•
look for the file ref1.html in the /html/ref sub−directory structure underneath the plug−in directory.•

Since 3.0 release, the entire plug−in can be installed in a zipped format, and run directly from a jar. A plug−in
installation jar is not expanded into a plug−in directory when value of unpack attribute of the plugin
element is specified as true in the feature manifest. In such plug−in, the documentation is compressed in the
plug−in's jar, together with other plug−in files. There is no need for documentation to be additionally
contained in doc.zip, and such set−up of doc.zip in an unexploded plug−in jar is not supported by help system.

A fully qualified link can be used to refer to any content on the web.

 <topic label="Ref1" href="http://www.example.com/myReference.html"/>

 Welcome to Eclipse

Table of contents (toc) files 753

National language and translated documentation

The platform help system uses the same national language directory lookup scheme used by the rest of the
platform for finding translated files. (See Locale specific files for an explanation of this directory structure.)
If you are using a doc.zip file, you should produce a doc.zip file for each locale and place it inside the correct
locale directory. (You should not replicate the nl locale directory structure inside the doc.zip file.)

Cross plug−in referencing

The href argument can also refer to content from another plug−in. This is done by using a special cross
plug−in referencing notation that is resolved by the help server:

 <topic label="Ref1" href="../"another_plugin_id"/ref/ref1.html"/>

For example, you could link to this chapter of the programmer's guide using the following topic:

 <topic label="Help Chapter in Platform Doc" href="../org.eclipse.platform.doc.isv/guide/help.html"/>

Note: When referencing content from another plug−in, be sure to use the plug−in's id, as declared in its
plugin.xml file, not its directory name. While these are often the same in practice, it's important to check that
you are using the id and not the directory name.

Completing the plug−in manifest

We started this example by creating our plug−in and document files. Next we created toc files to describe the
organization of our content. The remaining piece of work is to pull everything together into a master toc and
update our plugin.xml to actually contribute the master toc.

We start by creating a toc.xml to contribute the three tocs we created initially. Instead of providing an href
for each topic, we use the link attribute to refer to our existing toc files.

<toc label="Online Help Sample" topic="html/book.html">
 <topic label="Concepts">
 <link toc="toc_Concepts.xml" />
 </topic>
 <topic label="Tasks">
 <link toc="toc_Tasks.xml" />
 </topic>
 <topic label="Reference">
 <link toc="toc_Ref.xml" />
 </topic>
</toc>

Then we update the plugin.xml to contribute our master toc:

 <extension point="org.eclipse.help.toc">
 <toc file="toc.xml" primary="true" />
 </extension>

 Welcome to Eclipse

Help server and file locations 754

Note the use of the primary attribute. Setting this attribute to true indicates that the toc should always appear
in the navigation, even if it is not referenced by any other toc. This way, our "master" toc is always
guaranteed to show up in the topics list. It appears at the top level list of books since no other toc references
it.
Note: If more files were associated with this toc but not present in the navigation, but just linked from other
topics, then to have those topics available to the search engine we would have to use the extradir attribute in
the toc.

Finally, we contribute our individual toc files.

 <extension point="org.eclipse.help.toc">
 <toc file="toc_Concepts.xml" />
 <toc file="toc_Tasks.xml" />
 <toc file="toc_Reference.xml" />
 </extension>

These toc files will not appear in the top level list of books because we did not set the primary attribute. Toc
files that are not designated as primary will only appear in the documentation web if they are referred to from
some toc that is a primary toc or is linked in by a primary toc.

That's it. If you copy your plug−in directory to the platform's plugins directory, start the platform, and choose
Help−>Help Contents, you should see your example appear in the list of books. If you click on the "Online
Help Sample", you'll see your toc structure:

 Welcome to Eclipse

Help server and file locations 755

Building nested documentation structures

As plug−ins contribute function to the platform, it's common to add documentation that describes the new
function. How can this documentation be structured so that the user sees a cohesive and complete set of
documentation instead of many individual contributions? The table of contents definition provides
mechanisms for building documentation in both a top−down and bottom−up fashion.

Top−down nesting

Top−down nesting refers to the technique of defining a master table of contents which refers to all other
included tocs. Top−down nesting is a convenient method for breaking up known content into smaller pieces.
With top−down nesting, the link attribute is used in the table of contents definition to refer to linked tocs
rather than providing an href.

<toc label="Online Help Sample" topic="html/book.html">
 <topic label="Concepts">
 <link toc="toc_Concepts.xml" />
 </topic>
 <topic label="Tasks">
 <link toc="toc_Tasks.xml" />
 </topic>
 <topic label="Reference">
 <link toc="toc_Ref.xml" />
 </topic>
</toc>

The basic structure stays the same (Concepts, Tasks, Reference), but the individual tocs are free to evolve.
They in turn might link to other sub−tocs.

Bottom−up composition

Bottom−up composition is more flexible in that it lets new plug−ins decide where the documentation should
exist in the toc structure. Bottom−up composition is accomplished using anchor attributes. A toc defines
named anchor points where other plug−ins can contribute documentation. In our example, we could add
anchors so that plug−ins can contribute additional material between the concepts, tasks, and reference
sections.

<toc label="Online Help Sample" topic="html/book.html">
 <topic label="Concepts">
 <link toc="toc_Concepts.xml" />
 <anchor id="postConcepts" />
 </topic>
 <topic label="Tasks">
 <link toc="toc_Tasks.xml" />
 <anchor id="postTasks" />
 </topic>
 <topic label="Reference">
 <link toc="toc_Ref.xml" />
 <anchor id="postReference" />
 </topic>
</toc>

Other plug−ins can then contribute to the anchor from their plug−in. This is done using the link_to attribute

 Welcome to Eclipse

Building nested documentation structures 756

when defining a toc.

<toc link_to="../com.example.helpexample/toc.xml#postConcepts" label="Late breaking info about concepts">
 <topic>

... </topic> </toc>

Dynamic help

In addition to static HTML files present in doc.zip or file system under plug−in directory, help can display
documents that are dynamically generated by the documentation plug−in. Such plug−in needs to contain Java
code capable of producing contents that would otherwise be read from static files by help system. If a class
implementing org.eclipse.help.IHelpContentProducer is contributed by a plug−in to help system using
org.eclipse.help.contentProducer extension point, the help system will call getInputStream for every document
accessed from this plug−in. If that results in not null InputStream, it will be sent to the browser for displaying.
If IHelpContentProdcuer returns null, help system will default to searching doc.zip and plug−in directory for a
document.

Content producer example

For example, an implementation of IHelpConentProducer as follows:

package com.my.company.doc;
public class DynamicTopics implements IHelpContentProducer {
 public InputStream getInputStream(
 String pluginID,
 String name,
 Locale locale) {
 if (name.indexOf("dynamic") >= 0)
return new ByteArrayInputStream(
 ("<html><body>Content generated "
 + new Date().toString()
 + ".</body></html>")
 .getBytes());
 else
 return null;
 }
}

identified by extension in plugin.xml file as:

<extension point="org.eclipse.help.contentProducer"
 name="dynamicTopics"
 id="my.company.doc.dynamicTopics">
 <contentProducer producer="com.my.company.doc.DynamicTopics" />
</extension>

will produce an HTML document content for all document references that have a word "dynamic" as part of
the path or file name.

 Welcome to Eclipse

Dynamic help 757

Constraints

A plug−in has a complete freedom of the method of method or underlying framework that is used to produce
the content. It should however ensure that content is generated in correct language and encoded accordingly
that a browser can display it. A locale used by the user is provided to the getInputStream method. If it is
incapable of providing translatable content, it should default to content for the default locale of the platform.

Infopops

An infopop is a small window associated with a particular SWT widget in a plug−in's user interface. It
displays context−sensitive help and links to related help topics for the widget. It is activated when the user
puts focus on the widget and presses theF1 key (Ctrl+F1 on GTK, and Help key on Carbon).

To associate an infopop with a widget, you must first assign a context ID to the widget and then provide the
description and links for the infopop. Here is an infopop that has been defined on a workbench preferences
page:

Declaring a context id

The setHelp method in org.eclipse.ui.help.WorkbenchHelp is used to associate a context id with a Control,
IAction, Menu, or MenuItem. The context id should be fully qualified with the plug−in id. For example, the
following snippet associates the id "com.example.helpexample.panic_button" with a button in the application.

WorkbenchHelp.setHelp(myButton, com.example.helpexample.panic_button);

The following UI controls cannot have context ids (and therefore cannot have infopops):

Toolbar buttons (ToolItem)•
CTabItem•
TabItem•
TableColumn•
TableItem•

 Welcome to Eclipse

Dynamic help 758

TableTreeItem•
TreeItem•

Widgets that do not get focus should not be assigned context ids, since they will never trigger an infopop.

Describing and packaging infopop content

Infopops are described by associating the context id declared in the UI code with a description and list of links
to related topics in the online help. These associations are made inside an XML file. You can create any
number of XML files containing infopop associations for each plug−in. The description and links for each
context id is made inside <context> elements in the XML file. Each context element can have an optional
<description> element which is used to describe the UI object and any number of <topic> elements which
link to the on−line documentation.

<contexts>
 <context id="panic_button">
 <description>This is the panic button.</description>
 <topic href="tasks/pushing_the_panic_button.htm" label="Pushing the panic button"/>
 <topic href="reference/panic_button.htm" label="Panic Button Reference"/>
 </context>
 ...
</contexts>

Once the contexts have been described in the XML file (or files), you are ready to refer to the context files in
your plug−in manifest. Note that the context id is not fully qualified above. This is allowed, as long as the
context file is contributed in the manifest of the plug−in that defined the context id. In other words, the
context id is resolved to the id of the plug−in that contributed the XML file.

A plug−in contributes context files using the org.eclipse.help.contexts extension point.

 <extension point="org.eclipse.help.contexts">
 <contexts name="myInfopops.xml" />
 </extension>

You can reference context files from other plug−ins by including the plugin attribute. This allows you to
group all of your documentation, including infopops, in one plug−in, and refer to it from the UI code plug−in
or some other related plug−in.

 <extension point="org.eclipse.help.contexts">
 <contexts name="myInfopops.xml" plugin="com.example.helpExample" />
 </extension>

As you can see, you have a lot of flexibility in organizing your infopops into one or more files contained in
one or more plug−ins. The main consideration is that the context ids in the files resolve correctly. If you do
not fully qualify a context id, then you must contribute the context XML files in the plug−in that declared the
context ids. If you use fully qualified context ids in your context XML file, then you have complete flexibility
in the location of your XML files and which plug−in contributes the contexts.

 Welcome to Eclipse

 Describing and packaging infopop content 759

Infopops from multiple plug−ins

Another level of flexibility is the ability to contribute infopops for the same context id from different
plug−ins. This is useful, for example, if there are different sets of documentation plug−ins that may or may
not be installed in a user's configuration. This allows each documentation plug−in to declare its contexts
independently. The end user will see the merged infopop content for all plug−ins that contributed contexts for
the widget's id.

Note that the fully qualified context id for the widget must be used, since none of the documentation plug−ins
declared the context id. When multiple plug−ins contribute infopops for the same context ID, the content
defined in the plug−in that declared the context (the UI plug−in) is shown first. Additional descriptions and
links are appended in no guaranteed order.

Active help

Active help is the ability to invoke Eclipse code from on−line documentation. It is implemented by including
some JavaScript in your documentation that describes a class that should be run inside the Eclipse platform.

For example, instead of writing, "Go to the Window Menu and open the message dialog," your on−line help
can include a link that will open your application's message dialog for the user. Active help links look like
hyperlinks in the on−line help.

Below is an active help link that opens a message dialog in the workbench. We will take a look at how to
make this work.

Click here for a Message.

Writing the help action

The interface ILiveHelpAction is used to build an active help action.

It is straightforward to implement an ILiveHelpAction. You must implement two methods.

run() − This method is called to run the live help action. This method will be called by the help
system from a non−UI thread, so UI access must be wrapped in a Display.syncExec() method.

•

setInitializationString(String) − This method is called to initialize your action with a String data
parameter you can specify in the HTML which runs the JavaScript liveAction. If you don't need
initialization data, you can just implement this method to do nothing. This method is called before
run().

•

Here is a simple implementation of a live help action that opens a message dialog. We don't need any
information from the JavaScript, so the initialization data is ignored.

package org.eclipse.platform.doc.isv.activeHelp;

 Welcome to Eclipse

Describing and packaging infopop content 760

import org.eclipse.help.ILiveHelpAction;
import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.swt.widgets.*;
import org.eclipse.ui.*;
/**
 * Sample Active Help action.
 */
public class ActiveHelpOpenDialogAction implements ILiveHelpAction {

 public void setInitializationString(String data) {
 // ignore the data. We do not use any javascript parameters.
 }

 public void run() {
 // Active help does not run on the UI thread, so we must use syncExec
 Display.getDefault().syncExec(new Runnable() {
 public void run() {
 IWorkbenchWindow window =
 PlatformUI.getWorkbench().getActiveWorkbenchWindow();
 if (window != null) {
 // Bring the Workbench window to the top of other windows;
 // On some Windows systems, it will only flash the Workbench
 // icon on the task bar
 Shell shell = window.getShell();
 shell.setMinimized(false);
 shell.forceActive();
 // Open a message dialog
 MessageDialog.openInformation(
 window.getShell(),
 "Hello World.",
 "Hello World.");
 }
 }
 });
 }
}

Invoking the action from HTML

To include active help links in your documentation, you must first declare the use of the active help JavaScript
in the HEAD tag of your HTML:

 <script language="JavaScript" src="../../org.eclipse.help/livehelp.js> </script>

The live help JavaScript is located in the org.eclipse.help plug−in. You can refer to it using the help system's
cross plug−in referencing technique.

In this example, we have to navigate up two levels in the directory structure. The document with the active
help link is located in the sub−directory guide underneath our plug−in directory. So we must navigate up one
directory to reach our plug−in's root, and another level to reach the "virtual" location of all plug−ins. Then
we can refer to the org.eclipse.help plug−in.

In the body of your documentation, you invoke the liveAction script.

 <a href='javascript:liveAction(
 "org.eclipse.platform.doc.isv",

 Welcome to Eclipse

 Invoking the action from HTML 761

 "org.eclipse.platform.doc.isv.activeHelp.ActiveHelpOpenDialogAction",
 "")'>Click here for a Message.

The parameters for liveAction are

the ID of the plug−in that contains the action•
the name of the class that implements the action•
the String that will be passed to the live help action using setInitializationString. We don't need to
pass any information from the HTML page, so we just pass an empty string.

•

Tips for debugging active help

The code and markup that triggered our active help link looks pretty straightforward. But what do you do if
your active help link doesn't seem to work?

Test your action ahead of time

If your action implementation is fairly involved, you should invoke the action yourself with some test code
inside Eclipse. This way, you'll know that the action is error−free before invoking it from the JavaScript.

Ensure the JavaScript is running

You can modify "plugins/org.eclipse.help_2.1.0/liveHelp.js" to include a call to the alert function as the first
statement in the liveAction function:

function liveAction(pluginId, className, argument)
{
 alert("liveAction called");
 ...

The alert function opens a warning dialog in the browser and can be used to verify that the liveAction was
properly invoked in your HTML. If you don't see a warning dialog when you click on your help link, then
you have a problem in the HTML markup.

Debug the active help action

Once you know that the JavaScript is running, you can debug your action from inside Eclipse. To do this, you
can set a breakpoint in your help action class and start up a self−hosted Eclipse instance. You must test your
active help with the Help browser from the newly launched Eclipse instance, not from your host instance,
since the JavaScript from your help HTML calls a servlet on the Eclipse help server that launched the
browser.

If nothing happens after you've set up the breakpoint and clicked on the active help link, it's likely that your
plug−in and active help class were not correctly specified in the JavaScript.

Once you've managed to stop at the breakpoint in your action, you can debug the action as you would any
other Java code.

 Welcome to Eclipse

Tips for debugging active help 762

Make sure your UI code is wrapped in Display.syncExec

A common runtime problem is improperly accessing UI code from the thread that invokes the active help. If
your live help action came from code that ran originally in a UI thread, it will need to be modified to handle
the fact that it is running from a non−UI thread.

 public void run() {
 // Active help does not run on the UI thread, so we must use syncExec
 Display.getDefault().syncExec(new Runnable() {
 public void run() {
 //do the UI work in here;
 }
 });
 }

 Welcome to Eclipse

Tips for debugging active help 763

Search support
If your plug−in defines and manipulates its own resource types, you may have special requirements for
searching a resource. For example, the Java IDE plug−in implements a search engine specialized for Java
files.

The search plug−in allows you to add a specialized page describing your search to the workbench search
dialog. This allows you to obtain any specialized information needed from the user and perform a search
using your plug−in's internal model.

You should also provide a specialized class for displaying the search results. Abstract implementations of a
search result page are provided to give you a head start.

These services are contributed using search plug−in extension points.

Contributing a search page

When the user selects a resource and chooses the search command, the search plug−in launches a dialog
containing pages for different kinds of content searches. These pages are contributed using the
org.eclipse.search.searchPages extension point.

The markup for contributing a search page is straightforward. The following example is the JDT plug−in's
contribution of the Java search page:

<extension point="org.eclipse.search.searchPages">
 <page id="org.eclipse.jdt.ui.JavaSearchPage"
 icon="icons/full/obj16/jsearch_obj.gif"
 label="%JavaSearchPage.label"
 sizeHint="460,160"
 extensions="java:90, jav:90"
 showScopeSection="true"
 canSearchEnclosingProjects="true"
class="org.eclipse.jdt.internal.ui.search.JavaSearchPage">
 </page>
</extension>

The class that implements the search page must be specified. This class must implement the ISearchPage
interface and typically extends DialogPage. The label and icon that can be used to describe the search in the
search dialog are also specified. Additional parameters control the size of the page and the location of the
page within the search dialog.

The extensions attribute specifies the resources on which the search page can operate. It is formatted as a
comma separated list of file extensions. Each file extension should be followed by a numeric weight value,
where 0 is the lowest weight, separated by a colon. The weight value is a relative value used to allow the
search infrastructure to find the search page most appropriate for a given resource.

If a search page can search all possible resources then "*" should be used.

 Search support 764

Implementing the search page

The protocol for ISearchPage is simple. Your search page must implement performAction() which is
called when the Search button is pressed. Of course, your particular search implementation depends on your
plug−in's function, but it is typical to open a results viewer in this method using the NewSearchUI method
activateSearchResultView().

Your plug−in is responsible for showing its results in the search result view.

Contributing a search result page

You can contribute a customized search results page using the org.eclipse.search.searchResultViewPages
extension point.

When contributing a search result view page, you specify the class of search result that the page should be
used for, and the name of the class that implements the page. The following example is the JDT plug−in's
contribution of the Java search results page:

<extension
 id="JavaSearchResultPage"
 point="org.eclipse.search.searchResultViewPages">
 <viewPage
 id="org.eclipse.jdt.ui.JavaSearchResultPage"
 searchResultClass="org.eclipse.jdt.internal.ui.search.JavaSearchResult"
 class="org.eclipse.jdt.internal.ui.search.JavaSearchResultPage">
 </viewPage>
</extension>

The class must implement the ISearchResultPage interface and often extends
AbstractTextSearchViewPage.

 Welcome to Eclipse

Implementing the search page 765

Compare support
If your plug−in defines and manipulates its own resource types, you may have special requirements for
comparing resources. Resources are often compared when working with local history or with files from a
repository. The compare plug−in supports merging of multiple content streams and the implementation of
advanced compare views. Services provided by this plug−in include:

Interfaces for merging multiple text streams into a single output stream•
Two and three−way compare and merge components for hierarchical structures inferred from text•
Differencing engines for hierarchical structures and character ranges in text•

These services are used in the platform to assist with user tasks such as integrating patch files and
comparing/merging the workspace with local history.

Compare viewers

All compare viewers are standard JFace viewers that expect an input object implementing the
ICompareInput interface.

Compare viewers are said to be content−oriented if they compare flat inputs such as text or images and
structure−oriented if they compare hierarchically structured input elements.

Implementing a content viewer

The compare plug−in allows you to supply specialized viewers for viewing and merging content differences
between unstructured elements.

Simple content viewers

A content viewer is used in places where only a single input is available and therefore no compare is
necessary. A typical example for this is the "Restore from Local History" function. The
org.eclipse.compare.contentViewers extension point allows you to define a specialized content viewer that
does not compare its inputs.

<extension
 point="org.eclipse.compare.contentViewers">
 <viewer
 extensions="java,java2"
 class="org.eclipse.jdt.internal.ui.compare.JavaTextViewerCreator"
 id="org.eclipse.jdt.internal.ui.compare.JavaTextViewerCreator">
 </viewer>
 <contentTypeBinding
 contentTypeId="org.eclipse.jdt.core.javaSource"
 contentViewerId="org.eclipse.jdt.internal.ui.compare.JavaTextViewerCreator">
 </contentTypeBinding>
</extension>

Specialized viewers contributed by your plug−in are designated in the viewer element. You must specify the
id of the viewer and the class that creates it. You may also specify any file extensions for which the content

 Compare support 766

viewer should be used.

You may also use the contentTypeBinding element to associate a content type with a content viewer.

Content merge viewers

A content merge viewer performs a two−way or three−way compare of its inputs and presents the result
side−by−side or in any other suitable way. The viewer lets the user merge between the inputs. Content merge
viewers are common for text or images.

If the standard merge viewers are not appropriate for your plug−in's function, you may choose to implement
your own content merge viewer. Your content merge viewer should be registered with the platform using the
org.eclipse.compare.contentMergeViewers extension point. The following markup shows the definition of
specialized content merge viewers for viewing Java files and properties files in the Java IDE:

<extension
 point="org.eclipse.compare.contentMergeViewers">
 <viewer
 extensions="java,java2"
 class="org.eclipse.jdt.internal.ui.compare.JavaContentViewerCreator"
 id="org.eclipse.jdt.internal.ui.compare.JavaContentViewerCreator">
 </viewer>
 <contentTypeBinding
 contentTypeId="org.eclipse.jdt.core.javaProperties"
 contentMergeViewerId="org.eclipse.compare.TextMergeViewerCreator">
 </contentTypeBinding>
 <contentTypeBinding
 contentTypeId="org.eclipse.jdt.core.javaSource"
 contentMergeViewerId="org.eclipse.jdt.internal.ui.compare.JavaContentViewerCreator">
 </contentTypeBinding>
</extension>

Similar to content viewers, specialized merge viewers contributed by your plug−in are designated in the
viewer element. You must specify the id of the viewer and the class that creates it. You may also specify any
file extensions for which the content merge viewer should be used.

Also similar to content viewers, you can use contentTypeBinding to associate a content type with a merge
viewer. The JDT plug−in binds content merge viewers to two different content types: Java source and Java
properties files.

ContentMergeViewer is an abstract compare and merge viewer with two side−by−side content areas and an
optional content area for a common ancestor (for three−way compare). Because the implementation makes no
assumptions about the content type, the subclass is responsible for dealing with the specific content type.

ImageMergeViewer in org.eclipse.compare.internal shows how to implement a simple merge viewer for
images using a ContentMergeViewer. A ContentMergeViewer accesses its model by means of a content
provider which must implement the IMergeViewerContentProvider interface.

Text merging

If your viewer uses text, additional classes that compare and merge text content can be used.

TextMergeViewer is the concrete subclass of ContentMergeViewer used for comparing and merging text

 Welcome to Eclipse

Content merge viewers 767

content. A text merge viewer uses the RangeDifferencer to perform a textual, line−by−line comparison of
two (or three) input documents.

For text lines that differ, the TextMergeViewer uses an ITokenComparator to find the longest sequences of
matching and non−matching tokens. The TextMergeViewer's default token compare works on characters
separated by white space. If a different strategy is needed (for example, Java tokens in a Java−aware merge
viewer), clients can create their own token comparators by implementing the ITokenComparator interface.

TextMergeViewer works on whole documents and on sub ranges of documents. For partial documents, the
viewer's input must be an IDocumentRange instead of an IDocument.

Range differencing

RangeDifferencer finds the longest sequences of matching and non−matching comparable entities in text
content. Its implementation is based on an objectified version of the algorithm described in: A File
Comparison Program, by Webb Miller and Eugene W. Myers, Software Practice and Experience, Vol. 15,
Nov. 1985. Clients must supply an input to the differencer that implements the IRangeComparator
interface. IRangeComparator breaks the input data into a sequence of entities and provides a method for
comparing one entity with the entity in another IRangeComparator.

For example, to compare two text documents and find the longest common sequences of matching and
non−matching lines, the implementation of IRangeComparator must break the document into lines and
provide a method for testing whether two lines are considered equal. See
org.eclipse.compare.internal.DocLineComparator for an example of how this can be done.

The differencer returns the differences among these sequences as an array of RangeDifference objects. Every
single RangeDifference describes the kind of difference (no change, change, addition, deletion) and the
corresponding ranges of the underlying comparable entities in the two or three inputs.

Implementing a structure viewer

A structure merge viewer performs a two−way or three−way compare of its inputs, presents the result in a
hierarchical view, and lets the user merge between the inputs. Structure merge viewers are common for
workspace resources or the members of an archive file.

Tree−like structure viewers

Because the implementation of many structure compare viewers is based on a tree, the compare plug−in
provides a generic tree−based StructureDiffViewer. Your plug−in is responsible for supplying a structure
creator that breaks a single input object into a hierarchical structure. The StructureDiffViewer performs the
compare on the resulting structure and displays the result as a tree.

You designate a structure creator for your plug−in using the org.eclipse.compare.structureCreators
extension. Much like content viewers, a structure creator can be specified for a set of file extensions, or a
contentTypeBinding can be used to associate a content type with a particular structure creator. We won't
review the markup here since it's so similar to content viewers. The JDT plug−in defines several contributions

 Welcome to Eclipse

Content merge viewers 768

for org.eclipse.compare.structureCreators.

Other hierarchical structure viewers

In some cases, the tree−based StructureDiffViewer may not be appropriate for your plug−in. The
org.eclipse.compare.structureMergeViewers extension point allows you to define your own implementation
for a structure merge viewer. A structure merge viewer can be specified for file extensions, or a
contentTypeBinding can be used to associate a content type with a particular structure merge viewer. See the
JDT plug−in for examples of org.eclipse.compare.structureMergeViewers contributions.

The search plug−in provides several utility classes to help you implement a search viewer.

Differencer

Differencer is a differencing engine for hierarchically structured data. It takes two or three inputs and
performs a two−way or three−way compare on them.

If the input elements to the differencing engine implement the IStructureComparator interface, the engine
recursively applies itself to the children of the input element. Leaf elements must implement the
IStreamContentAccessor interface so that the differencer can perform a byte wise comparison on their
contents.

There are several good examples of differencers included in the platform implementation:

ResourceNode implements both interfaces (and more) for platform workspace resources
(org.eclipse.core.resources.IResource).

•

DocumentRangeNode is used to compare hierarchical structures that are superimposed on a
document. Nodes and leaves correspond to ranges in a document (IDocumentRange). Typically,
DocumentRangeNodes are created while parsing a document and they represent the semantic entities
of the document (e.g. a Java class, method or field). The two subclasses JavaNode (in
org.eclipse.jdt.internal.ui.compare) and PropertyNode (in org.eclipse.jdt.internal.ui.compare)
are good examples for this.

•

By default the differencing engine returns the result of the compare operation as a tree of DiffNode objects. A
DiffNode describes the changes among two or three inputs. The type of result nodes can be changed by
overriding a single method of the engine.

Difference Viewers

A tree of DiffNodes can be displayed in a DiffTreeViewer. The DiffTreeViewer requires that inner nodes of
the tree implement the IDiffContainer interface and leaves implement the IDiffElement interface.

The typical steps to compare hierarchically structured data and to display the differences are as follows:

Map the input data into a tree of objects implementing both the IStructureComparator and
IStreamContentAccessor interfaces

1.

Perform the compare operation by means of the Differencer2.
Feed the differencing result into the DiffTreeViewer3.

The StructureDiffViewer is a specialized DiffTreeViewer that automates the three steps from above. It takes

 Welcome to Eclipse

Other hierarchical structure viewers 769

a single input object of type ICompareInput from which it retrieves the two or three input elements to
compare. It uses an IStructureCreator to extract a tree containing IStructureComparator and
IStreamContentAccessor objects from them. These trees are then compared with the differencing engine
and the result is displayed in the tree viewer.

The ZipFileStructureCreator is an implementation of the IStructureCreator interface and makes the
contents of a zip archive available as a hierarchical structure of IStructureComparators which can be easily
compared by the differencing engine (Differencer). It is a good example for how to make structured files
available to the hierarchical compare functionality of the compare plug−in.

Merging multiple streams

The search plug−in allows you to customize views that assist the user in merging different content streams. In
some cases, however, the ability to merge streams without the assist of a user is desirable. The extension point
org.eclipse.compare.streamMergers allows you to contribute a class that merges three different input
streams into a single output stream. Stream mergers can be associated with file extensions or bound to a
particular content type. The search plug−in defines a stream merger for merging three streams of plain text:

<extension
 point="org.eclipse.compare.streamMergers">
 <streamMerger
 extensions="txt"
 class="org.eclipse.compare.internal.merge.TextStreamMerger"
 id="org.eclipse.compare.internal.merge.TextStreamMerger">
 </streamMerger>
 <contentTypeBinding
 contentTypeId="org.eclipse.core.runtime.text"
 streamMergerId="org.eclipse.compare.internal.merge.TextStreamMerger">
 </contentTypeBinding>
</extension>

The stream merger itself is described in the streamMerger element. You must specify the id of the merger
and the class that implements it. You may also specify any file extensions for which the the stream merger
should be used.

You may also use the contentTypeBinding element to associate a content type with a stream merger.

Stream mergers must implement IStreamMerger. This simple interface merges the contents from three
different input streams into a single output stream. The not−so−simple implementation depends upon your
plug−in and its content types.

New IStreamMergers can be created for registered types with the createStreamMerger methods of
CompareUI.

 Welcome to Eclipse

 Merging multiple streams 770

Advanced compare techniques

This section provides additional information about advanced API in the compare plug−in.

Writing compare operations

A compare operation must be implemented as a subclass of CompareEditorInput. A CompareEditorInput
runs a (potentially lengthy) compare operation under progress monitor control, creates a UI for drilling−down
into the compare results, tracks the dirty state of the result in case of merge, and saves any changes that
occurred during a merge.

CompareUI defines the entry point to initiate a configurable compare operation on arbitrary resources. The
result of the compare is opened into a compare editor where the details can be browsed and edited in
dynamically selected structure and content viewers.

NavigationAction is used to navigate (step) through the individual differences of a CompareEditorInput.

CompareConfiguration configures various UI aspects of compare/merge viewers like title labels and images,
or whether a side of a merge viewer is editable. It is passed to the CompareEditorInput on creation.

When implementing a hierarchical compare operation as a subclass of CompareEditorInput, clients must
provide a tree of objects where each node implements the interface IStructureComparator. This interface is
used by the hierarchical differencing engine (Differencer) to walk the tree.
In addition every leaf of the tree must implement the IStreamContentAccessor interface in order to give the
differencing engine access to its stream content.

BufferedContent provides a default implementation for the IStreamContentAccessor and
IContentChangeNotifier interfaces. Its subclass ResourceNode adds an implementation for the
IStructureComparator and ITypedElement interfaces based on platform workbench resources (IResource).
It can be used without modification as the input to the differencing engine.

Compare functionality outside of compare editors

If you want to use compare functionality outside of the standard compare editor (for example, in a dialog or
wizard) the compare plug−in provides additional helper classes.

CompareViewerPane is a convenience class which provides a label and local toolbar for a compare viewer
(or any other subclass of a JFace viewer). Its abstract subclass CompareViewerSwitchingPane supports
dynamic viewer switching, that is the viewer installed in the pane is dynamically determined by the pane's
input object.

EditionSelectionDialog is a simple selection dialog where one input element can be compared against a list
of historic variants (editions) of the same input element. The dialog is used to implement functions like
"Replace with Local History" on workbench resources.

In addition it is possible to specify a subsection of the input element (e.g. a method in a Java source file) by
means of a path. In this case the dialog compares only the subsection (as specified by the path) with the
corresponding subsection in the list of editions. This functionality can be used to implement "Replace with
Element from Local History" for Java Elements.

 Welcome to Eclipse

 Advanced compare techniques 771

The EditionSelectionDialog requires that the editions implement the IStreamContentAccessor and
IModificationDate interfaces. The HistoryItem is a convenience class that implements these interfaces for
IFileState objects.

Rich Team Integration

Integrating your repository's support with the platform starts with good solid design. The goal is to integrate
the workflow that your repository users know with the concepts defined in the workbench. Because there are
many ways to extend workbench UI and functionality, you have a lot of flexibility in how you achieve
integration. So where to start?

Building a team provider is not just a matter of learning Team API. (Subsequent sections will focus on the
specific support introduced by the team plug−in.) It's a matter of understanding workbench integration. So
let's start with the big picture. We'll be using the CVS client as a case study for integrating a team provider
with the platform. Let's look at some of the function the CVS provider supplies and what workbench and team
facilities you can use to achieve similar levels of integration.

 Welcome to Eclipse

Rich Team Integration 772

The CVS client integrates seamlessly with the existing workbench resource perspective. It allows users to
configure a project for CVS, adds functionality to a resource's menu, decorates resources with team−specific
information, provides customized views that show team−specific information, adds team−oriented tasks to the
task list... The list goes on and on. How can your provider achieve similar integration? Here are some basic
steps to start with and links for information (both team−specific and workbench−oriented) on these topics.

 Welcome to Eclipse

Rich Team Integration 773

Getting started

Define a
RepositoryProvider that
represents your
implementation.

Define your provider using
org.eclipse.team.core.repository.

•

Subclass RepositoryProvider and implement
the necessary methods.

•

Provide a configuration
wizard so that users can
associate your provider
with their projects.

Contribute a wizard using
org.eclipse.team.ui.configurationWizards.

•

Add your actions to the
Team menu.

Add your actions to the Team menu.•
Use the popupMenus extension to define the
menu items.

•

Enhancing resource views

Add provider−specific
properties to the
properties page for a
resource.

Implement and contribute property pages to
show team−specific properties for your
resource.

•

Implement specialized
decorators to show
team−related attributes

Contribute decorators to resource views.•

Reduce clutter by
filtering out any
resources that are used in
implementing team
support.

Use team−private resources to hide
implementation files and folders.

•

Handling user editing and changes to resources

Intervene in the saving of
resources so you can
check permissions before
a user changes a file.

Implement the fileModificationValidator
hook.

•

Use validateSave to prevent or intervene in
saving of files.

•

Intervene before a user
edits a file to see if it's
allowed.

Implement the fileModificationValidator
hook.

•

Use validateEdit to prevent or intervene in
saving of files.

•

Track changes to
resources in the
workspace so you can
allow associated changes
in the repository.

Use the move/delete hooks to prevent or
enhance moving and deleting of resources.

•

See IMoveDeleteHook for more detail about
what you can do.

•

Ensure that the proper
resource locks are
obtained for resource

Use the resource rule factory to ensure that
the proper rules are obtained for resource

•

 Welcome to Eclipse

Getting started 774

operations that invoke the
move/delete hook or
fileModificatonValidator.

operations.
See ResourceRuleFactory for more details.•

Enable the use of linked
resources See Team and linked resources•
Streamlining repository−related tasks

Provide an easy way to
export a description of
your projects.

Use project sets to export your projects
without exporting the content so that users
can rebuild projects from the repository.

•

Reduce clutter in the
repository by ignoring
files that can be
regenerated.

Honor the ignore extension when handling
files and use ignore for your plug−in's derived
files.

•

Enhancing platform integration

Add provider−specific
preferences to the
preferences page.

Add your preferences to the Team category.•
Build your preference page using workbench
support.

•

Implement custom views
to show detailed
information about
repositories or their
resources.

Use the views extension to contribute a view.•
See the CVS provider's repository view for an
example.

•

Add your views or
actions to existing
workbench perspectives
if appropriate.

Use the perspectiveExtension extension to
add your plug−in's shortcuts or views to
existing perspectives.

•

Implement a
repository−specific
perspective to streamline
repository administration
or browsing.

Use the perspectives extension to define your
own perspective, views, short cuts, and page
layout.

•

Adding team actions

The team UI plug−in defines a popup menu extension in order to consolidate all team−related actions in one
place. The team menu includes many subgroup slots so that team provider plug−ins can contribute actions
and have some amount of control over the order of items in the menu. The following markup is from the team
UI's plug−in manifest:

<extension
 point="org.eclipse.ui.popupMenus">

 Welcome to Eclipse

Streamlining repository−related tasks 775

 <objectContribution
 id="org.eclipse.team.ui.ResourceContributions"
 objectClass="org.eclipse.core.resources.IResource" adaptable="true">
 <menu
 id="team.main"
 path="additions"
 label="%TeamGroupMenu.label">
<separator name="group1"/>
 <separator name="group2"/>
 <separator name="group3"/>
 <separator name="group4"/>
 <separator name="group5"/>
 <separator name="group6"/>
 <separator name="group7"/>
 <separator name="group8"/>
 <separator name="group9"/>
 <separator name="group10"/>
 <separator name="targetGroup"/>
 <separator name="projectGroup"/>
 </menu>
 ...
</extension>

A team menu is added to the popup menu of all views that show resources (or objects that adapt to resources.)
Your plug−in can use the id of this menu and the separator groups in order to add your own menu items.
There is nothing to keep you from defining your own popup menus, action sets, or view and editor actions.
However, adding your actions to the predefined team menu makes it easier for the end user to find your
actions.

Let's look at a CVS action that demonstrates some interesting points:

<extension
 point="org.eclipse.ui.popupMenus">
 <objectContribution
 objectClass="org.eclipse.core.resources.IFile"
 adaptable="true"
 id="org.eclipse.team.ccvs.ui.IFileContributions">
 <filter

name="projectPersistentProperty"
value="org.eclipse.team.core.repository=org.eclipse.team.cvs.core.cvsnature">

 </filter>
 <action
 label="%IgnoreAction.label"
 tooltip="%IgnoreAction.tooltip"
 class="org.eclipse.team.internal.ccvs.ui.actions.IgnoreAction"
 menubarPath="team.main/group3"
 helpContextId="org.eclipse.team.cvs.ui.team_ignore_action_context"
 id="org.eclipse.team.ccvs.ui.ignore">
 </action>
 ...

Note that the action is contributed using the org.eclipse.ui.popupMenus workbench extension point. Here
are some team−specific things happening in the markup:

the action is filtered by a project persistent property which identifies team providers. The value of the
property must be of the format "org.eclipse.team.core.repository=<your repository id>" where
<your repository id> is the id provided in the org.eclipse.team.core.repository markup. This filter
ensures that the CVS popup menu items only appear for files that appear in projects that have been

•

 Welcome to Eclipse

Streamlining repository−related tasks 776

mapped to the CVS repository id.
the action is added to a group in the menu that was specified above in the team UI plug−in•

The implementation of an action is largely dependent on your specific provider.

Team decorators

Since any view that shows resources can contain projects that are configured with different team providers, it
is helpful for team providers to contribute decorators that distinguish resources configured for their
repository. The CVS client uses decorators to show information such as a dirty flag, tags, keywords, and
revisions.

Some decorators may be expensive to compute, so it's a good idea to allow the users some control over the
use, or even content, of decorators. The CVS client provides a preference page that allows users to control the
presentation and content of decorators.

See org.eclipse.ui.decorators for a complete description of the decorator extension point. The CVS
decorator markup is as follows:

<extension
 point="org.eclipse.ui.decorators">
 <decorator
 objectClass="org.eclipse.core.resources.IResource"
 adaptable="true"
 label="%DecoratorStandard.name"
 state="false"
 class="org.eclipse.team.internal.ccvs.ui.CVSDecorator"
 id="org.eclipse.team.cvs.ui.decorator">
 <description>
 %DecoratorStandard.description
 </description>

 Welcome to Eclipse

Team decorators 777

 </decorator>
</extension>

Team and linked resources

A project may contain resources that are not located within the project's directory in the local file system.
These resources are referred to as linked resources.

Consequences for Repository Providers

Linked resources can pose particular challenges for repository providers which operate directly against the file
system. This is a consequence of the fact that linked resources by design do not exist in the immediate project
directory tree in the file system.

Providers which exhibit the following characteristics may be affected by linked resources:

Those which call out to an external program that then operates directly against the file system.1.
Those which are implemented in terms of IResource but assume that all the files/folders in a project
exist as direct descendents of that single rooted directory tree.

2.

In the first case, lets assume the user picks a linked resource and tries to perform a provider operation on it.
Since the provider calls a command line client, we can assume that the provider does something equivalent to
first calling IResource.getLocation().toOSString(), feeding the resulting file system location as an argument
to the command line program. If the resource in question is a linked resource, this will yield a file/folder
outside of the project directory tree. Not all command line clients may expect and be able to handle this case.
In short, if your provider ever gets the file system location of a resource, it will likely require extra work to
handle linked resources.

The second case is quite similar in that there is an implicit assumption that the structure of the project
resources is 1:1 with that of the file system files/folders. In general, a provider could be in trouble if they mix
IResource and java.io.File operations. For example, for links, the parent of IFile is not the same as the
java.io.File's parent and code which assumes these to be the same will fail.

Backwards Compatibility

It was important that the introduction of linked resources did not inadvertantly break existing providers.
Specifically, the concern was for providers that reasonably assumed that the local file system structure
mirrored the project structure. Consequently, by default linked resources can not be added to projects that are
mapped to such a provider. Additionally, projects that contain linked resources can not by default be shared
with that provider.

Strategies for Handling Linked Resources

In order to be "link friendly", a provider should allow projects with linked resources to be version controlled,
but can disallow the version controlling of linked resources themselves.

A considerably more complex solution would be to allow the versioning of the actual linked resources, but
this should be discouraged since it brings with it complex scenarios (e.g. the file may already be version
controlled under a different project tree by another provider). Our recommendation therefore is to support

 Welcome to Eclipse

Team and linked resources 778

version controlled projects which contain non−version controlled linked resources.

Technical Details for Being "Link Friendly"

Repository provider implementations can be upgraded to support linked resources by overriding the
RepositoryProvider.canHandleLinkedResources() method to return true. Once this is done, linked
resources will be allowed to exist in projects shared with that repository provider. However, the repository
provider must take steps to ensure that linked resources are handled properly. As mentioned above, it is
strongly suggested that repository providers ignore all linked resources. This means that linked resources (and
their children) should be excluded from the actions supported by the repository provider. Furthermore, the
repository provider should use the default move and delete behavior for linked resources if the repository
provider implementation overrides the default IMoveDeleteHook.

Team providers can use IResource.isLinked() to determine if a resource is a link. However, this method only
returns true for the root of a link. The following code segment can be used to determine if a resource is the
child of a link.

String linkedParentName = resource.getProjectRelativePath().segment(0);
IFolder linkedParent = resource.getProject().getFolder(linkedParentName);
boolean isLinked = linkedParent.isLinked();

Repository providers should ignore any resource for which the above code evaluates to true.

Project sets

Since the resources inside a project under version control are kept in the repository, it is possible to share
projects with team members by sharing a reference to the repository specific information needed to
reconstruct a project in the workspace. This is done using a special type of file export for team project sets.

 Welcome to Eclipse

Team and linked resources 779

In 3.0, API was added to ProjectSetCapability to allow repository providers to declare a class that implements
project saving for projects under their control. When the user chooses to export project sets, only the projects
configured with repositories that define project sets are shown as candidates for export. This API replaces the
old project set serialization API (see below).

The project set capability class for a repository provider is obtained from the RepositoryProviderType class
which is registered in the same extension as the repository provider. For example:

<extension point="org.eclipse.team.core.repository">
 <repository
 typeClass="org.eclipse.team.internal.ccvs.core.CVSTeamProviderType"
 class="org.eclipse.team.internal.ccvs.core.CVSTeamProvider"
 id="org.eclipse.team.cvs.core.cvsnature">
 </repository>
</extension>

 Welcome to Eclipse

Team and linked resources 780

Prior to 3.0, The org.eclipse.team.core.projectSets extension point allowed repository providers to declare a
class that implements project saving for projects under their control. When the user chooses to export project
sets, only the projects configured with repositories that define project sets are shown as candidates for export.

For example, the CVS client declares the following:

<extension point="org.eclipse.team.core.projectSets">
 <projectSets id="org.eclipse.team.cvs.core.cvsnature" class="org.eclipse.team.internal.ccvs.ui.CVSProjectSetSerializer"/>
</extension>

The specified class must implement IProjectSetSerializer. Use of this interface is still supported in 3.0 but
has been deprecated.

File types

The presence of a repository management system may dictate special handling needs for files. For example,
some files should be omitted from version control. Some providers have special handling for text vs. binary
files. The team plug−in defines extension points that allow other plug−ins to provide information about their
file types. In all cases, special handling is ultimately left up to the user via the team Preferences page. These
extensions allow plug−ins to seed the preferences with values appropriate for the plug−in.

Ignored files

In several cases, it may be unnecessary to keep certain files under repository control. For example, resources
that are derived from existing resources can often be omitted from the repository. For example, compiled
source files, (such as Java ".class" files), can be omitted since their corresponding source (".java") file is in the
repository. It also may be inappropriate to version control metadata files that are generated by repository
providers. The org.eclipse.team.core.ignore extension point allows providers to declare file types that
should be ignored for repository provider operations. For example, the CVS client declares the following:

<extension point="org.eclipse.team.core.ignore">
 <ignore pattern = ".#*" selected = "true"/>
</extension>

The markup simply declares a file name pattern that should be ignored and a selected attribute which
declares the default selection value of the file type in the preferences dialog. It is ultimately up to the user to
decide which files should be ignored. The user may select, deselect, add or delete file types from the default
list of ignored files.

 Welcome to Eclipse

File types 781

Text vs. binary files

Some repositories implement different handling for text vs. binary files. The org.eclipse.team.core.fileTypes
extension allows plug−ins to declare file types as text or binary files. For example, the Java tooling declares
the following:

<extension point="org.eclipse.team.core.fileTypes">
 <fileTypes extension="java" type="text"/>
 <fileTypes extension="classpath" type="text"/>
 <fileTypes extension="properties" type="text"/>
 <fileTypes extension="class" type="binary"/>
 <fileTypes extension="jar" type="binary"/>
 <fileTypes extension="zip" type="binary"/>
</extension>

The markup lets plug−ins define a file type by extension and assign a type of text or binary. As with ignored
files, it is ultimately up to the user to manage the list of text and binary file types.

 Welcome to Eclipse

File types 782

Adding preferences and properties

Preferences and properties can be contributed by team UI plug−ins using the standard techniques. The only
difference for a team plug−in is that preferences should be contributed using the team category, so that all
team related preferences are grouped together. The CVS markup for the main preferences page looks like
this:

<extension
 point="org.eclipse.ui.preferencePages">
 <page
 name="%PreferencePage.name"

category="org.eclipse.team.ui.TeamPreferences"
 class="org.eclipse.team.internal.ccvs.ui.CVSPreferencesPage"
 id="org.eclipse.team.cvs.ui.CVSPreferences">
 </page>
</extension>

The preferences dialog shows the CVS preferences underneath the team category.

 Welcome to Eclipse

Adding preferences and properties 783

Properties are added as described by org.eclipse.ui.propertyPages. There is no special team category for
properties, since a resource can only be configured for one repository provider at a time. However, you must
set up your property page to filter on the team project persistent property (similar to the way we filtered
resources for popup menu actions.)

 <extension
 point="org.eclipse.ui.propertyPages">
 <page
 objectClass="org.eclipse.core.resources.IFile"
 adaptable="true"
 name="%CVS"
 class="org.eclipse.team.internal.ccvs.ui.CVSFilePropertiesPage"
 id="org.eclipse.team.ccvs.ui.propertyPages.CVSFilePropertiesPage">
 <filter
 name="projectPersistentProperty"
 value="org.eclipse.team.core.repository=org.eclipse.team.cvs.core.cvsnature">
 </filter>
 </page>
 ...

 Welcome to Eclipse

Adding preferences and properties 784

Launching a program

The platform debug plug−ins allow you to extend the platform so that your program can be launched properly,
obtaining input from the user if necessary.

The class ILaunchConfiguration is used to describe how a program should be launched. A launch
configuration keeps a set of named attributes that can be used to store data specific for a particular kind of
launcher. Users interact with a launch configuration dialog to set up the parameters for different types of
launches. These configurations can be stored in a file to be shared with other users or stored locally in the
workspace.

Plug−ins can contribute additional types of launchers and provide an ILaunchConfigurationDelegate that
knows how to launch a program given the expected type of launch configuration. Once the program is
launched, an ILaunch object is used to represent the launched session. This object can be queried for
information such as running processes, debug session information, and source code location. A launch knows
the configuration that was used to create it.

Adding launchers to the platform

Your plug−in can add launch configuration types to the platform using the
org.eclipse.debug.core.launchConfigurationTypes extension point. This extension point allows you to
declare a configuration type using a unique id. You must provide a corresponding implementation of
ILaunchConfigurationDelegate in your plug−in. You can also specify which modes (run and/or debug) are
supported by your launcher and a name that should be used when showing launchers of this type to the user.

The following markup shows how the Java tools declare a Java launch configuration for launching local Java
programs:

<extension point = "org.eclipse.debug.core.launchConfigurationTypes">
 <launchConfigurationType
 id="org.eclipse.jdt.launching.localJavaApplication"
 name="%localJavaApplication"
 delegate="org.eclipse.jdt.internal.launching.JavaLocalApplicationLaunchConfigurationDelegate"
 modes= "run, debug">

 Welcome to Eclipse

Launching a program 785

 </launchConfigurationType>
</extension>

Defining source locators

For each type of launch configuration that supports debug mode, it is important to define a way to find the
source code that corresponds with the current execution point in the code. ISourceLocator and
IPersistableSourceLocator define an interface for mapping from an executing program back to the source
code.

Source locators are typically implemented to work with a corresponding launch configuration and launch
configuration delegate. Since launch configurations can be persisted, source locators may also be stored with
the launch configuration. This is accomplished by setting an attribute of the launch configuration to an id of a
source locator. When a launch configuration is read from disk, the id of the source locator must be mapped
back to the implementation class. This is achieved using the org.eclipse.debug.core.sourceLocators
extension point.

The extension point allows you to register your class that implements IPersistableSourceLocator and
associate it with an id that will be stored with the launch configuration. This allows the debug plug−in to look
up source locator classes by id when it's time to instantiate a launch configuration.

The following markup is from the Java tooling:

<extension point = "org.eclipse.debug.core.sourceLocators">
 <sourceLocator
 id = "org.eclipse.jdt.debug.ui.javaSourceLocator"
 class="org.eclipse.jdt.debug.ui.JavaUISourceLocator"
 name="%javaSourceLocator"/>
</extension>

Comparing launch configurations

Plug−ins use named attributes and values to store important data with a launch configuration. Since the
interpretation of any attribute is not known by the platform, an extension point is provided that allows you to
supply a comparator for a specific attribute. This comparator is used to determine whether attributes of the
specified name are equal. In many cases, the simple string compare provided by
java.lang.Object.equals(Object) is suitable for comparing attributes. This method will be used if no
comparator has been provided. However, some attribute values may require special handling, such as
stripping white space values from text before comparing for equality.

Comparators are contributed using the org.eclipse.debug.core.launchConfigurationComparators extension
point.

The Java tools supply launch configuration comparators for comparing program source paths and class paths.

<extension point = "org.eclipse.debug.core.launchConfigurationComparators">
 <launchConfigurationComparator
 id = "org.eclipse.jdt.launching.classpathComparator"
 class = "org.eclipse.jdt.internal.launching.RuntimeClasspathEntryListComparator"
 attribute = "org.eclipse.jdt.launching.CLASSPATH"/>
 <launchConfigurationComparator
 id = "org.eclipse.jdt.launching.sourcepathComparator"
 class = "org.eclipse.jdt.internal.launching.RuntimeClasspathEntryListComparator"
 attribute = "org.eclipse.jdt.launching.SOURCE_PATH"/>

 Welcome to Eclipse

Adding launchers to the platform 786

</extension>

Handling errors from a launched program

If you have defined your own type of launch configuration, it's likely that you will want to handle errors or
other information that arises during the running of the program. For example, you may want to prompt or
alert the user when certain types of errors occur during a launch, or provide information messages for certain
status changes in the program. Since it's good practice to separate UI handling from core function, you do not
want to have direct references from your launch delegate to status handling classes.

This problem is addressed by the org.eclipse.debug.core.statusHandlers extension point. It allows you to
associate a status handler with a specific status code. Using this extension point, you can define all of the
possible status and error codes in your launch delegate and core classes, while registering unique handlers for
the different status codes from another plug−in.

The extension point does not designate any association between a status handler and a launch configuration.
It is up to the implementation of the launch delegate to detect errors, find the appropriate status handler, and
invoke it. The extension merely provides a registry so that the status handlers can be found for particular
status codes. Clients find status handlers by querying the DebugPlugin.

IStatusHandler handler = DebugPlugin.getDefault().getStatusHandler(status);

Status handlers should implement IStatusHandler. The status handling class is specified in the extension
definition, along with its associated status code and the plug−in that is expected to generate the status codes.

The following markup shows how the Java tools declare status handlers:

<extension point = "org.eclipse.debug.core.statusHandlers">
 <statusHandler
 id="org.eclipse.jdt.debug.ui.statusHandler.workingDirectory"
 class="org.eclipse.jdt.internal.debug.ui.launcher.WorkingDirectoryStatusHandler"
 plugin ="org.eclipse.jdt.launching"
 code="115">
 </statusHandler>
 <statusHandler
 id="org.eclipse.jdt.debug.ui.statusHandler.vmConnectTimeout"
 class="org.eclipse.jdt.internal.debug.ui.launcher.VMConnectTimeoutStatusHandler"
 plugin ="org.eclipse.jdt.launching"
 code="117">
 </statusHandler>
 ...
</extension>

Launch configuration dialog

Launch configurations can most easily be visualized by looking at their corresponding UI. Users interact with
a launch configuration dialog to create instances of the different types of launch configurations that have been
contributed by plug−ins. Each type of launch configuration defines a group of tabs that collect and display
information about the configuration. The tab group for local Java applications is shown below.

 Welcome to Eclipse

Handling errors from a launched program 787

The tabs are contributed using the org.eclipse.debug.ui.launchConfigurationTabGroups extension point.
The markup for this extension is straightforward. You associate the id of a configuration type (contributed
using org.eclipse.debug.core.launchConfigurationTypes) with a class that implements
ILaunchConfigurationTabGroup. The Java application tab group is contributed like this:

<extension point = "org.eclipse.debug.ui.launchConfigurationTabGroups">
 <launchConfigurationTabGroup
 id="org.eclipse.jdt.debug.ui.launchConfigurationTabGroup.localJavaApplication"
 type ="org.eclipse.jdt.launching.localJavaApplication"
 class="org.eclipse.jdt.internal.debug.ui.launcher.LocalJavaApplicationTabGroup">
 </launchConfigurationTabGroup>
</extension>

Your tab group class is responsible for creating the necessary tabs and displaying and saving the relevant data
from the launch configuration attributes. A tab that is common to all configurations, CommonTab, is already
implemented and can be created by any configuration. This tab manages the saving of the launch
configuration as well as collecting common preferences.

 Welcome to Eclipse

Handling errors from a launched program 788

Launch configuration type images

The image that is shown for a launch configuration type in the launch dialog is contributed using the
org.eclipse.debug.ui.launchConfigurationTypeImages extension point. This extension associates an image
file with the id of a configuration type.

The markup for the Java application image is as follows:

<extension point="org.eclipse.debug.ui.launchConfigurationTypeImages">
 <launchConfigurationTypeImage
 id="org.eclipse.jdt.debug.ui.launchConfigurationTypeImage.localJavaApplication"
 configTypeID="org.eclipse.jdt.launching.localJavaApplication"
 icon="icons/full/ctool16/java_app.gif">
 </launchConfigurationTypeImage>
</extension>

In order to maintain consistency with other extension points that reference launch configuration types, please
note that in 2.1 the configTypeID attribute may also be specified as type.

 Welcome to Eclipse

Launch configuration type images 789

Launch shortcuts

Once a launch configuration has been defined using the dialog, it can be shown in the run and/or debug
menus. The org.eclipse.debug.ui.launchShortcuts extension point is used to register launch shortcuts. In
the extension definition, you can specify in which modes (run or debug) and in which perspectives the
shortcuts are shown. For each shortcut, you must specify an implementation of ILaunchShortcut. This class
is used to launch a program given a particular selection in a view or editor.

The following markup registers shortcuts for launching a Java application:

<extension point = "org.eclipse.debug.ui.launchShortcuts">
 <shortcut
 id="org.eclipse.jdt.debug.ui.localJavaShortcut"
 class="org.eclipse.jdt.internal.debug.ui.launcher.JavaApplicationShortcut"
 label="%JavaApplicationShortcut.label"
 icon="icons/full/ctool16/java_app.gif"
 helpContextId="org.eclipse.jdt.debug.ui.shortcut_local_java_application"
 modes="run, debug">
 <perspective id="org.eclipse.jdt.ui.JavaPerspective"/>
 <perspective id="org.eclipse.jdt.ui.JavaHierarchyPerspective"/>
 <perspective id="org.eclipse.jdt.ui.JavaBrowsingPerspective"/>
 <perspective id="org.eclipse.debug.ui.DebugPerspective"/>
 </shortcut>
</extension>

Debugging a program

When you define a launch configuration for running a program, you can specify which modes (run and/or
debug) your program supports. If you support debug mode, then you need to implement a debug model and
UI that allow users to interact with your programs under debug. The core platform debug plug−in provides
support for:

a generic debug model•
debug events and listeners•
breakpoint management•
expression management •

The debug UI plug−in provides utility classes for implementing debug user interfaces.

Since it's difficult to discuss generic debugging in any meaningful detail, we'll review the platform debug
model and UI classes from the perspective of the Java debugger.

Platform debug model

The platform debug model defines generic debug interfaces that are intended to be implemented and extended
in concrete, language−specific implementations.

 Welcome to Eclipse

Launch shortcuts 790

Artifacts

The model includes classes that represent different artifacts in a program under debug. All of the artifacts
implement IDebugElement in addition to their own interfaces. The model includes definitions for the
following artifacts:

Debug targets (IDebugTarget) − a debuggable execution context, such as a process or virtual
machine

•

Expressions (IExpression) − a snippet of code that can be evaluated to produce a value•
Memory blocks (IMemoryBlock) − a contiguous segment of memory in an execution context•
Registers (IRegister) − a named variable in a register group•
Register groups (IRegisterGroup) − a group of registers assigned to a stack frame•
Stack frames (IStackFrame) − an execution context in a suspended thread containing local variables
and arguments

•

Threads (IThread) − a sequential flow of execution in a debug target containing stack frames•
Values (IValue) − the value of a variable•
Variables (IVariable) − a visible data structure in a stack frame or value•

Plug−ins that implement language−specific debuggers typically extend these interfaces to include
language−specific behavior. All debug elements can return the id of the plug−in that originated them. This is
important for registering other classes that are associated with a debug model, such as UI classes.

Actions

The model also includes interfaces that define a set of debug actions that are common behaviors among debug
artifacts. These interfaces are implemented by debug elements where appropriate. They include the
following actions:

Disconnect (IDisconnect) − the ability to end a debug session with a target program and allow the
target to continue running

•

Step (IStep) − the ability to step into, over, and return from the current execution point•
Filtered step (IFilteredStep) − the ability to step with a set of filters applied to the operation•
Suspend and resume (ISuspendResume) − the ability to suspend and resume execution•
Terminate (ITerminate) − the ability to terminate an execution context•
Modify a value (IValueModification) − the ability to modify the value of a variable•

If you look at the definitions for the platform debug elements, you will see that different elements implement
different debug actions. Standard interfaces for the elements and their behaviors allow the platform to provide
abstract implementations of utility classes and UI support that can be extended for concrete implementations
of debuggers.

Events

Debug events (DebugEvent) are used to describe events that occur as a program is being debugged. Debug
events include the debug element that is associated with the event. Each kind of debug element has a specific
set of events that it supports as documented in DebugEvent.

Debugger UI classes typically listen to specific events for elements in order display information about
changes that occur in the elements. Debug events arrive in groups called debug event sets. Events that occur
at the same point of execution in a program arrive in the same set. Clients should implement an
IDebugEventSetListener and register the listener with the org.eclipse.debug.core plug−in in order to

 Welcome to Eclipse

Platform debug model 791

receive debug events.

Breakpoints

Breakpoints allow users to suspend the execution of a program at a particular location. Breakpoints are
typically shown in the UI along with the source code. You can add an IBreakpointListener to an
IBreakpointManager in order to be notified as breakpoints are added and removed. When a breakpoint is
encountered during execution of a program, the program suspends and triggers a SUSPEND debug event with
BREAKPOINT as the reason.

Plug−ins that define their own debug models and launch configurations often need to define their own
breakpoint types. You can implement breakpoints for your particular debug model by defining a class that
implements IBreakpoint.

Breakpoints are implemented using resource markers. Recall that resource markers allow you to associate
meta information about a resource in the form of named attributes. By implementing a breakpoint using
markers, the debug model can make use of all the existing marker function such as persistence, searching,
adding, deleting, and displaying in editors.

Why is it important to know about markers when using breakpoints? When you create a breakpoint type, you
must also specify an associated marker type. Every extension of org.eclipse.debug.core.breakpoints should
be accompanied by an extension of org.eclipse.core.resources.markers. This is best demonstrated by
looking at the extensions defined by the Java tooling for Java breakpoints.

<extension id="javaBreakpointMarker" point="org.eclipse.core.resources.markers">
 <super type="org.eclipse.debug.core.breakpointMarker"/>
</extension>

<extension id="javaExceptionBreakpointMarker" point="org.eclipse.core.resources.markers">
 <super type="org.eclipse.jdt.debug.javaBreakpointMarker"/>
 <persistent value="true"/>
 <attribute name="org.eclipse.jdt.debug.core.caught"/>
 <attribute name="org.eclipse.jdt.debug.core.uncaught"/>
 <attribute name="org.eclipse.jdt.debug.core.checked"/>
</extension>

<extension point="org.eclipse.debug.core.breakpoints">
 <breakpoint
 id="javaExceptionBreakpoint"
 markerType="org.eclipse.jdt.debug.javaExceptionBreakpointMarker"
 class="org.eclipse.jdt.internal.debug.core.breakpoints.JavaExceptionBreakpoint">
 </breakpoint>
</extension>

The debug plug−in defines a special type of marker, org.eclipse.debug.core.breakpointMarker. When you define a
marker, you should declare it using this marker as a super type. This allows the debug model to find all possible breakpoints within a
source file by searching for subtypes of its marker. In the example above, the javaExceptionBreakpointMarker has a super type,
javaBreakpointMarker, whose super type is the breakpointMarker. The javaExceptionBreakpoint (defined in the breakpoint
extension) designates the javaExceptionBreakpointMarker as its marker.

What does all of this mean? When the debug code obtains a source code resource, it can search for all markers whose super type is
org.eclipse.debug.core.breakpointMarker. Having found all of the markers, it can then use the plug−in registry to map the markers
to their associated breakpoint classes. In this way, the platform debug code can generically find all breakpoint types that have been set

 Welcome to Eclipse

Breakpoints 792

on a particular source file.

Expressions

An expression is a snippet of code that can be evaluated to produce a value. The context for an expression
depends on the particular debug model. Some expressions may need to be evaluated at a specific location in
the program so that the variables can be referenced. IExpression defines a general interface for debug
expressions.

An expression manager (IExpressionManager) keeps track of all of the expressions in the workspace. It will
also fire events to interested listeners as expressions are added, removed, or changed.

Expressions can be used to implement "watch lists," "inspectors," or even "scrapbooks" that let users evaluate
code snippets. The Java tooling uses expressions to implement the expression generated when the user
inspects the source code.

Debug model presentation

Since there is a generic, uniform model for debug elements in the platform, it's possible to provide a starting
point for implementing debugger UI classes. The heart of the debugger UI support is the debug model
presentation (IDebugModelPresentation). The debug model presentation is responsible for providing
labels, images, and editors associated with specific debug elements.

Plug−ins that define their own debug model typically provide a debug model presentation for displaying
debug elements in the model. This is done using the org.eclipse.debug.ui.debugModelPresentations
extension point. This extension point allows an implementation of IDebugModelPresentation to be
associated with the identifier of a particular debug model.

Recall that debug model elements know the id of their originating debug model. This means that given any
debug element, the debug platform can obtain the id of the debug model and then query the plug−in registry
for any corresponding debug model presentations.

The markup for adding a debug model presentation looks like this:

<extension point = "org.eclipse.debug.ui.debugModelPresentations">
 <debugModelPresentation
 class = "org.eclipse.jdt.internal.debug.ui.JDIModelPresentation"
 id = "org.eclipse.jdt.debug"
 detailsViewerConfiguration = "org.eclipse.jdt.internal.debug.ui.display.DetailsViewerConfiguration">
 </debugModelPresentation>
</extension>

An optional detailsViewerConfiguration can be specified in addition to the debug model presentation. The
details viewer must extend the JFace SourceViewerConfiguration class. The meaning of "details" is
interpreted by the debug model. The details are computed by the debug model presentation and passed to the
details viewer. For example, the Java debugger uses the details viewer to show code assist in the variables

 Welcome to Eclipse

Expressions 793

view when expressions are evaluated.

Debug UI utility classes

The debug UI plug−in provides some classes that provide good building blocks for building debugger user
interfaces.

DebugUITools implements function commonly used by debug user interfaces:

Storage and retrieval of images on behalf of debug UI clients•
Lookup of debug model presentations associated with a given debug model•
Retrieval of the debug plug−in preference store•
Information about the current debug view in the workbench•
Information about the current program under debug•
Opening the launch configuration dialog•

IDebugView provides common function for debug views. It provides access to an underlying viewer and its
debug model presentation. Typically, clients should extend AbstractDebugView rather than implement the
interface from scratch. AbstractDebugView provides additional common functions:

Storage of actions in an action registry•
Generic handling of the underlying viewer's context menu•
General implementations of delete key and double click function•
Mechanism for displaying an error message in the view•

 Welcome to Eclipse

Debug UI utility classes 794

Platform Ant support
Ant is a Java−based build tool that uses XML−based configuration files to describe build tasks. The Eclipse
platform allows you to run Ant buildfiles from your plug−in and contribute new Ant tasks, types and
properties using extension points. The rest of this discussion assumes that you have a basic understanding of
Ant.

Running Ant buildfiles programmatically

The Ant support built into Eclipse allows plug−ins to programmatically run Ant buildfiles. This is done via
the AntRunner class included in the org.eclipse.ant.core plug−in.

The following code snippet shows an example of how to use the AntRunner from within code of another
plug−in:

import org.eclipse.ant.core.AntRunner;
import org.eclipse.core.runtime.IProgressMonitor;

...

public void runBuild() {
 IProgressMonitor monitor = ...
 AntRunner runner = new AntRunner();
 runner.setBuildFileLocation("c:/buildfiles/build.xml");
 runner.setArguments("−Dmessage=Building −verbose");
 runner.run(monitor);
}

If a progress monitor is used, it is made available for the running tasks. See Progress Monitors for more
details.

Note that only one Ant build can occur at any given time if the builds do not occur in separate VMs. See
AntRunner.isBuildRunning();

Special care for native libraries if build occurs within the same JRE as
the workspace

Every time an Ant buildfile runs in Eclipse a new classloader is created. Since a library can only be loaded by
one classloader in Java, tasks making use of native libraries could run into problems during multiple buildfile
runs. If the previous classloader has not been garbage collected at the time the new classloader tries to load the
native library, an exception is thrown indicating the problem and the build fails. One way of avoiding this
problem is having the library load be handled by a class inside a plug−in library. The task can make use of
that class for accessing native methods. This way, the library is loaded by the plug−in classloader and it does
not run into the load library conflict.

Platform Ant support 795

Ant tasks provided by the platform

The platform provides some useful Ant tasks and properties that interact with the workspace. They can be
used with buildfiles that are set to build within the same JRE as the workspace.

eclipse.refreshLocal

This task is a wrapper to the IResource.refreshLocal() method. Example:

<eclipse.refreshLocal resource="MyProject/MyFolder" depth="infinite"/>

resource is a resource path relative to the workspace •
depth can be one of the following: zero, one or infinite•

eclipse.incrementalBuild

This task is a wrapper to IProject.build() and IWorkspace.build() methods. Examples:

<eclipse.incrementalBuild/>

<eclipse.incrementalBuild project="MyProject"/>

project the project to be built•

eclipse.convertPath

Converts a file system path to a resource path and vice−versa. The resulting value is assigned to the given
property. Examples:

<eclipse.convertPath fileSystemPath="${basedir}" property="myPath"/>

<eclipse.convertPath resourcePath="MyProject/MyFile" property="myPath"/>

Contributing tasks and types

When your plug−in contributes Ant tasks and types, the tasks and types have access to all of the classes inside
the contributing plug−in. For example, the eclipse.refreshLocal task contributed by
org.eclipse.core.resources plug−in is a wrapper for the IResource.refreshLocal() method.

Tasks and types contributed by plug−ins must not be placed in any of the plug−in libraries. They have to be in
a separate JAR. This means that the plug−in classes do not have access to the tasks and types provided by the
plug−in. (See Why a separate JAR for tasks and types? for more information.)

 Welcome to Eclipse

 Ant tasks provided by the platform 796

The org.eclipse.ant.core.antTasks extension point provides an example of how to specify a new task in the
plugin.xml file.

Progress Monitors

The Eclipse Ant support provides access to an IProgressMonitor if one is passed when invoking the
AntRunner. One of the advantages of having access to a progress monitor is that a long−running task can
check to see if the user has requested its cancellation. The progress monitor object is obtained from the Ant
project's references. Note that a monitor is only made available if the method
AntRunner.run(IProgressMonitor) was called with a valid progress monitor. The following code snippet
shows how to obtain a progress monitor from the task's project:

import org.apache.tools.ant.BuildException;
import org.apache.tools.ant.Task;
import org.eclipse.ant.core.AntCorePlugin;
import org.eclipse.core.runtime.IProgressMonitor;

public class CoolTask extends Task {

public void execute() throws BuildException {
 IProgressMonitor monitor =
 (IProgressMonitor) getProject().getReferences().get(AntCorePlugin.ECLIPSE_PROGRESS_MONITOR);
 if (monitor == null) {
 ...
 } else {
 ...
 }
}
}

Important rules when contributing tasks and types

The following should work as a checklist for plug−in developers:

The JAR containing the tasks must not be a plug−in library (declared in <library></library>).•
The task or type can reference any class available for the plug−in but plug−in classes must not access
the tasks or types.

•

Native libraries should be loaded by the plug−in library classes and not tasks or types.•

Why a separate JAR for tasks and types?

There are basically two requirements for running Ant in Eclipse that do not fit the plug−in model very well:

Change the Ant classpath at runtime•
Change the Ant version at runtime•

During runtime plug−in classloaders cannot have their classpaths expanded and plug−ins cannot change their
dependencies. At the same time having separate JARs for the tasks and types is a good isolation from the
plug−in classloading mechanism. Having these extra JARs declared by a plug−in permits adding the
contributing plug−in to the Ant classpath as well.

 Welcome to Eclipse

 Progress Monitors 797

Developing Ant tasks and types within Eclipse

The following guidelines should be followed when developing and debugging Ant tasks and types within
Eclipse. These requirements stem from the fact that Ant tasks and types must be loaded by the Ant
classloader, rather than a plug−in classloader, when Ant is run in the same VM as Eclipse. To avoid having
the Ant tasks and types loaded by a plug−in classloader, the tasks and types need to be stored in a location that
is not visible to any plug−in classloader. Also see Contributing tasks and types.

Contributed Ant tasks or types should be defined in their own source folder within a plug−in (i.e.
separate from the source folders containing regular plug−in classes)

•

Each source folder containing the Ant tasks and types should have its own output location that does
not overlap with the output location of the regular plug−in classes.

•

When testing/debugging the new Ant tasks or types, the project contributing the Ant tasks or types
must be configured to exclude the output folders containing the Ant tasks and types. Use the
Properties dialog for the project to correctly configure the Self−Hosting configuration by removing
the Ant output directories from the plug−ins classpath.

•

Expanding the Ant classpath

Plug−ins can contribute extra JARs to the Ant classpath. The plug−in contributing the JARs is also added to
the Ant classpath. As a consequence, classes inside the extra JARs have access to all classes available for the
plug−in. These extra JARs cannot be plug−in libraries; they must be separate JARs. The consequences are
that plug−in classes do not have access to the classes provided by these extra JARs. The
org.eclipse.ant.core.extraClasspathEntries extension point provides an example of how to specify the extra
JARs in the plugin.xml file.

 Welcome to Eclipse

 Developing Ant tasks and types within Eclipse 798

Packaging and delivering Eclipse based products
The Eclipse platform is designed so you can add plug−ins that provide function for the software development
tools community. Commercial software vendors can build, brand, and package products using the platform as
a base technology. These products can be sold and supported commercially.

The Eclipse SDK can be downloaded and used as a Java IDE and Eclipse plug−in development tool, but it is
not marketed as a commercial product. The platform provides the raw ingredients for a product without a
box, label, or price tag. It defines a file and directory structure that lets you easily customize the platform's
about dialog and splash screen to brand your product.

The license governing the Eclipse platform gives you a lot of freedom over how to build and configure a
product. However, Eclipse based products will coexist more easily on a user's system if the products use
similar standards for packaging, configuring, and installing their products.

Customizing a primary feature

Product customization works differently when using the primary feature mechanism. The branding
information for the feature is located in a plug−in identified by the primary feature (or the plug−in of the same
name as the primary feature if none is specified). The files that designate and define branding information for
our hypothetical acmeweb application are highlighted in the sample directory structure below:

acmeweb/
acmeweb.exe (product executable − invokes eclipse.exe and specifies the primary feature)
eclipse/
.eclipseproduct
eclipse.exe
 startup.jar
 install.ini
 .config/
 platform.cfg
 jre/
 features/
com.example.acme.acmefeature_1.0.0/ (primary feature)
 feature.xml
 plugins/
com.example.acme.acmefeature_1.0.0/ (plug−in for primary feature. Contains branding info.)
 plugin.xml
about.ini
 about.html
 about.mappings
 about.properties
 acme.gif
 plugin_customization.ini
 splash.jpg
 welcome.xml
 com.example.acme.acmewebsupport_1.0.0/
 ...
 links/
 ...

The plug−in associated with a primary feature is where the branding information for a product is specified.
There are many customizable aspects of a product. Product−level customizations are defined using the

 Packaging and delivering Eclipse based products 799

about.ini file and other files described therein. Products can also control the default preference values of
other plug−ins. This is done using the plugin_customization.ini file.

Referring once again to our sample product's primary feature plug−in, let's look closer at how the product is
customized.

com.example.acme.acmefeature_1.0.0/
 plugin.xml
about.ini
 about.html
 about.mappings
 about.properties
 acme.gif
 plugin_customization.ini
 plugin_customization.properties
 splash.bmp
 welcome.xml

We'll review the same customizations that we reviewed for the products extension point, focusing on how the
specification differs using the primary feature mechanism.

About dialogs

As discussed with the product−level customization, all features and plug−ins should contribute an about.html
file that provides information about that particular plug−in.

The primary feature also supplies the information and graphics for the overall product. Additional files are
used to specify this information.

about.ini specifies the about text and images for features, windows, and the about dialog itself. It
also specifies the welcome page. See Customization using about.ini for a complete description of the
format of this file.

•

about.properties should be used to hold translated strings from the about.ini file (using "%var" as
the value in about.ini paired with an entry for the key "var" in about.properties. This file is a
java.io.Properties format file.

•

about.mappings can be used to fill in values for fill−in fields in the about text. This is useful when
the about text contains information specific to a particular install, such as license key, install date, or
licensed user. For example, the about text could be defined as "AcmeWeb is licensed to {0}". The
about.mappings file could be generated at install time based on input from the user. The final form
should contain a mapping for the field, such as "0=Joe Q. Webuser". The about.mappings file is a
java.io.Properties format file.

•

Window images

A 16x16 pixel color image can be used to brand windows created by the product. It will appear in the upper
left hand corner of product windows. It is specified in the windowImage attribute in the about.ini file. The
path should be specified as a plug−in relative path. A proper entry for the directory structure shown above
would be as follows:

windowImage=acme.gif

 Welcome to Eclipse

About dialogs 800

Welcome page

Plug−ins using the Eclipse 2.1 Welcome mechanisms should specify the welcome page file in the
welcomePage attribute in the about.ini file. The path should be specified as a plug−in relative path. A proper
entry for the directory structure shown above would be as follows:

welcomePage=welcome.xml

You can also specify an national language lookup for the file. (See Locale specific files for more detail.)

welcomePage=nl/welcome.xml

Splash screens

The product splash screen is supplied in a splash.bmp file located in the primary feature plug−in directory.
The image should be supplied in 24−bit color BMP format (RGB format) and should be approximately
500x330 pixels in size. If splash screens need to be customized for different locales, they can be placed in a
fragment of the primary feature's plug−in.

Preferences defaults

The plugin_customization.ini file is used to set the default preference values for preferences defined by other
plug−ins. This file is a java.io.Properties format file. Typically this file is used to set the values for
preferences that are published as part of a plug−in's public API. That is, you are taking a risk if you refer to
preferences that are used by plug−ins but not defined formally in the API.

One common customization is to set the default perspective for the workbench. This preference is defined in
the org.eclipse.ui plug−in. The following example assumes that the product should be launched with the
resource perspective as the default perspective.

org.eclipse.ui/defaultPerspectiveId=org.eclipse.ui.resourcePerspective

If you discover you need to change the default value for one of another plug−in's preferences, consult the API
documentation for that plug−in to see if the preference is considered public.

The plugin_customization.properties file contains translated strings for the plugin_customization.ini file.

 Welcome to Eclipse

Welcome page 801

About.ini File Format
Last revised March 25, 2003 for Eclipse 2.1

A feature's "about" information is given by properties in the "about.ini" file located within the feature's
plug−in. This is a java.io.Properties format file (ISO 8859−1 character encoding with \uxxxx Unicode
escapes), with the following keys:

"aboutText" − A multi−line text description of the feature containing copyright, license terms,
license registration info, etc. URLs found in text are presented as links. Line breaks are indicated by
"\n"; lines should be no longer than 75 characters each, and there is a limit of 15 lines. This
information is shown in the main "about" dialog (used in conjunction with a half−sized image), and
on the secondary "about" dialog describing individuals feature. All features are required to have this
property.

•

"windowImage" − A 16x16 pixel color image used to brand windows created by a product. The
value of this property is a plug−in−relative path to an image file. This property is only required for
primary features; other features may omit it.

•

"featureImage" − A 32x32 pixel color image used as an icon for this feature. The value of this
property is a plug−in−relative path to an image file. This image is shown on the "about" dialog
describing individual features, and is also used on the main "about" dialog to indicate that the feature
is present. This property is optional. Related features supplied by a single provider should contain
copies of the identical image file; this allows duplicate images to be eliminated.

•

"aboutImage" − A large color image that appears in the main "about" dialog for a product. The
value of this property is a plug−in−relative path to an image file. This property is only required for
primary features; other features should omit it. Both graphic−and−text, and graphic only layouts are
supported, depending on the size of image provided. A half−size image of up to 250 pixels wide by
330 pixels high is shown on the main "about" dialog with text ("aboutText" property) beside it. A
full−size image of up to 500 pixels wide by 330 pixels high is shown without text.

•

"welcomePage" − A welcome page. The value of this property is a plug−in−relative path to an
XML−format file containing the feature's welcome page. This property is recommended for all major
features; other features may omit it.

•

"welcomePerspective" − The preferred perspective in which to show the welcome page. The
value of this property is a workbench perspective id. This property is recommended for features with
welcome pages that show better in the context of the feature's views and editors. Features that do not
have welcome pages, or have no strong opinion where the welcome pages is shown, should omit it.

•

"appName" − A short, non−translatable string used to associate a name with the application on
platforms where this makes sense. In operating environments with the Motif window system, the
value is used for Motif resource lookup (see xrdb and related). In addition, on the CDE window
manager (used on Solaris and AIX), this is the name which shows up under the icon for windows
which are minimized to the desktop. This property is required for primary features; other features may
omit it.

•

"tipsAndTricksHref" − Tips and tricks section of help documentation. The value of this
property is a reference to a help book containing the feature's tips and trick section; for example,
tipsAndTricksHref=/org.eclipse.jdt.doc.user/tips/jdt_tips.html. This
property is recommended for all major features; other features may omit it.

•

About.ini File Format 802

http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html

Locale specific files

Fragments are a convenient way to package national language translations. Let's look more closely at the
directory structure used for installing locale−specific translation files. This directory structure is used
regardless of whether the translated files are packaged in a fragment or delivered in the original plug−in.

There are three mechanisms for locating locale specific files in a plug−in.

Platform core mechanism (the platform's runtime locale−specific sub−directory search)•
Java resource bundles (java.util.ResourceBundle)•
The plugin.properties mechanism (Translating values from the plugin.xml files)•

It is important to understand which mechanism is used to access any given file that must be translated so that
you'll know what to name the file and where to put it in the file system relative to the plug−in.

Platform core mechanism

The platform core defines a directory structure that uses locale−specific subdirectories for files that differ by
locale. Translated files are placed in a directory called nl under the plug−in. For example, the following
install tree shows a trivial (no code) plug−in with locale−specific translations of its about.properties file.
The various translations are shown as coming from a plug−in fragment rather than the plug−in itself. This is
typical for shipping translations separately from the base, but you could also place the nl sub−directory under
the plug−in itself.

acmeweb/
 eclipse/
 plugins/
 com.example.acme.acmewebsupport_1.0.0/
 plugin.xml
 about.properties (default locale)
 com.example.acme.fragmentofacmewebsupport_1.0.0/
 fragment.xml (a fragment of com.example.acme.acmewebsupport 1.0.0)
 nl/
 fr/
 about.properties (French locale)
 CA/
 about.properties (French Canadian locale)
 FR/
 EURO/
 about.properties (French France Euros)
 en/
 about.properties (English locale)
 CA/
 about.properties (English Canadian locale)
 US/
 about.properties (English US locale)
 de/
 about.properties (German locale)

The files to be translated are not contained in JAR files. Each file should have exactly the same file name, but
be located in subdirectories underneath the nl sub−directory in the fragment's (or plug−in's) root.

Only the most specific file is accessed at runtime. The file paths are searched as part of the Platform.find,
IPluginDescriptor.find and Plugin.find mechanism. For example, suppose the default locale is en_CA, and
a plug−in searches for the about.properties as follows:

 Welcome to Eclipse

Locale specific files 803

somePlugin.find("nl/about.properties");

The method will return a URL corresponding to the first place about.properties is found according to the
following order:

com.example.acme.acmewebsupport_1.0.0/nl/en/CA/about.properties
com.example.acme.fragmentofacmewebsupport_1.0.0/nl/en/CA/about.properties
 ... <any other fragments>
com.example.acme.acmewebsupport_1.0.0/nl/en/about.properties
com.example.acme.fragmentofacmewebsupport_1.0.0/nl/en/about.properties
 ...
com.example.acme.acmewebsupport_1.0.0/about.properties
com.example.acme.fragmentofacmewebsupport_1.0.0/about.properties

This mechanism is used by plug−ins to search for well known file names inside other plug−ins. This includes
the following well known file names:

preferences.properties (externalized strings for plug−in −specific preference default overrides)•
about.properties (externalized strings for feature "about" information)•
plugin_customization.properties (externalized strings for product−specific preference default
overrides)

•

splash.bmp (product−specific splash screens)•

(Note: The plugin.properties and fragment.xml are conspicuously absent from this list. They
are treated in a sightly different way described below.)

Java resource bundles

The standard Java handling of property resource bundles is used for other files. Translated files are contained
in a JAR file, with each properties file having a locale−specific name, such as "message_en_CA.properties".
The files are in package−specific subdirectories and may appear in the plug−in itself or one of its fragments.
Each translated properties file may be partial since lookup of keys accesses a well−defined chain of properties
files.

The plugin.properties mechanism

The mechanism used to translate plugin.properties files uses the Java resource bundles naming convention.
However the files must be located in the root of the plug−in or in the root of a fragment of this plug−in. The
same rules apply to the translation of MANIFEST.MF.

Defining NL fragments

The shape of NL fragments has evolved slightly since 2.1. Previously all translation files (including the
plugin.properties) were provided in a jar. This was inconsistent since the plugin.properties file was provided at
the root of the plug−in.
To adapt your NL fragment to the new model, remove the plugin.properties translation files from the jar and
put them at the root of the fragment as siblings of fragment.xml. For example, the new shape of the NL
fragment for org.eclipse.ui.workbench is the following:

 org.eclipse.ui.workbench.nl/
 fragment.xml
 plugin_fr.properties
 plugin_pt_BR.properties

 Welcome to Eclipse

Locale specific files 804

 ...
 nl1.jar

Plug−ins and fragments

Features are described in terms of the plug−ins that comprise them. This means that plug−ins are the
fundamental unit for packaging function.

While features are organized for the purposes of distributing and updating products, plug−ins are organized to
facilitate the development of the product function among the product team. The development team
determines when to carve up program function into a separate plug−in.

Plug−ins are packaged in a plug−in archive file and described using a plug−in manifest file, plugin.xml.

Plug−in fragments are separately packaged files whose contents are treated as if they were in the original
plug−in archive file. They are useful for adding plug−in functionality, such as additional national language
translations, to an existing plug−in after it has been installed. Fragments are ideal for shipping function that
may trail the initial product release, since they can be used to add function without repackaging or reinstalling
the original plug−in. When a fragment is detected by the platform, its contents are merged with the function
in the original plug−in. In other words, if you query the platform plug−in registry, you would see the
extensions and other function provided in the fragment as if it was in the original plug−in.

Fragments are described using a fragment manifest file, fragment.xml. It is similar to the plug−in manifest
file. Since a fragment shares many properties with its plug−in, some attributes in the plug−in manifest are not
valid, such as the plug−in class and plug−in imports.

Plug−in archive files can contain plug−ins or fragments.

 Welcome to Eclipse

Plug−ins and fragments 805

Plug−in Archives
Plug−ins and plug−in fragments are individually packaged as separate Java .jars. Standard Java jar facilities
are used for constructing plug−in archives. There is no distinction made between a plug−in archive containing
a plug−in and one containing a plug−in fragment.

The recommended convention for naming the plug−in archives is
<id>_<version>.jar

Where <id> is the plug−in or fragment identifier and <version> is the full version identifier contained in
the respective plugin.xml or fragment.xml. Note that this is a recommended convention that minimizes chance
of collisions, but is not required by the Eclipse architecture. For example, the following are valid plug−in
archive names

org.eclipse.platform_1.0.3.jar
org.eclipse.ui.nl_2.0.jar
my_plugin.jar

Internally, each plug−in archive packages all the relevant plug−in or fragment files relative to its plug−in or
fragment directory (but not including the directory path element). The archive has the following structure

plugin.xml *OR* fragment.xml
other plug−in or fragment files and subdirectories
META−INF/
 Java jar manifest and security files

Product installation guidelines

The platform provides standard tools for updating and extending products. In order to participate in the
platform mechanisms for updating and extending products, your packaged product should follow the
following guidelines. This will allow your product to peacefully coexist with, or even enhance, other Eclipse
based products.

Consider again the sample directory structure for the acmeweb product:

acmeweb/
acmeweb.exe
eclipse/
.eclipseproduct
eclipse.exe
 startup.jar
 install.ini
 .config/
 platform.cfg
 jre/
 features/
com.example.acme.acmefeature_1.0.0/
 feature.xml
 org.eclipse.platform_2.0.0/
 org.eclipse.platform.win32_2.0.0/
 ...

 Plug−in Archives 806

 plugins/
 com.example.acme.acmefeature_1.0.0/
 plugin.xml
 about.ini
 about.html
 about.mappings
 about.properties
 acme.gif
 plugin_customization.ini
 splash.jpg
 welcome.xml
 com.example.acme.acmewebsupport_1.0.0/
 org.eclipse.platform_2.0.0/
 ...
 links/
 ...

Where did these files come from? Let's look at the product content from the perspective of the development
team. The installed files can be grouped into five main categories:

top−level product files (such as the acmeweb.exe)•
product features and plug−ins•
the Eclipse platform itself•
the Java runtime environment (JRE)•
files generated by the installation process itself•

A proper installation script will produce the appropriate directory structure by doing the following:

allow the user to specify the top level directory of the install (such as c:\acmeweb. We will refer to it
as acmeweb for the remaining steps.)

•

ensure that a product is not already installed in the location•
copy the files as follows:

Top−level product files are copied to acmeweb♦
Eclipse files are copied to acmeweb/eclipse using the expected feature and plugin directory
structures

♦

JRE files are copied to acmeweb/eclipse/jre. If a JRE is already located elsewhere, then the
application shortcut should be setup to invoke eclipse with the −vm command line argument
so that the location of the JRE is known by the platform

♦

Product features and plug−ins are copied to acmeweb/eclipse/features and
acmeweb/eclipse/plugins

♦

•

create a marker file, .eclipseproduct, in acmeweb/eclipse. The marker file is a java.io.Properties
format file that indicates the name, id, and version of the product.

•

store any necessary install info (user, license, date) that is to be shown in the about dialog in
acmeweb/eclipse/plugins/com.example.acmefeature_1.0.0/about.mappings

•

replace the acmeweb/eclipse/install.ini with one that sets the property feature.default.id to the
product's primary feature

•

invoke the product executable using the −initialize option. This causes the platform to quietly
perform all time−consuming first−time processing and cache the results, so that when the user starts
the product it comes up promptly in an open−for−business state.

•

Multi−user issues

When a product is installed for the intention of allowing multiple users, care must be taken to separate

 Welcome to Eclipse

Multi−user issues 807

individual users' data (such as the workspace directory) from the shared product install directory.

Uninstall issues

When a product is uninstalled, the following concepts are important.

all files in the eclipse/features and eclipse/plugins directories should be removed, even if they
weren't originally installed by the installation program. This ensures that files added by the platform
update manager are removed when the product is removed.

•

except for the point above, only those files installed by the installation program in other directories
should be removed. It is important to preserve any important data, such as the workspace directory,
so that reinstalling the product after an uninstall will produce expected results.

•

Reinstalling the product

When the product is already installed, the installer should allow a service update or upgrade if one is
available. The existence of the product can be confirmed by looking for acmeweb/eclipse/.eclipseproduct.
The information in this marker file can be used to confirm with the user that the correct product is being
updated. The availability of updates can be confirmed with pattern matches against feature names. For
example, the presence of acmeweb/eclipse/plugins/com.example.acmefeature_1.0.1 would indicate that the
1.0.1 version update had already been applied to the product.

Once the validity of the reinstall is established, the install program should copy or replace files as needed. If
the version of the underlying Eclipse platform has not changed, there is a good chance that complete
directories can be ignored. The version numbers appended to the platform features and plugins can be used to
determine whether any changes underneath a plug−in or feature's directory are necessary.

Additional information on installing products can be found in How to write an Eclipse installer.

 Welcome to Eclipse

Uninstall issues 808

How to write an Eclipse installer
Last modified 15:20 Friday June 18, 2004

Eclipse−based products need to be correctly installed on the end user's computer. Special−purpose packaging
tools, such as InstallShield and RPM, are often used to build executable installers that automate installing,
updating, and uninstalling. This note describes how to write an installer for an Eclipse−based product, and for
separately−installable extensions to Eclipse−based products.

We assume that a product development team is responsible for providing the raw ingredients that will need to
find their way to end users' computers packaged as an executable installer. The creation of executable
installers is scripted, as are the install time actions needed to interact with the end user and deposit files on
their computer. This note described in detail what these installers need to do and how they should work.

This note should be treated as a recipe for the person responsible for writing an installer for an Eclipse−based
products. Two good reasons why we recommend all installers writers follow our recipe:

Product and extension interoperability. By behaving in standard ways, an installer for one
Eclipse−based product or extension automatically works with products and extensions laid down by
other installers. Otherwise the idiosyncrasies of one product's installer would require matching quirks
in all extension installers that expected to work with that product.

•

Uniformity of install time user interaction. All installers for Eclipse−based products and extension
should interact with the user in the same manner. There is nothing to having gratuitous variety in this
matter.

•

Product installer creation script

A product installer should be self−contained − the kind of thing that could be distributed on a CD and
installed on any machine with a suitable operating system.

Eclipse requires a Java2 Java Runtime Environment (JRE) to run Java code. JREs are licensed software,
obtained from Java vendors. With a license to redistribute a JRE from a JRE vendor, a company can include a
JRE with its product, and install it on the end user's computer at the same time as the product. The alternative
is to require that a JRE be pre−installed on the end user's computer, and associated with at product install
time. One way or the other, an Eclipse−based product requires a suitable JRE, and the product installer must
play a role in either installing a JRE or locating and linking to a pre−existing JRE.

Assume that a JRE is to be installed with the product. A directory containing the JRE is one input to the
installer creation script. Denote this directory <JRE>. This directory must have a standard JRE directory
structure, with the Java executable is located at jre/bin/java.exe and the class library at
jre/lib/rt.jar below the <JRE> directory. For reference, the skeletal structure of this directory looks
like:

<JRE>/
 jre/
 bin/
 java.exe
 lib/
 rt.jar

How to write an Eclipse installer 809

http://www.installshield.com/
http://www.rpm.org/

There are additional files (and subdirectories) in these directories; we've only shown a sample to give the
general structure. Italicized names in italics are product−specific.

The second input to the installer creation script is a directory, <product head>, containing the
product−specific executable launcher and any files unrelated to Eclipse. For reference, the skeletal structure of
this directory would look like (italics indicate file names that will vary from product to product):

<product head>/
 acmeproduct.exe

The third input to the installer creation script is a directory, <product body>, containing the features and
plug−ins developed for the product. For reference, the skeletal structure of this directory would look like:

<product body>/
 eclipse/
 features/

 com.example.acme.acmefeature_1.0.0/
 feature.xml

 com.example.acme.otherfeature_1.0.0/
 feature.xml
 plugins/

 com.example.acme.acmefeature_1.0.0/
 plugin.xml
 about.ini
 about.properties
 about.mappings
 plugin_customization.ini
 splash.bmp

 com.example.acme.otherfeature_1.0.0/
 plugin.xml
 about.ini
 about.properties
 about.mappings

 com.example.acme.myplugin_1.0.0/
 plugin.xml

 myplugin.jar
 com.example.acme.otherplugin_1.0.0/

 plugin.xml
 otherplugin.jar

The fourth input to the installer creation script is a directory, <platform>, containing the features and
plug−ins for the Eclipse platform itself and any third−party tools being included. This directory also includes
the standard Eclipse executable launcher, eclipse.exe, (named eclipse on Unix operating
environment), its companion startup.jar, and any other Eclipse platform files required to be at the root
of the install. For reference, the skeletal structure of this directory would look like:

<platform>
 eclipse/
 eclipse.exe
 startup.jar
 features/

 Welcome to Eclipse

How to write an Eclipse installer 810

 org.eclipse.platform_2.0.0/
 org.eclipse.platform.win32_2.0.0/
 org.eclipse.jdt_2.0.0/
 org.eclipse.pde_2.0.0/
 plugins/
 org.eclipse.platform_2.0.0/
 org.eclipse.core.runtime_2.0.0/
 org.eclipse.core.boot_2.0.0/
 org.eclipse.core.resources_2.0.0/
 org.eclipse.ui_2.0.0/
 org.eclipse.jdt_2.0.0/
 org.eclipse.jdt.core_2.0.0/
 org.eclipse.jdt.ui_2.0.0/
 org.eclipse.pde_2.0.0/
 org.eclipse.pde.core_2.0.0/
 org.eclipse.pde.ui_2.0.0/
 (more org.eclipse.* plug−in directories)

The exact contents of the <JRE>, <product head>, <product body>, and <platform> input
directories determine what files will eventually be installed on the end user's computer.

The final inputs to the installer creation script are the id and version strings for the product's primary feature;
e.g., "com.example.acme.acmefeature", and "1.0.0"; and the name of the product executable; e.g.,
"acmeproduct.exe". For products that do not require their own product executable, this would be the path
of the standard Eclipse executable launcher "eclipse/eclipse.exe". These strings have special
significance to the installer, appearing in file and directory names, and in the contents of marker files created
at install time.

At install time, the installer should behave in the standard manner (further details follow the list of steps):

warn user to exit all programs1.
introduce the product to be installed2.
if appropriate, ask the user for the name of the registered owner and for the license key3.
display the product's licensing agreement and ask the user to accept4.
recommend a location on the disk to install the product (but allow user to override this default)5.
check that a product or extension is not already stored at the specified location6.
ask user to confirm all details of the install7.
create marker file to mark root of product install8.
copy files to disk (see below)9.
if appropriate, insert name of registered owner and license key into the "about " description10.
create a desktop shortcut to run the product executable11.
create an appropriate entry to allow the user to uninstall the product12.
launch the product executable with −initialize option to perform all first−time processing13.
offer to show the product release notes ("readme" file)14.

If the location specified in step 5 is <install>, the installer copies all the files in the <JRE>,
<platform>, <product>, and <product plug−ins> directories into <install>.

Input file Installed file

<JRE>/* <install>/eclipse/*

 Welcome to Eclipse

How to write an Eclipse installer 811

<product head>/* <install>/*

<product body>/* <install>/*

<platform>/* <install>/*

The marker file created in step 8 is <install>/eclipse/.eclipseproduct is used to mark a
directory into which an Eclipse−based product has been installed, primarily for extension installers to locate.
This marker file is a java.io.Properties format file (ISO 8859−1 character encoding with "\" escaping) and
contains the following information that identifies the product to the user and distinguishes one Eclipse−based
product from one another:

name=Acme Visual Tools Pro
id=com.example.acme.acmefeature
version=1.0.0

The values of the "id" and "version" property are inputs to the installer creation script; the name of the product
is presumably known and hard−wired. (Products would not ordinarily access this marker file; only product
and extension installers write or read it.)

Step 6 requires checking for an existing <install>/eclipse/.eclipseproduct or
<install>/eclipse/.eclipseextension file. A product cannot be installed in exactly the same
place as another product or extension.

After installing all files, the top−level structure of the install directory would contain the following files and
subdirectories (and perhaps others):

<install>/
 acmeproduct.exe

 eclipse/
 .eclipseproduct
 eclipse.exe
 startup.jar
 features/
 plugins/
 jre/

If a product installer solicits license information from the user, such as the name of the registered owner and
the license key, this information should make it into the product "about" dialog (step 10).

This is done by recording the user responses in the "about.mapping" file in the primary feature's plug−in.
For example, at
<install>/plugins/com.example.acme.acmefeature_1.0.0/about.mapping. The
"about.mapping" file may be pre−existing in the <product head> input, or may need to be created by
the installer at install time. The keys are numbers; the value of the "n" key is substituted for the substring
"{n}" in the "aboutText" property. For example, if a license key was field number 0, an
"about.mapping" file containing a line like "0=T42−24T−ME4U−U4ME" should be created.

N.B. The "about.mapping" file is a java.io.Properties format file (ISO 8859−1 character encoding with
"\" escaping). When the native character encoding at install time is different from ISO 8859−1, the installer is
responsible for converting the native character encoding to Unicode and for adding "\" escapes where
required. Escaping is required when the strings contain special characters (such as "\") or non−Latin

 Welcome to Eclipse

How to write an Eclipse installer 812

http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html
http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html

characters. For example, field number 1 containing the first 3 letters of the Greek alphabet would be written
"1=\u03B1\u03B2\u03B3".

At step 12, the product installer launches the product executable, <install>/acmeproduct.exe, with
the special −initialize option [exact details TBD]. This causes the Eclipse platform to quietly perform all
time−consuming first−time processing and cache the results, so that when the user starts the product it comes
up promptly in an open−for−business state.

Uninstaller behavior

At uninstall time, the uninstaller should behave in the standard manner:

warn user to exit all programs, especially the product being uninstalled1.
ask user to confirm that the product is to be uninstalled2.
remove all installed files from the <install> directory, and all files in
<install>/eclipse/features and <install>/eclipse/plugins including ones put
there by parties other than this installer (e.g., by the Eclipse update manager)

3.

remove desktop shortcut for the product executable4.
remove entry for product uninstaller5.
inform user of any files that were not removed6.

When the product is uninstalled, files deposited at install time should be deleted, along with updated features
and plug−ins created by the Eclipse update manager. Important: At uninstall time, there may be other
directories and files in the <install> directory, notably <install>/eclipse/workspace/,
<install>/eclipse/links/, and <install>/eclipse/configuration/, that contain
important data which must be retained when the product is uninstalled. The user must be able to uninstall and
reinstall a product at the same location without losing important data.

Installer behavior when product already installed

When the product is already installed on the user's computer, the installer should allow a service update or
version upgrade to be applied to the installed product.

At install time, the installer should behave in the standard manner:

warn user to exit all programs, especially the product being updated1.
locate the installed product to be updated, if necessary by searching the disk for an existing product
install or by allowing the user to locate it

2.

determine where this installer is a compatible update3.
if appropriate, ask the user for the name of the registered owner and for the license key4.
display the product's updated licensing agreement and ask the user to accept5.
ask user to confirm all details of the update6.
update files to disk (see below)7.
if required, alter the desktop shortcut to run the product executable8.
should add modified or newly added files to the list of ones to be removed at uninstall time (where
feasible)

9.

offer to show the product release notes ("readme" file)10.

In step 2, an installed product can be recognized by the presence of an "eclipse" directory immediately
containing a file named ".eclipseproduct". The parent of the "eclipse" directory is a product's install

 Welcome to Eclipse

Uninstaller behavior 813

directory; i.e., <install>/eclipse/.eclipseproduct. The information contained within this
marker file should be shown to the user for confirmation that the correct product is being updated (there may
be several Eclipse−based product on the user's computer).

The installer should perform compatibility checks in step 3 by simple pattern matching against subdirectories
in the <install>/eclipse/features directory. For example, the presence of a folder matching
"com.example.acme.otherfeature_1.0.1" would ensure that a certain service update had been
applied to the installed product.

For step 7, the installer may delete or replace any of the files that it originally installed, and add more files.
Important: Several files and directories, including <install>/eclipse/workspace/,
<install>/eclipse/configuration, may be co−located with the install and contain important data
files which need to be retained when the product is upgraded.

In upgrade situations, there is a good chance that most of the files below
<install>/eclipse/plugins/ are the same (likewise for <install>/eclipse/features/).
There is significant opportunity for optimization in <install>/eclipse/plugins/ since the
sub−directory name, which embeds the plug−in (or fragment) version number, changes if and only iff any of
the files below it change. In other words, there is no need to touch any files in
<install>/eclipse/plugins/org.eclipse.ui_2.0.0/ if this sub−directory should also exist
after the upgrade; if any of the plug−in's files were to change, the plug−in's version number is revised, causing
the files for the upgraded plug−in to be installed in a parallel directory
<install>/eclipse/plugins/org.eclipse.ui_2.0.1/.

Associating a JRE installed elsewhere

The JRE is expected to be located at <install>/eclipse/jre/bin/javaw.exe. If it is located
elsewhere, the absolute path should be specified using the −vm option on the command line; e.g., −vm
C:\j2jre1.3.0\jre\bin\javaw.exe. In which case, the installer should add this option to the
command line of the desktop shortcut it creates.

Extension installer creation script

By extension we mean a separately installable set of features and their plug−ins that can be associated with,
and used from, one ore more Eclipse−based products installed on the same computer. In contrast to a product,
an extension is not self−contained; an extension does not include a product executable, the Eclipse platform, a
JRE.

Without loss of generality, assume that an extension consists of a single feature. The first input to the installer
creation script is a directory, <extension>, containing its feature and plug−ins. We are assuming that an
extension has no files that are related to Eclipse; if it did, they would go in <extension>/, and not in
<extension>/eclipse/. For reference, the skeletal structure of this directory would look like:

<extension>/
 eclipse/
 features/

 com.example.wiley.anvilfeature_1.0.0/
 feature.xml
 plugins/

 com.example.wiley.anvilfeature_1.0.0/

 Welcome to Eclipse

Associating a JRE installed elsewhere 814

 plugin.xml
 about.ini
 about.properties
 about.mappings

 com.example.wiley.mainplugin_1.0.0/
 com.example.wiley.otherplugin_1.0.0/

The exact contents of the <extension> input directory determines what files will eventually be installed on
the end user's computer.

The final inputs to the installer creation script are the id and version strings for the extension's feature; e.g.,
"com.example.wiley.anvil" and "1.0.0". These strings have special significance to the installer,
appearing in file and directory names, and in the contents of marker files created at install time.

An extension installer is similar to a product installer in most respects. The areas where it differs are
highlighted below:

At install time, the installer behaves in the standard manner:

warn user to exit all programs1.
introduce the extension to be installed2.
if appropriate, ask the user for the name of the registered owner and for the license key3.
display the extension's licensing agreement and ask the user to accept4.
recommend a location on the disk to install the extension (but allow user to override this default)5.
check that a product or a different extension is not already stored at the specified location6.
ask user which product(s) to are to use this extension (search disk; browse; or skip)7.
optionally, determine if extension is compatible with selected products8.
ask user to confirm all details of the install9.
create marker file to mark root of extension install10.
copy files to disk (see below)11.
insert name of registered owner and license key into the "about " description12.
create an appropriate entry to allow the user to uninstall the extension13.
write link file in each of the selected products to associate extension with product14.
offer to show the extension release notes ("readme" file)15.

If the location specified in step 5 is <install>, the installer copies all the files in the <extension>
directory into <install> in step 11.

Input file Installed file

<extension>/* <install>/*

For step 7, any Eclipse product might be a candidate. Eclipse−based product can be recognized by the
presence of a <product install>/eclipse/.eclipseproduct file; the user should be able to
request a limited disk search for installed products (a "search for installed products" button), or would
navigate to a directory containing a product (i.e., a "browse" button).

The installer should perform compatibility checks in step 8 by simple pattern matching against subdirectories
in the <product install>/eclipse/features directory. For example, the presence of a folder
matching "org.eclipse.jdt_2.*" means that JDT is included in the installed product.

 Welcome to Eclipse

Associating a JRE installed elsewhere 815

The marker file created in step 10 is <install>/eclipse/.eclipseextension is used to mark a
directory into which an Eclipse−based extension has been installed, primarily for extension installers to locate
(analogous to a product's .eclipseproduct marker file). This marker file is a java.io.Properties format
file (ISO 8859−1 character encoding with "\" escaping) and contains the following information that identifies
the extension to the user and distinguishes one Eclipse−based extension from one another:

name=Wiley Anvil Enterprise Edition
id=com.example.wiley.anvilfeature
version=1.0.0

The values of the "id" and "version" property are inputs to the installer creation script; the name of the
extension is presumably known and hard−wired. (Products would not ordinarily access this marker file; only
product and extension installers write or read it.)

After installing all files, the top−level structure of the install directory would contain the following files and
subdirectories:

<install>/
 eclipse/
 .eclipseextension
 features/
 plugins/

The only significant difference from a product installer is that an extension installer also creates link files in
other Eclipse−based products already installed on the user's computer. (This saves the user from having to
manually associate the new extension from within each product using the Eclipse update manager.)

The link file created in step 14 is <product
install>/eclipse/links/com.example.wiley.anvilfeature.link; that is, the file has the
same name of as the extension's feature directory less the version number suffix. A link file is a
java.io.Properties format file (ISO 8859−1 character encoding with "\" escaping). The key is "path" and the
value is the absolute path of the installed extension, <install>; e.g., an entry might looks like
"path=C:\\Program Files\\Wiley\\Anvil". The installer is responsible for converting from
native character encoding to Unicode and adding "\" escapes where required. Escaping is usually required
since <install> typically contains special characters (such as "\") and may mention directories with
non−Latin characters in their names. The product reads link files when it starts up. The installer keeps a
record of any link files it creates so that they can be located when the extension is updated or uninstalled.

Uninstaller behavior

At un install time, the un installer should behave in the standard manner:

warn user to exit all programs, especially products using the extension being uninstalled1.
ask user to confirm that the extension is to be un installed2.
remove all installed files from the <install> directory, and all files in
<install>/eclipse/features and <install>/eclipse/plugins including ones put
there by parties other than this installer (e.g., by the Eclipse update manager)

3.

if feasible, remove the link file from any products to which it had been added 4.
remove entry for extension uninstaller5.
inform user of any files that were not removed6.

 Welcome to Eclipse

Uninstaller behavior 816

http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html
http://java.sun.com/j2se/1.3/docs/api/java/util/Properties.html

When an extension is uninstalled, all plug−in and feature files should be deleted; there are no important data
files to be kept in these subdirectories. This allows the user to uninstall an extension completely, including
any updates applied by the Eclipse update manager.

Installer behavior when extension already installed

When the extension is already installed on the user's computer, the installer should allow a service update or
version upgrade to be applied to the installed extension.

At install time, the installer should behave in the standard manner:

warn user to exit all programs, especially products using the extension being updated1.
locate the installed extension to be updated, if necessary by searching the disk for an existing
extension install or by allowing the user to locate it

2.

determine where this installer is a compatible update3.
if appropriate, ask the user for the name of the registered owner and for the license key4.
display the product's updated licensing agreement and ask the user to accept5.
ask user to confirm all details of the update6.
update files on disk (see below)7.
should add modified or newly added files to the list of ones to be removed at uninstall time (where
feasible)

8.

offer to show the extension release notes ("readme" file)9.

In step 2, an installed extension can be recognized by the presence of an "eclipse" directory immediately
containing a file named ".eclipseextension". The parent of the "eclipse" directory is an extension's
install directory; i.e., <install>/eclipse/.eclipseextension. The information contained within
this marker file should be shown to the user for confirmation that the correct extension is being updated (there
may be several Eclipse−based extension on the user's computer).

For step 7, the installer should not delete or overwrite any of the files that it originally installed; rather, it
should only add the files for new versions of features and plug−in, and possibly rewrite the marker file
<install>/eclipse/.eclipseextension. Leaving the old versions around gives the user the
option to back out of the update. As with upgrading a product install, there is no need to touch any files in
<install>/eclipse/plugins/com.example.wiley.otherplugin_1.0.0/ if this
sub−directory should also exist after the upgrade; if any of the plug−in's files were to change, the plug−in's
version number is revised, causing the files for the upgraded plug−in to be installed in a parallel directory
<install>/eclipse/plugins/com.example.wiley.otherplugin_1.0.1/.

Product extensions

An extension is a set of Eclipse features and plug−ins that are designed to extend the functionality of
already−installed Eclipse based products. Extensions are installed separately, but used only in conjunction
with other Eclipse based products. This means that an extension does not need to install a JRE, the Eclipse
platform, or a primary feature. The recommended directory structure for extensions allows a single
installation to be used with multiple Eclipse based products.

The following directory structure shows how an extension for a hypothetical product, betterwebs, could be
used to extend the function of the acmeweb product.

 Welcome to Eclipse

Installer behavior when extension already installed 817

betterwebs/
eclipse/ (directory for installed Eclipse files)
.eclipseextension (marker file)
 features/ (installed features)
com.example.betterwebs.betterfeature_1.0.0/
 feature.xml
 plugins/
 com.example.betterwebs.betterfeature_1.0.0/
 plugin.xml
 about.html
 com.example.betterwebs.betterwebsupport_1.0.0/

The relationship between an extension and the product that it is designed to enhance is set up in the links
directory of the original product. Recall the following directory in the acmeweb product:

acmeweb/
 ...
eclipse/ (directory for installed Eclipse files)
...
 jre/
 features/ (installed features)
 ...
 plugins/
 ...
 links/
 com.example.betterwebs.betterfeature.link

When an extension is installed, it creates a link file in the links directory of any product that it is intending to
extend. This link file makes the original product aware of the existence of the extension.

Installing and uninstalling extensions

The install process for extensions is similar to that for products except for the following differences:

Determine which already−installed product is to be extended (by asking the user or searching the
computer for the appropriate marker file)

•

Create an .eclipseextension marker file (instead of an .eclipseproduct marker file). The format and
content are similar to the product markers.

•

Create a link file for the extension and write it into the links directory of the associated product. The
link file has the same name as the extension's feature directory without the version suffix. The link
file is a java.io.Properties format file which defines the path to the installed extension.

•

The uninstall process for extensions is similar to that for products except that the uninstall must remove the
link file from any products where it added one.

Additional information on installing extensions can be found in How to write an Eclipse installer.

A product extension can be "softly" linked to an eclipse installation by using the update manager: open Help
> Software Updates > Manage Configuration and click on the "Add an extension location" link on the right
pane.

 Welcome to Eclipse

Installing and uninstalling extensions 818

Updating a product or extension

By following the prescribed procedures for packaging and installing products, we can take advantage of the
platform update manager, which treats products and extensions in a uniform way and allows users to
discover and install updated versions of products and extensions.

Before looking at the implementation of such a server, it's important to revisit some important concepts:

The platform provides a framework for defining features and update sites. The platform itself
defines a concrete implementation of features and sites. This concrete implementation is what allows
the update server to upgrade and install additional features.

•

The platform update server can be used to update products by installing new versions of features. It
can also be used to install or update extensions by adding or upgrading features. This is only
possible for products and extensions that conform to the platform's concrete implementation of
features and sites and conform to the appropriate install guidelines.

•

Developers are free to use native installers and uninstallers to upgrade their own products and
extensions without regard to sites and the update manager.

•

That said, what do we do if we want to fully participate in the platform update support as defined by the
default implementation?

Feature and plug−in packaging

The previous example product and extension directory structures show how features and plug−ins are laid out
once they are installed. In order to install features using the update server, the features must be packaged in a
feature archive file. This is described in Feature Archive Files.

Plug−ins and fragments must be packaged according to the format described in Plug−in Archive Files.

Update server layout

The update server must be a URL−accessible server with a fixed layout. The list of available features and
plug−ins provided by the server is described in a site map file, site.xml. The update server URL can be
specified a full URL to the site map file, or a URL of a directory path containing the site map. The site map
file contains a list of all the available features and the location of the feature archives on the server. It also
describes the locations of the plug−in archives that are referenced in the feature manifest.

A simple site layout for our example web product and extension could look something like this:

<site root>/
 site.xml
 features/ (contains feature archive files)
 com.example.acme.acmefeature_1.0.1.jar
 com.example.betterwebs.betterfeature_1.0.1.jar
 ...
 plugins/ (contains plug−in archive files)
 com.example.acme.acmefeature_1.0.1.jar
 com.example.acme.acmewebsupport_1.0.3.jar
 com.example.betterwebs.betterfeature_1.0.1.jar
 com.example.betterwebs.betterwebsupport_1.0.1.jar
 ...

 Welcome to Eclipse

Updating a product or extension 819

The complete definition for the site map is described in Update Server Site Map.

 Welcome to Eclipse

Updating a product or extension 820

Update server site map
The default Eclipse update server is any URL−accessible server. The default implementation assumes a
fixed−layout server. The content of the server (in terms of available features and plug−ins) is described in a
site map file, site.xml. This file can be manually maintained, or can be dynamically computed by the server.

Site Map

The update server URL can be specified as a full URL to the site map file, or a URL of a directory path
containing the site map file (similar to index.html processing). The site map site.xml format is defined by the
following dtd:

<?xml encoding="ISO−8859−1"?>

<!ELEMENT site (description?, feature*, archive*, category−def*)>
<!ATTLIST site
 type CDATA #IMPLIED
 url CDATA #IMPLIED
>

<!ELEMENT description (#PCDATA)>
<!ATTLIST description
 url CDATA #IMPLIED
>

<!ELEMENT feature (category*)>
<!ATTLIST feature
 type CDATA #IMPLIED
 id CDATA #IMPLIED
 version CDATA #IMPLIED
 url CDATA #REQUIRED
 patch (false | true) false

 os CDATA #IMPLIED
 nl CDATA #IMPLIED
 arch CDATA #IMPLIED
 ws CDATA #REQUIRED
>

<!ELEMENT archive EMPTY>
<!ATTLIST archive
 path CDATA #REQUIRED
 url CDATA #REQUIRED
>

<!ELEMENT category EMPTY>
<!ATTLIST category
 name CDATA #REQUIRED
>

 Update server site map 821

<!ELEMENT category−def (description?)>
<!ATTLIST category−def
 name CDATA #REQUIRED
 label CDATA #REQUIRED
>

The element and attribute definitions are as follows:

<site> − defines the site map•
type − optional site type specification. The value refers to a type string registered via the
install framework extension point. If not specified, the type is assumed to be the default
Eclipse site type (as specified in this document).

♦

url − optional URL defining the update site baseline URL (used to determine individual
<feature> and <archive> location). Can be relative or absolute. If relative, is relative to
site.xml. If not specified, the default is the URL location of the site.xml file.

♦

<description> − brief description as simple text. Intended to be translated.•
url − optional URL for the full description as HTML. The URL can be specified as absolute
of relative. If relative, If relative, is relative to site.xml.

♦

Note, that for NL handling the URL value should be separated to allow alternate URLs to be specified
for each national language.
<feature> − identifies referenced feature archive•

type − optional feature type specification. The value refers to a type string registered via the
install framework extension point. If not specified, the type is assumed to be the default
feature type for the site. If the site type is the default Eclipse site type, the default feature type
is the packaged feature type (as specified in this document).

♦

id − optional feature identifier. The information is used as a performance optimization to
speed up searches for features. Must match the identifier specified in the feature.xml of the
referenced archive (the url attribute). If specified, the version attribute must also be specified.

♦

version − optional feature version. The information is used as a performance optimization to
speed up searches for features. Must match the version specified in the feature.xml of the
referenced archive (the url attribute). If specified, the id attribute must also be specified.

♦

url − required URL reference to the feature archive. Can be relative or absolute. If relative, it
is relative to the location of the site.xml file. Note: the default site implementation allows
features to be accessed without being explicitly declared using a <feature> entry. By default,
an undeclared features reference is interpreted as "features/<id>_<version>.jar". Note: for
better lookup performance, always define the id and version attributes.

♦

patch − optional attribute to denote that this is a patch (special type of feature). Note: for
better lookup performance, always define this attribute.

♦

os − optional operating system specification. A comma−separated list of os designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this feature should only be installed on one of the specified os systems. If this
attribute is not specified, the feature can be installed on all systems (portable
implementation). This information is used as a hint by the installation and update support
(user can force installation of feature regardless of this setting).

♦

arch − optional machine architecture specification. A comma−separated list of architecture
designators defined by Eclipse (see Javadoc for
org.eclipse.core.runtime.Platform). Indicates this feature should only be
installed on one of the specified systems. If this attribute is not specified, the feature can be
installed on all systems (portable implementation). This information is used as a hint by the

♦

 Welcome to Eclipse

 Update server site map 822

installation and update support (user can force installation of feature regardless of this
setting).
ws − optional windowing system specification. A comma−separated list of ws designators
defined by Eclipse (see Javadoc for org.eclipse.core.runtime.Platform).
Indicates this feature should only be installed on one of the specified ws systems. If this
attribute is not specified, the feature can be installed on all systems (portable
implementation). This information is used as a hint by the installation and update support
(user can force installation of feature regardless of this setting).

♦

nl − optional locale specification. A comma−separated list of locale designators defined by
Java. Indicates this feature should only be installed on a system running with a compatible
locale (using Java locale−matching rules). If this attribute is not specified, the feature can be
installed on all systems (language−neutral implementation). This information is used as a hint
by the installation and update support (user can force installation of feature regardless of this
setting).

♦

<archive> − identifies referenced "storage" archive (the actual files referenced via the <plugin> or
<data> elements in the feature manifest). The site simply manages archives as a path−to−URL map.
The default Eclipse site implementation does not require the <archive> section to be included in the
site map (site.xml). Any archive reference not explicitly defined as part of an <archive> section is
assumed to be mapped to a url in the form "<archivePath>" relative to the location of the site.xml file.

•

path − required archive path identifier. This is a string that is determined by the feature
referencing this archive and is not otherwise interpreted by the site (other than as a lookup
token).

♦

url − required URL reference to the archive. Can be relative or absolute. If relative, it is
relative to the location of the site.xml file.

♦

<category−def> − an optional definition of a category that can be used by installation and update
support to hierarchicaly organize features

•

name − category name. Is specified as a path of name tokens separated by /♦
label − displayable label. Intended to be translated.♦

<category> − actual category specification for a feature entry•

name − category name Note, that in general the feature.xml manifest documents should specify UTF−8
encoding. For example

<?xml version="1.0" encoding="UTF−8"?>

Translatable text contained in the site.xml can be separated into site<_locale>.properties files using Java
property bundle conventions. Note that the translated strings are used at installation time (ie. do not employ
the plug−in fragment runtime mechanism). The property bundles are located relative to the site.xml location.

Default Site Layout

<site root>/
 site.xml
 features/
 feature archives (eg. org.eclipse.javatools_1.0.1.jar)
 <featureId>_<featureVersion>/ (optional)
 non−plug−in files for feature
 plugins/
 plug−in argives (eg. org.eclipse.ui_1.0.3.jar)

 Welcome to Eclipse

 Default Site Layout 823

Controlling Access

The default Eclipse site implementation provides support for http access with basic user authentication (userid
and password).

Custom access control mechanisms can be added to base Eclipse in one of 2 ways:

by supplying server−side logic on the update server (eg. implementing servlets that compute the
site.xml map, and control access to individual archives based on some user criteria)

•

by supplying a custom concrete implementation of the site object (installed on the client machine,
update server specified <site type="">). The custom concrete site implementation, together
with any server−side logic support the required control mechanisms.

•

Eclipse provides an example demonstrating an implementation of an access mechanism based on feature key
files.

 Welcome to Eclipse

 Controlling Access 824

Building a Rich Client Platform application
While the Eclipse platform is designed to serve as an open tools platform, it is architected so that its
components could be used to build just about any client application. The minimal set of plug−ins needed to
build a rich client application is collectively known as the Rich Client Platform.

Applications that don't require a common resource model can be built using a subset of the platform. These
rich applications are still based on a dynamic plug−in model, and the UI is built using the same toolkits and
extension points. The layout and function of the workbench is under fine−grained control of the plug−in
developer in this case. Up until now, we've been adding all of our visible function to the platform SDK
workbench. In a rich client application, we are responsible for defining the application and its workbench.

When we say that the Rich Client Platform is the minimal set of plug−ins needed to build a platform
application with a UI, we mean that your application need only require two plug−ins, org.eclipse.ui and
org.eclipse.core runtime. However, rich client applications are free to use any API deemed necessary for
their feature set, and can require any plug−ins above the bare minimum. The Map of platform plug−ins is a
useful reference when determing what plug−ins should be required when using various platform API.

The main thing that differentiates a rich client application from the platform workbench is that the application
is responsible for defining which class should be run as the main application. We'll look at how this is done in
the context of an example.

Building a Rich Client Platform application 825

Eclipse Platform
Map of Platform Plug−ins
The Eclipse Platform provides basic support for plug−ins, resources, and the workbench.

The Eclipse Platform itself is divided up into a number of separate plug−ins. The following table shows which
API packages are found in which plug−ins as of Eclipse 3.0. This table is useful for determining which
plug−ins a given plug−in should include as prerequisites.

API Package Required plug−in id Notes

org.apache.tools.ant[.*] org.apache.ant

org.eclipse.ant.core[.*] org.eclipse.ant.core

org.eclipse.compare[.*] org.eclipse.compare

org.eclipse.expressions org.eclipse.expressions

org.eclipse.filebuffers org.eclipse.filebuffers

org.eclipse.core.resources[.*] org.eclipse.core.resources

org.eclipse.core.runtime
org.eclipse.core.runtime.content
org.eclipse.core.runtime.jobs
org.eclipse.core.runtime.preferences
org.osgi[.*]

org.eclipse.core.runtime [1]

org.eclipse.core.boot (obsolete)
org.eclipse.core.runtime.model (obsolete)

org.eclipse.core.runtime.compatibility [2]

org.eclipse.variables org.eclipse.variables

org.eclipse.debug.core[.*] org.eclipse.debug.core

org.eclipse.debug.ui[.*] org.eclipse.debug.ui

org.eclipse.help org.eclipse.help

org.eclipse.help.browser org.eclipse.help.base

org.eclipse.help.ui.browser org.eclipse.help.ui

org.eclipse.jface.action
org.eclipse.jface.dialogs
org.eclipse.jface.operation
org.eclipse.jface.preference
org.eclipse.jface.resource
org.eclipse.jface.util
org.eclipse.jface.viewers
org.eclipse.jface.window
org.eclipse.jface.wizard

org.eclipse.ui [3]

org.eclipse.jface.contentassist
org.eclipse.jface.text (split)
org.eclipse.jface.text.contentassist
org.eclipse.jface.text.formatter
org.eclipse.jface.text.information
org.eclipse.jface.text.link (split)

org.eclipse.jface.text [4]

Eclipse Platform Map of Platform Plug−ins 826

org.eclipse.jface.text.presentation
org.eclipse.jface.text.reconciler
org.eclipse.jface.text.rules
org.eclipse.jface.text.source (split)
org.eclipse.jface.text.templates (split)
org.eclipse.jface.text.templates.persistence

org.eclipse.jface.text (split)
org.eclipse.jface.text.link (split)
org.eclipse.jface.text.source (split)
org.eclipse.jface.text.templates (split)
org.eclipse.text.edits

org.eclipse.text [4]

org.eclipse.search.ui org.eclipse.search

org.eclipse.swt[.*] org.eclipse.ui [5]

org.eclipse.team.core[.*] org.eclipse.team.core

org.eclipse.team.ui[.*] org.eclipse.team.ui

org.eclipse.ui.cheatsheets org.eclipse.ui.cheatsheets

org.eclipse.ui.console[.*] org.eclipse.ui.console

org.eclipse.ui.editors.text
org.eclipse.ui.editors.text.templates
org.eclipse.ui.texteditor (split)

org.eclipse.ui.editors [6]

org.eclipse.ui.forms[.*] org.eclipse.ui.forms

org.eclipse.ui (split)
org.eclipse.ui.about
org.eclipse.ui.actions (split)
org.eclipse.ui.activities
org.eclipse.ui.application
org.eclipse.ui.branding
org.eclipse.ui.commands
org.eclipse.ui.contexts
org.eclipse.ui.dialogs (split)
org.eclipse.ui.help
org.eclipse.ui.intro
org.eclipse.ui.keys
org.eclipse.ui.model (split)
org.eclipse.ui.part (split)
org.eclipse.ui.plugin
org.eclipse.ui.presentations
org.eclipse.ui.progress
org.eclipse.ui.testing
org.eclipse.ui.themes

org.eclipse.ui [7,8]

org.eclipse.ui (split)
org.eclipse.ui.actions (split)
org.eclipse.ui.dialogs (split)
org.eclipse.ui.ide
org.eclipse.ui.model (split)
org.eclipse.ui.part (split)
org.eclipse.ui.views.bookmarkexplorer
org.eclipse.ui.views.framelist

org.eclipse.ui.ide [8]

 Welcome to Eclipse

Eclipse Platform Map of Platform Plug−ins 827

org.eclipse.ui.views.markers
org.eclipse.ui.views.markers.internal
org.eclipse.ui.views.navigator
org.eclipse.ui.views.properties
org.eclipse.ui.views.tasklist
org.eclipse.ui.wizards.datatransfer
org.eclipse.ui.wizards.newresource

org.eclipse.ui.intro.config org.eclipse.ui.intro

org.eclipse.ui.views.contentoutline
org.eclipse.ui.views.properties

org.eclipse.ui.views

org.eclipse.ui.contentassist
org.eclipse.ui.texteditor (split)
org.eclipse.ui.texteditor.link
org.eclipse.ui.texteditor.quickdiff
org.eclipse.ui.texteditor.templates

org.eclipse.ui.workbench.texteditor [6]

org.eclipse.update.core[.*] org.eclipse.update.core

org.eclipse.update.configurator org.eclipse.update.configurator

org.eclipse.update.ui org.eclipse.update.ui

Note 1: Plug−ins needing access to the Eclipse runtime API must list org.eclipse.core.runtime (or
org.eclipse.core.runtime.compatibility) as a prerequisite plug−in.
org.eclipse.core.runtime re−exports API from the OSGi−specific plug−ins (e.g.,
org.eclipse.osgi). The OSGi plug−ins should never be explicitly listed as prerequisites.

Note 2: These pre−3.0 API packages are obsolete and have been moved to the
org.eclipse.core.runtime.compatibility plug−in.

Note 3: Plug−ins needing access to the JFace API must list org.eclipse.ui as a prerequisite plug−in.
org.eclipse.ui re−exports API from the JFace plug−in. The org.eclipse.jface plug−in should
never be explicitly listed as a prerequisite.

Note 4: Some of the JFace text packages are split between the org.eclipse.jface.text and the
org.eclipse.text plug−ins.

Note 5: Plug−ins needing access to the SWT API must list org.eclipse.ui as a prerequisite plug−in.
org.eclipse.ui re−exports API from the SWT plug−in. The org.eclipse.swt plug−in should never
be explicitly listed as a prerequisite.

Note 6: The org.eclipse.ui.texteditor package is split between the
org.eclipse.ui.editors and the org.eclipse.ui.workbench.texteditor plug−ins.

Note 7: Plug−ins needing access to the Workbench UI API must list org.eclipse.ui as a prerequisite
plug−in. org.eclipse.ui re−exports API from the org.eclipse.ui.workbench plug−in. The
org.eclipse.ui.workbench plug−in should never be explicitly listed as a prerequisite.

Note 8: Some of the UI packages are split between the org.eclipse.ui and the
org.eclipse.ui.ide plug−ins.

 Welcome to Eclipse

Eclipse Platform Map of Platform Plug−ins 828

The browser example

We will look at how to build a Rich Client Platform application by going through a simple web browser
example. This example is not included in the R3.0 SDK, but can be downloaded from the project
org.eclipse.ui.examples.rcp.browser. If you are working in Eclipse, you may simply check out the project
from the Eclipse CVS repository (see the Eclipse CVS How−To if you are not familiar with the procedure for
checking out projects from CVS).

To run the RCP Browser example from within the Eclipse SDK:

Load the project org.eclipse.ui.examples.rcp.browser from the Eclipse CVS
repository.

1.

Choose Run>Run... from the workbench menu bar and create a new "Run−time workbench"
configuration named "Browser Example".

2.

On the Arguments tab, select Run a product and select
"org.eclipse.ui.examples.rcp.browser.product" from the drop−down.

3.

On the Plug−ins tab, select Choose plug−ins and fragments to launch from the list so that you can
select which plug−ins are needed.

4.

Press Deselect All to start with a clean slate.5.
Check "org.eclipse.ui.examples.rcp.browser"6.
Press Add Required Plug−ins.7.
Check "org.eclipse.update.configurator"8.
Run or debug the new run configuration.9.

 Welcome to Eclipse

 The browser example 829

http://dev.eclipse.org/viewcvs/index.cgi/org.eclipse.ui.examples.rcp.browser/
http://dev.eclipse.org/cvshowto.html

As you can see, it's hard to tell that this application has anything at all to do with Eclipse (apart from the
default web site that it browses!). There is no resource navigator, no mention of the Eclipse Platform, and
none of the familiar menu bar items from the platform workbench. (The few Eclipse−related features, such as
the window icon, could also be reconfigured if desired.)

Hopefully this example helps clarify what's exciting about the Rich Client Platform. Let's take a look under
the covers so we can learn what's involved in building one. We'll assume that you are familiar with the basic
workbench extensions discussed in Plugging into the workbench.

 Welcome to Eclipse

 The browser example 830

Defining a rich client application

The definition of a rich client application plug−in starts out similarly to the other plug−ins we've been
studying. The only difference in the first part of the markup is that the list of required plug−ins is much
smaller than we've been used to!

<?xml version="1.0" encoding="UTF−8"?>
<?eclipse version="3.0"?>
<plugin
 id="org.eclipse.ui.examples.rcp.browser"
 name="%pluginName"
 version="3.0.0"
 provider−name="%providerName">

 <runtime>
 <library name="browser.jar">
 </library>
 </runtime>
 <requires>
 <import plugin="org.eclipse.core.runtime"/>
 <import plugin="org.eclipse.ui"/>
 </requires>

Up to now, we've contributed function to the platform workbench by declaring extensions that add elements to
the workbench. In all of the plugin.xml content that we've reviewed so far, we've only looked at individual
contributions to a workbench that is assumed to be there. On the rich client platform, there is no application
already defined. Your rich client plug−in is the one responsible for specifying the class that should be
executed when the platform is started. This is done in the org.eclipse.core.runtime.applications extension.

 <extension
 point="org.eclipse.core.runtime.applications"
 id="app"
 name="%appName">
 <application>
 <run
 class="org.eclipse.ui.examples.rcp.browser.BrowserApp">
 </run>
 </application>
 </extension>

In this extension, we specify the class that should be run when the platform is first started. This class must
implement IPlatformRunnable, which simply means that it must implement a run method. The run method
is responsible for creating the SWT display and starting up a workbench. The class PlatformUI implements
convenience methods for performing these tasks.

 public Object run(Object args) throws Exception {
 Display display = PlatformUI.createDisplay();
 try {
 int code = PlatformUI.createAndRunWorkbench(display,
new BrowserAdvisor());
 // exit the application with an appropriate return code
 return code == PlatformUI.RETURN_RESTART
 ? EXIT_RESTART
 : EXIT_OK;
 } finally {
 if (display != null)
 display.dispose();

 Welcome to Eclipse

 Defining a rich client application 831

 }
 }

The call to createAndRunWorkbench will not return until the workbench is closed. The SWT event loop
and other low−level logistics are handled inside this method. At this stage, it's not so important that you
understand the underlying mechanics in running an SWT application. This code can be copied to your rich
client application with minimal changes. In fact, the hook for you to add your own functionality is the
WorkbenchAdvisor that is passed as an argument when the workbench is created. Let's take a closer look.

Customizing the workbench

The "entry point" for supplying custom workbench behavior is the designation of a WorkbenchAdvisor for
configuring the workbench. Your rich client plug−in should extend this abstract class to provide the
application−specific configuration for the workbench. The browser example does this using the
BrowserAdvisor class.

 ...
 int code = PlatformUI.createAndRunWorkbench(display,
new BrowserAdvisor());
 ...

A workbench advisor is responsible for overriding methods to configure the workbench with its desired layout
and features, such as the action bar items or intro page.

The workbench life−cycle

Life−cycle methods provided by the workbench advisor allow your application to hook into the creation of the
workbench at any point in time and influence the behavior. The following list of advisor life−cycle methods
that can be overridden comes from the javadoc for WorkbenchAdvisor.

initialize − called first; before any windows; use to register things•
preStartup − called second; after initialize but before first window is opened; use to temporarily
disable things during startup or restore

•

postStartup − called third; after first window is opened; use to reenable things temporarily
disabled in previous step

•

postRestore − called after the workbench and its windows have been recreated from a previously
saved state; use to adjust the restored workbench

•

preWindowOpen − called as each window is being opened; use to configure aspects of the window
other than action bars

•

fillActionBars − called after preWindowOpen to configure a window's action bars•
postWindowRestore − called after a window has been recreated from a previously saved state;
use to adjust the restored window

•

postWindowCreate − called after a window has been created, either from an initial state or from a
restored state; used to adjust the window

•

openIntro − called immediately before a window is opened in order to create the introduction
component, if any.

•

postWindowOpen − called after a window has been opened; use to hook window listeners, etc.•
preWindowShellClose − called when a window's shell is closed by the user; use to pre−screen
window closings

•

 Welcome to Eclipse

 Customizing the workbench 832

eventLoopException − called to handle the case where the event loop has crashed; use to inform
the user that things are not well

•

eventLoopIdle − called when there are currently no more events to be processed; use to perform
other work or to yield until new events enter the queue

•

preShutdown − called just after event loop has terminated but before any windows have been
closed; allows the application to veto the shutdown

•

postShutdown − called last; after event loop has terminated and all windows have been closed; use
to deregister things registered during initialize

•

As you can see, a rich client application has a lot of control over how the workbench is configured and
implemented. In the browser example, the primary function of the BrowserAdvisor is to configure the action
bars with menu items appropriate for a browser. This is done in the fillActionBars method:

 public void fillActionBars(IWorkbenchWindow window, IActionBarConfigurer configurer, int flags) {
 ...
 BrowserActionBuilder builder = new BrowserActionBuilder(window);
 getWorkbenchConfigurer().getWindowConfigurer(window).setData(BUILDER_KEY, builder);
 builder.fillActionBars(configurer, flags);
 }

In this method, the workbench is configured with a specialized action builder. This action builder is used to
fill the action bars of the workbench. We'll look at the details for how the actions are specified in Defining the
actions. For now, we are focusing on how we configure the workbench.

Note the use of the getWorkbenchConfigurer() method above. The IWorkbenchConfigurer and
IWorkbenchWindowConfigurer are used in conjunction with the WorkbenchAdvisor to customize the
window. These classes allow you to override many aspects of workbench creation at different levels. For
example, the IWorkbenchWindowConfigurer defines protocol that assumes a particular configuration of
controls in the workbench window, such an action bar, status line, perspective bar, cool bar, etc. Its protocol
allows you customize and populate these items. The IWorkbenchConfigurer operates at a higher level,
allowing you to store application−specific data with the workbench. The WorkbenchAdvisor provides access
to these configurers in the life−cycle methods noted above. Lower level methods inside WorkbenchAdvisor
may be overridden to completely replace default behavior. For example, your workbench advisor could
override the method that creates the SWT controls in the window in order to provide a completely different
implementation for the main window.

In other words, there are many ways to customize the workbench and several different levels at which these
techniques can be used. The javadoc for WorkbenchAdvisor, IWorkbenchConfigurer, and
IWorkbenchWindowConfigurer includes a complete description of the available protocol. See also the
complete implementation of BrowserAdvisor for comments on alternate implementations.

Defining the actions

The primary customization provided by the BrowserAdvisor in the browser example is the designation of the
action bar content for the workbench window:

 public void fillActionBars(IWorkbenchWindow window, IActionBarConfigurer configurer, int flags) {
 ...
 BrowserActionBuilder builder = new BrowserActionBuilder(window);
 getWorkbenchConfigurer().getWindowConfigurer(window).setData(BUILDER_KEY, builder);
 builder.fillActionBars(configurer, flags);

 Welcome to Eclipse

 Defining the actions 833

 }

Let's take a closer look at how these actions are defined in the BrowserActionBuilder. In particular, let's look
at the actions that are handled by the browser view.

private void makeActions() {
 ...
 backAction = new RetargetAction("back", "&Back");
 backAction.setToolTipText("Back");
 backAction.setImageDescriptor(images.getImageDescriptor(ISharedImages.IMG_TOOL_BACK));
 window.getPartService().addPartListener(backAction);

 forwardAction = new RetargetAction("forward", "&Forward");
 forwardAction.setToolTipText("Forward");
 forwardAction.setImageDescriptor(images.getImageDescriptor(ISharedImages.IMG_TOOL_FORWARD));
 window.getPartService().addPartListener(forwardAction);

 stopAction = new RetargetAction("stop", "Sto&p");
 stopAction.setToolTipText("Stop");
 window.getPartService().addPartListener(stopAction);

 refreshAction = new RetargetAction("refresh", "&Refresh");
 refreshAction.setToolTipText("Refresh");
 window.getPartService().addPartListener(refreshAction);
 ...
 }

The actions are defined as retargetable actions so that individual views can implement the handler actions.
The BrowserView associates its handler actions with the window's retargetable actions when it creates the
controls for the view:

 private Browser createBrowser(Composite parent, final IActionBars actionBars) {

 ...
 actionBars.setGlobalActionHandler("back", backAction);
 actionBars.setGlobalActionHandler("forward", forwardAction);
 actionBars.setGlobalActionHandler("stop", stopAction);
 actionBars.setGlobalActionHandler("refresh", refreshAction);
 ...
 }

These actions are created when the view is first created.

 private Action backAction = new Action("Back") {
 public void run() {
 browser.back();
 }
 };

See Retargetable actions for a complete discussion of retargetable actions and how they are defined and
implemented.

 Welcome to Eclipse

 Defining the actions 834

Making UI contributions

So far, we've seen that the main difference between a rich client platform plug−in and an Eclipse SDK
plug−in is that the rich client plug−in is responsible for specifying the class that should be run when the
platform is started. This class creates and runs a workbench window that is configured appropriately. What
else is different about a rich client application? Not much, actually.

Once the infrastructure for the application workbench is in place, the techniques for adding function to the
workbench are the same as those we used when we were extending the platform SDK workbench. The
workbench UI extension points are used to add views, editors, menus, and all of the other contributions we
know and love. In the case of the browser example, we'll be adding extensions for a perspective and a couple
of views.

We were introduced to these extensions in Plugging into the workbench. For completeness, we'll take a look
at how the browser example uses these extensions, but we'll assume that we already have a working
knowledge of these concepts.

Adding the perspective

When a rich client application uses the WorkbenchAdvisor as the primary means for customizing the
workbench, it must supply a perspective that is shown in the workbench window. This perspective must be
identified in the application's workbench advisor class. The following is specified in the BrowserAdvisor
class:

 public String getInitialWindowPerspectiveId() {
 return BrowserApp.BROWSER_PERSPECTIVE_ID;
 }

While BrowserApp defines:

 public static final String PLUGIN_ID = "org.eclipse.ui.examples.rcp.browser";
 public static final String BROWSER_PERSPECTIVE_ID = PLUGIN_ID + ".browserPerspective";

The corresponding perspective is defined in the browser plug−in's manifest:

 <extension
 point="org.eclipse.ui.perspectives">
 <perspective
 id="org.eclipse.ui.examples.rcp.browser.browserPerspective"
 name="%perspectives.browser.name"
 class="org.eclipse.ui.examples.rcp.browser.BrowserPerspectiveFactory"
 fixed="true"/>
 </extension>

The BrowserPerspectiveFactory is responsible for laying out the views appropriately.

 public void createInitialLayout(IPageLayout layout) {
 layout.addView(BrowserApp.BROWSER_VIEW_ID, IPageLayout.RIGHT, .25f, IPageLayout.ID_EDITOR_AREA);
 layout.addPlaceholder(BrowserApp.HISTORY_VIEW_ID, IPageLayout.LEFT, .3f, IPageLayout.ID_EDITOR_AREA);
 IViewLayout historyLayout = layout.getViewLayout(BrowserApp.HISTORY_VIEW_ID);
 historyLayout.setCloseable(true);
 layout.setEditorAreaVisible(false);

 Welcome to Eclipse

 Making UI contributions 835

 }

The browser perspective defines two views (one visible, with a placeholder for the other), and makes the
editor area invisible. For a complete discussion of perspectives and their corresponding layout, see
Perspectives.

Adding views

The browser example defines two views in its workbench. One view shows the browser content and the other
displays the history of visited links. We first saw these views when they were added to the browser's
perspective:

 public void createInitialLayout(IPageLayout layout) {
layout.addView(BrowserApp.BROWSER_VIEW_ID, IPageLayout.RIGHT, .25f, IPageLayout.ID_EDITOR_AREA);
 layout.addPlaceholder(BrowserApp.HISTORY_VIEW_ID, IPageLayout.LEFT, .3f, IPageLayout.ID_EDITOR_AREA);
 IViewLayout historyLayout = layout.getViewLayout(BrowserApp.HISTORY_VIEW_ID);
 historyLayout.setCloseable(true);
 layout.setEditorAreaVisible(false);
 }

The corresponding views are also defined in the browser plug−in's manifest:

 <extension
 point="org.eclipse.ui.views">
 <category
 id="org.eclipse.ui.examples.rcp.browser"
 name="%views.category.name"/>
 <view
 id="org.eclipse.ui.examples.rcp.browser.browserView"
 name="%views.browser.name"
 icon="icons/eclipse.gif"

class="org.eclipse.ui.examples.rcp.browser.BrowserView"
 category="org.eclipse.ui.examples.rcp.browser"
 allowMultiple="true"/>
 <view
 id="org.eclipse.ui.examples.rcp.browser.historyView"
 name="%views.history.name"
 icon="icons/eclipse.gif"

class="org.eclipse.ui.examples.rcp.browser.HistoryView"
 category="org.eclipse.ui.examples.rcp.browser"/>
 </extension>

The BrowserView and HistoryView create the necessary SWT controls for showing the browser content and
history. The implementation of these views is no different for rich client plug−ins, so we won't review them
here. See the example classes and org.eclipse.ui.views for more information.

 Welcome to Eclipse

 Adding views 836

Reference
API Reference•
Extension Points Reference•
OSGi API Reference•
Other reference information

Runtime options♦
Starting Eclipse from Java♦
API rules of engagement♦
Naming Conventions♦
Glossary of Terms♦
Map of Platform Plug−ins♦
Plug−in Manifest♦
Project Description File♦
Tips for making user interfaces accessible♦
Pre−built documentation index♦
Installing the stand−alone help system♦
Installing the help system as an infocenter♦
Help System Preferences♦
How to write an Eclipse Installer♦
About.ini file format♦
Plug−in archives♦
Feature manifest♦
Feature archives♦
Update server site map♦
Update policy control♦
Running update manager from command line♦

•

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3 PREV NEXT FRAMES NO FRAMES

OSGi Service Platform Specification Release 3 API

Packages
org.osgi.framework

org.osgi.service.cm

org.osgi.service.device

org.osgi.service.http

org.osgi.service.io

org.osgi.service.jini

org.osgi.service.log

org.osgi.service.metatype

Reference 837

org.osgi.service.packageadmin

org.osgi.service.permissionadmin

org.osgi.service.prefs

org.osgi.service.provisioning

org.osgi.service.startlevel

org.osgi.service.upnp

org.osgi.service.url

org.osgi.service.useradmin

org.osgi.service.wireadmin

org.osgi.util.measurement

org.osgi.util.position

org.osgi.util.tracker

org.osgi.util.xml

Overview Package Class Tree Serialized Deprecated Index Help OSGi Service Platform
Release 3 PREV NEXT FRAMES NO FRAMES

Copyright (c) OSGi Alliance (2000, 2003). All Rights Reserved.

 Welcome to Eclipse

Reference 838

Other Reference Information
The following specifications, white papers, and design notes describe various aspects of the Eclipse Platform.

Basic platform information

Runtime options•
Starting Eclipse from Java•
API Rules of Engagement•
Naming Conventions•
Glossary of terms•
Map of Platform Plug−ins•
Plug−in Manifest•
Project Description File•

User interface information

Tips for making user interfaces accessible•

Help information

Pre−built documentation index•
Installing the stand−alone help system•
Installing the help system as an infocenter•
Help system preferences•

Product install and configuration information

How to write an Eclipse Installer•
About.ini File Format•
Plug−in archives•
Feature manifest•
Feature archives•
Update server site map•
Update policy control•
Running update manager from command line•

Eclipse.org articles index

The eclipse corner site contains technical articles about many topics of interest. Check the index regularly for
the latest technical information regarding Eclipse.

 Other Reference Information 839

http://www.eclipse.org/articles/index.html

The Eclipse runtime options
Last modified 23:15 Monday June 14, 2004

The Eclipse platform is highly configurable. Configuration input takes the form of command line arguments
and System property settings. In many cases the command line arguments are simply short cuts for setting the
related System properties. In fact, there are many more System property settings than command line
arguments.

Command line arguments

Listed below are the command line arguments processed by various parts of the Eclipse runtime. Many of
these values can also be specified using System properties either on the command line using −D VM
arguments or by specifying there values in a config.ini file. Using this latter technique it is possible to
customize your Eclipse without using command line arguments at all.

For each argument in the list, its corresponding System property key is given (in {}). Also given is the Eclipse
runtime layer in which the command line argument is processed (in ()). This is useful for people replacing
parts of the runtime to suit special needs.

−application <id> (Runtime)
equivalent to setting eclipse.application to <id>

−arch <architecture> (OSGi)
equivalent to setting osgi.arch to <architecture>

−configuration <location> (Main)
equivalent to setting osgi.configuration.area to <location>

−console [port] (OSGi) NEW
equivalent to setting osgi.console to [port] or the empty string if the default port is to be used (i.e.,
when the port is not specified)

−consoleLog (Runtime)
equivalent to setting eclispe.consoleLog to "true"

−data <location> (OSGi)
equivalent to setting osgi.instance.area to <location>

−debug [options file] (OSGi)
equivalent to setting osgi.debug to [options file] or the empty string to simply enable debug (i.e., if the
options file location is not specified)

−dev [entries] (OSGi)
equivalent to setting osgi.dev to [entries] or the empty string to simply enable dev mode (i.e., if
entries are not specified)

−endSplash <command> (Main)
specifies the command to use to take down the splash screen. Typically supplied by the Eclipse
executable.

−feature <feature id> (Runtime)
equivalent to setting eclipse.product to <feature id>

−framework <location> (Main) NEW
equivalent to setting osgi.framework to <location>

−initialize (Main)
initializes the configuration being run. All runtime related data structures and caches are refreshed.
Any user/plug−in defined configuration data is not purged. No application is run, any product

The Eclipse runtime options 840

specifications are ignored and no UI is presented (e.g., the splash screen is not drawn)
−install <location> (Main)

equivalent to setting osgi.install.area to <location>
−keyring <location> (Runtime)

the location of the authorization database on disk. This argument has to be used together with the
−password argument.

−nl <locale> (OSGi)
equivalent to setting osgi.nl to <locale>

−noLazyRegistryCacheLoading (Runtime)
equivalent to setting eclipse.noLazyRegistryCacheLoading to "true"

−noRegistryCache (Runtime)
equivalent to setting eclipse.noRegistryCache to "true"

−noSplash (Executable, Main)
controls whether or not the splash screen is shown

−os <operating system> (OSGi)
equivalent to setting osgi.os to <operating system>

−password <password> (Runtime)
the password for the authorization database

−pluginCustomization <location> (Runtime)
equivalent to setting eclipse.pluginCustomization to <location>

−product <id> (OSGi) NEW
equivalent to setting eclipse.product to <id>

−showSplash <command> (Main)
specifies the command to use to show the splash screen. Typically supplied by the Eclipse executable.

−user <location> (OSGi) NEW
equivalent to setting osgi.user.area to <location>

−vm <path to java executable> (Executable, Main) NEW
when passed to the Eclipse executable, this option is used to locate the Java VM to use to run Eclipse.
It must be the full filesystem path to an appropriate Java executable. If not specified, the Eclipse
executable uses a search algorithm to locate a suitable VM. In any event, the executable then passes
the path to the actual VM used to Java Main using the −vm argument. Java Main then stores this
value in eclipse.vm.

−vmargs [vmargs*] (Executable, Main) NEW
when passed to the Eclipse, this option is used to customize the operation of the Java VM to use to
run Eclipse. If specified, this option must come at the end of the command line. Even if not specified
on the executable command line, the executable will automatically add the relevant arguments
(including the class being launched) to the command line passed into Java using the −vmargs
argument. Java Main then stores this value in eclipse.vmargs.

−ws <window system> (OSGi)
equivalent to setting osgi.ws to <window system>

Obsolete command line arguments

The following command line arguments are no longer relevant or have been superceded and are consumed by
the runtime and not passed on to the application being run to maintain backward compatibility. .

−boot
see −configuration

−classLoaderProperties
no longer relevant

 Welcome to Eclipse

Obsolete command line arguments 841

−firstUse
no longer relevant

−newUpdates
no longer relevant

−noPackagePrefixes
no longer relevant

−noUpdate
no longer relevant

−plugins
no longer relevant

−update
no longer relevant

Others

The following command line arguments are defined by various Eclipse plug−ins and are only supported if the
defining plug−in is installed, resolved and activated.

−noVersionCheck (workbench)
<description>

−perspective (workbench)
<description>

−refresh (org.eclipse.core.resources)
<description>

−showLocation (org.eclipse.ui.ide.workbench)
<description>

−allowDeadlock
<description>

System properties

The following System properties are used by the Eclipse runtime. Note that those starting with "osgi" are
specific to the OSGi framework implementation while those starting with "eclipse" are particular to the
Eclipse runtime layered on top of the OSGi framework.

Many of these properties have command line equivalents (see the command line arguments section and the
value in braces {}). Users are free to use either command line or property settings to specify a value.
Properties can be set in the following ways:

use −DpropName=propValue as a VM argument to the Java VM•
set the desired property in the config.ini file in the appropriate configuration area•

eclipse.application {−application}
the identifier of the application to run. The value given here overrides any application defined by the
product (see eclipse.product) being run

eclipse.commands
sdf

eclipse.consoleLog
if "true", any log output is also sent to Java's System.out (typically back to the command shell if any).
Handy when combined with −debug

 Welcome to Eclipse

Others 842

eclipse.debug.startupTime
the time in milliseconds when the Java VM for this session was started

eclipse.exitcode
<description>

eclipse.exitdata
<description>

eclipse.manifestConverter
the class name of the manifest converter class to use when converting legacy plugin.xml files to
manifest.mf files

eclipse.noExtensionMunging
if "true", legacy registry extension are left as−is. By default such extensions are updated to use the
new extension point ids found in Eclipse 3.0.

eclipse.noLazyRegistryCacheLoading {−noLazyRegistryCacheLoading}
if "true", the platform's plug−in registry cache loading optimization is deactivated. By default,
configuration elements are loaded from the registry cache (when available) only on demand, reducing
memory footprint. This option forces the registry cache to be fully loaded at startup.

eclipse.noRegistryCache {−noRegistryCache}
if "true", the internal extension registry cache is neither read or written

eclipse.pluginCustomization {−pluginCustomization}
the file system location of a properties file containing default settings for plug−in preferences. These
default settings override default settings specified in the primary feature. Relative paths are
interpreted relative to the current working directory for eclipse itself.

eclipse.product {−product}
the identifier of the product being run. This controls various branding information and what
application is used.

eclipse.vm {−vm}
the path to the Java executable used to run Eclipse. This information is used to construct relaunch
command lines.

eclipse.vmargs {−vmargs}
lists the VM arguments used to run Eclipse. This information is used to construct relaunch command
lines.

osgi.adaptor
the class name of the OSGi framework adaptor to use.

osgi.arch {−arch}
see −arch

osgi.baseConfiguration.area
asf

osgi.bundles
The comma−separated list of bundles which are automatically installed and optionally started once
the system is up and running. Each entry is of the form:

 <URL | simple bundle location>[@ [<start−level>] [":start"]]

If the start−level (>0 integer) is omitted then the framework will use the default start level for the
bundle. If the "start" tag is added then the bundle will be marked as started after being installed.
Simple bundle locations are interepreted as relative to the framework's parent directory. The
start−level indicates the OSGi start level at which the bundle should run. If this value is not set, the
system computes an appropriate default.

osgi.configuration.cascaded
if set to "true", this configuration is cascaded to a parent configuration. See the section on locations
for more details.

 Welcome to Eclipse

Others 843

osgi.configuration.area {−configuration}
the configuration location for this run of the platform. The configuration determines what plug−ins
will run as well as various other system settings. See the section on locations for more details.

osgi.configuration.area.default
the default configuration location for this run of the platform. The configuration determines what
plug−ins will run as well as various other system settings. This value (i.e., the default setting) is only
used if no value for the osgi.configuration.area is set. See the section on locations for more details.

osgi.console {−console}
if set to a non−null value, the OSGi console (if installed) is enabled. If the value is a suitable integer,
it is interpreted as the port on which the console listens and directs its output to the given port. Handy
for investigating the state of the system.

osgi.console.class
the class name of the console to run if requested

osgi.debug {−debug}
if set to a non−null value, the platform is put in debug mode. If the value is a string it is interpreted as
the location of the .options file. This file indicates what debug points are available for a plug−in and
whether or not they are enabled. If a location is not specified, the platform searches for the .options
file under the install directory.

osgi.dev {−dev}
if set to the empty string, dev mode is simply turned on. This property may also be set to a
comma−separated class path entries which are added to the class path of each plug−in or a URL to a
Java properties file containing custom classpath additions for a set of plug−ins. For each plug−in
requiring a customized dev time classpath the file will contain an entry of the form

 <plug−in id>=<comma separated list of classpath entries to add>

where plug−in id "*" matches any plug−in not otherwise mentioned.
osgi.framework

the URL location of the OSGi framework. Useful if the Eclipse install is disjoint. See the section on
locations for more details.

osgi.frameworkClassPath
a comma separated list of classpath entries for the OSGi framework implementation. Relative
locations are interpreted as relateve to the framework location (see osgi.framework)

osgi.install.area {−install}
the install location of the platform. This setting indicates the location of the basic Eclipse plug−ins
and is useful if the Eclipse install is disjoint. See the section on locations for more details.

osgi.instance.area {−data}
the instance data location for this session. Plug−ins use this location to store their data. For example,
the Resources plug−in uses this as the default location for projects (aka the workspace). See the
section on locations for more details.

osgi.instance.area.default
the default instance data location for this session. Plug−ins use this location to store their data. For
example, the Resources plug−in uses this as the default location for projects (aka the workspace). This
value (i.e., the default setting) is only used if no value for the osgi.instance.area is set. See the section
on locations for more details.

osgi.manifest.cache
the location where generated manifests are discovered and generated. The default is in the
configuration area but the manifest cache can be stored separately.

osgi.nl {−nl}
the name of the locale on which Eclipse platform will run. NL values should follow the standard Java
locale naming conventions.

 Welcome to Eclipse

Others 844

osgi.os {−os}
the operating system value. The value should be one of the Eclipse processor architecture names
known to Eclipse (e.g., x86, sparc, ...).

osgi.splashLocation
the absolute URL location of the splash screen (.bmp file) to to show while starting Eclipse. This
property overrides any value set in osgi.splashPath.

osgi.splashPath
a comma separated list of URLs to search for a file called splash.bmp. This property is overriden by
any value set in osgi.splashLocation.

osgi.user.area {−user}
the location of the user area. The user area contains data (e.g., preferences) specific to the OS user and
independent of any Eclipse install, configuration or instance. See the section on locations for more
details.

osgi.user.area.default
the default location of the user area. The user area contains data (e.g., preferences) specific to the OS
user and independent of any Eclipse install, configuration or instance. This value (i.e., the default
setting) is only used if no value for the osgi.user.area is set. See the section on locations for more
details.

osgi.ws {−ws}
the window system value. The value should be one of the Eclipse window system names known to
Eclipse (e.g., win32, motif, ...).

osgi.syspath
<xxx still used? fix the name>

Locations

The Eclipse runtime defines a number of locations which give plug−in developers context for reading/storing
data and Eclipse users a control over the scope of data sharing and visibility. Eclipse defines the following
notions of location:

User (−user) {osgi.user.area} [@none, @noDefault, @user.home, @user.dir, filepath, url]
User locations are specific to, go figure, users. Typically the user location is based on the
value of the Java user.home system property but this can be overridden. Information such
as user scoped preferences and login information may be found in the user location.

Install (−install) {osgi.install.area} [@user.home, @user.dir, filepath, url]
An install location is where Eclipse itself is installed. In practice this location is the directory
(typically "eclipse") which is the parent of the startup.jar or eclipse.exe being run. This
location should be considered read−only to normal users as an install may be shared by many
users. It is possible to set the install location and decouple startup.jar from the rest of Eclipse.

Configuration (−configuration) {osgi.configuration.area} [@none, @noDefault, @user.home,
@user.dir, filepath, url]

Configuration locations contain files which identify and manage the (sub)set of an install to
run. As such, there may be many configurations per install. Installs may come with a default
configuration area but typical startup scenarios involve the runtime attempting to find a more
writable configuration location.

Instance (−data) {osgi.instance.area} [@none, @noDefault, @user.home, @user.dir, filepath, url]
Instance locations contain user−defined data artifacts. For example, the Resources plug−in
uses the instance area as the workspace location and thus the default home for projects. Other
plugins are free to write whatever files they like in this location.

 Welcome to Eclipse

Locations 845

While users can set any of these locations, Eclipse will compute reasonable defaults if values are not given.
The most common usecase for setting location is the instance area or, in the IDE context, the workspace. To
run the default Eclipse configuration on a specific data set you can specify:

 eclipse −data c:\mydata

More detail

Locations are URLs. For simplicity, file paths are also accepted and automatically converted to file: URLs.
For better control and convenience, there are also a number of predefined symbolic locations which can be
used. Note that not all combinations of location type and symbolic value are valid. A table below details
which combinations are possible. Since the default case is for all locations to be set, valid and writable, some
plug−ins may fail in other setups even if they are listed as possible. For example, it is unreasonable to expect a
plugin focused on user data (e.g., the Eclipse Resources plug−in) to do much if the instance area is not
defined. It is up to plug−in developers to choose the setups they support and design their function accordingly.

@none
Indicates that the corresponding location should never be set either explicitly or to its default
value. For example, an RCP style application which has no user data may use
osgi.instance.area=@none to prevent extraneous files being written to disk. @none must not
be followed by any additional path segments.

@noDefault
Forces a location to be undefined or explicitly defined (i.e., Eclipse will not automatically
compute a default value). This is useful where you want to allow for data in the
corresponding location but the Eclipse default value is not appropriate. @noDefault must not
be followed by any additional path segments.

@user.home
Directs Eclipse to compute a location value relative to the user's home directory. @user.home
can be followed by additional path segments. In all cases, the string "@user.home" is simply
replaced with the value of the Java "user.home" System property. For example, setting
 osgi.instance.area=@user.home/myWorkspace
results in a value of
 file:/users/bob/myWorkspace

@user.dir
Directs Eclipse to compute a location value relative to the current working directory.
@user.dir can be followed by additional path segments. In all cases, the string "@user.dir" is
simply replaced with the value of the Java "user.dir" System property. For example, setting
 osgi.instance.area=@user.dir/myWorkspace
results in a value of
 file:/usr/share/eclipse/myWorkspace

location/value
supports
default

file/URL @none @noDefault @user.home @user.dir

instance yes yes yes yes yes yes (default)

configuration yes yes yes* yes* yes yes

install no yes no no yes yes

user yes yes yes yes yes yes
* indicates that this setup is technically possible but pragmatically quite difficult to manage. In particular,
without a configuration location the Eclipse runtime may only get as far as starting the OSGi framework.

 Welcome to Eclipse

More detail 846

 Welcome to Eclipse

More detail 847

Starting Eclipse from Java
Last modified 09:00 Wednesday June 23, 2004

The Eclipse Platform makes heavy use of Java class loaders for loading plug−ins. Even the Eclipse Runtime
itself and the OSGi framework need to be loaded by special class loaders. Client programs, such as a Java
main program or a servlet, cannot directly reference any part of Eclipse directly. Instead, a client must use the
EclipseStarter class in org.eclipse.core.runtime.adaptor to start the platform, invoking functionality
defined in plug−ins, and shutting down the platform when done.

Clients that do not need to access any particular function, but just need to start the platform, can use
Main.run() in startup.jar. However, clients that need to invoke specific function should use
EclipseStarter. See the javadoc inside this class for details.

Starting Eclipse from Java 848

Eclipse platform
API rules of engagement
Version 0.15 − Last revised 12:00 May 30, 2001

Here are the rules of engagement for clients of the Eclipse platform API (and other components).

What it means to be API

The Eclipse platform defines API elements for use by its clients, namely ISVs writing plug−ins. These
plug−ins may in turn define API elements for their clients, and so on. API elements are the public face: they
carry a specification about what they are supposed to do, and about how they are intended to be used. API
elements are supported: the Eclipse platform team will fix implementation bugs where there is a deviation
from the specified behavior. Since there is often a high cost associated with breaking API changes, the Eclipse
platform team will also try to evolve API elements gracefully through successive major releases.

How to tell API from non−API

By their very nature, API elements are documented and have a specification, in contrast to non−API elements
which are internal implementation details usually without published documentation or specifications. So if
you cannot find the documentation for something, that's usually a good indicator that it's not API.

To try to draw the line more starkly, the code base for the platform is separated into API and non−API
packages, with all API elements being declared in designated API packages.

API package − a Java package that contains at least one API class or API interface. The names of
API packages are advertised in the documentation for that component; where feasible, all other
packages containing only implementation details have "internal" in the package name. The names of
API packages may legitimately appear in client code. For the Eclipse platform proper, these are:

•

org.eclipse.foo.* − for example, org.eclipse.swt.widgets,
org.eclipse.ui, or org.eclipse.core.runtime

♦

org.eclipse.foo.internal.* − not API; internal implementation packages♦
org.eclipse.foo.examples.* − not API; these are examples♦
org.eclipse.foo.tests.* − not API; these are test suites♦

API class or interface − a public class or interface in an API package, or a public or
protected class or interface member declared in, or inherited by, some other API class or
interface. The names of API classes and interfaces may legitimately appear in client code.

•

API method or constructor − a public or protected method or constructor either declared in,
or inherited by, an API class or interface. The names of API methods may legitimately appear in
client code.

•

API field − a public or protected field either declared in, or inherited by, an API class or
interface. The names of API fields may legitimately appear in client code.

•

Everything else is considered internal implementation detail and off limits to all clients. Legitimate client
code must never reference the names of non−API elements (not even using Java reflection). In some cases, the
Java language's name accessibility rules are used to disallow illegal references. However, there are many
cases where this is simply not possible. Observing this one simple rule avoids the problem completely:

 Eclipse platform API rules of engagement 849

Stick to officially documented APIs. Only reference packages that are documented in the published
API Javadoc for the component. Never reference a package belonging to another component that has
"internal" in its name−−−these are never API. Never reference a package for which there is no
published API Javadoc−−−these are not API either.

•

General rules

The specification of API elements is generated from Javadoc comments in the element's Java source code. For
some types of elements, the specification is in the form of a contract. For example, in the case of methods, the
contract is between two parties, the caller of the method and the implementor of the method. The fundamental
ground rule is:

Honor all contracts. The contracts are described in the published Javadoc for the API elements you
are using.

•

The term "must", when used in an API contract, means that it is incumbent on the party to ensure that the
condition would always be met; any failure to do so would be considered a programming error with
unspecified (and perhaps unpredictable) consequences.

You must honor "must". Pay especially close heed to conditions where "must" is used.•

Other common sense rules:

Do not rely on incidental behavior. Incidental behavior is behavior observed by experiment or in
practice, but which is not guaranteed by any API specification.

•

Do not treat null as an object. Null is more the lack of an object. Assume everything is non−null
unless the API specification says otherwise.

•

Do not try to cheat with Java reflection. Using Java reflection to circumvent Java compiler
checking buys you nothing more. There are no additional API contracts for uses of reflection;
reflection simply increases the likelihood of relying on unspecified behavior and internal
implementation detail.

•

Use your own packages. Do not declare code in a package belonging to another component. Always
declare your own code in your own packages.

•

Calling public API methods

For most clients, the bulk of the Eclipse API takes the form of public methods on API interfaces or classes,
provided for the client to call when appropriate.

Ensure preconditions. Do ensure that an API method's preconditions are met before calling the
method. Conversely, the caller may safely assume that the method's postconditions will have been
achieved immediately upon return from the call.

•

Null parameters. Do not pass null as a parameter to an API method unless the parameter is explicitly
documented as allowing null. This is perhaps the most frequently made programming error.

•

Restricted callers. Do not call an API method that is documented as available only to certain callers
unless you're one of them. In some situations, methods need to be part of the public API for the
benefit of a certain class of callers (often internal); calling one of these methods at the wrong time has
unspecified (and perhaps unpredictable) consequences.

•

Debugging methods. Do not call an API method labelled "for debugging purposes only". For
example, most toString() methods are in this category.

•

 Welcome to Eclipse

 General rules 850

Parameter capture. Do not pass an array, collection, or other mutable object as a parameter to an
API method and then modify the object passed in. This is just asking for trouble.

•

Instantiating platform API classes

Not all concrete API classes are intended to be instantiated by just anyone. API classes have an instantiation
contract indicating the terms under which instances may be created. The contract may also cover things like
residual initialization responsibilities (for example, configuring a certain property before the instance is fully
active) and associated lifecycle responsibilities (for example, calling dispose() to free up OS resources
hung on to by the instance). Classes that are designed to be instantiated by clients are explicitly flagged in the
Javadoc class comment (with words like "Clients may instantiate.").

Restricted instantiators. Do not instantiate an API class that is documented as available only to
certain parties unless you're one of them. In some situations, classes need to be part of the public API
for the benefit of a certain party (often internal); instantiating one of these classes incorrectly has
unspecified (and perhaps unpredictable) consequences.

•

Subclassing platform API classes

Only a subset of the API classes were designed to be subclassed. API classes have a subclass contract
indicating the terms under which subclasses may be declared. This contract also covers initialization
responsibilities and lifecycle responsibilities. Classes that are designed to be subclassed by clients are
explicitly flagged in the Javadoc class comment (with words like "Clients may subclass.").

Restricted subclassers. Do not subclass an API class that is not intended to be subclassed. Treat
these classes as if they had been declared final. (These are sometimes referred to as "soft final"
classes).

•

Calling protected API methods

Calling inherited protected and public methods from within a subclass is generally allowed; however, this
often requires more care to correctly call than to call public methods from outside the hierarchy.

Overriding API methods

Only a subset of the public and protected API methods were designed to be overridden. Each API method has
a subclass contract indicating the terms under which a subclass may override it. By default, overriding is not
permitted. It is important to check the subclass contract on the actual method implementation being
overridden; the terms of subclass contracts are not automatically passed along when that method is
overridden.

Do not override a public or protected API method unless it is explicitly allowed. Unless otherwise
indicated, treat all methods as if they had been declared final. (These are sometimes known as "soft
final" methods). If the kind of overriding allowed is:

•

"implement" − the abstract method declared on the subclass must be implemented by a concrete
subclass
"extend" − the method declared on the subclass must invoke the method on the superclass (exactly
once)
"re−implement" − the method declared on the subclass must not invoke the method on the superclass

 Welcome to Eclipse

 Instantiating platform API classes 851

"override" − the method declared on the subclass is free to invoke the method on the superclass as it
sees fit
Ensure postconditions. Do ensure that any postconditions specified for the API method are met by
the implementation upon return.

•

Proactively check preconditions. Do not presume that preconditions specified for the API method
have necessarily been met upon entry. Although the method implementation would be within its
rights to not check specified preconditions, it is usually a good idea to check preconditions (when
feasible and reasonably inexpensive) in order to blow the whistle on misbehaving callers.

•

Null result. Do not return null as a result from an API method unless the result is explicitly
documented (on the specifying interface or superclass) as allowing null.

•

Return copies. Do not return an irreplaceable array, collection, or other mutable object as the result
from an API method. Always return a copy to avoid trouble from callers that might modify the object.

•

Implementing platform API interfaces

Only a subset of the API interfaces were designed to be implemented by clients. API interfaces have a
contract indicating the terms under which it may be implemented. Interfaces that are designed to be
implemented by clients are explicitly flagged in the Javadoc class comment (with words like "Clients may
implement."). A client may declare a subinterface of an API interface if and only if they are allowed to
implement it.

Restricted implementors. Do not implement an API interface that is documented as available only to
certain parties unless you're one of them. In many situations, interfaces are used to hide internal
implementation details from view.

•

Implementing public API methods

See "Overriding API methods".

Accessing fields in API classes and interfaces

Clients may read API fields, most of which are final. Certain struct−like objects may have non−final public
fields, which clients may read and write unless otherwise indicated.

Null fields. Do not set an API field to null unless this is explicitly allowed.•

Casting objects of a known API type

An object of a known API type may only be cast to a different API type (or conditionally cast using
instanceof) if this is explicitly allowed in the API.

Cast and instanceof. Do not use instanceof and cast expressions to increase what is known about an
object beyond what the API supports. Improper use exposes incidental implementation details not
guaranteed by the API.

•

And, of course, casting any object to a non−API class or interface is always inappropriate.

 Welcome to Eclipse

 Implementing platform API interfaces 852

Not following the rules

Whether done knowingly or unwittingly, there are consequences for transgressing the rules. It might be easier
for all involved if there were API police that would bust you for breaking the rules. However, that is not the
case. For the most part, API conformance operates as an honor system, with each client responsible for
knowing the rules and adhering to them.

The contracts on the API elements delimit the behavior that is supported and sustained. As the Eclipse
platform matures and evolves, it will be the API contracts that guide how this evolution happens. Outside of
these contracts, everything is unsupported and subject to change, without notice, and at any time (even
mid−release or between different OS platforms). Client code that oversteps the above rules might fail on
different versions and patch levels of the platform; or when run on different underlying OSes; or when run
with a different mix of co−resident plug−ins; or when run with a different workbench perspective; and so on.
Indeed, no one is even particularly interested in speculating exactly how any particular transgression might
come back to bite you. To those who choose to ignore the rules, don't say that you weren't warned. And don't
expect much more than a sympathetic "Told you so."

On the other hand, client plug−in code that lives by the above rules should continue to work across different
versions and patch levels of the platform, across different underlying OSes, and should peacefully co−exist
with other plug−ins. If everyone plays by the rules, the Eclipse platform will provide a stable and supported
base on which to build exciting new products.

 Welcome to Eclipse

 Not following the rules 853

Eclipse Platform
Naming Conventions
Last revised June 24, 2002 − version for Eclipse project R2.0

Naming conventions and guidelines for the Eclipse Platform:

Java packages•
Classes and interfaces•
Methods•
Variables•
Plug−ins and extension points•

Java Packages

The Eclipse Platform consists of a collection of Java packages. The package namespace is managed in
conformance with Sun's package naming guidelines; subpackages should not be created without prior
approval from the owner of the package sub−tree. The packages for the Eclipse platform are all subpackages
org.eclipse. The first package name component afterorg.eclipse is called the major package name.
The following major packages oforg.eclipse are assigned in the Eclipse 2.0 release:

org.eclipse.ant[.*] − Ant support
org.eclipse.compare[.*] − Compare support
org.eclipse.core[.*] − Platform core
org.eclipse.debug[.*] − Debug
org.eclipse.help[.*] − Help support
org.eclipse.jdi[.*] − Eclipse implementation of Java Debug Interface (JDI)
org.eclipse.jdt[.*] − Java development tools
org.eclipse.jface[.*] − JFace
org.eclipse.pde[.*] − Plug−in Development Environment
org.eclipse.search[.*] − Search support
org.eclipse.swt[.*] − Standard Widget Toolkit
org.eclipse.team[.*] − Team support and Version and Configuration Management
org.eclipse.tomcat[.*] − Apache tomcat support
org.eclipse.ui[.*] − Workbench
org.eclipse.update[.*] − Update/install
org.eclipse.webdav[.*] − WebDAV support

The following package name segments are reserved:

internal − indicates an internal implementation package that contains no API
tests − indicates a non−API package that contains only test suites
examples − indicates a non−API package that contains only examples

These name are used as qualifiers, and must only appear following the major package name. For example,

org.eclipse.core.internal.resources − Correct usage
org.eclipse.internal.core.resources − Incorrect. internal precedes major
package name.

 Eclipse Platform Naming Conventions 854

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html#367

org.eclipse.core.resources.internal − Incorrect. internal does not
immediately follow major package name.

Aside on how the Eclipse Platform is structured: The Eclipse Platform is divided up into Core and UI.
Anything classified as Core is independent of the window system; applications and plug−ins that depend on
the Core and not on the UI can run headless. The distinction between Core and UI does not align with the
distinction between API and non−API; both Core and UI contain API. The UI portion of the Eclipse Platform
is known as the Workbench. The Workbench is a high−level UI framework for building products with
sophisticated UIs built from pluggable components. The Workbench is built atop JFace, SWT, and the
Platform Core. SWT (Standard Widget Toolkit) is a low−level, OS−platform−independent means of talking to
the native window system. JFace is a mid−level UI framework useful for building complex UI pieces such as
property viewers. SWT and JFace are UI by definition. The Java tooling is a Java IDE built atop the
workbench. End aside.

API Packages API packages are ones that contain classes and interfaces that must be made available to ISVs.
The names of API packages need to make sense to the ISV. The number of different packages that the ISV
needs to remember should be small, since a profusion of API packages can make it difficult for ISVs to know
which packages they need to import. Within an API package, all public classes and interfaces are considered
API. The names of API packages should not containinternal, tests, or examples to avoid confusion
with the scheme for naming non−API packages.

Internal Implementation Packages All packages that are part of the platform implementation but contain no
API that should be exposed to ISVs are considered internal implementation packages. All implementation
packages should be flagged asinternal, with the tag occurring just after the major package name. ISVs
will be told that all packages markedinternal are out of bounds. (A simple text search for
".internal." detects suspicious reference in source files; likewise, "/internal/" is suspicious in .class
files).

Test Suite Packages All packages containing test suites should be flagged astests, with the tag occurring
just after the major package name. Fully automated tests are the norm; so, for example,
org.eclipse.core.tests.resources would contain automated tests for API in
org.eclipse.core.resources. Interactive tests (ones requiring a hands−on tester) should be flagged
with interactive as the last package name segment; so, for example,
org.eclipse.core.tests.resources.interactive would contain the corresponding interactive
tests.

Examples Packages All packages containing examples that ship to ISVs should be flagged asexamples,
with the tag occurring just after the major package name. For example, org.eclipse.swt.examples
would contain examples for how to use the SWT API.

Additional rules:

Package names should contain only lowercase ASCII alphanumerics, and avoid underscore _ or
dollar sign $ characters.

•

Classes and Interfaces

Sun's naming guidelines states

 Welcome to Eclipse

 Classes and Interfaces 855

http://java.sun.com/docs/codeconv/index.html

Class names should be nouns, in mixed case with the first letter of each internal word
capitalized. Try to keep your class names simple and descriptive. Use whole words − avoid
acronyms and abbreviations (unless the abbreviation is much more widely used than the long
form, such as URL or HTML).

Examples:
 class Raster;
 class ImageSprite;

Interface names should be capitalized like class names.

For interface names, we follow the "I"−for−interface convention: all interface names are prefixed with an "I".
For example, "IWorkspace" or "IIndex". This convention aids code readability by making interface
names more readily recognizable. (Microsoft COM interfaces subscribe to this convention).

Additional rules:

The names of exception classes (subclasses of Exception) should follow the common practice of
ending in "Exception".

•

Methods

Sun's naming guidelines states

Methods should be verbs, in mixed case with the first letter lowercase, with the first letter of
each internal word capitalized.

Examples:
 run();
 runFast();
 getBackground();

Additional rules:

The named of methods should follow common practice for naming getters (getX()), setters
(setX()), and predicates (isX(), hasX()).

•

Variables

Sun's naming guidelines states

Except for variables, all instance, class, and class constants are in mixed case with a
lowercase first letter. Internal words start with capital letters. Variable names should not start
with underscore _ or dollar sign $ characters, even though both are allowed.

Variable names should be short yet meaningful. The choice of a variable name should be
mnemonic − that is, designed to indicate to the casual observer the intent of its use.
One−character variable names should be avoided except for temporary "throwaway"
variables. Common names for temporary variables are i, j, k, m, and n for integers; c, d, and
e for characters.

 Welcome to Eclipse

 Methods 856

http://java.sun.com/docs/codeconv/index.html
http://java.sun.com/docs/codeconv/index.html

Examples:
 int i;
 char c;
 float myWidth;

(Note: we are no longer following the convention that prefixes non−constant field names with "f", such as
"fWidget".)

Constants

Sun's naming guidelines states

The names of variables declared class constants and of ANSI constants should be all
uppercase with words separated by underscores ("_").

Examples:
 static final int MIN_WIDTH = 4;
 static final int MAX_WIDTH = 999;
 static final int GET_THE_CPU = 1;

Plug−ins and Extension Points

All plug−ins, including the ones that are part of the Eclipse Platform, like the Resources and Workbench
plug−ins, must have unique identifiers following the same naming pattern as Java packages. For example,
workbench plug−ins are namedorg.eclipse.ui[.*].

The plug−in namespace is managed hierarchically; do not create plug−in without prior approval from the
owner of the enclosing namespace.

Extension points that expect multiple extensions should have plural names. For example, "builders" rather
than "builder".

 Welcome to Eclipse

 Constants 857

http://java.sun.com/docs/codeconv/index.html

Glossary of terms
It can be confusing when one person refers to the same thing with different terms, and downright misleading
if they refer to different things using the same term. That's why it's important to choose the right words when
referring to things in comments, code, and documentation.

Eclipse

Eclipse is the name for the overall project supporting the construction of integrated tools for
developing applications. It represents a collection of related projects that include the Eclipse
Platform, the Java development tools (JDT), and the Plug−in Development Environment
(PDE).

Eclipse Platform

Eclipse Platform is the name for the core frameworks and services upon which plug−in
extensions are created. It provides the runtime in which plug−ins are loaded and run. In order
to use the term with the right degree of (im)precision, it is useful to know some things about
the Platform. First off, the Eclipse Platform itself is not really a true product that would ship
by itself. The Platform's direct consumers are tool builders, or ISVs, since they add the value
to the Eclipse Platform that makes it useful to people.

The Eclipse Platform is divided up into Core and UI. Anything classified as "UI" needs a window
system, whereas things classified as "Core" can run "headless". The UI portion of the Eclipse
Platform is known as the Workbench. The core portion of the Eclipse Platform is simply called the
Platform Core, or Core.

So the Eclipse Platform is just the nucleus around which tool builders build tool plug−ins.

Eclipse SDK

The Eclipse SDK is the Eclipse Platform, JDT, and PDE. In addition to the Platform, the SDK
provides the development tools required to, among other things, enable Eclipse to be a
development environment for itself.

Platform − Short for "Eclipse Platform".

Workbench − Short for "Eclipse Platform UI".

The Workbench is a high−level UI framework for building products with sophisticated UIs
built from pluggable components. The Workbench is built atop JFace, SWT, and the Platform
Core.

Core − Short for "Eclipse Platform Core".

All the UI−free infrastructure of the Eclipse Platform. The major divisions are: platform
runtime and plug−in management, workspaces and resource management, and version and
configuration management.

Runtime − Short for "Eclipse Platform Core Runtime".

 Glossary of terms 858

http://www.eclipse.org/projects/main.html

The lowest level part of the Platform Core, responsible for the plug−in registry and plug−ins.
Note that the Platform Core Runtime does not include workspaces and resources (they're in
the Resources plug−in).

Workspace

A workspace is the general umbrella for managing resources in the Eclipse Platform. Note
that workspaces and resources are an optional part of the Platform; some configurations of the
Platform will not have a workspace.

UI − Short for "Eclipse Platform UI".

All−inclusive term for the UI portion of the Eclipse Platform.

JFace

JFace is the mid−level UI framework useful for building complex UI pieces such as property
viewers. JFace works in conjunction with SWT.

SWT

SWT (Standard Widget Toolkit) is a small, fast widget toolkit with a portable API and a
native implementation. So far, SWT has been ported to Windows, Linux (GTK and Motif
window systems), AIX (Motif), Solaris (Motif), HP−UX (Motif), QNX (Photon) and Mac OS
X (Carbon).

JDT

Java development tools (n.b. "development tools" in lowercase, for legal reasons) adds Java
program development capability to the Eclipse Platform.

PDE

The Plug−in Development Environment adds specialized tools for developing Eclipse
plug−ins.

 Welcome to Eclipse

859

The project description file
Description: When a project is created in the workspace, a project description file is automatically generated
that describes the project. The purpose of this file is to make the project self−describing, so that a project that
is zipped up or released to a server can be correctly recreated in another workspace. This file is always called
".project", and is located as a direct member of the project's content area. The name of the file is exposed
through the static field DESCRIPTION_FILE_NAME on
org.eclipse.core.resources.IProjectDescription.

The name, location, and content of this file are part of the workspace API. This means they are guaranteed
not to change in a way that would break existing users of the file. However, the right to add additional
elements and attributes to the markup is reserved for possible future additions to the file. For this reason,
clients that read the description file contents should tolerate unknown elements and attributes.

Clients that modify, delete, or replace the project description file do so at their own risk. Projects with invalid
or missing description files will not be generally usable. If a project with an invalid description file is
discovered on workspace startup, the project is closed, and it will not be possible to open it until the project
description file has been repaired. The workspace will not generally attempt to automatically repair a missing
or invalid description file. One exception is that missing project description files will be regenerated during
workspace save and on calls to IProject.setDescription.

Modifications to the project description file have mostly the same effect as changing the project description
via IProject.setDescription. One exception is that adding or removing project natures will not
trigger the corresponding nature's configure or deconfigure method. Another exception is that changes to the
project name are ignored.

If a new project is created at a location that contains an existing project description file, the contents of that
description file will be honoured as the project description. One exception is that the project name in the file
will be ignored if it does not match the name of the project being created. If the description file on disk is
invalid, the project creation will fail.

Configuration Markup:

 <!ELEMENT projectDescription (name, comment, projects, buildSpec,
natures, linkedResources)>

 <!ELEMENT name EMPTY>

name − the name of the project. Ignored if it does match the name of the project using this
description. Corresponds to IProjectDescription.getName().

•

 <!ELEMENT comment EMPTY>

comment − a comment for the project. The comment can have arbitrary contents that are not
interpreted by the project or workspace. Corresponds to
IProjectDescription.getComment().

•

 The project description file 860

 <!ELEMENT projects (project)*>
 <!ELEMENT project EMPTY>

projects − the names of the projects that are referenced by this project. Corresponds to
IProjectDescription.getReferencedProjects().

•

 <!ELEMENT buildSpec (buildCommand)*>

 <!ELEMENT buildCommand (name, arguments)>

 <!ELEMENT name EMPTY>

 <!ELEMENT arguments (dictionary?)>

 <!ELEMENT dictionary (key, value)*>

 <!ELEMENT key EMPTY>

 <!ELEMENT value EMPTY>

buildSpec − the ordered list of build commands for this project. Corresponds to
IProjectDescription.getBuildSpec().

•

buildCommand − a single build commands for this project. Corresponds to
org.eclipse.core.resources.ICommand.

•

name − the symbolic name of an incremental project builder. Corresponds to
ICommand.getBuilderName().

•

arguments − optional arguments that may be passed to the project builder. Corresponds to
ICommand.getArguments().

•

dictionary − a list of <key, value> pairs in the argument list. Analagous to java.util.Map.•

 <!ELEMENT natures (nature)*>

 <!ELEMENT nature EMPTY>

natures − the names of the natures that are on this project. Corresponds to
IProjectDescription.getNatureIds().

•

nature − the name of a single natures on this project.•

 <!ELEMENT linkedResources (link)*>

 <!ELEMENT link (name, type, location)>

 <!ELEMENT name EMPTY>

 <!ELEMENT type EMPTY>

 <!ELEMENT location EMPTY>

linkedResources − the list of linked resources for this project.•
link − the definition of a single linked resource.•
name − the name of the linked resource as it appears in the workspace.•

 Welcome to Eclipse

 The project description file 861

type − the resource type. Value values are: "1" for a file, or "2" for a folder.•
location − the file system path of the target of the linked resource. Either an absolute path, or a
relative path whose first segment is the name of a workspace path variable.

•

Examples: The following is a sample project description file. The project has a single nature and builder
configured, and some project references.

<?xml version="1.0" encoding="UTF−8"?>
<projectDescription>
 <name>WinterProject</name>
 <comment>This is a cool project.</comment>
 <projects>
 <project>org.seasons.sdt</project>
 <project>CoolStuff</project>
 </projects>
 <buildSpec>
 <buildCommand>
 <name>org.seasons.sdt.seasonBuilder</name>
 <arguments>
 <dictionary>
 <key>climate</key>
 <value>cold</value>
 </dictionary>
 </arguments>
 </buildCommand>
 </buildSpec>
 <natures>
 <nature>org.seasons.sdt.seasonNature</nature>
 </natures>
</projectDescription>

API Information: The contents of the project description file map to the
org.eclipse.core.resources.IProjectDescription interface. The project description file
can be overwritten by the method IProject.setDescription().

 Welcome to Eclipse

 The project description file 862

Pre−built documentation index
When user searches help contents of a product, the search is performed within a documentation index. By
default, this index is created on the first invocation of help search, but can be pre−built and delivered to the
user with a product. This avoids indexing from occurring on the user machine and lets user obtain first search
results faster.

Building an index for a product

To build an index follow the steps:

build a product, including all documentation plug−ins,•
create an index for a desired locale by running this command:

eclipse −nosplash −application org.eclipse.help.base.indexTool −vmargs −DindexOutput=outputDirectory −DindexLocale=locale

from the directory containing the product. The following arguments need to be set :
outputDirectory − specifies path of the directory where the index is to be saved
locale − specifies locale for which the index will be built

•

For example, running

eclipse −nosplash −application org.eclipse.help.base.indexTool −vmargs −DindexOutput=d:/build/com.my.plugin −DindexLocale=en

will result in file doc_index.zip being saved in the nl/en directory that will be created under
d:/build/com.my.plugin. The zip will contain index of contents of documents that are available to users
when they run the product in the en locale.

Packaging and Installation of pre−built index

Pre−built indices, the doc_index.zip files, need to be packaged as a plug−in. You can choose to use a
plug−in associated with the primary feature, or choose to package the index for each language into separate
fragments.

For example, if product's documentation is available in three languages, say English, German and Simplified
Chinese, a plug−in com.my.plugin can have the following structure:

com.my.plugin/
 plugin.xml
 nl/
 de/
 doc_index.zip
 en/
 doc_index.zip
 zh/
 CN/
 doc_index.zip
 other files of this plugin

The ID of the plugin needs to be specified as a productIndex preference for org.eclipse.help.base plugin. For

Pre−built documentation index 863

plugin in the above example, the plugin_customization.ini file needs to contain the entry

org.eclipse.help.base/productIndex=com.my.plugin

 Welcome to Eclipse

Pre−built documentation index 864

Installing the stand−alone help system
If you are creating an application that is not based on the Eclipse framework, you can still use the Eclipse help
system. Your application can package and install the stand−alone help system, a very small version of Eclipse
that has everything except the help system stripped out of it. Then, your application can make API calls from
its Help menu, or from UI objects, to launch the help browser. The stand−alone help system has all the
features of the integrated help system, except infopops and active help. When an application is not Java based,
or help is required when the application is not running, it is possible to use stand−alone help from a system
shell, a shell script or a desktop shortcut and provide command line options instead of calling Java APIs.

The stand−alone help system allows passing number of options that can be used to customize various aspects
of the help system. The following options are supported:

−eclipsehome eclipseInstallPath − specifies Eclipse installation directory. This directory is a parent
to "plugins" directory and eclipse executable. The option must be provided, when current directory
from which infocenter is launched, is not the same as Eclipse installation directory.

•

−host helpServerHost − specifies host name of the interface that help server will use. It overrides host
name specified the application server plugin preferences.

•

−port helpServerPort − specifies port number that help server will use. It overrides port number
specified the application server plugin preferences.

•

−dir rtl − sets right−to−left rendering direction of help UI in the browser.•
Additionally, most options accepted by Eclipse executable can be passed. They are especially useful
during debugging and for applying customization to Eclipse. For example, passing an option

−nl fr_FR

will start help system in French language instead of a language specified by the machine's locale.

•

Installation/packaging

These steps are for the help system integrator and are not meant to address all the possible scenarios. It is
assumed that all your documentation is delivered as Eclipse plug−ins and, in general, you are familiar with the
eclipse help system.

Download the Eclipse Platform Runtime Binary driver from www.eclipse.org.1.
Install (unzip) the driver under your application directory, for example, d:\myApp. This will create an
eclipse sub−directory, d:\myApp\eclipse that contains the code required for the Eclipse platform
(which includes the help system).

2.

How to call the help classes from Java

Make sure d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar is on your app
classpath. The class you use to start, launch, and shut down the help system is
org.eclipse.help.standalone.Help.

1.

Create an array of String containing options that you want to pass to help system support. Typically,
the eclipsehome option is needed.

String[] options = new String[] { "−eclipsehome", "d:\\myApp\\eclipse" };

2.

Installing the stand−alone help system 865

http://www.eclipse.org/downloads/

In your application, create an instance of the Help class by passing the options. This object should be
held onto until the end of your application.

Help helpSystem = new Help(options);

3.

To start the help system:

helpSystem.start();

4.

To invoke help when needed:

helpSystem.displayHelp();

You can also call help on specific primary TOC files or topics:

helpSystem.displayHelp("/com.mycompany.mytool.doc/toc.xml");
helpSystem.displayHelp("/com.mycompany.mytool.doc/tasks/task1.htm");

5.

To launch context sensitive help, call helpSystem.displayContext(contextId, x, y) where contextId is a
fully qualified context id. The screen coordinates, x and y, are not currently used.

6.

At the end of your application, to shutdown the help system:

helpSystem.shutdown();

7.

How to call the help from command line

The org.eclipse.help.standalone.Help class has a main method that you can use to launch stand−alone help
from a command line. The command line arguments syntax is:

−command start | shutdown | (displayHelp [href]) [−eclipsehome eclipseInstallPath] [−host helpServerHost] [−port helpServerPort] [−dir rtl] [platform options] [−vmargs JavaVMarguments]

A simple way to display help is to invoke

java −classpath d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar org.eclipse.help.standalone.Help −command displayHelp

from within d:\myApp\eclipse directory. To display specific TOC file or topic use

java −classpath d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar org.eclipse.help.standalone.Help −command displayHelp /com.mycompany.mytool.doc/tasks/task1.htm

The calls above to display help will cause help system to start, display help, and keep running to allow a user
to continue browsing help after the command is executed. To control the life cycle of the help system, use
start and shutdown commands, in addition to the displayHelp command. For example, you may call

java −classpath d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar org.eclipse.help.standalone.Help −command start

[Optional] Installing a minimal set of plug−ins

The stand−alone help does not require the entire Eclipse Platform package. It is possible to run the
stand−alone help with the following plug−ins (located in the eclipse\plugins directory):

org.apache.ant
org.apache.lucene
org.eclipse.core.runtime
org.eclipse.help

 Welcome to Eclipse

How to call the help from command line 866

org.eclipse.help.appserver
org.eclipse.help.base
org.eclipse.help.webapp
org.eclipse.osgi
org.eclipse.tomcat
org.eclipse.update.configurator

On Windows and Linux, the following plugins and fragments are required on top of the minimal configuration
to provide robust browser support (an SWT−embedded Internet Explorer on Windows and Mozilla on Linux
or stand−alone system browser on Windows).

org.eclipse.core.expressions
org.eclipse.help.ui
org.eclipse.jface
org.eclipse.swt
org.eclipse.swt.win32 or org.eclipse.swt.gtk
org.eclipse.ui
org.eclipse.ui.workbench

See Help System Preferences for more information on customizing help system.

org.eclipse.help.base preferences

 Welcome to Eclipse

How to call the help from command line 867

Help System Preferences
The Eclipse help system can be configured and branded to suit your product by specifying custom defaults for
number of help preferences.

The Help system itself is divided up into a number of separate plug−ins. These tables shows available
preferences, and which plug−in defines them. Consult Customizing a product on how to override some of
these preferences.

org.eclipse.help plug−in:

Preference
key

Usage Default

baseTOCS

Toc ordering. Ordered list of help TOC's (books) as they
would appear on the bookshelf. All the other TOCS will
be follow these books. Non−present TOC's on this list
will be ignored. Use the location of each TOC as
/pluginId/path/to/toc.xml.

/org.eclipse.platform.doc.user/toc.xml,
/org.eclipse.jdt.doc.user/toc.xml,
/org.eclipse.platform.doc.isv/toc.xml,
/org.eclipse.jdt.doc.isv/toc.xml,
/org.eclipse.pde.doc.user/toc.xml

org.eclipse.help.base plug−in:

Preference key Usage Default

banner
Location of the banner page to display in the top frame
Example:
banner=/org.eclipse.help.webapp/advanced/banner.html

banner_height
Height of the banner frame
Example: banner_height=60

help_home
The page to show in the content area when opening
help. Specify your html page as
/pluginId/path/to/home.html.

/org.eclipse.help.base/doc/help_home.html

linksView
Set to true or false to control the visibility of the related
links view.
Note: this option has no effect in the infocenter.

true

bookmarksView
Set to true or false to control the visibility of the
bookmarks view.
Note: this option has no effect in the infocenter.

true

windowTitlePrefix

Set to true or false to control the title of the browser
window. If true, the title will have a form "Help −
<PRODUCT_NAME>", otherwise the title will be
"<PRODUCT_NAME>", where <PRODUCT_NAME>
is the name of Eclipse product set in the primary feature.

true

loadBookAtOnceLimit

The maximum number of topics a book can have, for
the navigation to be loaded by the browser as one
document. Navigation for larger books is loaded
dynamically, few levels at a time. More topics are
downloaded as necessary, when branches are expanded.

1000

Help System Preferences 868

dynamicLoadDepthsHint

Suggested number of levels in topic navigation
downloaded to the browser for large books. The value
needs to be greater than 0. The actual number of levels
can differ for wide tree if suggested number of levels
contains large number of topics.

3

imagesDirectory

Directory containing images used in the help view.
Images must have the same name as those in the
org.eclipse.help.webapp plug−in. Use the
/pluginID/directory format.

images

advanced.toolbarBackground
CSS background for toolbars. Value is used in browsers
that display advanced help UI.

ButtonFace

advanced.viewBackground
CSS background for navigation views. Value is used in
browsers that display advanced help UI.

Window

advanced.toolbarFont
CSS font for toolbars. Value is used in browsers that
display advanced help UI.

icon

advanced.viewFont
CSS font for navigation views. Value is used in
browsers that display advanced help UI.

icon

basic.toolbarBackground
Background color for toolbars. Value is used in
browsers displaying basic help UI.

#D4D0C8

basic.viewBackground
Background color for navigation views. Value is used in
browsers displaying basic help UI.

#FFFFFF

locales

List of locales that infocenter will recognize and provide
a customized content for; if locales (or languages)
accepted by client browser are not matched with any
locales in this list, the browser will be served content for
default locale − the server locale, or locale specified by
eclipse −nl command line option; if list is not specified,
the browser will be served contents for its preferred
locale; note: not providing this option may result in a
large memory and disk space requirements as
navigations and indexes will be created for each distinct
preferred locale among browsers accessing the
infocenter.
Example: locales=en ja zh_CN zh_TW

productIndex
If pre−built documentation index is provided with the
product, the ID of the plug−in delivering the index must
be specified to the help system here.

always_external_browser

Use embedded when possible (on Windows or Linux),
or always external. Setting to true will force use of
external browser. Option has no effect if embedded
browser is not available on a given platform.

false

default_browser

Default external browser. ID of one of the external web
browsers contributed to org.eclipse.help.base.browser
extension point that help system will use. The browser's
adapter available() method must return true on the
current system.

default dynamically set based on the
browser available on a given system

custom_browser_path Executable path for custom browser C:\Program Files\Internet
Explorer\IEXPLORE.EXE" %1 − on

 Welcome to Eclipse

Help System Preferences 869

Windows,
"mozilla %1" − on other platforms

showDisabledActivityTopics

Help system filters topics from disabled capabilities.
This option controls this behavior and existence of
Show All Topics button.
Accepted values: never, off, on, always
 never − topic from disabled capabilities are not shown
 off − user can choose to show all topics, disabled topics
initially hidden
 on − user can choose to show all topics, all topics
initially shown
 always − topic from disabled capabilities are shown
(filtering disabled)

off

activeHelp

Allows enabling and disabling execution of active help.
The option has no effect in the infocenter setup, where
active help is disabled.
Accepted values:
 true − default active help actions enabled
 false − active help framework disabled

true

org.eclipse.help.appserver plug−in:

Preference
key

Usage Default

port
The port number on which the sever listens for http requests. If the port is 0 and
arbitrary port is picked by the system.

0

host
The host address or name to use for connecting to the server. The default is nothing,
and eclipse will pick up an available local address.

org.eclipse.tomcat plug−in:

Preference keyUsage Default

acceptCount
The maximum queue length for incoming connection requests when all possible
request processing threads are in use. Any requests received when the queue is full
will be refused.

100

maxProcessors
The maximum number of request processing threads to be created by this Connector,
which therefore determines the maximum number of simultaneous requests that can
be handled.

75

minProcessors
The number of request processing threads that will be created when this Connector is
first started. This attribute should be set to a value smaller than that set for
maxProcessors.

5

 Welcome to Eclipse

 org.eclipse.help.appserver plug−in: 870

Installing the help system as an infocenter
You can allow your users to access the help system over the Internet or an intranet, by installing the infocenter
and the documentation plug−ins on a server. Clients view help by navigating to a URL, and the help system is
shown in their web browser. The infocenter help system can be used both for client applications and for web
applications, either of which can have their help accessed remotely. All features of help system except
infopops and active help are supported.

The infocenter help system allows passing number of options that can be used to customize various aspects of
the infocenter. The following options are supported:

−eclipsehome eclipseInstallPath − specifies Eclipse installation directory. This directory is a parent
to "plugins" directory and eclipse executable. The option must be provided, when current directory
from which infocenter is launched, is not the same as Eclipse installation directory.

•

−host helpServerHost − specifies host name of the interface that help server will use. It overrides host
name specified in the application server plugin preferences.

•

−port helpServerPort − specifies port number that help server will use. It overrides port number
specified in the application server plugin preferences.

•

−locales localeList − specifies a list of locales that infocenter will recognize and provide a customized
content for. If the option is not specified, infocenter will build navigation, and index documents for
each preferred locale of the browsers accessing the infocenter. When the option is present, locales
from browser requests will be matched with locales in the list. If browser preferred locale does not
exist in the list, but its language part does, it will be used. Subsequently, additional browser locales in
decreased order of preference will be matched against the list. If none of the browser locales (or its
language part) matches any locale on the list, the client will be served content in the default locale −
server locale or locale passed with −nl option. For example using options

−nl en −locales de en es fr it ja ko pt_BR zh_CN zh_TW

will cause infocenter operating in 10 locales. All other locales will receive content for en locale.

•

−dir rtl − sets right−to−left rendering direction of help UI in the browser.•
−noexec − indicates that Eclipse executable should not be used. You may need to use this option
when running on a platform for which Eclipse executable is not available.

•

Additionally, most options accepted by Eclipse executable can be passed. They are especially useful
during debugging and for applying customization to Eclipse. For example, passing options

−vmargs −Xmx256M

increases memory available to the infocenter and will allow serving a larger book collection.

•

Installation/packaging

These steps are for the help system integrator and are not meant to address all the possible scenarios. It is
assumed that all your documentation is delivered as Eclipse plug−ins and, in general, you are familiar with the
eclipse help system.

Download the Eclipse Platform Runtime Binary driver from www.eclipse.org.1.
Install (unzip) the driver in a directory, d:\myApp. This will create an eclipse sub−directory,
d:\myApp\eclipse that contains the code required for the Eclipse platform (which includes the help
system).

2.

Installing the help system as an infocenter 871

http://www.eclipse.org/downloads/

How to start or stop infocenter from command line

The org.eclipse.help.standalone.Infocenter class has a main method that you can use to launch infocenter from
a command line. The command line arguments syntax is:

−command start | shutdown | [−eclipsehome eclipseInstallPath] [−host helpServerHost] [−locales localeList] [−port helpServerPort] [−dir rtl] [−noexec] [platform options] [−vmargs JavaVMarguments]

To start an infocenter on port 8081 issue a start command by running

java −classpath d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar org.eclipse.help.standalone.Infocenter −command start −eclipsehome d:\myApp\eclipse −port 8081

To shut the infocenter down issue a shutdown command by running

java −classpath d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar org.eclipse.help.standalone.Infocenter −command shutdown −eclipsehome d:\myApp\eclipse

Using the infocenter

Start the web server. Point a web browser to the path "help" web application running on a port specified when
starting the infocenter. On the machine the infocenter is installed, this would be http://localhost:8081/help/.

How to start or stop infocenter from Java

When including infocenter as part of another application, it may be more convenient to start it and stop using
Java APIs instead of using system commands. Follow the steps if it is the case:

Make sure d:\myApp\eclipse\plugins\org.eclipse.help.base_3.0.0\helpbase.jar is on your app
classpath. The class you use to start, and shut down the infocenter
isorg.eclipse.help.standalone.Infocenter.

1.

Create an array of String containing options that you want to pass to the infocenter. Typically, the
eclipsehome and port options are needed.

String[] options = new String[] { "−eclipsehome", "d:\\myApp\\eclipse" , "−port", "8081" };

2.

In your application, create an instance of the Help class by passing the options.

Infocenter infocenter = new Help(options);

3.

To start the help system:

helpSystem.start();

4.

To shut the infocenter down:

helpSystem.shutdown();

5.

Making infocenter available on the web

Eclipse contains a complete infocenter and does not require other server software to run. However, in
unsecure environment like Internet, it is recommended infocenter is not accessed directly by clients, but is
made available through an HTTP server or an application server. Most servers come with modules or servlets
for delegating certain request to other web resources. For example, one may configure a proxy module of
Apache HTTP Server to redirect requests made to http://mycompany.com/myproduct/infocenter to
http://internalserver:8081/help that runs an infocenter. Adding the lines

 Welcome to Eclipse

How to start or stop infocenter from command line 872

LoadModule proxy_module modules/ApacheModuleProxy.dll
ProxyPass /myproduct/infocenter http://internalserver:8081/help
ProxyPassReverse /myproduct/infocenter http://internalserver:8081/help

to conf/httpd.conf file of Apache server running mycompany web site accomplishes this.

Some versions of Apache HTTP server, may contain AddDefaultCharset directive enabled in configuration
file. Remove the directive or replace with

AddDefaultCharset Off

to have browsers display documents using correct character set.

Running multiple instance of infocenter

Multiple instances of infocenter can be run on a machine from one installation. Each started instance must use
its own port and be provided with a workspace, hence −port and −data options must be specified. The
instances can serve documentation from different set of plug−ins, by providing a valid platform configuration
with −configuration option.

If −configuration is not used and configuration directory is shared among multiple infocenter instances,
with overlapping set of locales, it must be ensured that all search indexes are created by one infocenter
instance before another instance is started. Indexes are saved in the configuration directory, and write access is
not synchronized across infocenter processes.

[Optional] Installing a minimal set of plug−ins

The infocenter does not require the entire Eclipse Platform package. It is possible to run the infocenter with
the following plug−ins (located in the eclipse\plugins directory):

org.apache.ant
org.apache.lucene
org.eclipse.core.runtime
org.eclipse.help
org.eclipse.help.appserver
org.eclipse.help.base
org.eclipse.help.webapp
org.eclipse.osgi
org.eclipse.tomcat
org.eclipse.update.configurator

See Help System Preferences for more information on customizing help system.

 Welcome to Eclipse

Running multiple instance of infocenter 873

Eclipse Update Policy Control
Eclipse Update allows users to search for updates to the currently installed features. For each installed feature,
Update uses the embedded URL to connect to the remote server and search for new versions. If there are
updates, Eclipse allows users to initiate the install procedure. After downloading, installing and restarting the
platform, new feature version is ready for use.

In companies with many users of the same Eclipse−based product (typically a commercial one), several
problems can arise from this model:

Updates for very large products (e.g. 500+ plug−ins) are also large. I/T support teams may not like the
idea of hundreds of developers individually downloading 500MEG updates to their individual
machines. In addition to the bandwidth hit, such a large download request may fail, leading to
repeated attempts and increased developers' downtime.

1.

Some companies explicitly don't want the developers downloading updates directly from the Internet.
For example, they can set up a local support team that may not be ready to handle requests related to
the version of the product already available from the provider's update site. They may want to restrict
updates and fixes to the internally approved list. Ideally, they would do that by setting up 'proxy'
update sites on the LAN (behind the firewall).

2.

Once updates are set in the proxy sites as above, administrators need a way of letting users know that
updates are available.

3.

2. Update policy to the rescue

2.1 Support for creating local (proxy) update sites

First step for a product administrator would be to set up a local Eclipse update site on a server connected to
the company's LAN (behind the firewall). The update site would be a subset of the product's update site on the
Internet because it would contain only features and plug−ins related to the updates that the company wants
applied at the moment. Technically, this site would be a regular Eclipse update site with site.xml, feature and
plug−in archives.

Administrators would construct this site in two ways:

Product support teams would make a zip file of the update site readily available for this particular
purpose. Administrators would simply need to download the zip file from the product support web
page using the tool of their choice and unzip it in the local server. This approach is useful for very
large zip files that require modern restartable downloading managers (those that can pick up where
they left off in case of the connection problems).

1.

Eclipse Update provides a tool to mirror remote update sites entirely or allow administrators to select
updates and fixes to download. This mirroring capability would be fully automated and would greatly
simplify administrator's task but it relies on Update network connection support.

2.

2.2 Common update policy control

Since features have the update site URL embedded in the manifest, they are unaware of the local update sites
set up by the administrators. It is therefore important to provide redirection capability. This and other update
policy settings can be set for an Eclipse product by creating an update policy file and configuring Update to
use that file when searching.

Eclipse Update Policy Control 874

The file in question uses XML format and can have any name. The file can be set in
Preferences>Install/Update in the Update Policy field. The text field is empty by default: users may set the
URL of the update policy file. The file is managed by the local administrator and is shared for all the product
installations. Sharing can be achieved in two ways:

If users install the product: users are told to open the preference page and enter the provided URL•
If administrators install the product: administrators edit the file 'plugin_customization.ini' in the
primary product feature and set the default value of the 'updatePolicyFile' property as follows:

org.eclipse.update.core/updatePolicyFile = <URL value>

This will cause all the installations to have this file set by default.

•

The policy file must conform to the following DTD:

<?xml encoding="ISO−8859−1"?>

<!ELEMENT update−policy (url−map)*>
<!ATTLIST update−policy
>

<!ELEMENT url−map EMPTY>
<!ATTLIST url−map
 pattern CDATA #REQUIRED
 url CDATA #REQUIRED
>

url−map

pattern − a string that represents prefix of a feature ID (up to and including a complete ID). A value
of "*" matches all the features.

•

url − a URL of the alternative update site that should be used if the feature ID begins with the pattern.
If the string is emtpy, features matching pattern will not be updateable.

•

This element is used to override Update URLs embedded in feature manifests. When looking for new updates,
Eclipse search will check the update policy (if present) and check if url−map for the matching feature prefix
is specified. If a match is found, the mapped URL will be used instead of the embedded one. This way,
administrators can configure Eclipse products to search for updates in the local server behind the firewall.
Meanwhile, third−party features installed by Eclipse Update will continue to be updated using the default
mechanism because they will not find matches in the policy.

Several url−map elements may exist in the file. Feature prefixes can be chosen to be less or more specific.
For example, to redirect all Eclipse updates, the pattern attribute would be "org.eclipse". Similarly, it is
possible to use a complete feature ID as a pattern if redirection is required on a per−feature basis.

Patterns in the file may be chosen to progressively narrow the potential matches. This may result in multiple
matches for a given feature. In this case, the match with a longest pattern will be used. For example:

<?xml version="1.0" encoding="UTF−8"?>
<update−policy>

 Welcome to Eclipse

2.2 Common update policy control 875

 <url−map pattern="org.eclipse" url="URL1"/>
 <url−map pattern="org.eclipse.jdt" url="URL2"/>
</update−policy>

In the case above, all Eclipse features will be updated from URL1, except org.eclipse.jdt that will use
URL2.

Update policy files do not contain translatable strings and therefore do not require special NL handling. In
general, the files should use UTF−8 encoding.

2.3 Automatic discovery of updates

Automatic updates will allow Eclipse to run update search on a specified schedule (on each startup (the
default), once a day, once a week etc.).

3. Summary

Here is the complete sequence of steps that comprise the solution:

Administrator allocates a server on the company LAN for hosting local product updates. Initially it
contains no update sites. The machine must have an HTTP server running.

1.

Administrator sets up an update policy file on that server and instructs all users to set the update
policy preference the provided URL.

2.

As the product provider ships updates and fixes on their update sites, administrator downloads
supported updates onto the local server.

3.

Automatic update executed at the scheduled frequency when the client's product is up picks up the
local updates and notifies the user

4.

User chooses to install the discovered updates5.

 Welcome to Eclipse

2.3 Automatic discovery of updates 876

Running update manager from command line
In addition to the install wizard and configuration dialog, it is possible to perform update manager operations
by running eclipse in a command line mode. You can install, update, enable, disable features, or list installed
features, or features available on an update site, or adding an extension product site to the local install, etc.
You can also, mirror chosen features from an update site to a local update site location.

Launch eclipse as follows, where [] means optional argument and arguments in italics must be provided by
the user.

Installing a feature from a remote site:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command install
 −featureId feature_id
 −version version
 −from remote_site_url
 [−to target_site_dir]

Example: java −cp startup.jar org.eclipse.core.launcher.Main −application
org.eclipse.update.core.standaloneUpdate −command install −from
http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/platform−update−home/optionalSite/
−featureId com.example.root −version 1.0.0

Updating an existing feature or all features:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command update
 [−featureId feature_id]
 [−version version]

Enabling (configuring) a specified feature:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command enable
 −featureId feature_id
 −version version
 [−to target_site_dir]

Disabling (unconfiguring) a specified feature:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command disable
 −featureId feature_id
 −version version
 [−to target_site_dir]

Uninstalling a specified feature:
java −cp startup.jar org.eclipse.core.launcher.Main

Running update manager from command line 877

 −application org.eclipse.update.core.standaloneUpdate
 −command uninstall
 −featureId feature_id
 −version version
 [−to target_site_dir]

In all the above commands where the −to target_site_dir is specified, corresponding configured target site at
given directory will be used. If it is not specified, then the default local product site is used.

If you only need to verify if the operation would succeed, in the above commands, (i.e. it satisfies the
constraints), without actually performing it, then add −verifyOnly=true to the list of arguments.

Searching a remote site, listing all available features for install:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command search
 −from remote_site_url

Listing installed features:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command listFeatures
 −from local_site_dir

The features are listed as:
 Site: site url
 Feature: id version enabled (or disabled)

Adding a local site with more features:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command addSite
 −from local_site_dir

Removing a local site:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command removeSite
 −to local_site_dir

Mirroring feature(s) from a remote site:
java −cp startup.jar org.eclipse.core.launcher.Main
 −application org.eclipse.update.core.standaloneUpdate
 −command mirror
 −from remote_site_url
 −to target_site_dir
 [−featureId feature_id]
 [−version version]
 [−mirrorURL mirror_site_url]

If −mirrorURL is specified, an update policy will be generated in <target_site_dir>/policy.xml file. The

 Welcome to Eclipse

Running update manager from command line 878

resulting policy.xml maps all features from the mirror site to the specified URL. The policy.xml can be used
as is, or its fragments can be included into custom designed policy file.

The return code for each command is either 0 (success) or 1 (failure).

Additionally, most options accepted by Eclipse executable can be passed. They are especially useful during
debugging and for specifying target environment for installed features. For example, passing option −data
some_path will set the workspace to some_path.

 Welcome to Eclipse

Running update manager from command line 879

http://dev.eclipse.org/help21/topic/org.eclipse.platform.doc.user/tasks/running_eclipse.htm

Migration
Introduction•
FAQ•
Incompatibilities•
Adopting 3.0 Mechanisms and API•

Migration 880

Eclipse 3.0 Plug−in Migration Guide
This guide covers migrating Eclipse 2.1 (or earlier) plug−ins to Eclipse 3.0.

One of the goals of Eclipse 3.0 was move Eclipse forward while remaining compatible with previous versions
to the greatest extent possible. That is, plug−ins written against the Eclipse 2.1 APIs should continue to work
in 3.0 in spite of the API changes.

The key kinds of compatibility are API contract compatibility and binary compatibility. API contract
compatibility means that valid use of 2.1 APIs remains valid for 3.0, so there is no need to revisit working
code. Binary compatibility means that the API method signatures, etc. did not change in ways that would
cause existing compiled ("binary") code to no longer link and run with the new 3.0 libraries.

While every effort way made to avoid breakage, there are a few areas of incompatibility. This document
describes the areas where Eclipse changed in incompatible ways between 2.1 and 3.0, and provides
instructions for migrating 2.1 plug−ins to 3.0.

Eclipse 3.0 Plug−in Migration FAQ•
Incompatibilities between Eclipse 2.1 and 3.0•
Adopting 3.0 mechanisms and API•

Eclipse 3.0 Plug−in Migration Guide 881

Eclipse 3.0 Plug−in Migration FAQ
Why did Eclipse API change in incompatible ways between 2.1 and 3.0?

Eclipse 3.0 is an evolution of Eclipse 2.1. There were a few areas where we could not evolve Eclipse while
maintaining perfect compatibility across the board. The four main sources of incompatibilities are:

The Eclipse 3.0 runtime is now based on OSGi.•
The Eclipse 3.0 UI workbench is now split into RCP and IDE parts.•
The Xerces plug−in has been dropped from 3.0.•
Eclipse 3.0 performs more work in background threads.•

The list of specific incompatibilities.

Will a 2.1 plug−in work in Eclipse 3.0?

Yes, except in a few cases. If a plug−in relies only on Eclipse 2.1 APIs, then it will continue to work in 3.0.
The very few exceptions are places in the API where the changes between 2.1 and 3.0 could not be done in
any compatible way; if a plug−in uses one of these, it will not work.

My 2.1 plug−in makes use of classes in internal packages. Will it still work in Eclipse 3.0?

If a plug−in relies on internal classes or behavior not specified in the Eclipse 2.1 API, it's impossible to make
blanket claims one way or the other about whether the plug−in might work in 3.0. You'll need to try it.

How do I run my plug−in in Eclipse 3.0 without touching it?

Install your 2.1 plug−in in the eclipse/plugins/ subdirectory of an Eclipse 3.0−based product and restart
Eclipse. Eclipse will recognize that the plug−in is an unconverted 2.1 plug−in (by the header on the
plugin.xml) and automatically make adjustments to compensate for changes to Platform plug−in dependencies
and renamed Platform extension points.

Will a 2.1 plug−ins need to be changed to compile properly in Eclipse 3.0?

Yes in all cases. There are certain differences between Eclipse 2.1 and 3.0 that necessitate changes to all
plug−ins going forward. If you have a plug−in written for 2.1 and wish to recompile it, it needs to be migrated
to 3.0 before it can be developed further for 3.0.

How do I migrate my plug−in to Eclipse 3.0?

Once you've loaded (or imported) your plug−in project into an Eclipse 3.0 workspace, use PDE Tools >
Migrate to 3.0 (project context menu) to convert the plug−in's manifest to the 3.0 format and automatically
adjust the list of required Platform plug−ins and references to Platform extension points that were renamed. In
most cases, the code for the plug−in should then compile and run successfully. The code for the plug−in
should then be reviewed to make sure that it is not dependent on one of the areas of incompatible API change.

Can I trust that a plug−in will have compile errors or warnings if it relies on API that has changed
incompatibly?

No. There are some areas of incompatible change that do not get flagged by the Java compiler.

Eclipse 3.0 Plug−in Migration FAQ 882

Can I safely ignore warnings in the code coming from use of deprecated API?

Yes, in the short term. Wherever possible, obsolete APIs are marked as deprecated rather than being deleted
outright and continue to work (albeit possibly only under limited conditions). So while there is usually no
urgency to get off the deprecated API, the fact that it is now considered obsolete means that there is now a
better way to do something. Plug−ins should be weaned off all usage to deprecated API at the earliest
convenience.

Once I migrate my plug−in to Eclipse 3.0, can I still install and run the resulting binary plug−in in
Eclipse 2.1?

No. This is not supported, and probably wouldn't work due to the renamed extension points.

What is the purpose of org.eclipse.core.runtime.compatibility?

The move in 3.0 to an OSGi−base runtime made some of the existing core runtime APIs obsolete. Wherever
possible, obsolete APIs in the org.eclipse.core.runtime.* packages, along with the implementation behind it,
were moved from the org.eclipse.core.runtime plug−in to a new org.eclipse.core.runtime.compatibility
plug−in. By default, newly−created plug−ins depend on org.eclipse.core.runtime and are expected to use only
non−deprecated runtime APIs. On the other hand, existing plug−ins migrating from 2.1 will depend by default
on org.eclipse.core.runtime.compatibility and can make use of the old APIs as well (the
org.eclipse.core.runtime.compatibility plug−in re−exports APIs of org.eclipse.core.runtime). While the
org.eclipse.core.runtime.compatibility plug−in is likely to be included in Eclipse IDE configurations, it's dead
wood that's unlikely to be included in products based on RCP configurations.

What is the purpose of org.eclipse.ui.workbench.compatibility?

org.eclipse.ui.workbench.compatibility is a plug−in fragment that provides enhanced binary compatibility for
2.1 plug−ins being run in an Eclipse 3.0−based product. In 3.0, six methods with an explicit dependence on
IFile or IMarker were moved from the org.eclipse.ui.IWorkbenchPage interface in order to cleanly separate
the workbench from workspace and resources. The org.eclipse.ui.workbench.compatibility fragment arranges
to add back these methods so that existing 2.1 plug−ins can run without modification. Note, however, that
plug−ins being migrated to 3.0 that reference the moved methods will see compile errors that can (only) be
resolved by calling the replacement methods now located on org.eclipse.ui.ide.IDE.

The IWorkbenchPage methods in question are: openEditor(IFile), openEditor(IFile, String), openEditor(IFile,
String, boolean), openEditor(IMarker), openEditor(IMarker, boolean), and openSystemEditor(IFile).

 Welcome to Eclipse

Eclipse 3.0 Plug−in Migration FAQ 883

Incompatibilities between Eclipse 2.1 and 3.0
Eclipse changed in incompatible ways between 2.1 and 3.0 in ways that affect plug−ins. The following entries
describe the areas that changed and provide instructions for migrating 2.1 plug−ins to 3.0. Note that you only
need to look here if you are experiencing problems running your 2.1 plug−in on 3.0.

Plug−in manifest version1.
Restructuring of Platform UI plug−ins2.
Restructuring of Platform Core Runtime plug−ins3.
Removal of Xerces plug−in4.
Eclipse 3.0 is more concurrent5.
Opening editors on IFiles6.
Editor goto marker7.
Editor launcher8.
Editor registry9.
Workbench marker help registry10.
Text editor document providers11.
Text editors12.
Headless annotation support13.
Console view14.
Java breakpoint listeners15.
Clipboard access in UI thread16.
Key down events17.
Tab traversal of custom controls18.
Selection event order in SWT table and tree widgets19.
New severity level in status objects20.
Build−related resource change notifications21.
Intermediate notifications during workspace operations22.
URL stream handler extensions23.
Class load order24.
Class loader protection domain not set25.
PluginModel object casting26.
ILibrary implementation incomplete27.
Invalid assumptions regarding form of URLs28.
BootLoader methods moved/deleted29.
Plug−in export does not include the plug−in's JARs automatically30.
Re−exporting runtime API31.
Plug−in parsing methods on Platform32.
Plug−in libraries supplied by fragments33.
Changes to build scripts34.
Changes to PDE build Ant task35.
Changes to eclipse.build Ant task36.
Changes to eclipse.fetch Ant task37.
Replacement of install.ini38.

1. Plug−in manifest version

The header of the manifest files for plug−ins (and plug−in fragments) has changed to include a new line
which identifies the appropriate plug−in manifest version. Prior to 3.0, plug−ins did not carry one of these

Incompatibilities between Eclipse 2.1 and 3.0 884

<?eclipse ...?> lines; after 3.0, they must always have one. This change is to allow the Eclipse runtime to
reliably recognize pre−3.0 plug−ins that have not been ported to 3.0, so that it can automatically provide
greater binary compatibility for such plug−ins. This is the general form of the plugin.xml file (fragment.xml is
similar):

<?xml version="1.0" encoding="UTF−8"?>
<?eclipse version="3.0"?>
<plugin ...>
 ...
</plugin>

Plug−in manifests created by PDE 3.0 automatically have this form. It is strongly recommended that you use
the PDE plug−in migration tool. It automatically inserts the indicated line into the manifest of 2.1 plug−ins
and plug−in fragments and addresses many of the other changes described here.

If you do add this directive to a plugin.xml (manually or using PDE), the file must also be updated to
explicitly list the plug−ins on which it depends. For example, prior to Eclipse 3.0 dependencies on
org.eclipse.core.runtime and org.eclipse.core.boot were implicit. With 3.0, org.eclipse.core.boot is no longer
needed and developers must choose org.eclipse.core.runtime or org.eclipse.core.runtime.compatibility (or
neither) as appropriate.

Note: This is one of the incompatibilities that does not impact how 2.1 binary plug−ins are run by Eclipse 3.0.

2. Restructuring of Platform UI plug−ins

The org.eclipse.ui plug−in, which used to be the main Platform UI plug−in, now provides just the API and
extension points for the generic (i.e., non−IDE−specific) workbench. Optional and IDE−specific API and
extension points have moved to other plug−ins.

The impact of this change is two−fold: (1) the moved org.eclipse.ui extension points have new extension point
ids; and (2) the list of required plug−ins has changed.

The org.eclipse.ui extension points in the following table have moved to different plug−ins, causing their
extension point ids to change. If an existing plug−in contributes an extension to the moved extension points,
then the reference in the "point" attribute of the <extension> element in the plug−in manifest file must be
changed to refer to the corresponding new ones extension point id. The PDE plug−in migration tool makes
these fix−ups.

Note: This is one of the incompatibilities that does not impact how 2.1 binary plug−ins are run by Eclipse 3.0.
The Eclipse 3.0 runtime automatically detects pre−3.0 plug−ins (by the absence of the aforementioned
<?eclipse version="3.0"?> line in the plug−in manifest) and automatically compensates for these extension
point and plug−in dependency changes.

Old extension point id New extension point id

org.eclipse.ui.markerHelp org.eclipse.ui.ide.markerHelp

org.eclipse.ui.markerImageProviders org.eclipse.ui.ide.markerImageProviders

org.eclipse.ui.markerResolution org.eclipse.ui.ide.markerResolution

org.eclipse.ui.projectNatureImages org.eclipse.ui.ide.projectNatureImages

org.eclipse.ui.resourceFilters org.eclipse.ui.ide.resourceFilters

 Welcome to Eclipse

2. Restructuring of Platform UI plug−ins 885

org.eclipse.ui.markerUpdaters org.eclipse.ui.editors.markerUpdaters

org.eclipse.ui.documentProviders org.eclipse.ui.editors.documentProviders

org.eclipse.ui.workbench.texteditor.
markerAnnotationSpecification

org.eclipse.ui.editors.markerAnnotationSpecification

The following table lists the API packages formerly provided by the org.eclipse.ui plug−in that have been
moved to different plug−ins. (The names of the API packages, classes, fields, and methods did not change.) In
some cases, the API packages are now split across more than one plug−in. Since the API classes visible to any
given plug−in are determined by that plug−in's list of required plug−ins, these changes may require adjusting
"<requires>" elements in an existing plug−in's manifest to regain access to API class.

This change only affects plug−ins that depend on the org.eclipse.ui plug−in (that is, includes <import
plugin="org.eclipse.ui"/> in the <requires> section of the plug−in manifest); all other plug−ins are unaffected.
If it is affected, you may need to change the <import> element, or add additional <import> elements, so that
all the API classes your plug−in needs are in scope. We strongly recommend that plug−ins only state
dependencies on the plug−ins that they actually use. Including unnecessary dependencies reduces runtime
performance because the Java class loader must search for classes in all dependents. (The PDE plug−in
migration tool will fix up the dependencies, and help to determine a minimal set.)

API package 2.1 plug−in Corresponding 3.0 plug−in(s)

org.eclipse.jface.text.* org.eclipse.uiorg.eclipse.jface.text

org.eclipse.text.* org.eclipse.uiorg.eclipse.jface.text

org.eclipse.ui org.eclipse.uiorg.eclipse.ui, org.eclipse.ui.ide

org.eclipse.ui.actions org.eclipse.uiorg.eclipse.ui, org.eclipse.ui.ide

org.eclipse.ui.dialogs org.eclipse.uiorg.eclipse.ui, org.eclipse.ui.ide

org.eclipse.ui.editors.* org.eclipse.uiorg.eclipse.ui.editor

org.eclipse.ui.model org.eclipse.uiorg.eclipse.ui, org.eclipse.ui.ide

org.eclipse.ui.part org.eclipse.uiorg.eclipse.ui, org.eclipse.ui.ide

org.eclipse.ui.texteditor org.eclipse.ui
org.eclipse.ui.workbench.texteditor,
org.eclipse.ui.editors

org.eclipse.ui.texteditor.* org.eclipse.uiorg.eclipse.ui.workbench.texteditor

org.eclipse.ui.views.bookmarkexplorerorg.eclipse.uiorg.eclipse.ui.ide

org.eclipse.ui.views.contentoutline org.eclipse.uiorg.eclipse.ui.views

org.eclipse.ui.views.markers org.eclipse.uiorg.eclipse.ui.ide

org.eclipse.ui.views.navigator org.eclipse.uiorg.eclipse.ui.ide

org.eclipse.ui.views.properties org.eclipse.uiorg.eclipse.ui.views

org.eclipse.ui.views.tasklist org.eclipse.uiorg.eclipse.ui.ide

org.eclipse.ui.wizards.datatransfer org.eclipse.uiorg.eclipse.ui.ide

org.eclipse.ui.wizards.newresource org.eclipse.uiorg.eclipse.ui.ide

3. Restructuring of Platform Core Runtime plug−ins

The Eclipse 3.0 Platform Runtime is based on OSGi, necessitating changes to the structure of the two
Platform Runtime plug−ins, org.eclipse.core.runtime and org.eclipse.core.boot.

 Welcome to Eclipse

3. Restructuring of Platform Core Runtime plug−ins 886

A new org.eclipse.core.runtime.compatibility plug−in provides an implementation bridge between the old and
new APIs, and is the new home for many of the obsolete APIs formerly found in org.eclipse.core.runtime and
org.eclipse.core.boot. Platform Runtime extension points are unaffected by the restructuring.

When migrating the existing plug−in to 3.0, the plug−in's manifest needs to be updated to reflect the new
structure of the Eclipse Platform Runtime plug−ins. The PDE plug−in manifest migration tool will add a
dependency to org.eclipse.core.runtime.compatibility if required.

Note also that if you mark you plug−in as 3.0 (using <?eclipse version="3.0"?>) and your plug−in defines a
Plugin class, you must either explicitly <import plugin="org.eclipse.core.runtime.compatibility"/> in the
plug−in manifest or ensure that the Plugin class defines the default constructor.

Note: This is one of the incompatibilities that does not impact how 2.1 binary plug−ins are run by Eclipse 3.0.
The Eclipse 3.0 runtime automatically detects pre−3.0 plug−ins (by the absence of the <?eclipse
version="3.0"?> line in the plug−in manifest) and automatically compensates for these changes to the
Platform Runtime.

4. Removal of Xerces plug−in

The org.eclipse.xerces plug−in is no longer necessary and has been deleted. XML parsing support is built in to
J2SE 1.4, and the presence of the Xerces plug−in creates class loader conflicts. The javax.xml.parsers,
org.w3c.dom.*, and org.xml.sax.* API packages formerly provided by the org.eclipse.xerces plug−in are now
available from the J2SE libraries.

If your plug−in requires the org.eclipse.xerces plug−in, you must change your plug−in manifest to remove this
stated dependency. Once that is done, the plug−in's code should compile and run without further change.

A 2.1 binary plug−ins with a stated dependency on the org.eclipse.xerces plug−in will be missing a
prerequisite when run in a standard Eclipse 3.0 configuration. The plug−in will not be activated as a
consequence.

5. Eclipse 3.0 is more concurrent

Prior to Eclipse 3.0, Eclipse operated mostly in a single thread. Most API methods and extension points
operated either in the UI thread, or in a thread spawned from a progress dialog that blocked the UI thread.
Most plug−in writers did not have to worry much about thread safety, apart from ensuring that all UI activity
occurred in the UI thread. In Eclipse 3.0, there is generally much more concurrency. Many operations now
occur in a background thread, where they may run concurrently with other threads, including the UI thread.
All plug−ins whose code runs in a background thread must now be aware of the thread safety of their code.

In addition to plug−ins that are explicitly running operations in the background using the
org.eclipse.core.runtime.jobs API, there are several platform API facilities and extension points
that make use of background threads. Plug−ins that hook into these facilities need to ensure that their code is
thread safe. The following table summarizes the API and extension points that run some or all of their code in
a background thread in Eclipse 3.0:

Extension point or API class Notes

org.eclipse.core.runtime.IRegistryChangeListener New in Eclipse 3.0, runs in background

org.eclipse.core.resources.IResourceChangeListener AUTO_BUILD events now in background

 Welcome to Eclipse

4. Removal of Xerces plug−in 887

org.eclipse.core.resources.builders (ext. point) Auto−build now in background

org.eclipse.core.resources.ISaveParticipant SNAPSHOT now in background

org.eclipse.ui.workbench.texteditor.quickdiffReferenceProvider
(ext. point)

New in Eclipse 3.0, runs in background

org.eclipse.ui.decorators (ext. point) Already in background in Eclipse 2.1

org.eclipse.ui.startup (ext. point) Already in background in Eclipse 2.1

org.eclipse.team.core.org.eclipse.team.core.repository (ext.
point)

Many operations now in background

org.eclipse.team.ui.synchronizeParticipants (ext. point) New in Eclipse 3.0, runs in background

org.eclipse.debug.core.launchConfigurationTypes (ext. point)Now runs in background

org.eclipse.jdt.core.IElementChangedListener
ElementChangedEvent.PRE_AUTO_BUILD
now runs in background, POST_RECONCILE
already ran in the background

There are various strategies available for making code thread safe. A naive solution is to ensure all work
occurs in the UI thread, thus ensuring serialized execution. This is a common approach for UI plug−ins that
are not doing CPU−intensive processing. When doing this, be aware of the deadlock risk inherent in
Display.syncExec. Display.asyncExec is generally safer as it does not introduce deadlock risk, at
the expense of losing precise control over when the code is executed.

Other techniques for making thread safe code include:

Wrapping unsafe code in semaphores or Java monitors. The new concurrency infrastructure includes
one such semaphore object: org.eclipse.core.runtime.jobs.ILock. The advantage of
ILock over generic locks is that they transfer automatically to the UI thread when doing a
syncExec, and there is deadlock detection support built into their implementation that logs and then
resolves deadlocks.

•

Message queues. Code can be serialized by forwarding all processing to a message queue that is
processed serially in a single thread. One such example is the SWT deferred event queue
(Display.asyncExec), which is processed entirely in the UI thread.

•

Immutable objects. Make data structures immutable, and make new copies on modification. This is
the approach used to make data structures such as java.lang.String and
org.eclipse.core.runtime.IPath thread safe. The advantage of immutable objects is
extremely fast read access, at the cost of extra work on modification.

•

6. Opening editors on IFiles

The following methods were deleted from the org.eclipse.ui.IWorkbenchPage interface. IWorkbenchPage is
declared in the generic workbench, but the methods are inherently resource−specific.

public IEditorPart openEditor(IFile input)•
public IEditorPart openEditor(IFile input, String editorID)•
public IEditorPart openEditor(IFile input, String editorID, boolean activate)•
public IEditorPart openEditor(IMarker marker)•
public IEditorPart openEditor(IMarker marker, boolean activate)•
public void openSystemEditor(IFile input)•

Clients of these IWorkbenchPage.openEditor methods should instead call the corresponding public static

 Welcome to Eclipse

6. Opening editors on IFiles 888

methods declared in the class org.eclipse.ui.ide.IDE (in the org.eclipse.ui.ide plug−in).

Clients of these IWorkbenchPage.openSystemEditor(IFile) method should convert the IFile to an IEditorInput
using new FileEditorInput(IFile) and then call the openEditor(IEditorInput,String) method. In other words,
rewrite page.openSystemEditor(file) as page.openEditor(new FileEditorInput(file),
IEditorRegistry.SYSTEM_EXTERNAL_EDITOR_ID). Note: clients using editor id
IEditorRegistry.SYSTEM_EXTERNAL_EDITOR_ID must pass an editor input which implements
org.eclipse.ui.IPathEditorInput (which FileEditorInput does).

Note: This is one of the incompatibilities that does not impact how 2.1 binary plug−ins are run by Eclipse 3.0.
Eclipse 3.0 includes a binary runtime compatibility mechanism that ensures existing 2.1 plug−in binaries
using any of the deleted openEditor and openSystemEditor methods continue to work as in 2.1 in spite of this
API change. (The deleted methods are effectively "added back" by the org.eclipse.ui.workbench.compatibility
fragment.)

7. Editor goto marker

The following method was deleted from the org.eclipse.ui.IEditorPart interface. IEditorPart is declared in the
generic workbench, but the method is inherently resource−specific.

public void gotoMarker(IMarker marker)•

The corresponding methods were also deleted from the classes in the org.eclipse.ui.part package that
implement IEditorPart, namely EditorPart, MultiEditor, MultiPageEditorPart, and MultiPageEditor.

Clients that call this method should instead test if the editor part implements or adapts to
org.eclipse.ui.ide.IGotoMarker (in the org.eclipse.ui.ide plug−in) and if so, call gotoMarker(IMarker). The
IDE class has a convenience method for doing so: IDE.gotoMarker(editor, marker);

Clients that implement an editor that can position itself based on IMarker information should implement or
adapt to org.eclipse.ui.ide.IGotoMarker.

Since IGotoMarker's only method is gotoMarker(IMarker) and has the same signature and specification as the
old IEditorPart.gotoMarker(IMarker), existing editor implementations can adapt to this change simply by
including IGotoMarker in the implements clause of the class definition.

A 2.1 binary plug−ins with code that calls this method will get an class linking error exception when run in a
standard Eclipse 3.0 configuration.

8. Editor launcher

The editor launcher interface org.eclipse.ui.IEditorLauncher is implemented by plug−ins that contribute
external editors. The following method was removed from this interface. IEditorLauncher is declared in the
generic workbench, but the method is inherently resource−specific.

public void open(IFile file)•

It was replaced by

public void open(IPath file)•

 Welcome to Eclipse

7. Editor goto marker 889

Clients that call IEditorLauncher.open(file) should instead call IEditorLauncher.open(file.getLocation()).
Clients that implement this interface should replace (or augment) their implementation of open(IFile) by one
for open(IPath).

A 2.1 binary plug−ins with code that calls this method will get an class linking error exception when run in a
standard Eclipse 3.0 configuration.

9. Editor registry

The following methods were removed from the org.eclipse.ui.IEditorRegistry interface. IEditorRegistry is
declared in the generic workbench, but the methods are inherently resource−specific.

public IEditorDescriptor getDefaultEditor(IFile file)•
public void setDefaultEditor(IFile file, String editorId)•
public IEditorDescriptor[] getEditors(IFile file)•
public ImageDescriptor getImageDescriptor(IFile file)•

Clients that call getEditors(file) or getImageDescriptor(file) should call the "String" equivalent methods:

Rewrite registry.getEditors(file) to be registry.getEditors(file.getName())•
Rewrite registry.getImageDescriptor(file) to be registry.getImageDescriptor(file.getName())•

Clients that call setDefaultEditor(IFile file, String editorId) and getDefaultEditor(IFile file) should should
instead call the corresponding public static methods declared in the class org.eclipse.ui.ide.IDE (in the
org.eclipse.ui.ide plug−in):

Rewrite registry.getDefaultEditor(file) to be IDE.getDefaultEditor(file)•
Rewrite registry.setDefaultEditor(file, id) to be IDE.setDefaultEditor(file, id)•

Also, the API contract for the method IEditorRegistrygetDefaultEditor() was changed. This method, which is
also now deprecated, and will always return the System External Editor editor descriptor. This change impacts
clients that assumed the default editor returned would be a text editor.

There are new constants that represent the system external editor and system in−place editor identifiers
(SYSTEM_EXTERNAL_EDITOR_ID and SYSTEM_INPLACE_EDITOR_ID). These two editors require
an editor input that implements or adapts to org.eclipse.ui.IPathEditorInput. Note that the in−place editor
descriptor will not exist in Eclipse configurations that do not support in−place editing.

10. Workbench marker help registry

The following method was deleted from the org.eclipse.ui.IWorkbench interface. IWorkbench is declared in
the generic workbench, but the method is inherently resource−specific.

public IMarkerHelpRegistry getMarkerHelpRegistry()•

Clients of IWorkbench.getMarkerHelpRegistry() should instead call the public static method
org.eclipse.ui.ide.IDE.getMarkerHelpRegistry() (in the org.eclipse.ui.ide plug−in).

A 2.1 binary plug−ins with code that calls this method will get an exception when run in a standard Eclipse
3.0 configuration.

 Welcome to Eclipse

9. Editor registry 890

11. Text editor document providers

In order to make org.eclipse.ui.texteditor.AbstractTextEditor independent of IFile,
org.eclipse.ui.texteditor.AbstractDocumentProvider introduces the concept of a document provider operation
(DocumentProviderOperation) and a document provider operation runner (IRunnableContext). When
requested to perform reset, save, or synchronize, AbstractDocumentProvider creates document provider
operations and uses the operation runner to execute them. The runnable context can be provided by subclasses
via the getOperationRunner method. Here is a summary of the changes that clients must adapt to:

Added protected abstract IRunnableContext getOperationRunner(); non−abstract subclasses must
implement this method in order to provide their own operation runner.

•

The method resetDocument has been changed to final in order to allow the document provider to wrap
the function with a document provider operation. The document provider operation calls the newly
introduced doResetDocument method. AbstractDocumentProvider.doResetDocument contains the
code that originally resided inside AbstractDocumentProvider.resetDocument. Subclasses must
change their implementation of resetDocument to doResetDocument and any contained call of
super.resetDocument to super.doResetDocument.

•

The method saveDocument has been changed to final in order to allow the document provider to wrap
the function with a document provider operation. The document provider operation calls the newly
introduced doSaveDocument method. AbstractDocumentProvider.doSaveDocument contains the code
that originally resided inside AbstractDocumentProvider.saveDocument. Subclasses must change
their implementation of saveDocument to doSaveDocument and any contained call of
super.saveDocument to super.doSaveDocument.

•

The method synchronize has been changed to final in order to allow the document provider to wrap
the function with a document provider operation. The document provider operation calls the newly
introduced doSynchronize method. AbstractDocumentProvider.doSynchronize contains the code that
originally resided inside AbstractDocumentProvider.synchronize. Subclasses must change their
implementation of synchronize to doSynchronize and any contained call of super.synchronized to
super.doSynchronize.

•

The AbstractDocumentProvider subclass org.eclipse.ui.editors.text.StorageDocumentProvider implements the
getOperationRunner method to always returns null. This means that subclasses of StorageDocumentProvider
should not be affected by this change.

The StorageDocumentProvider subclass org.eclipse.ui.editors.text.FileDocumentProvider implements the
getOperationRunner method that returns an IRunnableContext for executing the given
DocumentProviderOperations inside a WorkspaceModifyOperation. Other changes to FileDocumentProvider
are:

resetDocument(Object) has been replaced by doResetDocument(Object,IProgressMonitor).•
synchronize(Object) has been replaced by doSynchronize(Object,IProgressMonitor).•

12. Text editors

Changes to org.eclipse.ui.texteditor.AbstractTextEditor:

The method IEditorPart.gotoMarker(IMarker marker) was removed from the IEditorPart interface
because it was resource−specific. The default implementation provided by AbstractTextEditor has
been removed from AbstractTextEditor and has been moved to AbstractDecoratedTextEditor. Direct
subclasses of AbstractTextEditor or StatusTextEditor that want to provide that functionality should

•

 Welcome to Eclipse

11. Text editor document providers 891

follow the migration instructions for IEditorPart [ref Editor goto marker].
AbstractTextEditor no longer differentiates between implicit and explicit document providers as the
concrete implementation was resource specific. This functionality has been moved to
AbstractDecoratedTextEditor. Direct subclasses of AbstractTextEditor or StatusTextEditor must
perform the following steps:

Override getDocumentProvider.♦
Override the newly introduced hook method for disposing the document provider
(disposeDocumentProvider)

♦

Override the newly introduced hook method setDocumentProvider(IEditorInput) that is called
while updating the document provider for the new editor input. I.e., that is the method in
which you can configure the appropriate implicit document provider for the given editor
input.

♦

•

All internal occurrences of WorkspaceModifyOperation have been removed. The editor now calls the
document provider methods directly (see described changes for document providers);

Removed createSaveOperation, changed performSaveOperation to performSave. Subclasses
of AbstractTextEditor overriding createSaveOperation or performSaveOperation must now
override performSave.

♦

Removed createdRevertOperation, changed peformRevertOperation to performRevert.
Sunclasses overriding createRevertOperation or performRevertOperation must now override
performRevert.

♦

The implementation of the method handleEditorInputChanged has been changed to not use
WorkbenchModifyingOperation. Subclasses overriding handleEditorInputChange must adapt
accordingly. Please use the changes applied to AbstractTextEditor.handleEditorInputChange
as the blueprint.

♦

•

AbstractTextEditor.createActions no longer registers any actions under
ITextEditorActionConstants.ADD_TASK and ITextEditorActionConstant.BOOKMARK as those
actions are IDE−specific. The registration of these actions has been moved to
AbstractDecoratedTextEditor. Direct subclasses of AbstractTextEditor or StatusTextEditor should
override the createActions method and add the following lines (accordingly adapted to their
circumstances):

•

 ResourceAction action= new AddMarkerAction(TextEditorMessages.getResourceBundle(), "Editor.AddBookmark.", this, IMarker.BOOKMARK, true); //$NON−NLS−1$
 action.setHelpContextId(ITextEditorHelpContextIds.BOOKMARK_ACTION);
 action.setActionDefinitionId(ITextEditorActionDefinitionIds.ADD_BOOKMARK);
 setAction(IDEActionFactory.BOOKMARK.getId(), action);

 action= new AddTaskAction(TextEditorMessages.getResourceBundle(), "Editor.AddTask.", this); //$NON−NLS−1$
 action.setHelpContextId(ITextEditorHelpContextIds.ADD_TASK_ACTION);
 action.setActionDefinitionId(ITextEditorActionDefinitionIds.ADD_TASK);
 setAction(IDEActionFactory.ADD_TASK.getId(), action);

•

The AbstractTextEditor subclass org.eclipse.ui.texteditor.StatusTextEditor provides the predicate method
isErrorStatus(IStatus). Subclasses may override in order to decide whether a given status must considered an
error or not.

Changes to org.eclipse.ui.editors.text.AbstractDecoratedTextEditor:

The IEditorPart method gotoMarker(IMarker marker) has been deprecated to allow a future change of
its visibility. Clients of this method must follow the migration instructions in the deprecation
message.

•

AbstractDecoratedTextEditor returns an adapter for IGotoMarker.•
AbstractDecoratedTextEditor implements the concept of implicit/explicit document providers
previously provided by AbstractTextEditor, as discussed above.

•

 Welcome to Eclipse

11. Text editor document providers 892

13. Headless annotation support

As part of the introduction of headless annotation support, the following changes to Annotation were made:

Removed static Annotation.drawImage methods, use org.eclipse.jface.text.source.ImageUtilities
instead.

•

Removed setLayer, getLayer, and paint methods from Annotation, annotations which want to draw
themselves should implement IAnnotationPresentation.

•

MarkerAnnotation now directly implements the methods removed from Annotation (setLayer,
getLayer, paint).

•

The following classes have been moved from the plug−in org.eclipse.jface.text to the plug−in
org.eclipse.text, the package names remain the same and org.eclipse.jface.text rexports the classes
from org.eclipse.jface.text, such that this change is transparent to clients:

•

 org.eclipse.jface.text.source.Annotation
 org.eclipse.jface.text.source.AnnotationModel
 org.eclipse.jface.text.source.AnnotationModelEvent
 org.eclipse.jface.text.source.IAnnotationModel
 org.eclipse.jface.text.source.IAnnotationModelListener
 org.eclipse.jface.text.source.IAnnotationModelListenerExtension

14. Console view

Eclipse 3.0 has new generic console support. The generic console is available via the Window > Show View >
Basic > Console, and is used by the Eclipse debug and Ant integration.

The view id for the console has changed from org.eclipse.debug.ui.ConsoleView to
org.eclipse.ui.console.ConsoleView. 2.1 plug−ins that programmatically open the console will be
unsuccessful because that the old view no longer exists.

15. Java breakpoint listeners

In 3.0, the return types for the methods
org.eclipse.jdt.debug.core.IJavaBreakpointListener.breakpointHit(IJavaBreakpoint, IJavaThread) and
installingBreakpoing(IJavaTarget, IJavaBreakpoint, IJavaType) changed from boolean to int to allow listeners
to vote "don't care". In releases prior to 3.0, listeners could only vote "suspend" or "don't suspend" when a
breakpoint was hit, and "install" or "don't install" when a breakpoint was about to be installed. In 3.0, listeners
can also vote "don't care" for either of these notifications. This allows clients to only make a decisive vote in
situations that they care about. For "breakpoint hit" notifications, the breakpoint will suspend if any listeners
vote "suspend", or all listeners vote "don't care"; and it will not suspend if at least one listener votes "don't
suspend" and no listeners vote "suspend". Similarly, for "breakpoint installing" notifications, the breakpoint
will be installed if any listeners vote to install, or all listeners vote "don't care"; and it will not be installed if at
least one listener votes "don't install" and no listeners vote "install". In general, implementors should return
DONT_CARE unless they have a strong opinion one way or the other. It is important to keep in mind, for
example, that voting "suspend" will override any other listener's vote of "don't suspend".

The IJavaBreakpointListener interface is implemented by clients that create or react to breakpoints in Java
code. There are likely few clients beyond JDT itself, save the one that reported the problem (bug 37760) that
this change remedies. This is a breaking change for existing code that implements the
IJavaBreakpointListener interface. This code needs to be modified to return an appropriate int value before it
will compile or run in 3.0.

 Welcome to Eclipse

13. Headless annotation support 893

https://bugs.eclipse.org/bugs/show_bug.cgi?id=37760

16. Clipboard access in UI thread

Prior to 3.0, the methods on the SWT class org.eclipse.swt.dnd.Clipboard were tacitly permitted to run in
threads other than the UI thread. This oversight resulted in failures on GTK where the operating system
requires that all clipboard interactions be performed in the UI thread. The oversight was not revealed earlier
because many applications are single−threaded and receive most of their testing on Windows. In order for the
Clipboard API to be sustainable and cross−platform, in 3.0 the specification and implementation of all
Clipboard API methods have been changed to throw an SWT Exception
(ERROR_THREAD_INVALID_ACCESS) if invoked from a non−UI thread. Clipboard services are
commonly provided automatically by Eclipse components such as the text editor, which insulate many clients
from this breaking change. Existing code that does make direct use of Clipboard should ensure that the API
methods are called on the correct thread, using Display.asyncExec or syncExec when appropriate to shift
accesses into the UI thread.

17. Key down events

In 3.0, SWT reports key down events before the work is done in the OS. This is much earlier than it was prior
to 3.0. This change was made to support key bindings in Eclipse which necessitates intercepting key events
before any widget has a chance to process the character. Consequences of this change are visible to code that
handles low−level org.eclipse.swt.SWT.KeyDown events directly. For example, it means that when a listener
on a Text widget receives a key down event, the widget's content (getText()) will not yet include the key just
typed (it would have prior to 3.0). The recommended way to get the full text from the widget including the
current key is to handle the higher−level SWT.Modify or SWT.Verify events rather than the low−level
SWT.KeyDown event; code that already does it this way is unaffected by this change.

18. Tab traversal of custom controls

Prior to 3.0, when the focus was in the SWT class org.eclipse.swt.widgets.Canvas or one of its subclasses
(including custom widgets), typing Ctrl+Tab, Shift+Tab, Ctrl+PgUp, or Ctrl+PgDn would automatically
trigger traversal to the next/previous widget without reporting a key event. This behavior was unspecified, and
runs counter to the rule that Canvases see every key typed in them. The proper way to handle traversal is by
registering a traverse listener. In order to properly support Eclipse key bindings in 3.0, the default behavior
was changed so that Canvas now sees Ctrl+Tab, Shift+Tab, Ctrl+PgUp, and Ctrl+PgDn key events instead of
traversing. If you use a raw Canvas or define a subclass of Canvas, ensure that that you register a traverse
listener.

19. Selection event order in SWT table and tree widgets

Mouse selections of items in the SWT classes org.eclipse.swt.widgets.Table and Tree generate the event
sequence MouseDown−Selection−MouseUp uniformly in all operating environments. Similarly, keyboard
selections generate the event sequence KeyDown−Selection−KeyUp uniformly in all operating environments.
Prior to 3.0, the event order was not uniform, with Motif and Photon at variance with the rest by always
reporting the Selection event first; i.e., Selection−MouseDown−MouseUp or Selection−KeyDown−KeyUp.
For 3.0, the event order on Motif and Photon has been changed to match the others. Existing code that was
functioning correctly on {Windows, GTK} and on {Motif, Photon} is unlikely to be affected. But it is wise to
check your code to ensure that it does not rely on an invalid event order.

 Welcome to Eclipse

16. Clipboard access in UI thread 894

20. New severity level in status objects

org.eclipse.core.runtime.IStatus has a new severity constant, IStatus.CANCEL, that can be
used to indicate cancelation. Callers of IStatus.getSeverity() that rely on the set of possible
severities being limited to IStatus.OK, INFO, WARNING, and ERROR are affected by this addition. Callers
of getSeverity should update their code to include the new severity.

21. Build−related resource change notifications

In Eclipse 3.0, workspace auto−builds now occur in a background thread. This required an API contract
change to org.eclipse.core.resources.IResourceChangeEvent. The contract of
IResourceChangeEvent previously guaranteed the following ordering of events for all workspace
changes:

PRE_DELETE or PRE_CLOSE event notification if applicable1.
Perform the operation2.
PRE_AUTO_BUILD event notification3.
If auto−build is on, perform incremental workspace build4.
POST_AUTO_BUILD event notification5.
POST_CHANGE event notification6.

With auto−build now running in the background, there is no longer any guarantee about the temporal
relationship between the AUTO_BUILD events and the POST_CHANGE event. In Eclipse 3.0, steps 3−5 in the
above structure are removed from the operation. The resulting picture looks like this:

PRE_DELETE or PRE_CLOSE event notification if applicable1.
Perform the operation2.
POST_CHANGE event notification3.

Periodically, the platform will perform a background workspace build operation. Note that this happens
regardless of the whether auto−build is on or off. The exact timing of when this build occurs will not be
specified. The structure of the build operation will look like this:

PRE_BUILD event notification (PRE_BUILD is the new name for PRE_AUTO_BUILD)1.
If auto−build is on, perform incremental workspace build2.
POST_BUILD event notification (POST_BUILD is the new name for POST_AUTO_BUILD)3.
POST_CHANGE event notification4.

The reference point for the deltas received by auto−build listeners will be different from post−change
listeners. Build listeners will receive notification of all changes since the end of the last build operation.
Post−change listeners will receive a delta describing all changes since the last post−change notification. This
new structure retains three characteristics of resource change listeners that have been true since Eclipse 1.0:

POST_CHANGE listeners receive notification of absolutely all resource changes that occur during the
time they are registered. This includes changes made by builders, and changes made by other
listeners.

•

PRE_AUTO_BUILD listeners receive notification of all resource changes except changes made by
builders and resource change listeners.

•

POST_AUTO_BUILD listeners receive notification of all resource changes except changes made by
other POST_AUTO_BUILD listeners.

•

 Welcome to Eclipse

20. New severity level in status objects 895

However, there are some important differences with this approach. Prior to Eclipse 3.0, auto−build listeners
were always called before POST_CHANGE listeners. For this reason, the delta received by auto−build listeners
was always a subset of the delta received by the POST_CHANGE listeners. This relationship is now essentially
reversed. Auto−build listeners will receive a delta that is a super−set of all deltas supplied to POST_CHANGE
listeners since the end of the last background build. As before, auto−build listeners will be allowed to modify
the workspace, and post−change listeners will not.

It will no longer be true that upon completion of a workspace changing operation, that AUTO_BUILD event
listeners will have been notified. Client code that registers resource change listeners with
IWorkspace.addResourceChangeListener(IResourceChangeListener) is unlikely to be
affected by this change because AUTO_BUILD events were never reported to these listeners. However, clients
that use IWorkspace.addResourceChangeListener(IResourceChangeListener,int) and
specify an event mask that includes AUTO_BUILD events are likely to be broken by this change if they make
assumptions about when auto−build listeners run or what thread they run in. For example, if an auto−build
listener is updating a domain model to reflect changes to the workspace, then this update might not have
happened when the workspace changing operation returns. It is worth noting that only UI−level code can be
affected in this way. Core−level code that is called via API may be called within the scope of an
IWorkspaceRunnable, so it can never be sure about when resource change listeners will be called. The
suggested fix for this breakage is to use POST_CHANGE instead of build listeners if it is necessary to have
notification occur before the operation completes.

22. Intermediate notifications during workspace operations

It will no longer be guaranteed that all resource changes that occur during the dynamic scope of an
IWorkspaceRunnable will be batched in a single notification. This mechanism can still be used for
batching changes to avoid unnecessary builds and notifications, but the Platform may now decide to perform
notifications during the operation. This API contract change is not likely to be a breaking change for existing
clients. It is equivalent to the Platform deciding to call IWorkspace.checkpoint periodically during a
long running operations. The reason for this change is that it is now possible for multiple threads to be
modifying the workspace concurrently. When one thread finishes modifying the workspace, a notification is
required to prevent responsiveness problems, even if the other operation has not yet completed. This change
also allows users to begin working on a set of resources before the operation completes. For example, a user
can now begin browsing files in a project that is still in the process of being checked out. The new method
IWorkspace.run(IWorkspaceRunnable, ISchedulingRule, int,
IProgressMonitor) has an optional flag, AVOID_UPDATE, which operations can use as a hint to the
platform to specify whether periodic updates are desired.

23. URL stream handler extensions

What is affected: Plug−ins that contribute extensions to the
org.eclipse.core.runtime.urlHandlers extension point.

Description: The contract for the org.eclipse.core.runtime.urlHandlers extension point was
changed to use the URL Stream Handler service provided by OSGi. The OSGi support is superior to the one
in Eclipse 2.1, and correctly handles dynamic handlers. Because of various design issues with the base Java
URL handler mechanism, URLStreamHandlers registered with the OSGi handler service must implement
org.osgi.service.url.URLStreamHandlerService.

Action required: Formerly, the handler class had to implement java.net.URLStreamHandler and
extend the urlHandlers extension point. The extension point is no longer supported and the handler must be

 Welcome to Eclipse

22. Intermediate notifications during workspace operations 896

updated to implement org.osgi.service.url.URLStreamHandlerService interface. The OSGi
framework provides an abstract base class
(org.osgi.service.url.AbstractURLStreamHandlerService) that can be trivially
subclassed to fill this role.

Instead of registering the handler using an extension point, plug−ins must now do so by registering their
handler as a service. For example,

 Hashtable properties = new Hashtable(1);
 properties.put(URLConstants.URL_HANDLER_PROTOCOL, new String[] {MyHandler.PROTOCOL});
 String serviceClass = URLStreamHandlerService.class.getName();
 context.registerService(serviceClass, new MyHandler(), properties);

24. Class load order

What is affected: Plug−ins which supply packages provided which are also supplied by other plug−ins. A
very limited number of plug−ins are affected by this change and some of those affected will actually benefit
(see below).

Description: In Eclipse 2.x, class loaders search for classes in the following order: consult (1) parent class
loader (in practice this is the Java boot class loader), then (2) its own classpath contents, and finally (3) all of
its prerequisites in the order declared. OSGi offers an optimization over this model. In this approach a class
loader will consult (1) parent class loader (again, effectively the Java boot classloader), then either (2a) a
single prerequisite known to contribute classes in the package being queried or (2b) its own classpath entries
for the desired class.

The class loader determines whether to consult self or its prerequisites based on its imported and required
packages. This information is inferred from the plug−in content in the case of traditional plug−ins and directly
specified in the case of plug−ins with explicit OSGi bundle manifest. In either case, it is known a priori which
class loaders will supply the classes for which packages. This offers performance improvements as well as a
solution to the vexing problem of multiple prerequisites contributing the same classes.

Take for example the case of Xerces and Xalan, both of which contain various classes from org.xml packages.
Using the first approach, the Xerces plug−in would see its copy of these classes while the Xalan plug−in
would see their copy. Since these plug−ins need to communicate, ClassCastExceptions occur. Using the
second approach, only one of the two plug−ins contributes the duplicate classes and both plug−ins see the
same copies.

Action required: The action required depends on the particulars of the usecase. Affected developers need to
review their classpath and resolve any conflicts which may be happening.

25. Class loader protection domain not set

What is affected: Plug−ins that expect the protection domain of their class loader to be set at all times.

Description: In Eclipse 2.1 plug−in class loaders were java.security.SecureClassloaders and, as such, always
had a protection domain set. In Eclipse 3.0, class loaders do not extend SecureClassloader and only set the
protection domain if Java security is turned on (not the normal case).

Action required: The action required will depend on the scenario in which the plug−in is using the protection
domain.

 Welcome to Eclipse

24. Class load order 897

26. PluginModel object casting

What is affected: Plug−ins which cast objects of type org.eclipse.core.runtime.IPlugin* to
org.eclipse.core.runtime.model.Plugin*Model. Even though the relationship between these interfaces and the
model classes is not specified in the Eclipse 2.1 API, we are explicitly calling out this change as we have
found instances of plug−ins relying on this relationship in the 2.1 implementation.

Description: The Eclipse API provides a series of interfaces (e.g., IPluginDescriptor) and so−called
"model" classes (e.g., PluginDescriptorModel) related to plug−ins and the plug−in registry. In the
Eclipse 2.1 implementation it happens that the model classes implement the relevant interfaces. In the new
OSGi−based runtime, the plug−in registry has been significantly reworked to allow for a separation between
the class loading and prerequisite aspects of plug−ins and the extension and extension−point aspects. As such
the Eclipse 3.0 runtime is unable to maintain the implementation relationship present in 2.1.

Action required: Plug−ins relying on this non−API relationship need to be reworked code according to their
usecase. More information on this is given in the recommended changes section of this document and in the
Javadoc for the related classes and methods.

27. ILibrary implementation incomplete

What is affected: Plug−ins that use org.eclipse.core.runtime.ILibrary.

Description: The new runtime maintains the classpath entries in a different and incompatible form from
Eclipse. As a result, the compatibility layer is unable to correctly model the underlying OSGi structures as
ILibrary objects. The runtime's compatibility support creates ILibrary objects but must assume default values
for everything except the library's path.

Action required: Users of ILibrary should consider accessing the desired header values (e.g.,
Bundle−Classpath) from the appropriate Bundle (see Bundle.getHeaders()) and using the
ManifestElement helper class to interpret the entries. See the class Javadoc for more details.

28 Invalid assumptions regarding form of URLs

What is affected: Plug−ins that make assumptions regarding their installation structure, location and the local
file system layout.

Description: Methods such as IPluginDescriptor.getInstallURL() return URLs of a particular
form. Despite their form being unspecified, various plug−ins are making assumptions based on the current
implementation. For example, they may expect to get a file: URL and use URL.getFile() and use
java.io.File manipulation on the result. To date, this has been a workable but rather fragile approach.
For example, if a plug−in is installed on a web server, it is possible that an http: URL would be returned.
The new Eclipse 3.0 runtime is even more flexible and opens more possibilities for execution configurations
(e.g., maintaining whole plug−ins in JARs rather than exploded in directories). That is, while the new
OSGi−based runtime does not actually break 2.1 API, it exposes more cases where assumptions made in
current plug−ins are invalid.

Action required: Plug−in writers should ensure that the information to which they need access is available
via getResource() (and is on the classpath) or use the relevant API for accessing the contents of a
plug−in (e.g., Bundle.getEntry(String)).

 Welcome to Eclipse

26. PluginModel object casting 898

29. BootLoader methods moved/deleted

What is affected: Non−plug−in code that calls certain methods from the class
org.eclipse.core.boot.BootLoader.

Description: The static methods BootLoader.startup(), shutdown() and run() were moved to
org.eclipse.core.runtime.adaptor.EclipseStarter, which is part of the OSGi framework. This API is the
interface between the main() in startup.jar and the OSGi framework/Eclipse runtime. The restructuring of the
runtime did not permit these methods to remain on BootLoader. The old BootLoader class is now located in
the runtime compatibility layer and is deprecated, and the moved methods are stubbed to do nothing.

There is no replacement for the old BootLoader.getRunnable() as the runtime can no longer support the
acquisition of individual applications. Rather, users must indicate the application of interest when they start
the platform.

Action required: In general this API is used by very few people (it cannot be used from within an Eclipse
plug−in). In the rare case that it is, the code must be adapted to use the corresponding methods on
EclipseStarter.

30. Plug−in export does not include the plug−in's JARs automatically

What is affected: All plug−ins.

Description: In Eclipse 2.1, a plug−in's bin.includes line from their build.properties did not have to contain
the list of JARs from their library declaration in the plugin.xml file; these JARs were added for free. In
Eclipse 3.0 the list of files in the bin.includes section of the build.properties is an exhaustive list and must
include all files which plug−in developers intend to be included in their plug−in when building or exporting.

Action required: Ensure that the bin.includes line from the build.properties file includes all of the JARs listed
in your plugin.xml file.

31. Re−exporting runtime API

What is affected: Plug−ins that expose API that includes elements from changed runtime API.

Description: Various plug−ins expose API that includes elements from the runtime API. With the changes to
the Eclipse 3.0 runtime outlined here, client plug−ins must re−evaluate their use of runtime API in their API.

Action required: This scenario is quite rare as very little of the Eclipse runtime API is changing. Depending
on the scenario, clients may have to change their API or continue to rely on the the compatibility layer.

32. Plug−in parsing methods on Platform

What is affected: Plug−ins that use
org.eclipse.core.runtime.Platform.parsePlugins(..., Factory).

Description: The method org.eclipse.core.runtime.Platform.parsePlugins(...,
Factory) has been moved. The API associated with the Factory argument has been moved from the
org.eclipse.core.runtime plug−in up to the org.eclipse.core.runtime.compatibility plug−in (which depends on
the runtime plug−in). As a result, the parsing method has been moved as well.

 Welcome to Eclipse

29. BootLoader methods moved/deleted 899

Action required: Users of this method should use the same method on the class
org.eclipse.core.runtime.model.PluginRegistryModel.

33. Plug−in libraries supplied by fragments

What is affected: Plug−ins that specify code on their classpath but do not supply that code (i.e., the JAR is
supplied by a fragment; for example, the org.eclipse.swt plug−in).

Description: The new runtime must convert plug.xml files to manifest.mf files behind the scenes. This is done
through a straight mechanical transformation and an analysis of the jars listed and supplied by the plug−in. In
the case where a plug−in specifies a jar on its classpath but does not supply the jar, there is no code to analyze
and the plug−in convertor cannot generate a correct manifest.mf.

Action required: Providers of such plug−ins must either change to supply the appropriate jar in the plug−in
itself or hand craft/maintain a META−INF/MANIFEST.MF file for their plug−in. Typically this can be done
using PDE to get the initial manifest and then adding in the appropriate Provide−Package header.

34. Changes to build scripts

What is affected: Scripts (e.g., Ant build.xml files) which define classpaths containing runtime−related jars
and class directories.

Description: The new runtime contains a number of new plug−ins and jars. Their introduction was mandated
by the refactoring of the runtime into configurable pieces. For most runtime situations these changes are
transparent. However, if you have custom build.xml (or similar) scripts which currently compile code against
org.eclipse.core.runtime, you will need to update them before they will function correctly. A
typical script contains a classpath entry in a <javac> task that references the
org.eclipse.core.runtime plug−in as follows:

 ../org.eclipse.core.runtime/bin;../org.eclipse.core.runtime/runtime.jar

The runtime plug−in continues to contain much of the original runtime code. However, various parts of the
runtime which are there only for compatibility purposes are contained in a compatibility plug−in
(org.eclispe.core.runtime.compatibility). Most of the new runtime code is contained in a
collection of plug−ins (org.eclipse.osgi.*).

Action required: Developers should add the entries below as needed to eliminate compilation errors. While
the complete set of jars supplied is listed below, typical uses require only a subset on the classpath at compile
time. As usual, the inclusion of the /bin directories is discretionary. The entries are given here in logical
groupings by supplying plug−in:

../org.eclipse.core.runtime.compatibility/bin;../org.eclipse.core.runtime.compatibility/compatibility.jar;•

../org.eclipse.osgi/bin;../org.eclipse.osgi/osgi.jar;•

../org.eclipse.update.configurator/bin;../org.eclipse.update.configurator/configurator.jar;•

../org.eclipse.osgi.util/util.jar;•

In addition the following jars may be required in special cases:

../org.eclipse.osgi/core.jar; ../org.eclipse.osgi/resolver.jar; ../org.eclipse.osgi/defaultAdaptor.jar;

../org.eclipse.osgi/eclipseAdaptor.jar; ../org.eclipse.osgi/console.jar
•

 Welcome to Eclipse

33. Plug−in libraries supplied by fragments 900

While updating such scripts, you should also take the opportunity to clean up (i.e., remove) references to
org.eclipse.core.boot. This plug−in is obsolete and longer contains any code. The entries can be left
on the classpath but they serve no purpose and should be removed. Look to remove:

 ../org.eclipse.core.boot/bin;../org.eclipse.core.boot/boot.jar

35. Changes to PDE build Ant task

What is affected: Scripts (e.g., Ant build.xml files) using the eclipse.buildScript task.

Description: PDE Build introduced a new property to the eclipse.buildScript task to control the generation of
plug−ins build scripts. This was mandated by the introduction of the new OSGi−based runtime.

Action required: If you want to use Eclipse 3.0 to build a 2.1 based product, then introduce in
eclipse.buildScript the property "buildingOSGi" and set it to false. For example:

<eclipse.buildScript ... buildingOSGi="false"/>

36. Changes to eclipse.build Ant task

What is affected: Scripts (e.g., Ant build.xml files) using the eclipse.buildScript task.

Description: PDE Build introduced a new property to the eclipse.buildScript task to control the generation of
plug−ins build scripts. This was mandated by the introduction of the new OSGi−based runtime.

Action required: If you want to use Eclipse 3.0 to build a 2.1 based product, then introduce in
eclipse.buildScript the property "buildingOSGi" and set it to false. For example:

<eclipse.buildScript ... buildingOSGi="false"/>

37. Changes to eclipse.fetch Ant task

What is affected: Scripts (e.g., Ant build.xml files) using the eclipse.buildScript task.

Description: PDE Build changed the behaviour of the eclipse.fetch task to ease building eclipse in an
automated build style. The elements style now only support one entry at a time and the scriptName is always
ignored.

Action required: If you had a list of entries in the "elements" tag of an eclipse.fetch call, spread them out
over several call to eclipse.fetch. If you use to set the scriptName, note that now the generated fetch script is
always called "fetch_{elementId}". For example:

<eclipse.fetch elements="plugin@org.eclipse.core.runtime, feature@org.eclipse.platform" .../>

becomes

<eclipse.fetch elements="plugin@org.eclipse.core.runtime" .../>
<eclipse.fetch elements="feature@org.eclipse.platform" .../>

 Welcome to Eclipse

35. Changes to PDE build Ant task 901

38. Replacement of install.ini

The install.ini file is no longer included. In its place is the new config.ini file in the configuration
sub−directory. Products that used the install.ini file to specify a primary feature (e.g., to provide branding
information) need to make changes to the config.ini file instead. In addition to the new filename, the names of
the keys have changed.

The value of the feature.default.id key in 2.1 should be set as the value of the new eclipse.product key. The
value of the eclipse.application should be set to "org.eclipse.ui.ide.workbench".

Finally, in 2.1 the image for the splash image was always splash.bmp in the branding plug−in's directory. In
3.0 the location of the splash image is provided explicitly by the osgi.splashPath key in the config.ini file.

Changes required when adopting 3.0 mechanisms and APIs

This section describes changes that are required if you are trying to change your 2.1 plug−ing to adopt the 3.0
mechanisms and APIs.

Getting off of org.eclipse.core.runtime.compatibility

The Eclipse 3.0 runtime is significantly different. The underlying implementation is based on the OSGi
framework specification. Eclipse 3.0 runtime includes a compatibilty layer (in the
org.eclipse.core.runtime.compatibility plug−in) which maintains the 2.1 APIs. Plug−in developers interested
in additional performance and function should consider adopting the 3.0 APIs and removing their dependence
on the compatibility layer. Compatibility code shows up in three places:

org.eclipse.core.boot − entire plug−in is legacy•
org.eclipse.core.runtime.compatibility − entire plug−in is legacy•
org.eclipse.core.runtime − various classes and methods are legacy•

The text below gives more detail on the which classes and methods are present for compatibility purposes as
well as guidance on how to update your plug−in.

Plug−ins and bundles

The Eclipse runtime has been refactored into two parts; classloading and prerequisite management, and
extension/extension−point management. This split allows for natural/seamless adoption of the OSGi
framework specification for classloading and prerequisite management. This in turn enables a range of new
capabilities in the runtime from dynamic plug−in install/update/uninstall to security and increased
configurability.

While we continue to talk about plug−ins, in the new runtime a plug−in is really a bundle plus some
extensions and extension−points. The term bundle is defined by the OSGi framework specification and refers
to a collection of types and resources and associated inter−bundle prerequisite information. The extension
registry is the new form of the plug−in registry and details only extension and extension−point information.
By−in−large the extension registry API is the same as the relevant plug−in registry API (for more information
see Registries).

 Welcome to Eclipse

38. Replacement of install.ini 902

In the Eclipse 2.x runtime, the plug−in object has a number of roles and responsibilities:

Lifecycle − The Plugin class implements method such as startup() and shutdown(). The runtime
uses these methods to signal the plug−in that someone is interested in the function it provides. In
response, plug−ins typically do a combination of:

Registration − Hook various event mechanisms (e.g., register listeners) and otherwise make
their presence known in the system (e.g., start needed threads).

♦

Initialization − Initialize or prime their data structures and load models so they are ready for
use.

♦

•

Plug−in global data/function − While never explicitly put forth for this role, in common practice
plug−in classes have become a place to hang data and function which is effectively global to the
plug−in itself. In some cases this data/function is API in others it is internal. For example, the UI
plug−in exposes as API methods such as getDialogSettings() and getWorkbench().

•

Context − The standard Plugin class provides access to various runtime−provided function such as
preferences and logging.

•

In the Eclipse 3.0 runtime picture, these roles and responsibilities are factored into distinct objects.

Bundle
Bundles are the OSGi unit of modularity. There is one classloader per bundle and
Eclipse−like inter−bundle class loading dependency graphs can be constructed. Bundles have
lifecycle for start and stop and the OSGi framework broadcasts bundle related events (e.g.,
install, resolve, start, stop, uninstall, ...) to interested parties. Unlike the Eclipse Plugin
class, the OSGi Bundle class is not extensible. That is, developers do not have the
opportunity to define their own bundle class.

BundleActivator
BundleActivator is an interface defined by the OSGi framework. Each bundle can define a
bundle activator class much like a plug−in can define its Plugin class. The specified class is
instantiated by the framework and used to implement the start() and stop() lifecycle
processing. There is a major difference however in the nature of this lifecycle processing. In
Eclipse it is common (though not recommended) to have the Plugin classes do both
initialization and registration. In OSGi activators must only do registration. Doing large
amounts of initialization (or any other work) in BundleActivator.start() threatens
the liveness of the system.

BundleContext
BundleContexts are the OSGi mechanism for exposing general system function to individual
bundles. Each bundle has a unique and private instance of BundleContext which they can use
to access system function (e.g., getBundles() to discover all bundles in the system).

Plugin
The new Plugin is very much like the original Eclipse Plugin class with the following
exceptions: Plugin objects are no longer required or managed by the runtime and various
methods have been deprecated. It is essentially a convenience mechanism providing a host of
useful function and mechanisms but is no longer absolutely required. Much of the function
provided there is also available on the Platform class in the runtime.

Plugin also implements BundleActivator. This recognizes the convenience of having
one central object representing the lifecycle and semantic of a plug−in. Note that this does not
however sanction the eager initialization of data structures that is common in plug−ins today.
We cannot stress enough that plug−ins can be activated because a somewhat peripheral class
was referenced during verification of a class in some other plug−in. That is, just because your
plug−in has been activated does not necessarily mean that its function is needed. Note also

 Welcome to Eclipse

38. Replacement of install.ini 903

that you are free to define a different BundleActivator class or not have a bundle
activator at all.

The steps required to port a 2.x Plugin class to Eclipse 3.0 depends on what the class is doing. As outlined
above, most startup lifecycle work falls into one of the following categories:

Initialization
Datastructure and model initialization is quite often done in Plugin.startup(). The
natural/obvious mapping would be to do this work in a BundleActivator.start(),
that is to leave the function on Plugin. This is strongly discouraged. As with 2.x plug−ins,
3.0 plug−ins/bundles may be started for many different reasons in many different
circumstances.
An actual example from Eclipse 2.0 days illuminates this case. There was a plug−in which
initialized a large model requiring the loading of some 11MB of code and many megabytes of
data. There were quite common usecases where this plug−in was activated to discover if the
project icon presented in the navigator should be decorated with a particular markup. This test
did not require any of the initialization done in startup() but yet all users, in all usecases
had to pay the memory and time penalty for this eager initialization.
The alternative approach is to do such initialization in a classic lazy style. For example, rather
than having models initialized when the plug−in/bundle is activated, do it when they are
actually needed (e.g., in a centralized model accessor method). For many usecases this will
amount to nearly the same point in time but for other scenarios this approach will defer
initialization (perhaps indefinitely). We recommend taking time while porting 2.1 plug−ins to
reconsider the initialization strategy used.

Registration
Plug−in startup is a convenient time to register listeners, services etc. and start background
processing threads (e.g., listening on a socket). Plugin.start() may be a reasonable
place to do this work. It may also make sense to defer until some other trigger (e.g., the use of
a particular function or data element).

Plug−in global data
Your Plugin class can continue to play this role. The main issue is that Plugin objects are
no longer globally accessible via a system−managed list. In Eclipse 2.x you could discover
any plug−in's Plugin ojbect via the plug−in registry. This is no longer possible. In most
circumstances this type of access is not required. Plugins accessed via the registry are more
typically used as generic Plugins rather than calling domain−specific methods. The
equivalent level of capability can be had by accessing and manipulating the corresponding
Bundle objects.

Registries and the plug−in model

In the new runtime there is a separation between the information and structures needed to execute a plug−in
and that related to a plug−in's extensions and extension points. The former is defined and managed by the
OSGi framework specification. The latter are Eclipse−specific concepts and are added by they Eclipse
runtime code. Accordingly, the original plug−in registy and related objects have been split into OSGi bundles
and the Eclipse extension registry.

The parts of IPluginRegistry dealing with execution specification (e.g., IPluginDescriptor,
ILibrary, IPrequisite) have been deprecated and the remaining parts related to extensions and
extension point have been moved to IExtensionRegistry. Further, the so−called model objects related
to the plug−in registry as a whole are now deprecated. These types were presented and instantiated by the
runtime primarily to support tooling such as PDE. Unfortunately, it was frequently the case that the level of

 Welcome to Eclipse

Getting off of org.eclipse.core.runtime.compatibility 904

information needed exceeded the runtime's capabilities or interests (e.g., remembering line numbers for
plugin.xml elements) and in the end, the potential consumers of the runtime's information had to maintain
their own structures anyway.

In the new runtime we have re−evaluated the facilities provided by the runtime and now provide only those
which are either essential for runtime execution or are extraordinarily difficult for others to do. As mentioned
above, the plug−in registry model objects have been deprecated as has the plug−in parsing API. The new
extensions registry maintains the essential extension−related information. A new state (see
org.eclipse.osgi.service.resolver.State and friends) structure represents and allows the
manipulation of the essential execution−related information.

NL fragment structure

In Eclipse 3.0 the NL fragment structure has been updated to be more consistent. Previously the translations
for files like plugin.properties were assumed to be inside of JARs supplied by fragments. Since the original
files are found in the root of the relevant host plug−in, a more consistent location would have the translated
files located in the root of the NL fragments. For example,

 org.eclipse.ui.workbench.nl/
 fragment.xml
 plugin_fr.properties
 plugin_pt_BR.properties
 ...
 nl1.jar

Note here that the file nl1.jar previously would have contained the translations for plugin.properties. These
files are now at the root of the fragment and the JAR contains translations of any translatable resources (i.e.,
files loaded via the classloader) in the host plug−in.

Of course, the Eclipse 2.1 NL fragment structure is still supported for 2.1 host plug−ins running in Eclipse
3.0. You cannot however use a 2.1 NL fragment on a 3.0 plug−in. The fragment must be updated to the new
structure.

API changes overview

org.eclipse.core.boot (package org.eclipse.core.boot)

The entire org.eclipse.core.boot package has been deprecated. BootLoader has been merged with
org.eclipse.core.runtime.Platform since it no longer made sense to have a split between boot
and runtime. Note that in fact, the org.eclipse.core.boot plug−in has been broken up and all its code moved to
either the new runtime or the compatibility layer.

IPlatformConfiguration has always been a type defined by and for the Eclipse Install/Update
component. With the reorganization of the runtime we are able to repatriate this type to its rightful home. This
class remains largely unchanged and has been repackaged as
org.eclipse.update.configurator.IPlatformConfiguration.

IPlatformRunnable has been moved to org.eclipse.core.runtime.IPlatformRunnable.

 Welcome to Eclipse

NL fragment structure 905

IExtension and IExtensionPoint (package org.eclipse.core.runtime)

The getDeclaringPlugin() method (on both classes) gives an upward link to the plug−in which
declares the extension or extension−point (respectively). The new registry model separates the execution
aspects of plug−ins from the extension/extension−point aspects and no longer contains
IPluginDescriptors. Users of this API should consider the new method getParentIdentifier()
found on both IExtension and IExtensionPoint.

ILibrary, IPluginDescriptor, IPluginRegistry and IPrerequisite (package
org.eclipse.core.runtime)

In the original runtime, the plug−in registry maintained a complete picture of the runtime configuration. In
Eclipse 3.0 this picture is split over the OSGi framework and the extension registry. As such, these classes
have been deprecated. The deprecation notices contain details of how you should update your code.

Platform and Plugin (package org.eclipse.core.runtime)

In the new runtime, Plugin objects are no longer managed by the runtime and so cannot be accessed
generically via the Platform. Similarly, the plug−in registry no longer exists or gives access to plug−in
descriptors. There are however suitable replacement methods available and detailed in the Javadoc of the
deprecated methods in these classes.

org.eclipse.core.runtime.model (package org.eclipse.core.runtime.model)

All types in this package are now deprecated. See the discussion on registries for more information.

IWorkspaceRunnable and IWorkspace.run (package org.eclipse.core.resources)

Clients of the IWorkspace.run(IWorkspaceRunnable,IProgressMonitor) method should
revisit their uses of this method and consider using the richer method
IWorkspace.run(IWorkspaceRunnable,ISchedulingRule,int,IProgressMonitor).
The old IWorkspace.run method acquires a lock on the entire workspace for the duration of the
IWorkspaceRunnable. This means that an operation done with this method will never be able to run
concurrently with other operations that are changing the workspace. In Eclipse 3.0, many long−running
operations have been moved into background threads, so the likelihood of conflicts between operations is
greatly increased. If a modal foreground operation is blocked by a long running background operation, the UI
becomes blocked until the background operation completes, or until one of the operations is canceled.

The suggested solution is to switch all references to old IWorkspace.run to use the new method with a
scheduling rule parameter. The scheduling rule should be the most fine−grained rule that encompasses the
rules for all changes by that operation. If the operation tries to modify resources outside of the scope of the
scheduling rule, a runtime exception will occur. The precise scheduling rule required by a given workspace
operation is not specified, and may change depending on the installed repository provider on a given project.
The factory IResourceRuleFactory should be used to obtain the scheduling rule for a
resource−changing operation. If desired, a MultiRule can be used to specify multiple resource rules, and
the MultiRule.combine convenience method can be used to combine rules from various
resource−changing operations.

If no locking is required, a scheduling rule of null can be used. This will allow the runnable to modify all
resources in the workspace, but will not prevent other threads from also modifying the workspace
concurrently. For simple changes to the workspace this is often the easiest and most concurrency−friendly

 Welcome to Eclipse

API changes overview 906

solution.

IWorkbenchPage (package org.eclipse.ui)

The constant EDITOR_ID_ATTR is now deprecated. This is an IMarker attribute name that specifies
the preferred editor id to open the IMarker resource with. This constant in now on
org.eclipse.ui.ide.IDE class.

•

IEditorDescriptor (package org.eclipse.ui)

There are new API methods to determine whether the editor will open internally to the workbench
page (isInternal), in−place to the workbench window (isOpenInPlace), or externally to the workbench
(isExternal). While this is not a breaking change, it is a good opportunity for clients that are illegally
down−casting IEditorDescriptor to org.eclipse.ui.internal.model.EditorDescriptor to call isInternal to
bring there code back into line.

•

ISharedImages (package org.eclipse.ui)

The following fields were removed (deprecated) from this interface because they were IDE−specific:
String IMG_OBJ_PROJECT♦
String IMG_OBJ_PROJECT_CLOSED♦
String IMG_OPEN_MARKER♦
String IMG_OBJS_TASK_TSK♦
String IMG_OBJS_BKMRK_TSK♦

•

Existing clients should instead use the fields of the same names declared on IDE.SharedImages in the
org.eclipse.ui.ide package of the org.eclipse.ui.ide plug−in.

•

IWorkbenchActionConstants (package org.eclipse.ui)

The following fields were removed (deprecated) from this interface; they are subsumed by the new
ActionFactory class:

String ABOUT♦
String BACK♦
String CLOSE♦
String CLOSE_ALL♦
String COPY♦
String CUT♦
String DELETE♦
String EXPORT♦
String FIND♦
String FORWARD♦
String IMPORT♦
String MOVE♦
String NEW♦
String NEXT♦
String PASTE♦
String PREVIOUS♦
String PRINT♦
String PROPERTIES♦
String QUIT♦
String REDO♦

•

 Welcome to Eclipse

API changes overview 907

String REFRESH♦
String RENAME♦
String REVERT♦
String SAVE♦
String SAVE_ALL♦
String SAVE_AS♦
String SELECT_ALL♦
String UNDO♦
String UP♦

Clients should instead call getID() on the fields of the same names declared on ActionFactory in the
org.eclipse.ui.actions package (org.eclipse.ui plug−in). For example, change
IWorkbenchActionConstants.CUT to ActionFactory.CUT.getId().

•

The following fields were removed (deprecated) from this interface because they were IDE−specific.
String ADD_TASK♦
String BOOKMARK♦
String BUILD♦
String BUILD_PROJECT♦
String CLOSE_PROJECT♦
String FIND♦
String OPEN_PROJECT♦
String REBUILD_ALL♦
String REBUILD_PROJECT♦

•

Clients should instead call getID() on the fields of the same names declared on IDEActionFactory in
the org.eclipse.ui.ide package (org.eclipse.ui.ide plug−in). For example, change
IWorkbenchActionConstants.BUILD to IDEActionFactory.BUILD.getId().

•

IWorkbenchPreferenceConstants (package org.eclipse.ui)

The following fields were removed (deprecated) from this interface because they were IDE−specific:
String PROJECT_OPEN_NEW_PERSPECTIVE♦

•

Clients should instead use the fields of the same names declared on IDE.Preferences in the
org.eclipse.ui.ide package.

•

IExportWizard (package org.eclipse.ui)

Prior to 3.0, the selection passed to IWorkbenchWizard.init(IWorkbench, IStructuredSelection) for an
export wizard was preprocessed. If any of the selections were IResources, or adaptable to IResource,
then the selection consisted only of these resources. In 3.0, the generic export wizard does not do any
preprocessing.

•

The selection passed to the wizard is generally used to prime the particular wizard page with
contextually appropriate values.

•

Client that implement IExportWizard and requires this resource−specific selection transformation
should add the following to their init(IWorkbench, IStructuredSelection selection) method to
computer filteredSelection from selection:

IStructuredSelection filteredSelection = selection;
List selectedResources =
IDE.computeSelectedResources(currentSelection);
if (!selectedResources.isEmpty()) {
 filteredSelection = new
StructuredSelection(selectedResources);
}

♦

•

 Welcome to Eclipse

API changes overview 908

IImportWizard (package org.eclipse.ui)

Prior to 3.0, the selection passed to IWorkbenchWizard.init(IWorkbench, IStructuredSelection) for an
import wizard was preprocessed. If any of the selections were IResources, or adaptable to IResource,
then the selection consisted only of these resources. In 3.0, the generic import wizard does not do any
preprocessing.

•

The selection passed to the wizard is generally used to prime the particular wizard page with
contextually appropriate values.

•

Client that implement IImportWizard and requires this resource−specific selection transformation
should add the following to their init(IWorkbench, IStructuredSelection selection) method to compute
a filtered selection from the selection passed in:

IStructuredSelection filteredSelection = selection;
List selectedResources =
IDE.computeSelectedResources(currentSelection);
if (!selectedResources.isEmpty()) {
 filteredSelection = new
StructuredSelection(selectedResources);
}

♦

•

INewWizard (package org.eclipse.ui)

Prior to 3.0, the selection passed to IWorkbenchWizard.init(IWorkbench, IStructuredSelection) for a
new wizard was preprocessed. If there was no structured selection at the time the wizard was invoked,
but the active workbench window had an active editor open on an IFile, then the selection passed in
would consist of that IFile. In 3.0, the generic new wizard does not do any preprocessing, and an
empty selection will be passed when there is no structured selection.

•

The selection passed to the wizard is generally used to prime the particular wizard page with
contextually appropriate values.

•

Client that implement INewWizard and requires this capability should add the following to their
init(IWorkbench, IStructuredSelection selection) method to compute a selection from the active
editor's input:

if (selection.isEmpty()) {
 IWorkbenchWindow window = PlatformUI.getWorkbench().getActiveWorkbenchWindow();
 if (window != null) {
 IWorkbenchPart part = window.getPartService().getActivePart();
 if (part instanceof IEditorPart) {
 IEditorInput input = ((IEditorPart) part).getEditorInput();
 if (input instanceof IFileEditorInput) {
 selection = new StructuredSelection(((IFileEditorInput) input).getFile());
 }
 }
 }
}

•

WorkbenchHelp (package org.eclipse.ui.help)

The following WorkbenchHelp method was removed (deprecated) from this class because its result
(IHelp) was removed (deprecated):

public static IHelp getHelpSupport()♦

•

Clients that called this method to obtain an IHelp should instead call the static methods on
HelpSystem or WorkbenchHelp.

•

 Welcome to Eclipse

API changes overview 909

IHelp (package org.eclipse.help)

This interface has been removed (deprecated). WorkbenchHelp.getHelpsupport() was the only way to
get hold of an IHelp object. This method has also been removed (deprecated).

•

The following IHelp methods now appear as static methods on a new HelpSystem class in the same
package:

public IToc[] getTocs()♦
public IContext getContext(String contextId)♦

•

The rest of the IHelp methods now appear as static method on WorkbenchHelp.•
This interface was formerly mentioned in the contract for the org.eclipse.help.support extension point.
This extension point has been renamed "org.eclipse.ui.helpSupport", and the contract simplified so
that the implementer only needs supply the display methods. For these purposes, IHelp has been
replaced by AbstractHelpUI (in the org.eclipse.ui.help package).

•

There should be no clients implementing this interface beyond the Platform which supplied the sole
implementation of this interface.

•

ITextEditorActionConstants (package org.eclipse.ui.texteditor)

This interface additionally includes newly defined constants that redefine deprecated constants
inherited from org.eclipse.ui.IWorkbenchActionConstants. This change allows clients to free their
code from deprecation warnings. The constants ADD_TASK and BOOKMARK have not been
redefined as they are IDE specific. When using these two constants in your code, please follow the
instructions given in the deprecation message.

•

IAbstractTextEditorHelpContextIds (package org.eclipse.ui.texteditor)

BOOKMARK_ACTION and ADD_TASK_ACTION have been deprecated because they are IDE
specific. Use the constants defined in org.eclipse.ui.editors.text.ITextEditorHelpContextIds instead.

•

BasicTextEditorActionContributor (package org.eclipse.ui.texteditor)

BasicTextEditorActionContributor no longer assigns any editor action as global action for
org.eclipse.ui.IWorkbenchActionConstants.ADD_TASK and
org.eclipse.ui.IWorkbenchActionConstants.BOOKMARK because these actions are IDE specific.
This is now done by the org.eclipse.ui.editors.text.TextEditorActionContributor. If your editors are
not configured to used TextEditorActionContributor but uses a contributor that is a subclass of
BasicTextEditorActionContributor, this contributor has to be extended to also assign global action
handlers for ADD_TASK and BOOKMARK. This can be done by adding the following lines to the
setActiveEditor method of the editor action contributor:

•

 IActionBars actionBars= getActionBars();
 if (actionBars != null) {
 actionBars.setGlobalActionHandler(IDEActionFactory.ADD_TASK.getId(), getAction(textEditor, IDEActionFactory.ADD_TASK.getId()));
 actionBars.setGlobalActionHandler(IDEActionFactory.BOOKMARK.getId(), getAction(textEditor, IDEActionFactory.BOOKMARK.getId()));
 }

•

TextEditorActionContributor (package org.eclipse.ui.editors.text)

TextEditorActionContributor assigns global action handlers for
IWorkbenchActionConstants.ADD_TASK (now IDEActionFactory.ADD_TASK.getId()) and
IWorkbenchActionConstants.BOOKMARK (now IDEActionFactory.BOOKMARK.getId()). These
action handlers have previously been registered by BasicTextEditorActionContributor. See migration
notes for BasicTextEditorActionContributor.

•

 Welcome to Eclipse

API changes overview 910

annotationTypes extension point (plug−in org.eclipse.ui.editors)

There is now the explicit notion of an annotation type. See Annotation.getType() and Annotation.setType().
The type of an annotation can change over it's lifetime. A new extension point has been added for the
declaration of annotation types: "org.eclipse.ui.editors.annotationTypes". An annotation type has a name and
can be declared as being a subtype of another declared annotation type. An annotation type declaration may
also use the attributes "markerType" and "markerSeverity" in order to specify that markers of a given type and
a given severity should be represented in text editors as annotations of a particular annotation type. The
attributes "markerType" and "markerSeverity" in the "org.eclipse.ui.editors.markerAnnotationSpecification"
should no longer be used. Marker annotation specifications are thus becoming independent from markers and
the name thus misleading. However, the name is kept in order to ensure backward compatibility.

Instances of subclasses of AbstractMarkerAnnotationModel automatically detect and set the correct
annotation types for annotations they create from markers. In order to programmatically retrieve the
annotation type for a given marker or a given pair of markerType and markerSeverity use
org.eclipse.ui.texteditor.AnnotationTypeLookup.

Access to the hierarchy of annotation types is provided by IAnnotationAccessExtension. For a given
annotation type you can get the chain of super types and check whether an annotation type is a subtype of
another annotation type. DefaultMarkerAnnotationAccess implements this interface.

markerAnnotationSpecification extension point (plug−in org.eclipse.ui.editors)

The annotation type is the key with which to find the associated marker annotation specification. As
annotation types can extend other annotation types, there is an implicit relation between marker annotation
specifications as well. Therefore a marker annotation specification for a given annotation type is completed by
the marker annotation specifications given for the super types of the given annotation type. Therefore, marker
annotation specification do not have to be complete as this was required before. Marker annotation
specifications are retrieved by AnnotationPreferences. By using
org.eclipse.ui.texteditor.AnnotationPreferenceLookup, you can retrieve an annotation preference for a given
annotation type that transparently performs the completion of the preference along the annotation super type
chain.

Marker annotation specification has been extended with three additional attributes in order to allow the
definition of custom appearances of a given annotation type in the vertical ruler. These attributes are: "icon",
"symbolicIcon", and "annotationImageProvider". The value for "icon" is the path to a file containing the icon
image. The value of "symbolicIcon" can be one of "error", "warning", "info", "task", "bookmark". The
attribute "symbolicIcon" is used to tell the platform that annotation should be depicted with the same images
that are used by the platform to present errors, warnings, infos, tasks, and bookmarks respectively. The value
of "annotationImageProvider" is a class implementing org.eclipse.ui.texteditor.IAnnotationImageProvider that
allows for a full custom annotation presentation.

The vertical ruler uses it's associated IAnnotationAccess/IAnnotationAccessExtension to draw annotations.
The vertical ruler does not call Annotation.paint any longer. In general, Annotations are no longer supposed to
draw themselves. The "paint" and "getLayer" methods have been deprecated in order to make annotation
eventually UI independent. DefaultMarkerAnnotationAccess serves as default implementation of
IAnnotationAccess/IAnnotationAccessExtension. DefaultMarkerAnnotationAccess implements the following
strategy for painting annotations: If an annotation implements IAnnotationPresentation,
IAnnotationPresentation.paint is called. If not, the annotation image provider is looked up in the annotation
preference. The annotation image provider is only available if specified and if the plug−in defining the
enclosing marker annotation specification has already been loaded. If there is an annotation image provider,

 Welcome to Eclipse

API changes overview 911

the call is forwarded to it. If not, the specified "icon" is looked up. "symbolicIcon" is used as the final
fallback. For drawing annotations, the annotation presentation layer is relevant.
DefaultMarkerAnnotationAccess looks up the presentation layer using the following strategy: If the
annotation preference specifies a presentation layer, the specified layer is used. If there is no layer and the
annotation implements IAnnotationPresentation, IAnnotationPresentation.getLayer is used otherwise the
default presentation layer (which is 0) is returned.

Migration to annotationTypes extension point (plug−in org.eclipse.ui.editors)

The following annotation types are declared by the org.eclipse.ui.editors plug−in:

 <extension point="org.eclipse.ui.editors.annotationTypes">
 <type
 name="org.eclipse.ui.workbench.texteditor.error"
 markerType="org.eclipse.core.resources.problemmarker"
 markerSeverity="2">
 </type>
 <type
 name="org.eclipse.ui.workbench.texteditor.warning"
 markerType="org.eclipse.core.resources.problemmarker"
 markerSeverity="1">
 </type>
 <type
 name="org.eclipse.ui.workbench.texteditor.info"
 markerType="org.eclipse.core.resources.problemmarker"
 markerSeverity="0">
 </type>
 <type
 name="org.eclipse.ui.workbench.texteditor.task"
 markerType="org.eclipse.core.resources.taskmarker">
 </type>
 <type
 name="org.eclipse.ui.workbench.texteditor.bookmark"
 markerType="org.eclipse.core.resources.bookmark">
 </type>
 </extension>

The defined markerAnnotationSpecification extension no longer provide "markerType" and "markerSeverity"
attributes. They define the "symbolicIcon" attribute with the according value. Thus, MarkerAnnotation.paint
and MarkerAnnotation.getLayer are not called any longer, i.e. overriding these methods does not have any
effect. Affected clients should implement IAnnotationPresentation.

ILaunchConfigurationType (package org.eclipse.debug.core)

With the introduction of extensible launch modes in 3.0, more than one launch delegate can exist for a launch
configuration type. Releases prior to 3.0 only supported one launch delegate per launch configuration type.
The method ILaunchConfigurationType.getDelegate() is now deprecated. The method
getDelegate(String mode) should be used in its place to retrieve the launch delegate for a specific
launch mode. The deprecated method has been changed to return the launch delegate for the run mode.

ILaunchConfigurationTab and ILaunchConfigurationTabGroup (package
org.eclipse.debug.ui)

Launch tab groups and launch tabs are no longer notified when a launch completes. The method
launched(ILaunch) in the interfaces ILaunchConfigurationTab and

 Welcome to Eclipse

API changes overview 912

ILaunchConfigurationTabGroup has been deprecated and is no longer called. Relying on this method
for launch function was always problematic, since tabs only exist when launching is performed from the
launch dialog. Also, with the introduction of background launching, this method can no longer be called, as
the launch dialog is be closed before the resulting launch object exists.

ILaunchConfigurationTab and AbstractLaunchConfigurationTab (package
org.eclipse.debug.ui)

Two methods have been added to the ILaunchConfigurationTab interface − activated and deactivated.
These new life cycle methods are called when a tab is entered and exited respectively. Existing
implementations of ILaunchConfigurationTab that subclass the abstract class provided by the debug
plug−in (AbstractLaunchConfigurationTab) are binary compatible since the methods are
implemented in the abstract class.

In prior releases, a tab was sent the message initializeFrom when it was activated, and
performApply when it was deactivated. In this way, the launch configuration tab framework provided
inter−tab communication via a launch configuration (by updating the configuration with current attribute
values when a tab is exited, and updating the newly entered tab). However, since many tabs do not perform
inter−tab communication, this can be inefficient. As well, there was no way to distinguish between a tab being
activated, and a tab displaying a selected launch configuration for the first time. The newly added methods
allow tabs to distinguish between activation and initialization, and deactivation and saving current values.

The default implementation of activated, provided by the abstract tab, calls initializeFrom. And,
the default implementation of deactivated calls performApply. Tabs wishing to take advantage of the
new API should override these methods as required. Generally, for tabs that do not perform inter−tab
communication, the recommended approach is to re−implement these methods to do nothing.

launchConfigurationTabGroup extension point Type (package org.eclipse.debug.ui)

In prior releases, perspective switching was specified on a launch configuration, via the launch configuration
attributes ATTR_TARGET_DEBUG_PERSPECTIVE and ATTR_TARGET_RUN_PERSPECTIVE. With the
addition of extensible launch modes in 3.0, this approach no longer scales. Perspective switching is now
specified on launch configuration type basis, per launch mode that a launch configuration type supports. API
has been added to DebugUITools to set and get the perspective associated with a launch configuration type
for a specific launch mode.

An additional, optional, launchMode element has been added to the
launchConfigurationTabGroup extension point, allowing a contributed tab group to specify a default
perspective for a launch configuration type and mode.

From the Eclipse user interface, users can edit the perspective associated with a launch configuration type by
opening the launch configuration dialog, and selecting a launch configuration type node in the tree (rather
than an individual configuration). A tab is displayed allowing the user to set a perspective with each supported
launch mode.

[JDT only] IVMRunner (package org.eclipse.jdt.launching)

Two methods have been added to the VMRunnerConfiguration class to support the setting and
retrieving of environment variables. Implementors of IVMRunner should call
VMRunnerConfiguration.getEnvironment() and pass that environment into the executed JVM.
Clients who use DebugPlugin.exec(String[] cmdLine, File workingDirectory) can do

 Welcome to Eclipse

API changes overview 913

this by calling DebugPlugin.exec(String[] cmdLine, File workingDirectory,
String[] envp) instead. Simply passing in the result from getEnvironment() is sufficient.

[JDT only] VMRunnerConfiguration and Bootstrap Classes (package
org.eclipse.jdt.launching)

In prior releases, the VMRunnerConfiguration had one attribute to describe a boot path. The attribute is
a collection of Strings to be specified in the −Xbootclasspath argument. Three new attributes have
been added to the VMRunnerConfiguration to support JVMs that allow for prepending and appending to the
boot path. The new methods/attributes added are:

getPrependBootClassPath() − returns a collection of entries to be prepended to the boot path
(the −Xbootclasspath/p argument)

•

getMainBootClassPath() − returns a collection of entries to be placed on the boot path (the
−Xbootclasspath argument)

•

getAppendBootClassPath() − returns a collection of entries to be appended to the boot path
(the −Xbootclasspath/a argument)

•

The old attribute, getBootClassPath(), still exists and contains a complete path equivalent to that of the
three new attributes. However, VMRunners that support the new boot path options should take advantage of
the new attributes.

[JDT only] Improved support for working copies (package org.eclipse.jdt.core)

The Java model working copy facility has been reworked in 3.0 to provide greatly increased functionality.
Prior to 3.0, the Java model allowed creation of individual working copies of compilation units. Changes
could be made to the working copy and later committed. There was support for limited analysis of a working
copy in the context of the rest of the Java model. However, there was no way these these analyses could ever
take into account more than one of the working copies at a time.

The changes in 3.0 make it possible to create and manage sets of working copies of compilation units, and to
perform analyses in the presence of all working copies in a set. For example, it is now possible for a client like
JDT refactoring to create working copies for one or more compilation units that it is considering modifying
and then to resolve type references between the working copies. Formerly this was only possible after the
changes to the compilation unit working copies had been committed.

The Java model API changes in 2 ways to add this improved support:

(1) The functionality formerly found on IWorkingCopy and inherited by ICompilationUnit has been
consolidated into ICompilationUnit. The IWorkingCopy interface was only used in this one place,
and was gratuitously more general that in needed to be. This change simplifies the API. IWorkingCopy has
been deprecated. Other places in the API where IWorkingCopy is used as a parameter or result type have
been deprecated as well; the replacement API methods mention ICompilationUnit instead of
IWorkingCopy.

(2) The interface IBufferFactory has been replaced by WorkingCopyOwner. The improved support
for working copies requires that there be an object to own the working copies. Although IBufferFactory
is in the right place, the name does not adequately convey how the new working copy mechanism works.
WorkingCopyOwner is much more suggestive. In addition, WorkingCopyOwner is declared as an
abstract class, rather than as an interface, to allow the notion of working copy owner to evolve in the future.
The one method on IBufferFactory moves to WorkingCopyOwner unaffected.

 Welcome to Eclipse

API changes overview 914

WorkingCopyOwner does not implement IBufferFactory to make it clear that IBufferFactory is
a thing of the past. IBufferFactory has been deprecated. Other places in the API where
IBufferFactory appears as a parameter or result type have been deprecated as well; the replacement API
methods mention WorkingCopyOwner instead of IBufferFactory.

These changes do not break binary compatibility.

When migrating, all references to the type IWorkingCopy should instead reference
ICompilationUnit. The sole implementation of IWorkingCopy implements ICompilationUnit
as well, meaning objects of type IWorkingCopy can be safely cast to ICompilationUnit.

A class that implements IBufferFactory will need to replaced by a subclass of WorkingCopyOwner.
Although WorkingCopyOwner does not implement IBufferFactory itself, it would be possible to
declare the subclass of WorkingCopyOwner that implements IBufferFactory thereby creating a
bridge between old and new (IBufferFactory declares createBuffer(IOpenable) whereas
WorkingCopyOwner declares createBuffer(ICompilationUnit); ICompilationUnit
extends IOpenable).

Because the changes involving IWorkingCopy and IBufferFactory are interwined, we recommend
dealing with both at the same time. The details of the deprecations are as follows:

IWorkingCopy (package org.eclipse.jdt.core)
public void commit(boolean, IProgressMonitor) has been deprecated.

The equivalent functionality is now provided on ICompilationUnit directly:
public void commitWorkingCopy(boolean,
IProgressMonitor)

⋅
◊

Rewrite wc.commit(b,monitor) as ((ICompilationUnit)
wc).commitWorkingCopy(b,monitor)

◊

♦

public void destroy() has been deprecated.
The equivalent functionality is now provided on ICompilationUnit directly:

public void discardWorkingCopy(boolean,
IProgressMonitor)

⋅
◊

Rewrite wc.destroy() as ((ICompilationUnit)
wc).discardWorkingCopy()

◊

♦

public IJavaElement findSharedWorkingCopy(IBufferFactory) has
been deprecated.

The equivalent functionality is now provided on ICompilationUnit directly:
public ICompilationUnit
findWorkingCopy(WorkingCopyOwner)

⋅
◊

Note: WorkingCopyOwner substitutes for IBufferFactory.◊

♦

public IJavaElement getOriginal(IJavaElement) has been deprecated.
The equivalent functionality is now provided on IJavaElement:

public IJavaElement getPrimaryElement()⋅
◊

Rewrite wc.getOriginal(elt) as elt.getPrimaryElement()◊
Note: Unlike IWorkingCopy.getOriginal,
IJavaElement.getPrimaryElement does not return null if the receiver is
not a working copy.

◊

♦

public IJavaElement getOriginalElement() has been deprecated.
The equivalent functionality is now provided on ICompilationUnit directly:

public ICompilationUnit getPrimary()⋅
◊

♦

•

 Welcome to Eclipse

API changes overview 915

Rewrite wc.getOriginalElement() as ((ICompilationUnit)
wc).getPrimary()

◊

Note: Unlike IWorkingCopy.getOriginalElement,
IWorkingCopy.getPrimary does not return null if the receiver is not a
working copy.

◊

public IJavaElement[] findElements(IJavaElement) has been deprecated.
The method is now declared on ICompilationUnit directly.◊
Rewrite wc.findElements(elts) as ((ICompilationUnit)
wc).findElements(elts)

◊

♦

public IType findPrimaryType() has been deprecated.
The method is now declared on ICompilationUnit directly.◊
Rewrite wc.findPrimaryType() as ((ICompilationUnit)
wc).findPrimaryType()

◊

♦

public IJavaElement getSharedWorkingCopy(IProgressMonitor,
IBufferFactory, IProblemRequestor) has been deprecated.

The equivalent functionality is now provided on ICompilationUnit directly:
public ICompilationUnit
getWorkingCopy(WorkingCopyOwner, IProblemRequestor,
IProgressMonitor)

⋅
◊

Note: the parameter order has changed, and WorkingCopyOwner substitutes for
IBufferFactory.

◊

♦

public IJavaElement getWorkingCopy() has been deprecated.
The equivalent functionality is now provided on ICompilationUnit directly:

public ICompilationUnit
getWorkingCopy(IProgressMonitor)

⋅
◊

Rewrite wc.getWorkingCopy() as ((ICompilationUnit)
wc).getWorkingCopy(null)

◊

♦

public IJavaElement getWorkingCopy(IProgressMonitor,
IBufferFactory, IProblemRequestor) has been deprecated.

The equivalent functionality is now provided on ICompilationUnit directly:
public ICompilationUnit
getWorkingCopy(WorkingCopyOwner, IProblemRequestor,
IProgressMonitor)

⋅
◊

Note: the parameter order has changed, and WorkingCopyOwner substitutes for
IBufferFactory.

◊

♦

public boolean isBasedOn(IResource) has been deprecated.
The equivalent functionality is now provided on ICompilationUnit directly:

public boolean hasResourceChanged()⋅
◊

Rewrite wc.isBasesOn(res) as ((ICompilationUnit)
wc).hasResourceChanged()

◊

♦

public boolean isWorkingCopy() has been deprecated.
The method is now declared on ICompilationUnit directly.◊
Rewrite wc.isWorkingCopy() as ((ICompilationUnit)
wc).isWorkingCopy()

◊

♦

public IMarker[] reconcile() has been deprecated.
The equivalent functionality is now provided on ICompilationUnit directly:

public void reconcile(boolean,IProgressMonitor)⋅
◊

Rewrite wc.reconcile() as ((ICompilationUnit)
wc).reconcile(false, null)

◊

Note: The former method always returned null; the replacement method does not
return a result.

◊

♦

 Welcome to Eclipse

API changes overview 916

public void reconcile(boolean, IProgressMonitor) has been deprecated.
The method is now declared on ICompilationUnit directly.◊
Rewrite wc.reconcile(b,monitor) as ((ICompilationUnit)
wc).reconcile(b.monitor)

◊

♦

public void restore() has been deprecated.
The method is now declared on ICompilationUnit directly.◊
Rewrite wc.restore() as ((ICompilationUnit) wc).restore()◊

♦

IType (package org.eclipse.jdt.core)
public ITypeHierarchy newSupertypeHierarchy(IWorkingCopy[],
IProgressMonitor) has been deprecated.

The replacement method is provided on the same class:
public ITypeHierarchy newSupertypeHierarchy(c,
IProgressMonitor)

⋅
◊

Note: The Java language rules for array types preclude casting IWorkingCopy[]
to ICompilationUnit[].

◊

♦

public ITypeHierarchy newTypeHierarchy(IWorkingCopy[],
IProgressMonitor) has been deprecated.

The replacement method is provided on the same class:
public ITypeHierarchy
newTypeHierarchy(ICompilationUnit[],
IProgressMonitor)

⋅
◊

Note: The Java language rules for array types preclude casting IWorkingCopy[]
to ICompilationUnit[].

◊

♦

•

IClassFile (package org.eclipse.jdt.core)
public IJavaElement getWorkingCopy(IProgressMonitor,
IBufferFactory) has been deprecated.

The replacement method is provided on the same class:
public ICompilationUnit
getWorkingCopy(WorkingCopyOwner, IProgressMonitor)

⋅
◊

Note: the parameter order has changed, and WorkingCopyOwner substitutes for
IBufferFactory.

◊

♦
•

JavaCore (package org.eclipse.jdt.core)
public IWorkingCopy[] getSharedWorkingCopies(IBufferFactory) has
been deprecated.

The replacement method is provided on the same class:
public ICompilationUnit[]
getWorkingCopies(WorkingCopyOwner)

⋅
◊

Note: WorkingCopyOwner substitutes for IBufferFactory.◊
Note: The Java language rules for array types preclude casting
ICompilationUnit[] to IWorkingCopy[].

◊

♦
•

SearchEngine (package org.eclipse.jdt.core.search)
public SearchEngine(IWorkingCopy[]) has been deprecated.

The replacement constructor is provided on the same class:
public SearchEngine(ICompilationUnit[])⋅

◊

Note: The Java language rules for array types preclude casting IWorkingCopy[]
to ICompilationUnit[].

◊

♦
•

Restructuring of org.eclipse.help plug−in

The org.eclipse.help plug−in, which used to hold APIs and extension points for contributing to and extending
help system, as well as displaying help, now contains just APIs and extension points for contributing and

 Welcome to Eclipse

API changes overview 917

accessing help resources. A portion of default help UI implementation contained in that plug−in has been
moved to a new plug−in org.eclipse.help.base together with APIs for extending the implementation. The APIs
and extension point for contributing Help UI and displaying help have been moved to org.eclipse.ui plug−in.
This restructuring allows applications greater flexibility with regard to the help system; the new structure
allows applications based on the generic workbench to provide their own Help UI and/or Help
implementation, or to omit the help system entirely.

Because the extension points and API packages affected are intended only for use by the help system itself, it
is unlikely that existing plug−ins are affected by this change. They are included here only for the sake of
completeness:

API packages org.eclipse.ui.help.browser and org.eclipse.ui.help.standalone, formerly provided by the
org.eclipse.help plug−in, have been moved to the org.eclipse.help.base plug−in.

•

Extension points org.eclipse.help.browser, org.eclipse.help.luceneAnalyzer, and
org.eclipse.help.webapp, formerly defined by the org.eclipse.help plug−in, have been moved to the
org.eclipse.help.base plug−in, with a corresponding change in extension point id.

•

Extension point org.eclipse.help.support has been replaced by the org.eclipse.ui.helpSupport
extension point. The contract for this extension point changed as well (see entry for IHelp).

•

New Search UI API

A new API for implmenting custom searches has been added in 3.0. The original API is deprecated in 3.0 and
we recommend that cllients port to the new API in the packages org.eclipse.search.ui and
org.eclipse.search.ui.text.

Clients will have to create implementations of ISearchQuery, ISearchResult and
ISearchResultPage. The ISearchResultPage implementation must then be contributed into the
new org.eclipse.search.searchResultViewPages extension point.

Default implementations for ISearchResult and ISearchResultPage are provided in the package
org.eclipse.search.ui.text.

null messages in MessageBox and DirectoryDialog (package org.eclipse.swt.widgets)

Prior to 3.0, calling SWT's DirectoryDialog.setMessage(String string) or MessageBox.setMessage(String
string) with a null value for string would result in a dialog with no text in the title. This behavior was
unspecified (passing null has never been permitted) and creates problems with getMessage which is not
permitted to return null. In 3.0, passing null now results in an IllegalArgumentException exception being
thrown, and the specifications have been changed to state this, bringing it into line with the method on their
superclass Dialog.setMessage. If you use Dialog.setMessage, ensure that that the string passed in is never null.
Simply pass an empty string if you want a dialog with no text in the title.

Improving modal progress feedback

Supporting concurrent operations requires more sophisticated ways to show modal progress. As part of the
responsiveness effort additional progress support was implemented in the class IProgressService. The existing
way to show progress with the ProgressMonitorDialog is still working. However, to improve the user
experience we recommend migrating to the new IProgressService.

The document Showing Modal Progress in Eclipse 3.0 describes how to migrate to the new IProgressService.

 Welcome to Eclipse

API changes overview 918

http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-core-home/documents/plan_concurrency_modal_progress.html

Debug Action Groups removed

The Debug Action Groups extension point (org.eclipse.debug.ui.debugActionGroups) has been removed. In
Eclipse 3.0, the workbench introduced support for Activities via the org.eclipse.platform.ui.activities
extension point. This support provides everything that Debug Action Groups provided and is also easier to use
(it supports patterns instead of specifying all actions exhaustively) and has a programmatic API to support it.
Failing to remove references to the old extension point won't cause any failures. References to the extension
point will simply be ignored. Product vendors are encouraged to use the workbench Activities support to
associate language−specific debugger actions with language−specific activities (for example, C++ debugging
actions might be associated with an activity called "Developing C++").

BreakpointManager can be disabled

IBreakpointManager now defines the methods setEnabled(boolean) and isEnabled(). When the breakpoint
manager is disabled, debuggers should ignore all registered breakpoints. The debug platform also provides a
new listener mechanism, IBreakpointManagerListener which allows clients to register with the breakpoint
manager to be notified when its enablement changes. The Breakpoints view calls this API from a new toggle
action that allows the user to "Skip All Breakpoints." Debuggers which do not honor the breakpoint manager's
enablement will thus appear somewhat broken if the user tries to use this feature.

[JDT only] Java search participants (package org.eclipse.jdt.core.search)

Languages close to Java (such as JSP, SQLJ, JWS, etc.) should be able to participate in Java searching. In
particular, implementors of such languages should be able to:

index their source by converting it into Java equivalent source, and feeding it to the Java indexer•
index their source by parsing it themselves, but record Java index entries•
locate matches in their source by converting it into Java equivalent source, and feeding it to the Java
match locator

•

locate matches in their source by matching themselves, and return Java matches•

Such an implementor is called a search participant. It extends the SearchParticipant class. Search participants
are passed to search queries (see SearchEngine.search(SearchPattern, SearchParticipant[], IJavaSearchScope,
SearchRequestor, IProgressMonitor)).

For either indexing or locating matches, a search participant needs to define a subclass of SearchDocument
that can retrieve the contents of the document by overriding either getByteContents() or getCharContents().
An instance of this subclass is returned in getDocument(String).

A search participant wishing to index some document will use
SearchParticipant.scheduleDocumentIndexing(SearchDocument, IPath) to schedule the indexing of the given
document in the given index. Once the document is ready to be indexed, the underlying framework calls
SearchParticipant.indexDocument(SearchDocument, IPath). The search participant then gets the document's
content, parses it and adds index entries using SearchDocument.addIndexEntry(char[], char[]).

Once indexing is done, one can then query the indexes and locate matches using
SearchEngine.search(SearchPattern, SearchParticipant[], IJavaSearchScope, SearchRequestor,
IProgressMonitor). This first asks each search participant for the indexes needed by this query using
SearchParticipant.selectIndexes(SearchPattern, IJavaSearchScope). For each index entry that matches the

 Welcome to Eclipse

API changes overview 919

given pattern, a search document is created by asking the search participant (see getDocument(String)). All
these documents are passed to the search participant so that it can locate matches using
locateMatches(SearchDocument[], SearchPattern, IJavaSearchScope, SearchRequestor, IProgressMonitor).
The search participant notifies the SearchRequestor of search matches using
acceptSearchMatch(SearchMatch) and passing an instance of a subclass of SearchMatch.

A search participant can delegate part of its work to the default Java search participant. An instance of this
default participant is obtained using SearchEngine.getDefaultSearchParticipant(). For example when asked to
locate matches, an SQLJ participant can create documents .java documents from its .sqlj documents and
delegate the work to the default participant passing it the .java documents.

 Welcome to Eclipse

API changes overview 920

Examples
Installing the examples•
Standard Widget Toolkit

Using the SWT example launcher♦
Running and browsing the SWT examples manually♦
Stand−alone examples

Address book◊
Clipboard◊
File viewer◊
Hello world◊
Hover help◊
Image analyzer◊
Java syntax viewer◊
Text editor◊

♦

Workbench views
Browser◊
Controls◊
Custom Controls◊
Layout◊
OLE◊
Paint◊

♦

•

Workbench
Java editor♦
Template editor♦
Multi page editor♦
Property sheet♦
Readme tool♦

•

Help•
Team

Repository Providers♦
Synchronize Participants♦

•

Compare
Structured Compare♦
XML Compare♦

•

SWT Example Launcher

The Example Launcher is used to launch SWT examples, which can either be Workbench views or standalone
applications.

Workbench views are examples that are integrated into Eclipse. When the launcher starts a
Workbench view, it is opened in the currently active perspective.

•

Standalone applications are launched in a separate window.•

For information on how to run the standalone examples without the SWT Example Launcher, refer to SWT
standalone examples setup.

The SWT Workbench view examples can also be launched directly without using the SWT Example

Examples 921

Launcher. SWT Workbench view examples can be found under the SWT Examples category of the Show
Views dialog.

Running the Example Launcher

From Eclipse's Window menu, select Show View > Other. In the Show View dialog, expand SWT Examples
and select the SWT Example Launcher view. A view containing a list of examples will appear in your current
perspective. When you select an example from the list a brief description of the example is displayed. Click
on the Run button to launch the example.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

SWT example − Browser

The Browser Example is a simple demonstration of the SWT Browser widget. It consists of a composite
containing a Browser widget to render HTML and some additional widgets to implement actions commonly
found on browsers (toolbar with back, forward, refresh and stop buttons, status bar etc.).

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.browserexample.BrowserExample.

This example can also be run using the Example Launcher. Select the Browser item from the Workbench
Views category and click Run.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

SWT example − Controls

The Controls Example is a simple demonstration of common SWT controls. It consists of a tab folder where
each tab in the folder allows the user to interact with a different control. The user can change styles and
settings and view how this affects each control.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.controlexample.ControlExample.

 Welcome to Eclipse

Running the Example Launcher 922

This example can also be run using the Example Launcher. Select the Controls item from the Workbench
Views category and click Run.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

SWT example − Custom Controls

The Custom Controls example is a simple demonstration of emulated SWT controls. It consists of a tab folder
where each tab in the folder allows the user to interact with a different emulated control. The user can change
styles and settings and view how this affects each control.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is
org.eclipse.swt.examples.controlexample.CustomControlExample.

This example can also be run using the Example Launcher. Select the Custom Controls item from the
Workbench Views category and click Run.

SWT example − Layouts

This example is a simple demonstration of common SWT layouts. It consists of a tab folder where each tab in
the folder allows the user to interact with a different SWT layout. The user can insert widgets into a layout
and set the values of the layout data using a property sheet. When the user has a suitable arrangement, the
underlying code can be generated by clicking on the Code button.

Running the example

Follow the SWT standalone examples setup instructions to install and run the example from your workspace.

The "Main" class is org.eclipse.swt.examples.layoutexample.LayoutExample.

This example can also be run using the Example Launcher. Select the Layouts item from the Workbench
Views category and click Run.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

 Welcome to Eclipse

 Notices 923

SWT example − OLE Web Browser

This example shows how to embed an Active X control into an SWT application or an Eclipse view.

When the view is opened, it will create an instance of the Windows Internet Explorer control. The OLE web
browser has Back and Forward buttons to take you to recently visited pages. The browser also contains a
Home button to take you to the web browser's home page, a Stop button which stops the current transfer, a
Search button which will search for text typed in the Address text field, and a Refresh button which re−draws
the contents of the currently displayed page. There is also a Go button which, when clicked, will attempt to
load the page specified in the Address field.

Running the example

From Eclipse's Window menu select Show View > Other. In the Show View dialog, expand SWT Examples
and select the view named OLE Web Browser (win32). A view containing a web browser will appear.

This example can also be run using the Example Launcher. Select the OLE Web Browser item from the
Win32 only category and click Run.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

SWT example − Paint Tool

This example demonstrates the use of SWT graphics operations in the form of a rudimentary bitmap painting
program. The Paint Tool implementation also demonstrates a mechanism for managing timed GUI operations
in the background that are triggered by user input.

Select a tool with which to draw in the drawing area. There are a number of tools to choose from on the
toolbar. To change the color selection, click on a color in the palette below the drawing area; left−click to set
the foreground color, right−click to set the background color.

Running the example

From Eclipse's Window menu select Show View > Other. In the Show View dialog, expand SWT Examples
and select the view named Paint. A view containing the paint program will appear.

This example can also be run using the Example Launcher. Select the Paint item from the Workbench Views
category and click Run.

Notices

(c) Copyright (c) 2000, 2004 IBM Corporation and others. All Rights Reserved.

 Welcome to Eclipse

SWT example − OLE Web Browser 924

Example − Java Editor

Introduction

The Java Editor example demonstrates the standard features available for custom text editors. It also shows
how to register an editor for a file extension (in this case .jav) and how to define a custom Document provider
for use by that editor. This example is only for demonstration purposes. Java editing support is provided by
the Eclipse Java Tooling.

Features demonstrated in the example editor

syntax highlighting•
content type sensitive content assist (JavaDoc and Java code)•
communication between content outliner and editor, i.e. content outliner selection feeds the highlight
range of the editor

•

two different presentation modes•
 marking the highlight range using a visual range indicator♦
confining the editor to show only text within the highlight range (e.g. show a single method of
a Java class)

♦

marker handling•
document sharing•

Features not demonstrated

content formatting•
dynamic reconciling of content outline page•

Running the example editor

Create a project1.
Create a file with the file extension ".jav" in the newly created project. The Java example editor opens
automatically.

2.

Insert Java code. The Java code is dynamically colored. The example editor presents the following
language elements in different colors: multi−line comments, single line comments, Java language
reserved words, string and character constants, regular Java code, as well as multi−line comments
following the JavaDoc guidelines. Inside those JavaDoc comments, JavaDoc keywords and tags are
differently colored.

3.

Open a new Java multi−line comment by inserting "/*" outside a Java comment. All the text between
the inserted "/*" and the first occurrence of "*/" or the end of the text changes its color to red. Append
another "*". The red range changes color to green as the regular multi−line comment now is
considered containing JavaDoc. Invoke code assist using CTRL−SPACE. The function of content
assist is to support the user in writing code. So on invocation, content assist should list all possible
valid completions at the invocation location. Inside JavaDoc, the example editor always proposes all
JavaDoc keywords.

4.

Outside a Java comment invoke content tip using CTRL+SHIFT+SPACE. Five proposals are listed.
Select one and press ENTER. A small floating red window appears above the current line displaying
the selected proposal. The anticipated use of content tips is to let the user express her intention, e.g. to
enter a method call and to present contextual information which guides the user by doing so. In the
example editor, the proposal is considered valid five characters around the initial invocation location.

5.

 Welcome to Eclipse

 Example − Java Editor 925

While the content tip is visible, invoke content assist using CTRL+SPACE. Content assist invoked in
this situation should help the user to accomplish her stated intention visible in the content tip. Inside
regular Java code, the example editor always proposes all Java keywords.
Save the Java code. Saving updates the content outliner. The content outliner contains ten entries each
of them representing one of ten equally sized segments of the Java code in the editor. This style of
content outline has been chosen to show that the semantics of highlight ranges can arbitrarily be
defined. (See next steps.)

6.

Select one of the entries in the content outliner. The corresponding lines are marked with a blue bar in
the editor's left vertical ruler.

7.

Now switch to the segmented presentation mode of the Java editor. For that make sure that the editor
has the focus and press that button in the desktop's toolbar whose hover help says "Enable/Disable
segmented source viewer". This functionality is anticipated to be used, e.g., for single method views.

8.

Select a different entry in the content outliner. Now the editor only shows the selected segment. By
deselecting the entry in the content outliner, the complete Java code is shown again.

9.

Select an entry in the content outliner, select a fraction of the visible text, and add a task for the
selection. The task shows up in the task list. Modify the visible code. In the task list, select the
previously created task and press the "Go to file" button. The task is selected in the visible area,
correctly taking the previously applied modifications into account.

10.

Select another entry in the content outliner. Reveal the previously added task from the task list. The
editor's highlight range is automatically enlarged to enclose the range of the revealed task.

11.

Open a new workspace. In the new workspace, open a Java editor for the same file as in the original
workspace. Modify the editor content. Switch back to the original workspace. The editor shows the
changes made in the other workspace. The two editors showing the same file are lively linked.

12.

Principles for creating custom text editors

The following steps are usually necessary do develop a custom text editor.

Create a document provider. A document provider (see IDocumentProvider) produces and manages
documents (see IDocument) containing a textual representation of editor input elements. It is
important to decide how the translation between element and textual representation looks like and
whether the document provider should be shared between multiple editors or not. See the class
FileDocumentProvider in the Java example editor.

1.

Create a document partitioner. A document partitioner (see IDocumentPartitioner) divides a document
into disjoint regions. The partitioner assigns each region one content type out of a set of content types
predefined by the partitioner. On each document change the document's partitioning must be updated.
See the class JavaPartitioner in the Java example editor. The JavaPartitioner determines regions of the
types multi−line comments, JavaDoc comments, and everything else. It must be ensured that the
document provider is set on each document produced by the document provider.

2.

Determine which of the source viewer plugins should be provided. Among other supported plugins
are auto indent strategies, double click strategies, content formatter, and text presentation reconciler.
The subsequent description will be restricted to the text presentation reconciler (see
IPresentationReconciler). In the Java example editor, the text presentation reconciler is utilized to
implement syntax highlighting.

3.

Create for all source viewer plugins the appropriate extensions for each supported content type. As
seen above, the document partitioner defines the supported content types. The default implementation
of IPresentationReconciler supports IPresentationDamagers and IPresentationRepairers as extensions.
Those extensions are considered being specific for a particular content type. Thus, for a custom editor,
the user must first select a subset of the supported content types. Regions of a type being a member of
the selected subset will, e.g., be syntax highlighted. For each of those types the extensions must be

4.

 Welcome to Eclipse

 Principles for creating custom text editors 926

implemented. See JavaDamagerRepairer and JavaDocDamagerRepairer in the example editor.
Build a source viewer configuration using the previously created plugins and extensions. See
JavaSourceViewerConfiguration in the example editor.

5.

Customize the class TextEditor or AbstractTextEditor with the developed document partitioner and
source viewer configuration. Add or replace actions and adapt the construction of the editor's context
menu. In the actual version, this customization must be done in a subclass. See JavaEditor in the
example editor.

6.

Set up an appropriate action bar contributor who contributes editor−related actions to the desktop's
toolbar and menus. See JavaActionContributor in the example editor.

7.

Extend the XML configuration file of the editor's plugin, so that the editor registers at the predefined
editor extension point for a specific set of file extensions. Also set up the action bar contributor in the
XML file. See plugin.xml of this example.

8.

Code organization of the example

The example code is organized in four packages:

org.eclipse.ui.examples.javaeditor contains all the editor specific classes.•
org.eclipse.ui.examples.javaeditor.java contains all Java specific source viewer
plugins such as the JavaDamagerRepairer as well as the Java specific document partitioner.

•

org.eclipse.ui.examples.javaeditor.javadoc contains all JavaDoc specific source
viewer plugins such as the JavaDocDamagerRepairer.

•

org.eclipse.ui.examples.javaeditor.util contains convenience classes shared by the three
other packages.

Notices

The material in this guide is Copyright (c) IBM Corporation and others 2000, 2004.

Terms and conditions regarding the use of this guide.

Example − Template Editor

Introduction

The Template Editor example demonstrates how to add template support to an editor. The example is based
on the PDE example editor project that can be created using the new project wizard. The editor is a simple
XML editor; it is only for demonstration purposes.

Features demonstrated in the template editor

creating a template context for an editor•
setting up a content assist processor that will propose template completions•
contributing a context type and variable resolvers to an editor via plugin.xml•

 Welcome to Eclipse

 Code organization of the example 927

contributing templates to a context type via plugin.xml•
adding a preference page for handling templates, both contributed and user−added•

Features not demonstrated

template formatting•

Code organization of the template editor example

The example code is organized in three packages:

org.eclipse.ui.examples.templateeditor.editors contains all the editor specific
classes. See XMLConfiguration to see how the TemplateCompletionProcessor is added
in the getContentAssistant method.

•

org.eclipse.ui.examples.templateeditor.preferences contains the contributed
template preference page.

•

org.eclipse.ui.examples.templateeditor.template contains the example context
type, the completion processor and the variable resolver that is contributed via plugin.xml.

•

Example − Multi−page Editor

Introduction

The Multi Page Editor Example adds an editor for files with the .mpe extension. It shows how to create an
editor that uses multiple pages by defining both an editor and a page contributor that can add entries to an
action bar.

Running the example

To start using the Multi−page Editor Example, create a new file with .mpe extension. Select the file, bring up
the popup menu, select the Open With menu and from the sub−menu select the Multi Page Editor Example
menu item. You can then select the different editors by selecting the different tabs.

Creating a new mpe file

Create a new file with file extension .mpe. From the File menu, select New and then select Other... from the
sub−menu. Click on Simple in the wizard, then select
File in the list on the left. Click on Next to supply the file name (make sure the extension is .mpe) and the
folder in which the file should be contained.

 Welcome to Eclipse

 Features not demonstrated 928

Details

The Multi Page Editor Example demonstrates how to create an multi page editor with a custom page
contributor.

The Multi Page Editor Example is constructed with two extensions − a document contributor
(MultiPageContributor) and an editor (MultiPageEditor). The document contributor is a subclass of
org.eclipse.ui.part.MultiPageEditorActionBarContributor and defines the actions that
are added to an editor when the setActivePage method is called. The editor is an
org.eclipse.ui.part.MultiPageEditorPart that creates 3 pages whose activation is handled by
the pageChange method that in turn sends setActivePage to the contributor. These two classes do not
refer to each other directly − the contributor for the editor is set using the contributorClass tag in the
plugin.xml

Notices

(c) Copyright IBM Corp. 2000, 2001. All Rights Reserved.

Example − Property Sheet

Introduction

The Property Sheet Example adds an editor for files with the .usr extension and also demonstrates how to add
properties and outline views on a file.

Running the example

To start using the Property Sheet Example, create a file with extension .usr. Open the file and the Outline and
Properties views to see the example in action. Click on items in the Outline view and look in the Properties
view for details of the selected item in the Outline view. The people items in the list show the most detail in
the Properties view.

Creating a new usr file

Create a new file with file extension .usr. From the File menu, select New and then select Other... from the
sub−menu. Click on Simple in the wizard, then select
File in the list on the left. Click on Next to supply the file name (make sure the extension is .usr) and the
folder in which the file should be contained.

Details

The Property Sheet Example demonstrates how to provide properties to the Property Sheet View.

The tree viewer of the Content Outline View contains and presents OrganizationElements. When an element
is selected in the Content Outline View the Workspace will invoke getAdapter on the selected

 Welcome to Eclipse

 Details 929

OrganizationElement. If an adapter is requested for IPropertySource, the OrganizationElement returns itself as
it impements IPropertySource The Property Sheet View then use the Organization Element as it source.

Notices

(c) Copyright IBM Corp. 2000, 2001. All Rights Reserved.

Help

Introduction

This example illustrates the use of the help system online documentation.

Running the example

To run the Help Example, pull down the Help menu. Select Help Contents menu to launch the help view, and
select the Online Help Sample from the list of books. The main topic will provide detailed information on
how the help sample plugin was created.

Details

The Help Example illustrates the following tasks that need to be done in order to create a simple, proper help
topics contribution:
 − using the help toc extension point
 − help documentation in doc.zip
 − defining topics and navigation structure for help documents

The name of the plugin directory that contains the help examples is org.eclipse.help.examples.ex1.

See the documentation for the org.eclipse.help.toc extension point for more detail on how to contribute help
content.

Notices

(c) Copyright (c) 2000, 2003 IBM Corporation and others. All Rights Reserved.

Team − File System Repository Provider Example

Introduction

The File System and Pessimistic Repository Providers examples shows how to define your own repository

 Welcome to Eclipse

 Notices 930

provider. In particular you this example shows how to:

Extend the RepositoryProvider class and register a new repository provider.•
Register a sharing wizard that will appear in the Team > Share... wizard.•
Add resource actions to the Team menu.•
Implement synchronization support that shows up the Synchronize View.•
Use decorators to show the repository state of the local resources.•
How to implement a file modification validator.•
Adding a repository provider to a capability.•

The example includes two separate repository providers, the basic file system and the pessimistic file system.
The basic provider illustrates the synchronization support whereas the pessimistic provider is more focused to
allowing you to test the workbench behavior with pessimistic repository providers. There is a preference page
for the pessimistic provider that allows configuring the behavior of the file modification validator.

Running the example

To start using this example create a project and select Team > Share Project... from the project's popup
menu. Click the show all wizards button. This will show both the file system provider and the pessimistic
provider.

Basic file system provider: you will have to enter the location in the local file system where you
would like to connect the project to. The Get and Put operations in the Team menu will now transfer
to and from the selected location. And if you open the Synchronize View you can browse the
synchronization between the local workspace and the remote file system location the files are stored
in. If you edit a file and then create a Synchronization you can browse changes between the local and
the remote.

•

Pessimistic file system provider: the sharing wizard next page doesn't actually require any user
input. The pessimistic provider doesn't actually copy the local files anywhere, and instead simply
simulates a check in/check out by flipping the read−only bit on files. Once a project is shared with the
pessimistic provider you can add files to control and the check in and check out.

•

Notices

(c) Copyright IBM Corp. 2000, 2002. All Rights Reserved.

Team − Local History Synchronize Participant Example

Introduction

The Local History Synchronize Participant example illustrates how to intergate a participant into the
synchronize view. It covers such things as:

Creating a simple subscriber for accessing the local history•
Creating a synchronize particpant•
Adding a cusotm action to a particpant•
Showing custom label decorations•
Add a synchronize wizard•

 Welcome to Eclipse

Running the example 931

Running the example

To start using this example, open the Team Synchronizing perspective, click on the global Synchronize
toolbar action and choose Synchronize with Latest from Local History. A more detailed look at this example
is available in the Local History Synchronization Example guide section.

Compare Example − Structural Compare for Key/Value Pairs

Introduction

This example demonstrates how to support structural compare for files consisting of key/value pairs. It shows
how to implement and register a custom structure creator that parses key/value pairs into a tree structure that
is used as the input to the structural compare framework provided by the Compare plugin. In addition, it
registers a standard text viewer for the individual key/value pairs.

This example is only for demonstration purposes. Structural compare support for Java property files (another
key/value format) is provided by the Eclipse Java Tooling.

Running the example

Create a project (not necessarily a Java project)1.
Create a key/value pair file f1.kv2.
Open Window > Preferences > Workbench > File Association and associate the default text editor
with the file extension "kv"

3.

Open f1.kv with the editor and enter this contents

lastname=Doe
firstname=John
city=Chicago
state=IL

4.

Make a copy of this file and rename it f2.kv5.
Open f2.kv and change the firstname "John" to "Mary"6.
Add another key/value pair "country=US" to f2.kv7.
Select both files f1.kv and f2.kv8.
From the context menu select Compare With > Each Other9.
A new compare editor opens that shows the structural differences of both files in its top pane.
Selecting one of the properties "firstname" or "country" feeds the text of the corresponding key/value
pair into the standard text compare viewer in the bottom pane.

10.

Code organization of the example

The example code is organized in a single package
org.eclipse.compare.examples.structurecreator:

KeyValuePairStructureCreator
is the structure creator that parses the contents of a stream into a tree of
IStructureComparators.

•

 Welcome to Eclipse

Running the example 932

TextMergeViewerCreator
is a factory for TextMergeViewers. It is registered for the type "kvtxt" which is the type of an
individual key/value pair.

•

Util
provides utility methods for NLS support and for reading an InputStream as a String.

•

Notices

(c) Copyright (c) 2000, 2003 IBM Corporation and others. All Rights Reserved.

 Welcome to Eclipse

 Notices 933

IBM Eclipse Platform XML Compare
The XML Compare plugin allows you to perform a structural compare of two XML documents. It returns a
difference tree which indicates which XML elements have been added or removed and − for modified XML
elements − what differences there are with respect to attributes or body text.

Installing the plugin

Copy the folder org.eclipse.compare.examples.xml to the plugins subfolder of
Eclipse.

•

Using the plugin

The plugin is automatically used when comparing files with the extension .xml.
By default, the XML compare uses the Unordered compare method, which ignores the order in which the
XML elements appear in the document and matches them so that elements which are most similar are
matched. There is also an Ordered compare method, which simply compares the XML elements exactly in the
order in which they appear in the document. In most cases, this compare method will not be of much use.
The compare method can be changed from a drop−down list in the toolbar of the structure view.

When an XML document contains elements that can uniquely be identified by an attribute or the text of a
child element, it is recommended that an ID Mapping Scheme be created for this type of XML document.

See Tutorial and Examples for more information on using the plugin.

ID Mapping Schemes

An ID Mapping Scheme specifies for XML elements an attribute or the text of a child element that uniquely
identifies this element. This assures that − in the compare process − the right elements will be matched and
therefore compared with each other. If for an XML element no ID Mapping is specified, a general matching
algorithm is be used. However, this general matching algorithm does not always return the desired result. The
reason for this is that the general matching algorithm looks for a matching of the nodes of the two parsed trees
to compare that minimizes the differences. The effect is that often two XML elements are matched with are
structurally similar but represent two completely different entities of information.

Ordered entries

When using the default Unordered compare (with or without id mappings) it is sometimes desired to specify
that the children of certain elements be compared in ordered fashion intead of the usual unordered method.
For example, when comparing ANT files the order of appearance of the children of target elements is
important.
In such cases one can create an Ordered entry. An Ordered entry specifies that the direct children of an xml
element, identified by its path, will be compared in ordered fashion (attributes however are still compared in
unordered way). The children of these children will continue to be compared in unordered way, unless
otherwise specified.

IBM Eclipse Platform XML Compare 934

Defining ID Mapping Schemes and Ordered entries

ID Mapping Schemes can be created in three different ways:

By extending the extension point idMapping1.
Using the XML Compare Preference page.2.
Using the Create new Id Map Scheme button in the toolbar and the context menu3.

Method 1 creates a so−called internal mapping scheme. An internal ID Mapping Scheme cannot be edited at
runtime. However, using the Edit Copy button in the Preference Page, an editable copy of the internal ID
Mapping Scheme can be created.
Methods 2 and 3 create so−called user mapping schemes. These are created by the user at runtime and can be
modified anytime in the Preference Page.

Internal and user mapping schemes can be associated with a file extension. As a result, when comparing two
XML files with this file extension, the particular ID Mapping scheme with this extension is automatically
used.

When creating or editing the ID mapping for a particular XML element, four items must be specified (see
example):

The element name.1.
The element path. This is the path of the element from the root of the XML document to the element's
parent.

2.

The name of the id which will identify the element3.
Whether the id name in point 3 is the name of an attribute of the element or the name of one of its
children (in which case the text of this child element will be used as id).

4.

 Welcome to Eclipse

Defining ID Mapping Schemes and Ordered entries 935

Extension Points
Only one extension point is available in the XML Compare plugin. It is used to create internal ID Mapping
Schemes:

org.eclipse.compare.examples.xml.idMapping•

 Extension Points 936

Tutorial and Examples

General Matching vs. ID Mapping Schemes:
How to create an ID Mapping Scheme to improve compare
results

Consider an example XML file in two slightly different versions, left and right. Assume that the element
extension−point is uniquely identified by the attribute id. The textual differences are shown in bold.

<?xml version="1.0" encoding="UTF−8"?>

<plugin
 name="%Plugin.name"
 id="org.eclipse.ui"
 version="1.0"
 provider−name="Object Technology International,
Inc."
 class="org.eclipse.ui.internal.WorkbenchPlugin">

<extension−point name="%ExtPoint.editorMenus "
id="editorActions"/>
<extension−point name="%ExtPoint.popupMenus "
id="popupMenus"/>
<extension−point
name="%ExtPoint.importWizards"
id="importWizards"/>

</plugin>

<?xml version="1.0" encoding="UTF−8"?>

<plugin
 name="%Plugin.name"
 id="org.eclipse.ui"
 version="1.0"
 provider−name="Object Technology International,
Inc."
 class="org.eclipse.ui.internal.WorkbenchPlugin">

<extension−point name="%ExtPoint.editorMenus "
id="editorActions"/>
<extension−point name="%ExtPoint.popupMenus "
id="popupMenus"/>
<extension−point
name="%ExtPoint.exportWizards"
id="exportWizards"/>

</plugin>

Assume that the order of the elements should be ignored. The structural difference between the two
documents consists in the extension−point element on the left with id="importWizards" being
replaced on the right with a new extension−point with id="exportWizards". Using the general
matching algorithm called Unordered, because it ignores the order in which the XML elements appear in the
document, we obtain the following tree of differences.

The first two extension−point elements are identical and are therefore matched and are not shown in the
difference tree. There remains the third extension−point element on both sides which, having the same
element name, are also matched. The difference tree then shows the differences between the third
extension−point element left and the third extension−point element right. These differences

Tutorial and Examples 937

consist in the values of the attributes id and name.
However, this is not what we would like to see. We would like the difference tree to show us that an
extension−point element was removed from the left side and a new extension−point element was
added on the right side.
To achieve this, we create a new ID Mapping Scheme. We can do this by using the appropriate button on
toolbar.

Assume we call the ID Mapping Scheme MyPlugin. We now select the ID Mapping Scheme MyPlugin from
the drop−down list in the Toolbar

and add to it the following Mapping:

This can be done from the preference page (left) or from the context menu in the structure view (right).
The difference tree now becomes:
(To refresh the structure view, click on the button of the drop−down list in the toolbar.)

 Welcome to Eclipse

Tutorial and Examples 938

This is the compare result that we wanted and that we achieved by created an ID Mapping Scheme.

The XML Compare Plugin already comes with a ID Mapping Scheme for Plugin files, which can be
customized for particular Plugin files.

Warning:
If an ID Mapping is created, it is assumed that the id is unique, i.e. there are no two XML elements with the
same name and path that have the same id. Should this not be the case, the ID Mapping Scheme may not
deliver a sensible difference tree.
When an id can appear more than once, one should rely on the general algorithm.

Also, when an ID Mapping Scheme is used and there are elements with no id mapping specified, the
Unordered compare method will be used, i.e. elements are matched by their similarity and not by the order in
which they appear in the document. To specify that the children of an element should be compared in order of
appearance. See the next section on Ordered entries.

Adding Ordered entries

Ordered entries are used to specify that the direct children (excluding attributes) of an xml element −
identified by its path − should be compared in ordered way instead of the default unordered method.
As an example consider the following ANT file in two slightly different versions:

<?xml version="1.0" encoding="UTF−8"?>

<project name="org.junit.wizards" default="export"
basedir="..">
 <target name="export" depends="build">
 <mkdir dir="${destdir}" />
 <delete dir="${dest}" />
 <mkdir dir="${dest}" />
 <jar
 jarfile="${dest}/JUnitWizard.jar"
 basedir="bin"
 />
</project>

<?xml version="1.0" encoding="UTF−8"?>

<project name="org.junit.wizards"
default="export" basedir="..">
 <target name="export" depends="build">
 <mkdir dir="${destdir}"/>
 <mkdir dir="${dest}"/>
 <delete dir="${dest}"/>
 <jar
 jarfile="${dest}/JUnitWizard.jar"
 basedir="bin"
 />
 <copy file="plugin.xml"
todir="${dest}"/>
</project>

The differences between the two documents are shown in bold. Two elements have been swapped (<mkdir
dir="${dest}"/> and <delete dir="${dest}"/>) and a new element (<copy .../>) has been
appended to the target element.
Performing an unordered compare will result in the following tree of differences:

 Welcome to Eclipse

Adding Ordered entries 939

The fact that two elements have been swapped is not shown since the order of elements is ignored.
However, from an ANT point of view, the two documents cause very different behaviour, because the order of
the elements inside a target is important. We therefore want to create an ordered entry for target to instruct
the compare engine to compare the direct children of target in ordered fashion.
We do so by first creating a new ID Mapping Scheme. This can be done using the appropriate button in the
toolbar.

Assume we call the ID Mapping Scheme MyANT.
We now select the ID Mapping Scheme MyANT from the drop−down list in the Toolbar and add to it the
following Ordered Entry:

This can be done from the preference page (left) or from the context menu in the structure view (right).
The difference tree now becomes:
(To refresh the structure view, click on the button of the drop−down list in the toolbar.)

 Welcome to Eclipse

Adding Ordered entries 940

This is the compare result that we wanted and that we achieved by creating an Ordered Entry.

Additionally, Id Mappings (see previous section) can be used to uniquely identify ordered children. Especially
when there are many changes, this will improve compare results.

The XML Compare Plugin already comes with a ID Mapping Scheme for ANT files, which can be
customized for particular ANT files.

Notices

(c) Copyright (c) 2000, 2003 IBM Corporation and others. All Rights Reserved.

 Welcome to Eclipse

 Notices 941

idMapping
Identifier: org.eclipse.compare.examples.xml.idMapping

Description: This extension point allows to define internal XML ID Mapping schemes using the mapping
element. These schemes can then be used when performing an XML compare to uniquely identify XML
elements by the value of an attribute or the text in a child element.
Additionally, ordered elements can be used to specify that the direct children of an element should be
compared in ordered fashion instead of the default unordered way.

Configuration Markup:

 <!ELEMENT idmap (mapping*)>
 <!ATTLIST idmap
 name CDATA #REQUIRED
 extension CDATA
 >

name − the name of the ID Mapping scheme. Should be unique.•
extension − (optional) a file extension associated with this ID Mapping Scheme. When comparing
files with this extension, the current ID Mapping Scheme will automatically be used.
If an extension is specified, then the extension should also be added in the plugin.xml file of the XML
Compare Plugin. For example, if we create an ID Mapping Scheme with extension cd, the plugin.xml
of the XML Compare Plugin is updated as follows (update shown in bold):

<extension
 point="org.eclipse.compare.structureMergeViewers">
 <structureMergeViewer
 extensions="xml,classpath,cd"
 class="org.eclipse.compare.xml.XMLStructureViewerCreator">
 </structureMergeViewer>

Warning: If an extension is associated more than once, only the first association will be considered.
Also, internal ID Mapping schemes have priority over user ID Mapping schemes when duplicate
extensions are defined.

Warning: When an internal ID Mapping scheme with extension association is removed (from a
plugin.xml), the XML Compare plugin has to be reloaded to disassociate itself from the
extension. If not, on the first compare of files with this extension, the XML Compare plugin will be
used with the default Unordered algorithm. (However, at this point the extension will have been
disassociated from the XML Plugin, as the plugin has been loaded.)

•

 <!ELEMENT mapping EMPTY>
 <!ATTLIST mapping
 signature CDATA #REQUIRED
 id CDATA #REQUIRED
 id−source CDATA
 >

 idMapping 942

signature − the XML path from the root to the current element (see examples below).•
id − the attribute that identifies this element or the name of the child element whose text identifies this
element.

•

id−source − (optional) if id is the name of a child element, then this attribute must have the value
body. If id−source is left out, it is assumed that id is an attribute.

•

 <!ELEMENT ordered EMPTY>
 <!ATTLIST ordered
 signature CDATA #REQUIRED
 >

signature − the XML path from the root to the element whose direct children will be compared in
ordered fashion instead of the default unordered way.

•

Examples:
The following is an example ID Mappings Scheme for ANT files.
project elements are identified by an attribute name. target elements (which are children of project) are also
identified by an attribute name. Also, the children of target will be compared in the order in which they
appear in the document.

<idmap name="ANT">
 <mapping signature="project" id="name"/>
 <mapping signature="project>target" id="name"/>
 <ordered signature="project>target"/>
<idmap>

The following example illustrates a case where the text of a child element is used as id:

<idmap name="Book Catalog" extension="book">
 <mapping signature="catalog>book" id="isbn" id−source="body"/>
<idmap>

Supplied Implementation:
The XML Compare plugin defines an ID Mapping scheme for Eclipse plugin.xml files, one for
.classpath files and one for ANT files.

GIF89a”���÷���)1�A��B�B��BB9BBBB��J��J��J!�J)!J1)J��R��R�!R!�R!�R!�R)�R)�R)�R1�R1)R91RJBR��Z!�Z!�Zk�!c�!k�)k�)s��k�!c�!k�)k��c�)k!�k!)k)�Z)�c)�Z1�Z1�c9�Z)�c1�k)!Z1!Z9!Z)!c9!k�ÿR¢T™òßJ—−_ÊŒI“¥M˜7gæ¬‰³§NŸ¢dwo(G @ù−ƒŒ3Í¨úL«þ°¾ZÍ3Ï@3ë3Öàªk®ÖTc+4ØX“�5Á�k¬°Èf“�7×dóM6Úx�í´ÒzóÍµá|#�¶Ün»í9Úš#Î8ç€s�¹è�ƒ�ºè´ëî»ê Ã�:ê°£N:îà«¯;íðëï;�ü�õäƒñÆ�wÌñÆú¸5˜>…}ÁE
\˜Œ²Ê)ŸÌ…�(H�™Ì–‘ÀÙg8ƒ¦™
¥¥�„�?»¶Úl²ÁÔÂE1µÕV#‡õt\Kçu�ØmÇÝØÝq�Fzì�-�Úê…q�|pÃMŸÜeä7†���(
þ��ö-à�€Ÿ!xƒ�:H¡á�Z¨¡†r$>â‡�“x¢�)ºˆâŠuX�yæ7v¾c�|ð¡G�BþXz�¨û�ú’¬;¹d”¯sÒ‰”²×>{'¸Ë¾åî`‚)³˜Âç�xúÙçô{�jèõ¾$šý¢À@Úý÷¿€?)¦”rZ~§¡óêúÉ¬ïÌªð¿êj«ÈÐ*?-ÐÔª�þ¿úê+6ÐÈ�°�˜,�*ËXÊ¢Ö´ U−m`K�ÞÒ��»Å-r�ë\â@G�/8�v±k�ñjW�é…/tä+_êhG
Oø���Ì��‹ae�¡‰Êðö�å ðuïQâ£”D1z>ô�*}ëS_ûHZ¿UÑO~õk�þhå«ýÕª¥ü_
(,��°YËZ �¥���N0‚HÖ–¹ÄQ®qqðÉ�¤—»F�¯x�0�÷º²–ß�Ö�zy†6 ³�Çü°� ñÌDÔ�þ\����1qd%+����
[(Ã�_èÂ�r�� `€
‹yLc�#Ù2�ÑŒf$AKB“3�Àq³£©c�%mGÚä±6·YÚm�¹�BN-�ÁQ�rDÍHG^ç‘’L5w¦�Lºú;äÑÂ'‡K�P’Ò>£�¥~V
 ^�h@¯T��d¹ [�ûp�âå/“�Ì�yHrÅ,¯2™Ù"fÂˆ½Ò´‘¶E�_nj3HHB’“Â NÚM
�›@ç:y×Îv–‰Lñ¬'=á„e¨À9�ÑG�ÜRÀ¸”¥0zÑN� ¤�ÿ¨‹Iõ¾W•ô¤uS’ ‹§;¥–PW�TlUðåâ(�¸,H®¦®
ªN}WU©Z¯«š°«\õ×W�FÖ±�ý`�K«[—þÖ¹VŒˆEôGCÜÂW‘9ñ

 Welcome to Eclipse

 idMapping 943

FA0þÑ�FØÁ�_ˆÃ�a��/� %)‘¬eo†Ù”äl4›UMgã84£�A´¨-Mn2m�àôæïÁ)$Õ¬¦�Ùf
Q°Îm§�¶Iævl–´äÙ€+Ü´¹-=r‹�}îc7¼ùzo�úuà¤û·�™¾B¢ƒâ’ÍÝ�e(¼Ä$ï�d¿"óf�½œÃ‘îE�:ÞŸ.¾«S�êì»$Mè÷¾T¢ÝíÊ)»Üu‰Ke��ðâ=¼ê�¯ÁÊÃ·óðþ$a€JO ÕÃðöÆ¯½�{/|á+Fˆ�…©�–ØSê‹?2Ú§¾÷Ù?Æós�-d¬¿\ñïÆ.�@Ã"€�d@Ê’S
¤ ˜€Öâ@E†dGFAM–.é¢AèÐAç"BQFe%”eûÒUêÐBíðB^i–�k¦��Qƒ�ÑfùðfWÇ�„€ þà s
� �‰p�Op�ð2"���‘vd„hh„�)qY�†3m”…§!G“RS�‡”�¤Ö�¦†j‘�I”4Iá��¯æ�›ÔIi³‡ê�J¦TJ¸¶Jö¡JÍ�
°�lþÄfzµ�!�‚Kº”]�ÒKÝÕ]�"LÄtLÇT9ÕÖLË´{Ñ�MÔ�:Ü†MÞ¶Màf|š�$äFNš`%ý•nY‚%^RN»ãn¶Ø€2P�Õo�¥(�'p‡B
‡�QÎ8)�•p
Çp�U��åQ��R¦BR��+*Ec+Åq−å?0E,½b�Çbr%§Sð‡bò·bñãbù‡�36cÿ�€¿B€�d,>¦,@Ö@ÒÂ€ÚPdß��Iæ−KFsP¦.�t�!�BSCc¶Ce�D/øtu•‘�‰ƒ�‰n��!ù�Ã0
Ó º Â° ¹€ ¸p «� ^°�)ÑÅÙ”ù�eT �á“;ù“−Ñ“ÿ
�)1�)Ñ�)!��:��J�)a��º�›�xKãiÅñi‰äHmØHÖ�‡©F‡”�yw�k›4k{è�``k€hJ¹¶k…�l>º
ÃKblŒˆl�˜�ÂÄlÂô!Ý�m™˜L›¸‰×V˜2�ŠÛvMÀ÷mÛ”ŠG2nåFNé�‹V’N¢P‹êÔnï–¦ºhOõ¶Oùô‹À�
ÐÓoÅø'ÿvPÊÈP�å �wpÑ¨p�E��u�þ�‡�¢Â*��c�gR�'�âØ?å�S45r8erË’
Ý`œ,��ÖârFõ©K•��¤�üxsï��î�?�÷b/¶�öó+6Öq�€;NF��t��DeSÖ�Ú¹/"H‚ßù�'x0á
1;D�,è‚ç�ƒRwƒ5¸‘9è�;�ŸWÇ -À ¸ ®Ð †ûŸ§p ”ðEMø�„��)�hn;™Q…
ÊFn×F�JG�ú�¨Q¡�Ê��ŠihçGg(Hh�jkx¢‹Ä�ÑÁ¢qˆ[.Új1š‡|x»7��9�ˆ¨ÄkuÓ£®ôkˆHl´Äˆ·´K�âKÌF‰Ã�±})m'"¥�ˆmVÊmÖþ”¥Üd$§ˆ_ªXnãäŠU"¦Y2‹ìd‹ðt`óÈ˜§ËØŒ�å§�§~�ÕpÖ�qÙ�q"Å�ŒŠq)��ã�©�g�’ZSê˜SÌÒSš�TCu−ôH�øÈT¥úT�ä.ÿèÁ�É/�i�B÷ªbµ�²ê�´ÊV¸:1�
ƒj†·�á«m�¬~U�\0�^@�–°‡p„‚P�?€�ð�^ ÉI�iWY
�ØŠ-¥�¡Üê¹t—�¤Õ¡â��YœZJà¡ÿÀ” 6�°Õ®±E�Y³x^“•j\¯áá•¿�–•·�eY�t,7Éµ–¾�°ÑµÇqY]§g¤þué°�’!
Ò]°7^�y^�;˜ëe˜=²±Ý�æN˜¹²Â£O¤À™×�³¡�šÞw³´`a9»³ØÃa?ÛšA
›˜B´'8ö›S[€éHœÊ‚µX«œ\ÛœÏi.`K�"Ô.Ö9ÍVv¶,Ä�\¶¶��foë0âI1æY·é9�¾Ê‘}õ�M4¬p
�−°�� �‚`�BÌ��ð�8���ú�ƒ�¹3ihD)“N¬-™;�DÙ¹�JÅh§ÅG‰všv†À1¢hX¢%JjRÐº*jj±+‡Ú�£˜„I±F£rü�b°�·¦£º¤‰8¤Æ‹z�²KÊÛ8¿ôlÃä¤‰�¥�8¥9R¥…9M6‚¥¤¨¥áÖ¥Å÷¥æ6¦áK¦fÚnç
o−»¦ôvOnŠopêOs*¿Åx§Éh¿¾àP|*Q~Ê¿¯Ù¿ÿ‹�†Ê�‰jqÝø��¼q ìqçØÀ�XS%W©=Õ
î�TïØ©ß�−Ÿj�1WØâ².¤Šs¦ Â�Y/ò²ª$�Ù%|t±zt+¼0�Ó0Lg‘PgWSç�6�Ÿ��] ¨ð�>à�=À��@��ð�Ð
34SÎ��l×h¦Q�Ÿ�Zt‡GBP4¦…4M��¹áwçš†°ExS)•ZƒÆŒ¾ó�yfþs¯béIúšyÆµyùÑyy�z|3°�S°¦w°©·z
Ë8‰#"°W"²g^¶·Èëõ9�‹˜@�|�Û:Åw|Æ—|’é_›¬;œ,�¿³ÐÊ©É³æ÷P±
´ì'´�ò~E«bG{�0öáLË›O›À�(SÁÙcU‹€W«€
´œ�Ø−Í|�_��Q–�R6Í"d¶Ù™Í#¸ÍkÛ¶a�Î8ÔCó@·/�ƒê‰�:ÈƒÃ*I� ���‘à�9P�����`
À¸‹1�ct�ˆvFi´F:“…o´…”Ö…³�G˜Ñ�mH‰tÑ¥Vj¯Û¢ª†�þõÊI��‡œ„»|è‡»«£½KˆÝÝÒÂ«
Ä+KÇ6ÓÉ«lËÛlMê¼Æ�½ÓÆ‰ÏD¥Ù�Š×[ÔÙ›½¨Ø½ä6NÊÇÔéD¾µ�OQ−OT½¾urOî�ŒÔC§‚rŒ
�Ö|úPù;Qû;�h-Qè�À�Ç
�Œ›Ýx?*¥qs]�Áb×x]©ìØSÏò×œ�Ø�œT�|�ùèTû¸Øþ¸s>'Â[%ÙC—�F—Â�ó�µ*‘9D‘ø�«O‡‘¯Pïö~ï÷�¬
éD\°�j@�Ð�������À�p�pÄ–!ÌCY–…Ûn¤Û†4V X±c
Q®Ï�M�ôiÓ÷ê-Æ·:ßkØ±eÃ®—Oß«�úþé�ÑÛ÷oà"F�?!�…ˆâ'F(?AâD��Ð¥G§�}ˆŠ
Ù‰�Š¤ûwïCˆŒ7BD�‘òå� GŸd½‘%F”�™_ÿ�”ûPôï��E
”þú›�@©˜Â@��œ¢Š)¬˜âŠ�¯�pB−(œ�Œ,ÀØBC µÈpÃ ÃÐ0 �Ã�ƒÄ�QD‘ 1È�ÃÅ2ÆˆqF3h,ãŒ2ÌÐñŒ�Íàñ
6€øˆsN9ÿþèãN?îìƒ“=ûäD“J6ù3PN:áDPC��¥�F
�¥“G�−e”R:)…�H/Õ””RLÑÔS‚L�(–PI5È”„fAU–TYuu–Wié…�_h¥µVŒnÅ�˜_|ù…W`��–¤_Rjé%c‘E�™c˜u6�g{’Ö§ ¨}Æ§g„Ê�š§�áö[¦�Â��«ÆÍ†ÜªÐÍfÝªÖ
K›lÞ�+¬o´ùs����¾�Sç`tÔQ¸±†�“˜1ŠßQŒ²É.Óø²xà¡¬´ÏB6−�Ò>«Ç´ÕèYme–[{-6˜ó‰yfØnC@7}rÖyg�{öùg þƒ�zh¢‹6úh¤“Vzi¦›vúi¨£–zjª«¶új¬³Ö:jÜpÞúk°Ã�{l²Ë6ûl´ÓV{m¶ƒ~åæÝÚ–{nºë¶ûn¼óÖ{ï°ßöšoÀ��|pÂ
7üp½»��qÆ�wüqÈ#—�o¿�ŸürÌ3×|sÎ'¯¼sÐC�}tÒKÇZqÓSW}uÖ[×üs×c—}vÚkG�vÛs×}wÞ{��ußƒ�~xâGÇ½xä“W~yÀ�ïù�è£—~zê«·þzì³×~{î»÷þ{ïýáÙ��þ)ÿ|óÓG�}õÛgÿ}÷ã‡�~ùë§ÿ~ûóÇ��ýûçÿ�ÿ��€��`�
x@�T`ýøQ¾�þ#‚üp[n,÷ó‚XD€�¯ÇÃmbó‡ùÌç�û O#zó†ç�'5
jÎ�t›��hC�úP3Æ1˜¿äd2‡¯�#�_�Îr¦tŸú\bB!úC�*T¦�µ¦:
ZM—¾T§;å©��©K_�U¢�í¥��ùË9jt�¦ä(G�)ÏD�”‡'Å§JÇYN„^U«é\¨9oªÐš~µ§=Œ)X»ZÓ¬¢óŸ\5«M¹zV´Æ5§c¥k]¹�TP5¯›œþèQóHÌc*u™vTf!�êG¨þ®�RÝ!Uw¸P•B6¬��¨V¯êUÉ†Õ®9,ëLÛêV—2ô«â$-AMëY™¦U´›emk]�Å�VÐ�4�çIm«OƒZV²¨Í¬:w›CÊ¶¶³lýlZñÙÏ¬–ö¦ªe+B‰ûZèF�‰ÀÜku‹zQÁfw£udj
©XhêLš^á^PŒÌ].ZqúXû*W¹õM-}¥û_óð§} æ'-ë×£‚2©Ú%åF
ÛL{|×ŠˆTìl�»Røêv«ïý-z+Ûá¹î4¦�=í~WëY�—XÅýeñhC�`�¿ö§3>0þ
Ê–±�Fi†iÊá”>×-‘õª‘í:âp��«ŸÅ¯MiËâÒZù-b}nŒ½üå'ƒ�¤â]¬I-�fJÎp|®»b4ËüÃ’¾Y‘�¥d›�}hÖR—ÀB-ñE��Xëõ°ÞÝóó‚
d�:�ÑŒ$ô¦=ýé)âUÑ¼�uu+šã¿^—Á…%,w'MA1G�Ô–Ts
g}k\ç�¦±®p}=Ä_ë: ò�v±�−E¼æpÀ}%ªu±kg=Æ�ÓÇ^d-u�hjg[ÛFLö;�;áLùØÛnxÇ[Þó¦w½í}îoóùÏf|ñ§;Mn€�|§±´txs†›p�qÜUÍ¶Á™÷pˆË®ÏdN#{�íðˆg\ã¤›øÁ÷=d".�·XuîYI>Ó%ŸSË†¦%Æ7þr˜c�xV�)¿#›dœ�Ùâ��lÎÝËM—Ç\èCG\Çm–ð"ÞVéÀ½ù‡“LÜæ’œ½;ßr;ƒNt¬g}oF�o�«�âŸÿ�ìülèÕµ~v´·mæ|®ù…��D²�Ýçé•»Ó�|K³§]ï{��×?ÞÅ¸ƒVåƒ'-Ô5|d°z{Ì|g|ãûFapûZÜH$;¨óîxÌg¾ik·4$+ïïÅk^ô£_šß‘þ�r�Ã”à¤g}ë�fúÔ“ñò®§ýè9¿ÊÓ�;öå®}ï}OO‡w}÷[´öï�ïzØ—÷íÃ×¡*�Ð³çë,úÒ_ÚôŸfýãgÿq·�iÅ-ñj;"C=¸;®¸r1ÂC9†¢¬�Ü°-¢¯5r>�¼A�ÔÀ
‡¼H‰»4šc¾.bHŒüÈÌAÈ� HåãÈ�²H�LÉÒ�I“Œ§xTI˜ I�d;‰�"’�8Gº7�ÜI�ìIŸüI
JðY=ÕaI�Œºœª:¦SÈ‡²È·‰!¨|!©ŒJªœJ«¬J¬¼J-ÌJ®ÜJ¯ìJ°üJ±ŒJ”,Jˆô³šü!’\+
+2S|2sû»–Ü©}l§º´¥™d�|D¸3bËkúË·¬«œ¬§˜¼DVb�„#�£{Èà“Ë‘œ¼�\ÊÄcº*;¯Ä.‡ÊÉÃ,L9$Ì¢óLÁé�¢L�£$À”kÇ+ƒ/þR�Å*4@ŠãL9ÜÌÃIÌÁ1:òi
�ÊÍø¹™¢ÙË»¼ÉÙ²CÊÄ9¥,FâTMÔÌÌ¸|IØL$Jœ�Xä�ÐÌšzLš|�ÍÐÌ�ÞóÜWëÔ×Ð”Ø¼�Ô¦9ÃKÅÑ£QUqTX�ì2a�P¡�Y’−Ù�d%“m7”MYð1ÖësCƒ5T�]Õz�×EEÁ¶�"¦�H?K€±üÙ°
Z �Z¡−ÚŸõY£MZ-$Z¦�ÊšÕQdeÒ˜���Í·]ôÎ"ÚÙ…4·»¼W¯�±/EPI„W9ÕT¥©Z^‹¼’ÄYÀÞc?îc@þcA¾Ÿ»åÑQ}_ý|Ü1v[vüÛ
ÃP�Ì¯m¥¹µaK�¨BFL7Ö7�ÞÄáäOÑMÜd$FñÅrFg§;Æ>Üé›–âµ�Ä�œËœþjb¾²¬næ‡¾hô

 Welcome to Eclipse

 idMapping 944

æ´öv}�¨Æ¢è1éÛ8i'Üd Úç×òhZãÚR,ê·�Ì(,lc.æä jÖ¬¸Êé‘4é‘>X]†ãþ�>á�Î×Á�Å³�eaNí
Cç¡öZÖ�\`TfnîêNÔÃØ¦íæ»ìÒ³!�ªë¥»šëe»ªfç!²é¯�LË�[s‹�’²−©ÖçóVÛ÷�"äfåþ6îøæ= ÉoñÊì¼†�Ç¼g½npºNé‚ÓæDÖ^î−ç¿pr�o§YŸkÃ!¯)iú„ZªÞoãõÛïã¢�Ÿ$�Æp�Wq6�Tê)›áîë•¶j›Œ¿…†¢�¯¤ÿnq�W£yVš’úl±™ñU*î8®l‡þËÏMe”ÒÚ¯�¢��¾�ŸrL�oÅäkà«ñô¾ñe¾L¸−Gä]M†F-cVÔþ´å%�Ï�—c7�³
WL�ßrÑfns2�t4‹óÚœó�•p�WKò–\'Û2Ä�D>
çç�j[Bî±î¹„nîÕ>h��làÒ²ã�ç�Œr¹»èP_êÉ�n`3‡û_¥=v�Zu2ku#¾¡µ|uë@Ló÷Îí)¶w7óH™óØEŸði"w4�ô\¿mX§ÐIŸ÷oolÊÖóCó÷Ë©aF²òòÜj�îj��Ì4—dì.ëþ®nå¾î—‰÷�€�ùÝ°õ$Z†.Z��Çyš÷Ú»
d ¯�D_v.§pÒÞ¡}€¤_z¥oz¦�z§�z¨Ÿz©¯zªŸúWêÞ�ßz/2ôìÌf!�¿à�{²/{³?{´��‹W¢�çz·o"¯�Ó¡÷8f‡L�Ú�áÈûáØ{½ï{¾ÿ{¿�|À�|Á�ü}Èz›�{Å‡û�¯Me§û¢�z�Â{ïßýÉ�ˆ�"�þ�(Bàˆ�
*�(bDAƒ��JœH°àÅ‹�÷Eìèñ#È�"GzÔçO�J”¯�x�
¢Ë‚/ÿ½œ)“ô(Ò¤−aÊ´É³©Ò¨R§NÕ÷/%Ö”'³råúÊŸþ¿�þ^u−kö,Z¬+Ó¦|•ÀêY·T��pxÐ®À¼w!:\˜�aCƒw%2�
¸ðCÃ"lÎ�
W−Ë�={æ¬ÉsY4êÔE�—ÝÊ¶-ë¯¯gÓn‹`öÚ«fWŠ|eÔ7ð�Á÷=�\\¯Þ½}ÎT®—¯ñ¿�“{�ÁQ5RÖ*�,�¬3óæð733Ænþ3�1ŒgcöˆÏ}jÎœô
¤7Óh:~ Eœ�=(âüùÏ2Ú³�IÉ¡î�)™ Ö°~ÊD(F�6Ï…Ò²¡^™¦(bAtÝ53ªR�æ�,¿ L_*Ó˜Òt¦6-)NoªÓ˜ò
dhDÐ;‰â¢ˆ’Tzë+þgJWªÔ�½�£ð*_ß�ùÑ��U‡@¤hI¡ÂE�~�¥ êRÃJ7ÏiÒ©É#�:qGQ8¶*«V…cïô)Ö¹
±¥f]ÚèhwK™A‘š¨R$ŠŒZÅFbì¤ M*]�[§¦Þ•Yh½'î�+É¶
Ö‘î1ìá.ªØÍÆh£em¬ä�ëP�„Ô�uÔ"eçhYÀÆ�±œ}íŠ�Ë•öÌV�(ËeÌ˜×¾ý´I`�
D9è�-NT„nTåû8'WØ2÷=²ÍÊmÍ�]ÛB�+Óuáì¢*MªÎ5u¿m.xQãY´\·¶()oy�ÚSGm7¼Ss-{ã
šçZ·+¹½-Kê;ÛüÚ–'çýïþ€ êÓ½®S±Ë•/‚-y�ãå�ÀÔÅou#üà”@˜ºƒT^ZÃëÝ�sØ3ã=Kz§
aôšwÂÿ�nzµ+Ú©�8±�î0Œ�B_
—xÄ�¦ñ‰iŒâ§6ð›ñ5hŒƒ|”�;�Ç�`þ^xÅ®l1]5+ä){ˆ¬ämp�ó»cëú÷¼üÅ²ˆ—Ì^'“ë¡Xe$3_Lå5ËoÁÏ
±ì�l;�C0—DMî$u©f6ó™Èzk�“õëe½e�dR}2 �wg‹s$qÜY�wWã"â¸¡
½è|2ú¯�®ô¤3�èKwzÓ‘�õ©K½êO·zÔ¯®õ¬s�ê[÷z×±�ö±‹½ì_7{ØÏ®ö´³Ýi;?�É
þ^ï(³üív¿;Þó®÷9s[*�÷åÈ÷.øÁ�¾ð¤�{Ç
Þ¼çŒã†�rÜ|L~ó³¯ýí‹®ç±¿¼ôOEý�Y�÷uç>úÓ¯~�·—ô—o‰ôÖZÜ¿ß�ûë¿?þ›ÿ|¯àÒà2×yþ� fßïMSGHÜJÙß.
�F^�Æ\X)`�N �æÝþ}�Æ�`�n �îÝ�zœÌ�_�� âÜ�þº—�– ® =] à@àR�� Î ÞÕ >��™
ý½š�Ö �þ 0Ý ì‘„#ÝÞ�ZT��¡�.a�¹`[|�på ãÁR 2¡�^¡v���fÚªÝÐ�fO�b¡��¡³´��º•�}!�{XR�¾¡�Ö �
�³½Õí���î!!^a��Ë‹¢�bO��¢#v �n‡RŒ�DÁÕ"œ�Y‘Ñ�(âV ÝØ#~Þ!Â��Œbèœ"=É¢*âVZˆb‰mb)ºP˜Ù×*²^+¾Ö+æbäÐ"7�#)J×−
�)2Y*òâþ2þ"èE"Àd 1ZX—ù—3~Y�
�…i™ˆ}Y6fãƒ…£8î�Š¡—9.Ù6¦£—™#.¾£(†ã7¦£8r#~Á#3Öã‰-c–uã;î¢4�\0rÖ+v™‰™Ø�…�>FØ–)YB�ØB*Yæ}�cC²ã9B¿ª�¥mrÙ£sî�tÒÝv~'
�§5‚'y�`w~\y¦ç��g�ª§{6 xþ˜q¾'}ò�{Fàü`›~î'�ö§�þ'€�¨€�(��¨��¨÷ØˆKå�ƒî”ƒ6(„>è?¬�™%�Êi
¼½›†f(‡n¨‡v(ˆ~¨ˆþ†(‰�¨‰–(Š�¨Š¦(‹�ÐçÌ§Yí�’ô�ÿ�§…"�q�T�¶É�ª��Â¨S�š¼±�
~‘áÉE�"i±ñ†pJ��r”Œ�éÉ�—Ð�)K$é•.)w�ç[(èëQ¨^õ�|ºÒ‘n)�*)-1©ï9é—nœ�R©‘’—
féÒ4çú©é>Ú©MF�š’å0íß“�H€ü©¶�Û-Á)�Fc,�!��*£¤¦˜,6g¤Ú"£ÊG �HÈt�˜òVâ—8)*èèiÉ™©)6å�ö)¦b*¥Ê)£Ì’©–�›��¡ªzí¥¿ò�í>�•¦Š�±�ËÑ�‡±Ä
å•«¡½isUiÏ"-_Ò%±�-Èn¬²�−[:mØ:«¾öj}¥mÐ�ZÓ¡Ý�ÁêK€�¬t���‰)
>ìß�#¶�f´Î«nulnæ¦½Bªâf¬j®*JÔ�Ú�ÄËÈˆL¯è- ÂË§ní®^(¹X)Ù�á²ú�â.��x)äÐ‡k¸�kDMñô.ÃÖ,×Šj¿¹î5ò!¼®ißª×çâU÷üiêò���®+!(õò'wT/öf¯ö‚Ïõn/€²„÷îg-æMÐ%K7=¯ç®.ºÚ�ÿ´¨û®¨†¶/ü¾/ýÎ¯ý¾¯üÖ¯þ��ÿÜ¯ÿ�Ð�¾�Ö²—úv−È©Ü¹±ìÎ
i©�.VN)�wØòÞ���ê¼-¯åEð´�]øVïþ§ï¹Ð�jð´ÙHºí/ »Û�C-�S©à�Å%’0çÜ¡‡%¯ÞÝg
¦œßÉðé�!)Å‘ŒÙ°�ÚìÏ�phÄ0�§‹�—_ V��ã]|J¯Ü��štÑZUq�ŸK¾©Ò�¿Ç¦ ×d˜�O
—ïð�¯ñdÅ��ûÛ�/r�ƒ�'Û±¯1±‡�ì�¯pË�/gN)'kF(�²¹Í²™üZj”²$í²¸áò#«òœêj�
¯�Ú*�Vþ�£2!Û��É‘#ç²éíP%Öññý²�› +ó_Ã ã ÿð¢�rã��_r+¸1or�‚3BM°ÍU°¹"›�¿ :kr®ðéŸxÅ 6a6Ãa
wm7Ïó9×³·Æ�ˆœDŸ´�;«î0¿ò��´AŠ³ì°Ì-b�9/¬93´Ò��−‡� ç�DãU�À¬Ÿ`×>�Î6�ä?�ræõ° /q ª!;3/���XXí�
tEGÓE
#b©áF«ËO»—K��L�4¼4N¾ÔKpP´0Ãs@KâDqU�OµV¡K�Qõª¬RW½���Ò)%3z|1«„q*}Ð3§ò5ßmAËËR#tI?áI¿þdJ§‰�nQ-ÄòpÍqP·�)ñò.«ôhˆ²^ó�7‡DLÃËü¤ŒÕ25ðîôCÃòq½•"+1aOÖd+3Ás/��ÅAJ3‹²−#r�§µìÜs�,u�
êé�oc/4O» ¶�f‹ ^»ñ"éRh›r‹T¶n~`ë±Që
MiÅ-@Í¸ðîÃá��Â¶?C6k…6eûu'ÿuGûQnSwXó6v«ÊøÙIp‹ÎÝTN×í¡Æó�®
yà[aÓÉUk5�Ë_,iö!{uXG3‰\ñ"W3ZÛ−ò�ÓÌnmk;5FC5 �
fíµC9iãå[oG\�'�Ã±~¯Ë�'¸˜�vU�w-þ96ÎF¸…£'��sS—÷SWã‡£4÷t0‚6xèõ³¨¦ô‰ƒxJœðÿÖx†²8�' �ÇxFí1Íå¸J���c”
:àrË³�Ÿ÷�§±�Û��÷ø�/y8Ûg�ó*’Ky
þ÷��yF'y�c9“×H%�ù$—y„jx�r¸^z8˜��†·$�W9ëvy›�¹í�³r?¸‹Áx�»ùwk\”Vè—cð÷õ9”/ø�£ù
¹òk_¹¡»ù�‹x�»¸Ã²ù£ÃÓ›ï†iŸS [0‘Îù _ú>e:‚,èjgj€“ø€›¸¨7^¤ßˆ}pº¢G1=‡z«cúŸ—:l�ÈÉŒ4¯s*¯_
ê2úþc7ô-³�©7É=�ì‘øÈ��Ê�Ü‡‘�l¿¤ú�›7��{ò�~0ÿ}{z=ä_Ÿä‹8åã's_>ò−þ*7þÿ�½ç��•O=¿[~éW\æg=êÇ}[Ô§ìw�èc³èG ‚®�Ùé>Úí~Ûõ>ðó¾ðÿþðû¾ñ�?ñ'ÿñ�?ò/¿ò�Ýéo~�Ï>õ£ß“�yëW¿öÛýígùö�¿ò]ÿ:g?ø—�K�~‰›¿ús�-wýú¿ÿä‰¿ŸÃ?ý;
ú¯úÈªj Í*©º+ÿ�„>�� ´x�aB…���l¸páCˆ�%
¬ˆðâÅ‰�9vôøþ�dH‘#I"|•@ß?…'ÿµtù�fL™3iÖ´y�gN�;yâÔç�bÐ’�?j�j4ãP¥Kê5:±âÓ‚R™Vµz�kÖ¡¯�¤\‰ gX±cÉ–5�ÖëT¡G‹^EªVk\ˆTÛ‚Œ
Un^½{ù.åšÖ$Ø³ƒ
¾|�ð@���¶èØñcÆú"WNJ™hÃÈ”7wÞ¬¸2çÌ’53�ýYòãÔS=›.M�´éÕœ?k�ÍZ6m×ªiÇ�º›÷kÌ½1‡î{�yr¥'��dy�ztéÓaþ¤ØX¢íÑÃµ�ŸãÚC�CC=‹í:�ÍÓ0D��Â•VÜz•´GÝxÌõÌ�W#öØ^…Å²þGWoµ5Ôh¥

 Welcome to Eclipse

 idMapping 945

iT$�;�ÛlsjpÚnã¢ËÛpÅ�÷¸;WÒSÛtÕ�éOrÝ] Üwå�—^�ª
lÝ|×å¶Þ~ýý�à€;º÷ $õ=øT~�^˜á†�öÖ\$ÑE˜b>Û}�ãŒ5Þ�9‚�»¶â�•T˜ã’M>�eˆ�é¤•^šé¦�~�ê¨¥�šêª-všç�üñç�®½î�ì¯Å�›ì±Í.�í³Õþ§+�Vî¹e�å�¬9®�Hàî¼ñÞ[ï¾ùþÛïÀ��\ðÂ
?ÜðÄ�_\ñÆ��ÜñÈ!Ÿ\òÊ)¿þÜòÌ1ÿûâÎÝeÎí®ð,8î¹M�«îÒO_=º‰Y�½õæ²–÷/·Q�Ý9×aßÝ¦Î�¬¹a–€gØãÙß�ý£·:˜÷ægª[Ïá�þ]ú€™3ÞøÏÛN^tR�ÿ�]Ü©¯þ_áÉ/¿{‚²'·öäo?�üø�4~ü„â=_Èú=º�ÿ½n�h}�yEÏ”ƒ[^åÒ¾�’Œy
l^ê�¸–’ð¯‚�‹Þþ‚”B Ê.ƒ¯à™ “ãA�‚Pw"Ü�ïÀÂ�ã4 2¹Ò�¬\˜Á�âFˆ¢�N�Ë…�ìeÐ��Ô� §¨Á)
DŠRþdŠ��vÁ�éð{
\Ë¢�E�)1q+GüÒ}‚ƒÆ¾��Š4|…J�Èµ�Ê�(TôËö>XÂå©�Œ§#a-P$¢�•†W5rc�W¸F�éj‘y�£Hä8ÅÕ©�K*T©�Õª^ÕªYõ[RaH/.¢4˜F�$GÅZV³�ô‰^õçF”‡Ea�U_$„ë\é�²®Îë¤l�(ÎêjWú½µ¯��ìÈ¦©Sœþ’{a�ìÁ�¸XÇ>VB�»›V)«9Äö�œ�Õ–\5�Nt¶T1+™,�$JÐZì¯0ù,YV{ÚÕµÖµ„�−ÇÚ:EÀÆ6B�u
lÃÂ[ÜæÌ·¿E]7G›Ò? ·OœmIþc–ËÜ�8WDÍ]-s‘
¡è>wºÐ•în¡�Üêîd¶�#mÏLûÝ�eô%¾ýìtwûÜöz×¼…iíz—û^÷Öw¾÷�/ZˆK[ãºu¿„−-j¹Ë\öâ7ºð
°Yò{`÷®7Á�^0Od·6 §
Ã�Öp†ÙvQÅN�fâk™ƒé«ß�·�Ä†ip}ñ«_�£8Å>™f½¾ªW�ÆØO©Mï‹K¼â�ãx0>^±��
ä›Ü•vk-æ�mkdèè�Å�–nvóëdÖb‡ÇÚÅî|©«`##ùx—íâ‡-L7��ÅËeîmNÒ¬fš€Y{C…Ÿ›Q¥c�\—ÎAfs�{�gö)YeL�!ŸþûLVB�z‡i�áÏœÃÏ�Š�¬D½−¢e¢\J_Zg~¶×ÖÀæ
 D1‚€^Èx—W^L?ÏÎ§Vµ]gÌJ�Z³§�þ¦µV½−C×�×qU4%³‡É;jQT�f« '½jKç�ÙØÒôÀ�-Í-é2Š\‹§¨Ïuãd£�½×Övh[
Å–ä�‹š§I©m−2o»%PF÷º'Ô¹X�š~3�w=ã)ì%Ÿ�ÝÇf÷¾¥³l�Š¯–™Ô£Pmgí}—’ß ÷S·) ´åýlÜ›ä'°e�XI'\Ý
×8Ýv−�±iÍIGútEß−1�_œßúÞøÊ)ÄðXZÑ¤åÎ“ÁÙ�p–ß|¸ Ý
Dcþ~òÌ®;ã8�ºO:þ9{��ßÛVùÐ™^i—Ç¹àD55²mÞt«?ïé�ö9-S~ë«�ý%î6ìM�>jbcüÌ`W{ºq7Y¬¾}re¯¶Ô1�êµ_=¼�«í •îõ»[}–)Û{±U½ô¿ßwª?.öW�|çp�Ô
Z>Ò›�ôç“¿æEWYÖ�^þÃÜ³l÷×î=üõ¯ý•Ð�†¬ˆÑ`®Ù´(‹`ÎÆ¢nÎ�ÎøøÏýtÎ^���~B“,
Ô@-�00Ÿê¨�ÁjÖªÏù*Ï�‹���æ§�ðg2‰“v
Ü6)Š0É�−îçò−íFÐú€oÓ6È’¾−ân‰Þê‰�w°Ó�Ð}h�è�Ð�û¯�ÿmyè(›€�›~p†¶)›b�³¸î�K− �p Ù í©�€Ð
«ˆ›°ˆþîÉ Ç¬ýhðú¶0ÙÌÏ � ä�DäH.Ý´F}î��í�üD0þÚÐ s �ã)hŒˆúH‡òÈ+�óMþvÎ%¤-â®���põ�Q
q�¯„ïôŒ���Ñ� þÏÿÂeýÌ.ÿÞðý>ñÔ¤�¯î�nJ‘êj��qMvÆÎ¦41w8Qé�0�/-9Ü®²~Ñql�ÿÖ°ïüp�
�ó$Oó²�À�±Ö"ÏfúP�I°��1�ûK¼–1�§Ñ�S1�mF�)qüº�Ó Ña�o�Ä¯�É‘�±QïÂ‘ ¹‘��−ðPfò~o�çñÐÌ1x¤Q
©1�õ‘Ïø‘xà±� (¤�Ò�¾ñ�
’÷¦‰�#�l$�¨*ò�/’"1r"7Ò"3Ò#9R#;�$?R$K2$O’QrWÒ$SÒ%YR%[�ê���(ƒ2�]Q�ÝQ(��)þÅå�™1)›Ò)ÙÇ�÷é)«‚!§Ò*¯’/jë§tÒ�−ó‡ÉÒ’−ÛÒ−E1*ßR.ç’.»o−ë�/óR/§�
÷Ò/ÿ�K«/�“0 “.kË0�S1ó‘�Ó1û−{’�'“2+Ó2/›3S37“3;Ó3©†Az
ýH�4EÏ4K�OS5S“5WÓ5[�_S6c“6gÓ6kŸoS7s“7wÓ7{3¨bz‡“8Û��‹�9“3!�S9›Ó9#‰9ŸS:§³��“:¯�;�':³“;»ó��Ó;ÃSãsþN¬S>ëÓ>í¯!TC;tCßÓCC´=1TDK´;9ÔDSÔ.
‰E[ÔE_�FcTF[t¡~ÓFGOÔHTEwT!ÚŒb�à"ªr>ËNGyÔH§Â?éä$‚�÷æîHŸt$>k�™Ô«ˆ�D¡�K�"I‡”JW14³�L7BJ“¬K“ÌIÃ�MígK#"X*%�Ê´(‚…$Ò)”¾4Mï�I«bD²d+€´
;bDæ4�uoMñ´DÇô�Þ„N� N�Õ*�u�QÔPU�Q•bO�•Qÿ”#�þâ4’ˆ8
ÕJ�tR#´RÙ�D0uÔü��ë�#È#™(èÞ„sTï´TO�=”éM5UL}HF`„4p5V‡oViµP[uSP50�uSÇ(NZ�TítXÃ´V�uS`•’T��C¢XjäJ�iÌd5ZÁtZç´Mµ„•�@Y7µM�iU’Å›„5\ÅµXí2]•2Tç5^�t_¯^E1G¯4_;t_•�]uU)s4.�öPñU¤
vUÉ�\�ÖH�vZ–Ô`ý�Z%–G?ë3�Æa³ÕKM�a56@�`ª€�e 'H;öiî•d'vFcVfg–f
Â�á�g�Çe_–g§RR{�ha©Hƒ–hjShh‹�iÏçg“–iñçh›�jeæi£–jG+a«�k‡gj³–k
RT»�lûeiÃ–l§�`Ë�m�æ/X–mÛÖmß�nãVnç–n=3©R�osVoó–o÷Öoû�pÿVp�—p�×p �q '
;GIF89aÿ�Ë÷���)1�A��B�B��BB9BBBB��J��J��J!�J)!J1)J��R��R�!R!�R!�R!�R)�R)�R)�R1�R1)R91RJBR��Z!�Z!�Zk�!c�!k�)k�)s�s��k�!k�)k�)s��cÁk!�k!)k)�Z)�c)�Z)�c)!Z1�Z−�c1!Z9�Z1�k9!k9)c9)kB1c99kB9ZR9kODe��{!�{�)s�sÁs�{Á{�9{#(x!9s!9{!9„/
y)9{B�|E8|„„!B{!B„)B{)B„)BŒ)J„)JŒ1B„1J„1JŒ1RŒ9JŒ9RŒFF�RG†ÿZ1”Z1œJ9”RB”RJŒRJ”BJ¥1R”9R”BR”JRœRRœ9Z”BZ”9Zœ9cœB^˜BcœBc¥JZœRZ-JcœLeŸRkœBk¥Jk¥Rk¥Js¥Rs¥Rs-R{-ÿZZZZJ{ZJ„„„„ZJŒZRŒZJ”ZR”cR”ZJœZRœcBœk9œssœ{ZœZZ¥Zs¥cZ¥cc¥Zs-Z{-cZ-c{-kc-ss-„s-Z{µZ„µcZµc{µc„µccÆck½c„½cŒ½ks½ksÖk{Æk{Þk{çk„µk„½kŒµkŒ½kŒÆk”½k”ÆsŒ½s”½s{Ös{Þs{çs�ës„ïs„÷„Zµ„kµ-kÎ§ƒÎ{„ï{„÷{Œ÷œˆîs”Æ{”Æs”Îµ”çZœœœœœsœÆ{œÆsœÎ{œÎ„œÎ½œÎ-œÖŒœÿÞœÿ¥¥¥{¥Î„¥Î{¥Ö„¥ÖŒ¥Ö¥¥÷œ¥ÿ„-ÖŒ-Ö”-Ö„-ÞŒ-Þ”-ÞÎ-çµµµŒµÖ”µÖŒµÞ”µÞœµÞ”µçÆµÿœ½½½½½”½Þœ½Þ”½çœ½ç¥½çœ½ïÆÆÆœÆç¥ÆçœÆï¥ÆïÎÎÎÖÎÖ¥Îï¥Î÷ÖÖÎÿÞœÞÞ½ççç÷çÿïïï÷÷÷ÿ÷ÿÿÿÿ,ÿ�Ë�þçý�H° Áƒ��*\È°¡Ã‡�#JœH±¢Å‹ÃjÜÈ±£Ç�
�z›çíß¼{(Sª\É²¥Ë—0cÊœI³¦Í›8sêÜÉ³§ÏŸ@ƒ �J´(LBÞJ¢ÇÛ6 ßÀƒ �t�^íÜ´
1>®�ùÒÅMQ�šN}zcæØo7ß�Ý¹wîÚ»þƒÿ.¾|øóäÑ��}®˜{÷çV�Ÿ�ürzï‡1ß_/=érÈ„àc�!�¬äØu,�è�‚�¶¤ }
F�á„úIX!…�^¨a†�:èa‚þ�âˆ"–Èà‰�vH"Š�†Èâ†.ÞÓ^|(Íø!}ô¥dÜ‹ ºGÈJ>z¨Ü‹��YdŠ��hâbú)7
>J�8�Å¥D%•;Þƒ%–•M À—U"(¥}y�©_™b¢te˜T†i¦™\Zö¦•Z†)gš]âyg�|îéçcsö ¨�ƒ
Š¦¡dßi…ZÖ�?„ÄwÒ¦�fšß¢Q�–O1J"ú�!¨ÖæRkFÖæ®�îZç£H®XìJ¿B�ì±N−k"eÉN¨â³−�[−µ0Z›−¶Óò�ãµÞj{
¥úE
âÔÝã.¼Ö]7¤…Ê�Z`†�:Ù*„LbæäAù¤j�•'ýŠ°–Ñf™0JYŠ¨Y£™V|h´Åµ™—ÃŠÖi§‚Ä¨Ë�Ã¼rË‹ÎC®{K™
aºÂA�²«Åð£�>ó¼*¯ÐD�}Ù¨�;•ï¿��:°¾b�
à?³ÒZë?�Wø°Æ`fŒ1fÎz©ð•[~É¥Úb‹�'�Ñ>\'˜Æ±MOØjŸ-fþÚmÞÍ¶Çv‚Ëìà‚�¾−»ˆ�~¸âÝ�N®¼Q™;1ÏÁ-+8u¯Z‡y¼RÞKáÓûj;0×T³�«a
u=aßs·îñÈ¯W¹k¯ÉÎ�¬Ç¶gú(Æwï-Æ½âþgÌ,—,óòÉ§¬|ó/C�“S÷~c9+−ð3ñ R¼´ª UG~F²�ûJ—
«¥dtþ�Q�KlwÁhiìvU�`ð\ÇÄ%¶°P�á�ñ€W@£õÆøÅé‘QŒŸÚ��øu���§3r;IÄ.�*I%jHœ¹ÇèòA5Š9M~UY•�Ðô*¬åÏVû;˜"�˜Eãä�X�\b$_·Ä
j�ZW”[�yõÀIJ�’�„ ¿H(®�–ò”Ü2e*Q™8�¾${6Û��ÜøÄ�=j�óš¡™ôˆ˜sé‘ ?´àö¢x½~Ê-�ß«A‹bö³�ý±�ã
ä—4¶Æ3�/;Ã
áj±±¶±JJu¦Lå*[ùÊXÎ²–·Ìå.{ùË`�³˜ÇLæ2›ùÌhN³þš×Ìæ6‡9)þ�HœåLç�ÌùÎu�3�÷Lg��ê��ð7”â€�â@�èŠ÷·�L��ïð���€õP€üVh¸Hkv–«ˆ•s†«8��W�?�>�¨�f™���rB‡nÄørÈ�‚Ç¨ŒË(—ÍèŒŒ�uc �,�@à�b��Np�/0��p�/ˆ�H�'0ƒ_'�)pƒEpvìèƒ@èvB¸�Fh„S�„T`�UÀw{�xNxxR˜xi€…jàx�7yqð…t�†v
†›7›�y†¢Wz¸©†©÷z±�‡�é µW‡¢°{"©‡|È‡�˜œÌ·œÍWˆ…˜ˆÕw}�è}à�‰àW~Ø© —þ¨~Ù°‰âÀ
��� H�¢¨�ÿwŠ�˜Š�ø�Gqm3‘s�È�/‘s�¨G�È��ˆ–»Ø�jY�Â¸nLGnÆ¸r$Ø–%X—vy�xi�% �Ë0 Ã�
dð�O€�/`��ð‚0��á¸uŒ
vdGv;ˆvjÇvò(�r����„ù�šM(x©�RHš�Y£�çxpÐš_ø…�y���zzÐ��×��‰z•�z�ñ†²G{À‰{vÈ{¢@’«0

 Welcome to Eclipse

 idMapping 946

«`’® ® ’−Ù|Ð×¥Ó7“ÐÀˆ6ù}áw ã·“ç—~@¹
ß ‰òg”â��äp�KÉ�vê�(€õ�Ÿ]���·�àãL�¸•þsõ�ôi�ô�saÉ‹ŒÊŸAçŸã�—Ãxn�ú–êV©t‰ ñŒJ�Ëà�û
kÀ�dP��:��p˜�!ƒÿÐu6øª8¨ƒjG™JP�Dh„�qwV0� ©��!xZ �RH…‹w…Y(yn0�^Ø�²I†gX†�‘z©×†I
‡r�’s˜‡x¸‡Ü:|Ê)ˆÍ�}†ˆˆÕW}Ø7�Ê Ö)‰ØY‰ì—‰ï÷~òç‰ã‰�¢HŠç‰Š©¸ŠËaZ?ä�f�¨Òá•ö W
3@m’q«x‹‹ús�Ë�¿ØŸ��nÆ8©D' Éx©��—s©©�ñŒXÐ�ºà�™@�“
‹p�¦j�àþ�"@�áø�^çªèHvê8«îX«ÿ€¢q7�+JwT@�ú˜��‘�€��]0�SX��™��7y•×�–�‘³ÙyxÀ��z¦g‘��
«—¤®Ç‘´÷‘vX‡x(¥£ ®Ð‡¬€’*É’. “3)“6 7Y¦:É“‰‰í�¯ð×‰õ�Š÷ª¿¨�ë¹L�¥¨Í²� «À¬U7�c� ‹¹�ŠÉ›üÐ�,�
š‚¨@ Ö` §@ �M ³ ¦�
 à²(,��±Â4ëÂ�Ñþ�4¼³8À���pÂ�Z»\g�d‡»¸¼�kW�qg�:Ü™üøÃ��Û�a��aÛA�Ôv`�T¬�Vì��ÑÔ®ÇÅÆ½½a�Îÿ@ÆY�Æ�¡¥qû|o�“qLÖtŒ“gJ‰è×~|ì¦����à�?Ð��P���®¼¡‹9³ mƒ98¢éãkí·Ey”p−þÈL9×u�¸‰Ìe�Çe�Íò_©¨�
��ç¨�H©�J "Øì ñŒ·Ÿ�kìßÆ–�*Œ Ëó�ñŒ.xû*øÉW'î�Z�+`î#êàx��)úîºº�KÈÚG�x3Zš5þz¬o��û¾£
é£��¤{€ÔEÚz©—‘²·¤µÇ N*œŸ|�_¥�ÇGñnl p|}rý�÷�!Ðy²ãÇþü+i¥” L)§šhº(A�e ðA�ûãé� +´ðB
3ÔpC�;ôðC�Cäp��K4ñÄ�I�‘Dz(l±Å{`|ÑE�c¬±E�Y¼qÇ{rœ(Â’ýâÅ?�Úõ¬ß��K²'·ývÜÿ™§'§“®{ðÃ7´Ûp‰ã�>ïà»>ÞkrOß�y¼�ß�ÕçŸ>ÄÆi�t`
G‡²�¾ïw¬ë¡ô~…Àã�Oo-³ÛëF”=!nï{7£#²€”©fáQŠm–�˜Í³ 3
¤Mz�™"DÖÀ�ä,%’²‰œ¢¦>£5!�i.�»���_èEÀ}¬tÛìe-LwÐô�‘|±�g;%ø´yÀQ“r”ç�‘´$�b„™÷ìc?¡9“?¢ò™ªä]áÒyN
Ê2’�”_")DGœæT§;åiO}úS �U¨Cý©?ög¡wF(�Ü›ç¤>
!ƒ�Ì¤*õ'J«ê©ðaÓŒ‡L�ç´(Ho¢�ƒûI��PV´¢Õ¬kM+[ÍªV¸ºµ-s•ë[å�Wºæ•-xÝþë]ëª×³þÕ®påk
9§Qxr”©URfFFz“�©4šW�ªIYZ#ûµ0�G−šW�ùËÎe´�D$m§Âg>Ñ�K±¹SfcEjD$.K²ýôcJ+ -Ó�´•]õìõ�jÃ^:
±¥%n„
{µáBh©¬Õiqc›°�ò. šÕ¦$y©º12p’a�-s½û) ÙR_ª�ai;ù]‘81‰Ñý¢nÃ:L_�RœÂ¼i1™XÛ(ªw%TD/{¯H-Œ�S{å
¡kûë=+z®Kˆ‘Áþ{��‡ŠÁ�Úê„)dá”I´’ÀuT¦D™Gè†øÀ>Ëíé’ªÜÕ�XÅg# hI�á�C˜P1¾0þë e¤
Ñø·ëì[Ëê�³gñŒ¿©¬æŠ/û`Œ%÷AË�£‘�xÂŠ−¸Æ^ÂðÓ(Õ«æ2�#Üj�ÉúÐÞ�r¡�Ü¥j�Ô[�Æµ�þ-úkKûZÞÁÎ4f�¬ä1ùv;µ£²d2YgÑv½Ðnw�Õ;d�€J˜¤Ö3šHMjTçøK³†x¬kLc{?òx·‡íN9'–ÎL=/=ŸêïÛ²Yª�obÀS9[
õ¤Ú_«¸º�>åV�;ÂX4Ã−�ñ�yy¢º
–}ýØæ)Ê\Í�−¥Ô�^òŸÙ{^øî�¾m×ÔéM�îc���MDŸø¸Ííç=cÛÁ?‡0¢+¡ê>ß)Þ7cëi
’ÆQx…`¥iù¸þÞ3¨�>áš>¬€ã¸rÖz´%!]’“’]°²O�Þï.)U)[øŒ�÷ra�ÙëÆôí¿�¾p
m�C/§xÕ“�ñ«‚¾N¼>9°�º"c·I�KZJ�3ñìÀÆ¹´t�Ã‡þ6—Bsé−ÉÈ[|�>ú�sw«9ÛÂ '�#>��=Ð!„[‰@ œ@ ¬@
1ªBº©”S*Æû:J�;ØB�e[¶v“´_»¼ß£¶mê1–Y¿…B¡�‚?�ù‡óªA‹°ÁŠÀA�¼A�ÌÁ�ÜA� B
�B�,ÂüB!DB"�t£FR@ãÛ*�«� �C2,C3��Ôª¾œ˜Bïi9+\¢„�¾��/Î“)Šê−u�C�³$öë�?�”?
D@�DA,DB´DVä�¢�Gr,Gs QC)ì@ôB6�|:f‹:…Á/8 99��·q@ýñBL|/Ïº ��¢
”Gî©?ösG›€G¶©B�„ªþ³¹�“¦5ó½†Éª0TEb3Jß .ñ��›”ÉP;9zÁÈwÔH*tÃ° îÛ¯�ü>ïË=’›G-ÛÇ �½�åL¡Ûþ3n«R
�:+�·¤ëÑ¸#7l³Ð}á�&R›Èª¥I−cs.«ü.÷�I�ëN`º6ðŒÑ�Õ;‰ :�UÎ†ÃQ�]5¤ûÓ£óQy»42=2À;�×�
ÇŒÍB]MÝÑŸ'M¾��Ô−�Rq³T@û;£ãÒIÅÔJÍÔ ýÄö�ÓF59Â„Ik,ULk±—y�Î¼¶‡«Ñ��Õ�+µ
C4¹“QYíÒ@å4U�œ@JÃ"]2ØŒÇ_ÍB`4Ê•”%‚R�ä«;â´G[µ‘�=Ö_»�ºcÀòT�)#•DÝÖ7ÓÇEÔÖ�êEv5,e−
1«5—AI‰2�¹þ©VvÍ9lESP´3�œÌÊ“½›k3i3;È±¢éâG1\¾o Æo…¤DÔ°ª!�däD�íØ
ÌF"MÕ9JÒ�Œ�Ì”4ÿ;8`½¼ÙZ³ôW�XÔ�!�«¬Î;ÊË+ÔOËÊÌGý²¾\A—Ô°s�ê7�$@3ÓN¶{SIuÙ³´Ú|¼ZJªDäAD»5D¼½[½Í[¾¥�ö1�£%’bÍÉ�ÄÊ�ÄMÞ¼Ìµ•Z$sRûáF�\Éa¼¥�ýZË½Ü�é!A�Ø’M(¢Í€¡K-D[”%Ýþ•ýV}…?oí,Â\§–lÕVŒÆg”FÙuFÛ-]Ù¥Ù8�Ù�
Q³…9´ûQ D[¶E7ŠÕFú¹�—U¿±$FÜ¥]è�]é½Ýè¥ÞÏ*•u=ÚÁ}ÌÂ��ëDÜµ]ÒÅíÍîtÛ
�£oòË�s¿ÉÍ¡—z_÷�ß—�_¦“ß¿ý¥À ’#Å¾îÝˆ‚�ßNâ
îc=®(âÓ`ýõ4xÒPQ[ÊãåG�fÇ÷ã×˜Ú¬2�d4�aûµä1^á ac€qã7� ãK@ˆfi�f�e k�¹*:?4L]¯ªÚë=Ê
KåUÌ '�eW.gtfå@�Û.¡å6~f*µ}¢¨þ�X.æeñ2_Süe"öædVæJ6æ4Æäƒ† �ãd�òäè£gÜL¯{FA€å<
öË`²Dæ».guÖÝ”nè•†�y=Z�é�¬iÉíip~ÛpÏ
�iu�mà6dÃëÊ§m××–/jôhö½ë¿�è½8�ÞðnR$£kdTá-uî�¦îàšn÷�éÎ>pì>gÒãîúæ^û�E–]äªN`/FJ«�f
_ïÚnïø�ì÷¦ßTdfÞ}ðââËÈ~¿òîgÇW’Þj�—î�ïêu�k‘>E�?ì¤%q�ˆcþ�ðõCá
OIö– 2wºÓ-nÌ�xÛ�îvØ"‹[ÚÎ{·²�lnímÛ}Ó»¶÷ö7Àï-[��GIF89a”���÷���)1�A��B�B��BB9BBBB��J��J��J!�J)!J1)J��R!�R)�R��R!�R)�R1�R��Z�!R!�Z!�R!�Z)�Z)�R1)RA9Rk�!c�!k�s��k�!k��c!�o�)k�)k�)k�)s�)s�)s�sÁs)�c)�Z)�c%%b3�]3�_)!c9%g9)k99kB1cJ9bJBcRBkRJcccc��~!1sÁ{!5w�9{!9{!9„!B{+"{)B{!B„)B„>*z<}è�J|HÑaÂ‹�
þ8¸1aG�?:nüøO¤Æ�$/†�É�eÉ—0]flIpeL–'gÊÔÉ³§ÏŸ@ƒ �J´¨Ñ£H“*]Ê”
¾§P£J�JµªÕ«X³jÅjo+¾®QÁJ�;•,×«fÍ�õz¶ªZ¶OßÂ�K·®Ý»xóêÝË·¯ß¿€�_Ý÷�Ÿ¿�‡�+cÞ¬Y3gÉ—3�ôü9téÍ¨O‹^-ºugÊ O¿f=[6lÚ·mãÞ-»wíß¹�ó�î;¸ñáÇ‹#_®¼9ñç�Í�.,¸ºõëØ³kßÎ½»÷ïàÃþ‹�OuÜt|ƒ
¥_¯¾=ûô‚ ÅŸ/¿>ýûöóÚ���ÿöû¥�à~��h �‡0²_‚ 2r�"
>�!"‹Pha…�^ha#�$È¡‡�$Âaˆ#Š8â‰(¦ØH$�:Âb#.6òˆ‹�Ì�I�“�‹YÅê#
M‡�s”c�…”�:Ì�»×©���Œ$$¹µ�JÚn\íà�»0i®NöN“™Œ×:Dy�D
��ˆ�~(‘�Â™�r�…-ìš‡€Y6]–Í™yÓDàôfÎviJƒšÔš5y¾°KVþ³’
¿ÆO}ò��–¸�œ�:Ð9Å©mmBèA…87MÌ−PS„hÞ&7¿Y´P€�\àºÈÑJ−î£�)äsá°\JãÈR[™ãs/
�8FGSe!Ë¦6e–M[·ºFúÔZµ ªî†Ê;uýîwÃkGRKÉÔ{9¯yÌ“�T¯G�¬ Â•#˜,Óã��Œà
½°…/`á�'0á0�@�œ`ˆùáÏ~p��XàÚ¿BÔU€xÕX�÷ŠÍ¾>0A�]`�+HØ

 Welcome to Eclipse

 idMapping 947

�VE�ä`ŒÚIÂ��Ð„�uÑ$T˜Â�N�†˜}R•®d¥)Y�lûÜ¡hÉ�D��‘ˆ¨¥S�WûDtTnÁÈ©`ŒÑ·m,Õ¨†»ÆUÏ�h|Õ�[j«9¾Ê¹wœi�¥KÇÓ5Ë�Ø�$
£ÅÝŸZë‘ �/$»¥�p�W“Ÿì]'3™ÞQ¾Ë½òjª½Pé�Sºk•O¹G\ð¡ß¯�…B¢,
S˜ÙjSB†Uò¬>�,¶"óó´hrrjU+'NÈÉµèvbº—øZ)ÊVQ‰ºâ�ç−fJ‰Q·½Í÷−�Ëïàö[¹pŒU›ieÇçÒ*�ä
Ö�éÌpëÚÙ�ˆ4ä³ôL−I†wZåÝVÆÑ�Þ� ºã¡|/)þ =/ûÒ��øå/> p€ƒ�¾ð….†à�®Ð Õà wÐ
Ï÷|« �v`�ñ“}öAtð8�Ýg1Óg}v…~�“ayh��¢~ÿ�‡¹†@�Økñ�AõWX÷‡AÇÖAû·�8ö�Î�€ÐVY�Y€Õµ„€{g&8ÈZ�çnñö’�Rþ[\$‚¼…oûæ[79Fl´‚(x\÷“»Xp3ˆp
']>x”t–H�÷ƒÇhqD8^�g^æ’„�×^!'/Ohh�õ À�_ð�>ç��ð� 1×—�Ô7uƒpL_Qun8
u˜—�©—âw��V~#¦‡�Xb»�v/3veÇb�¤vç4clçˆ6�‰:Üö%Yâl"'¤(e 5D§Ø'ª˜ŠxÃŠ�åŠ��‹…#‹fVyg8Ez
wzÇˆŒìÐg}¦ŒFÕŒå¢^´w�Ñx{Óþ¸h×8���i*çr[�sÅç�\€����_ �lÙ�=ð��À�ð�ª��ø`?���¢kºæ~�™ óWXÄ¶���
úç�ýG‘��YÒv¡—…‘0t€T‚mÛÆm�Y�[0é�Y�“!Xo#È[%è[e´)¬B\Ø]@8„â%I�W^•„�ëÂIXº„ç’„Nè^ÑxrSØ•n��•�KàØ���LÀ
µ�=°�;ð�� ����^ tnu—�SLw¹aî±LÒ1��bþ
su^w˜€øu(¶¨�tˆf×˜ˆ˜"�©NŒH™>3¡‘x$šÍvg‰S“‰Cæw›hC7[¦e²Ù¢µ
f„ƒ›†£›´8Ri†f¨Âfº8œ¶Ò‹¿(guÌøzŸôŒÔš�Æ³�Éc�Òƒ�ûÕ_öÀ�®ä�Þ��N@9���À� à'��Ø��`
Ð�Ã�W…ÀjpU?ú*küJ�µVk�d �ùu��X�Ä öç *Ò�É�‘ý×l’%‘Ó6±� C^RCW�P8”%G�¢
‰‰E2�þ£3I£5Y“”ÐE”Ó¥¤:h]‰ä¤Mù”Qz„Û²IZÚ´[j•ð�µ_:…\Y…�Ê�Ë„Uäy¦9P��P�p�� ¶�À�p�
—nµ§l‹1W�¨~*@ÐD¨%S!�b·ˆ�ˆÛ4ˆÝT3~ ©.�ú©˜ø™7ô™4Ô%£
x��ŠPVx¬‰Z¯)›±YQ^æ7��f¸z)ºº›¿Éo¼ê*Á)¬Ä S°‹œÇšSÇš”ÆˆgÌú:Î*�� �¼Ê»¼ÌëJï –àXVMà0‹½
þÓ0Å´¶øúVúz¯Þ{Wüú¯�ä1�‰ ï'��¹ ÂF�
«°)rl+ò���‘�Z¿%�m�J€�ûB�ºY�ª5Ûæ±a�²#)²›5zo¤4¨G7X]C«SLÊpN*„©�¥“4¥æe¥
ç´ëÅ¥"WÃS›Jaú/Õ³ÃäÿLÛý�ãÇ¼åå−Þø=âÜ¡ÏH^Ø#�Ûl!æjnÌú àþU�Ó¸ÝÎi!àW�àð ÝåýÞ
>à�^årmÞˆ.ç =á�Mß‰nè�−åvýÑñ�é„�é�^Îg−Ý��âšNà�í×�îÔ�
ÑÜµîè�íç˜ýé4½â}>ç"ÍÞ�>�»ÝÙØ}Ù^�æQN�ÎÎìÏ�âÒNê‚~Þ¯Îâø]åP>���í7ÎÛ��ë^ýåŒÎ�¬-æ'îìzÎË‹�ãdÞæÂ>ã�ÍàV^åä�äÝ®ãåÛnêü�ë‘NËZU�Æœâü�äÓÍåÉMñ¿>î|ýÔ�oð×ñæÚNÞ®��
�à™íþãw½×«�Û\þìô®ÙêÝ€ýâ1oÝ�_â��Ý>>âp�ôoáÝ ã�þñQ^éßÝê¨îó?nÎ
^ì��ØË�@ÿ�õ—�ßÑ£ö�â�÷�ŸÓ{KíEÅ7(ÁU¬YµnåÚÕëW°aÅ�%[ÖìØ§G©ÒdÛÖí[¸qåÎ¥[×î]¼yõîåÛ×ï_À��×E:u)>sN�âSJ�©ÕÁ‘%O¦ìÔ_á§•5oæÜÙógÐþ¡ï�%=Ôté|¤S¯fÝÚõkØ®éå›]Û6mÜµiÓÃç8iÔÄi}'-š@ôqä€…#í™ÜùsèÑ¥Og‹z¨ÐÓÙSŸÆ®]{lðáYÏÎ]�ÞìÃ†��_Ì¸÷RÈÔåOOK|þ}üùõï‡Û} Ðí¼�Ð´ë¶�ïº�Å
�pç�3ù¨ù–Ïþ{æs–öó�I7_[P‡��)à~�Îï×ÁÇ/kù¼—ÿþƒÛn›|57å?tóÁIh�:�Þ�vª¾)−~þ�9�þ�Ã¸{8P‚�¬ ´�tu¢ú
©*Ä;Teˆ‚ò9�q¬´B�ÆP†l™�zæ½Tµ¥�rÁÞ íÒ«¨øPˆC�Œ�Ôæ6þ}Îƒç
�T|Ã:�–‹ˆŸIK•N4E,fQ/F¼Q�‘rB†)P‡vÙ¡�ÛÒB;�ézHbã�Ý¨F8¶1�o”c�éxÇ9æÑ�zÄã�ýØG@òQ���d
yHC!×9S�‹8RÔ
É`Ø+¥˜Q”£ÄZ�oø�õp�vu)£àˆ¨É¤ÅR–³¤e−myK\æR—»äe/}ùK`�S˜Ãþ$f1�yÌ\:æ‰î‹¥*'£±WRÉN8¤æ4-I•jbóš¨ê[6¹éÍnn3œÚ$ç7Å
Nt�S�å�§9Ù™Îw®Ó�ólg=áIÏ{ÚS�úŒg?ñ¹Ï|�� â�çÑ�¦�g¶ò−
eRÊ–Õ±”-ìv]»]Ekd"õ`²„�ÕhG3úQÇ€´0!%éHMÊQ‘¢´¤*=©GWêÒ–¦�¦,¥éLm*Sœ¾4§1ÕiOyúÓšî4¨>�*PoJÔ£�U¨7�—�ÁØ:1væiˆ«šÈªú±ÄUÕ“ó�%¸�ùU°†U¬c%kYÍzV´¦õ—8Ì¤4ƒ´ÀU±ò�éÒ“�°7Uy}LYÐLþ^^µ†elb�;PÄBv±�¥¬d��YÌNÖ²•Íìe¹ù�ƒ¾�¡p}fñüzÕÃ��ªŠ³Ñö¢’Q'*�©K¥ílm+[Ü�U·IÝmmsË[àú¶··�îo…�\â"×¸É…−ûÚ�ÆâŒQ®€Â�UùšZìjUj�Eaz¼zIµ†W¼ã%oyÍ{^ôú’-Ï−Ú{TÈ�'�
¢��/¼f4Uåá¨«Ø)*7ûßÎrV³��ð€ ìY� 8Á�^0��|`�Gx³ýmŸk©GÚŠÕ¥‡r‰/�ÇÕÜXZñ¸#fn‰—{ââ¦X¹*'fÞ
Ãð¥š�−lÀp~7½CRº¥>ï›æKcKc,ÃxÆZ®ñ–müe/‡¹ËcÎ2˜ÉÌåšÎÉ†91ãùÌwFsŸùüçñ�oÜã�çï�?¼hÏÐ¬“
�ã”¢o÷¸ûå¥Ò·³×7XMW³TÊÜ(»�Ès5S�èU^�Ð—½é’ï�DA�¬¾�<è#¿�Ä>}{-%¬4*ó¨µóÂ�»¹LüÁ
14Ø¢B�üDBWL:M´¹U”EO�Ån*Å†ãD[lÅ©K
tH´·b´¹ +‹É0ÖÂÃ¬Z�d‰¯Ú¹/���hd-Î°��äÁzƒD�\Dn¼AlüF�â>©èÆåÛA�¼Æ�+C{ºDU¬Ä�B8^\?Åó·x¬Â‰«Ç1¤8|TC}¬EyÔ¸}þ|Ç]ôG{ìGw´³�Áð�=\Fì�–ìš�§é1â‹ŒíñÃB|ÁmLÁD„·@lDCÌF�üÃ”lIm,ÉÁSR¼B°{'u|»\äI DEMìÉ�,Ê¡ÌD
ÔÉ DJ¦$J»3Ê¦ŒÊ¤”Å¥Ô�ƒòÂrk´½£ÃÄÉC‹ÜCŠéCG–Œ>ðû>��Gì3ºLA…+,\�±JƒÀÏbÇT�L[š·Ÿ;L!£I:[L¶›%ÄdLZŠÌÇ|
T>=©:]BÑL%ÒÀ%œ²¶Ç
™ƒA‚Í−;¾O�´·‚Å²B†[õ(ÖP�á��Í½Ù[EM9–³¨bq(9Ì�‰�“5vT�ÔËÀ{KºlA.~fñzÞô”A�d>ð›>ï³f”üÆenæè
5Rn7¼ì¾e�ÇÃëæ�¤>lFâ «¢XÚâÍ4²ÑBhìÌßõ¡æ¼ìA»\É¼³\öX0vÔ�Ò»|�VHSèÜœè¼�Dû…fµ�+Ç
e³öh»�D öi?DO~Ûd�lD˜.GÔgŒÎk[�éyS6‚�`‘©,ýU¯‚d·Ø°scœúeÄ�ìé³>g¼¥é›®iìö2öibL“ëèÞk�>Éå�èºäKÑõ7u�î¸þf�îkVÎâ;�iª�V�Œb¸
n~´Ø%,äMÄ9½5á»›l¿Øç…¤VÜCW„]k�ß¥¶fãV¤2ÞŒX�tXK%k{ÝBß$QN,åR�l*³åLMÌE¼MïîLÅ,áÜ}�Gþêï�_•®l1:Y��¿�ÍÇc
íÏ†c’–ãúíÏ��Ø×{O�M»ç–êG-P�_Wè�þ®¨f�xvÀfmIÓnKÝMBÆäï;ÞeC^à¾ ˜WÚm1¢#¯uÛ¶}Ú¤−sµ
[4�[¶Mó6gs7�s8Ÿó5/Û"1�¯µs3ÇÚ´}óär��ö"�óù{r„,EÁ#¿û>ëœdÈéYdV59¯†ŸÑuñ·ð—yÙšôMÝ
–lb�wõ�?ª0v5½VÓKÈÛýMß°ôÂFé’N9bÎ�°þÜÃÍÑdp�w}×�8“%Â�R‚Ü�ü–j3=Ñ�−d�ý½�æõ† R�š+�†x�›»ð'®�ƒ×º5,Si·ÞÐÜuk—ª8\-_o–}6]ÝiÆŒ¯Ÿá»�+MŠ'OÌËåXü”ð�…õèÍÞÃXñ.¾öNÏö–¯È
>›‹çHJ~ùš?�©'^ç™]_AJP dŒ�úÏ‹òÌCxF�� M¡|�”
,ËY©ú’‘¦'Ë¨Ÿz�aû¦¿÷î²�‚ŒpÝÜúÅÌ]œ¬Ô-¦Ð”÷P1nx»`nd›²Â×.{§{¹/>zGß�¹•yÿ�
«åA¯£>?tAïüþ3·�“~BÈ®ã³Çxw.|¼jüÇŸ�²‘Ã�¶wÔºú»GŠU�uð*'£_ü¸âJÖ…4Ò�Cwá»Õ‡�ë¢yµï+ùÁz Wâd¯¡`ÜòÒß÷§Ÿ/±�þáw�âWœK>−Ëï®K7rpó¦{�ÿ�O Ðíe°æýš�yí·/¿»þäÈþ‹¤xÇß�Â¿Q-®á Rª±/(•��|ø�%øgð
Â„ ºlèð!Äˆ�'R¬��ß?|öî $ˆ�@B�
��4XÒ"Ê”*W²léòåÇ�%GÒ�@Ó$I“6EÂìéS%F|���µ'TãQ¢J—2mZ4éÒ¡P™J•JU Q©�¯šË˜�kþR£���²Xö'Ú´j�âó·tìÚ¸rçÒ-k÷.Þ•AÁVmš•/`¤CÿjÔz”°ÑÀˆŸ��ÚØ°Ô®A-n�XÐîI”'7ãÌ›w2Q¸�G“.mú4êµA+
ÆèïàkØ�c�¤ýÏ¶mÙ ió^˜û÷¿�`£ò=ç5pèË
ÏRdÞ0³EÎ9�BOÍr/RÑÖ·sïîý{\ÐM¿:−oþ�ãT«õùã†L�¶Ô J��(¡I�'�Q�"YfC!B4È?e•E©sUæ�Ý–jJ÷e~`¾(�ÿÅô���q–*–Õ�:'¬!±ÄªZ´ºI§E:‚E�,±øP¸c Y�§ã_3Ö*k–ÐvyªŠÓ�Š¢-¦ù§��ÙJ‹å-àV�+¹Ô¦ä-Oè>‡kE¥VE�“H.

 Welcome to Eclipse

 idMapping 948

Õ †Ô;ˆ¡�é‹” Â":ïPì�‡UdÇýþè¬¤�%l®˜`N�m«�‹ºi‰5òiª¸2qÉS§,¶ø-ŠhŠí³UD·g¡á†ç+õ¯„g'œÒ„Þ³,à‡�L5B
GŠãÝ�•Êmš19ü%Ûœ��§•#’�*Ü���¦Õ¬wÚytÐvŒ_ê³‡Š’Î�Á‹á¡ÍVÞ‘½–�dt“þ.Ý+S�?ŠlÔëþaÞ:DhÒÆÈmrœ¢ßm>L¶µ¡?œ:õü½þêµy×e7÷§š-wÆ�¹«”àŒò[”|õÚ{¡Ñ�]Z©A�”(Ã
ç/Çê™Ó�e0�aL!š#Kù¾s1ÐIk{ïû�~Ê�¿¹Qkb_‹`jÎ·»ôA 3�»àÞJèAïýíOFáÕ°%�¡ ä+˜�
�—W�ùôÌyø“�å¦R�g�°\ØûÈØØ¤²‘�Hu^»�ÍØu;ð�±;¯ƒÝ�»f"ÚEç‰JŒbÍ²¦BÞU®IC�\„�H�ÅuÄ†dãý�e¡ÁMí0�:Š£�…0³Tq;my
�«×ÇA�’4\”�¯–Â3û)¤õ��Èòa° �¥~�²�6ÚËåVrHO’²”"šËü��C#õëxÅ �!bù�¢á _û²e¡â�(�−
C�zÔ�+ò@Sªæ�…›ñ“©L¸-F+g�XÏ�c•„�Eh_ÉH�¾"¸�%°AÎ³_Ázg,dÖŠmÏŠà�/£�u²³�î|'ó�ÏmN¥Œ~qÐg¬*Ò�’”£#5iI7ªR�¢´¥+=éKSÊÒ˜ºt¦‰AÐ�_ÈÃŸ9å¦
9(Où•I�M¨ia‰þÒä6¹¡N¦k¢uêãçÔ)”7� +ÀÇU�U(�Qõ�YÕ*T¾Êš±�´›dý¡YËŠ¬µ�5-he«ZÛ
×·Êµ®q�k\óúÃ¯�©¯Dúë£ü�XÀn�°Û4#�~”ÆÆµ�©O)h.…%�^2–0¿,ÔC'2ÌOÝÌcIt�‹®È½j”�{G}Ò¶¶¶¥-|PËHóÀV¶Ï��p�+\„�÷�Ä�Ôð�y¤Èº”µt5”cÍóMè.%z‰b*E§(±1^p|tƒ_i�)U¯6nPY…Pt§:¤×�« n}ï\ákWºêU¾õ�/~çk_ú>6yçunþGÅzTç*oµ:
*óÚ«à#X§«5æÓbHÐh"��É‹��·rÀ� %ˆ-�"9‡éÀYF’ÄâŠ]û²¤;÷IL»×»¨TU
˜�¨÷µ4�ˆM.tãÄˆ•½_Íê–Tkãªî·Èù½¯~�Ì_#'¹Éwª�£�e(�åÆÿí)P
ø¯−k¹Ëòâò—ÿÈ/Âø£xú3³@ï•f�¢Y�jVs›Ñ,ç7Ç¹xM[Þ¯¬Û6²“-ìd �` LåÔ6'LAV�vÜÍÛ
É·BRÁ8€�^ï¯|¬ãoSõ´Qyô¤Å-ÞnÒ´Ý6…é»e ïyË»¤�¦4�ƒ
äqc•Æÿ�µJ…ÚØ�'Ê…Œ]�Á�G(C�÷¶�ÿ“Ò‚ˆaì>Õ‰¡*™Í2�m$‚1¼ÃÁèº¥‚Z{¨[Ñ°�õP®œn“3úÒMadN
:a™ÇÜ·5��Îgnsšó|ç>ÏùÍ[þèXï�Öæ�ðËsÍi 7¸ÂN?0Ô Ü�òD�¥V§·»í˜oÚcþÍV-
pyƒ�ŠÝ�˜wdí}‡u×ûßù�x¿7îî…_îÊ‹îv´3�§�9n°œ�s9‚™ò^¶|˜yz�$Ÿ-CèXEÕÛ^ 2G¬
å�çû´´Oyã¦,å’ÿ{¨ýMÐÁ��üI"�ø;mÌð‘_|å��çÍ¿�î+íhÚ�}úo/¸ò?Œi\ÓZéµþ¾÷ÃÿÖ�í]¸ƒ#õl�˜t§d�éIyR*!�Ái�½.eoeyt[ðý;�ÿ(ÿ½Ô…�.�ÍÁ
��� Á−�qX�ã(é¹—��ÎÖí”q•W
ØðõšÂm r
Âa_Â�…¡]˜YÑ]éþ½�G��LéÚs���¥^ýI����P¹‡ÊÅ���PRH�ò��|E`ð�Mz
U¼DVÔ9���àï%¡�ÆV�ò��éàb1Ÿä°�…!Ö†\¡Z��:ÖV|…ýäFm8�p(DoŒ¡nì†�¦!�þ��¬Ö‘ÀŸ?1�´ATCd™PÒ‘œÞ|ÀàK¬ÛÙ
Xõ5ˆ¤�T‘œß£è!ˆe�KØ
º¬^BÖÎO°$ë%Rò@�ÐMbp�¢(’bBÑ�QÈ¡¬…Òü5Ç�ÊXô…�¤å–RôV(*!dè!�R[�TÄJ:•ø´äZÜ
LÂJüÝÃð`¡�f"X�Ë‚-‘Qñ�+*Õ�Ñ…¹A�íõ›Ùí`�úŠäÅQ
�dw�$ªÌþŠTâMü ¤U6•(ý¥®Ü”!.Ô!¨Ù�Ö%æ−¦b&��¶]¿I™[vfV‘\�½^¾�—I�å
ÕMgÉM�iOg…�Ö¸�ËhÉÕ¼æ_¶�ÎÈfËh� Õ�ŸôÅ)6Ø„ „−5 �*" ��Q�ÏP¸ j†�¿¸Ö¢}ä_¨\«±%Ë%¥£-å−>å¦Ì
¡ÏÖl×µ}�êŒP Ý¦^Æ y�ú ¤��Y?J�â(�q ""v l #jÒoâbPj�‰Y
‰µ�{ÅÞt�åRŒ�fnçÚé[iÒ^5–Æ�m�ÆeÛéà�µ©ØêœÉ�…Œ�õ¥zþÞ‡y¢�ø¬XKÆŸŠ.O}ÚÐþ�O−��P�B½t�,��−…erTa`ø$ãÄ¢^¬›ƒ��g�åZ²šÑ%)’�‰S>�¬ �íXh�mè÷ŒKŠY)‹�èz‚Wø”gŠUJÑè‹AÔ’�õÏ,e�ê]àS\ÖTdVK(è’*ÞSôXƒ�éŸ6�Ü
ÄiÊŸ”–è¡¢§yz×�u©weeý‰�¢ziBþç�€!»ùLD©é=Ä’þà�−áP
éKÿœ™$EÓÒ8�¥ìmgHBhi^H“�j£–Œ•bœk’ÎÍ�«�¹��}�–ÞJþîÈŒìt¨UÆgRð“\†�y„jæd�ÑüO��K�~ÈUìç�•bs�Œ�éãF¦Ú�•ÇºÎ–.é�–−Å„’�^.«½ÞëO¨è�¶ÕpZ«·Ú¨$…ª$�*›�l�
à1E¡R´ªdªÅBJV®I�åùaQÜ` bDA.’¯â+ÇvlÎ`*c4dz�Í
á(F�lF�ìþ¸�,õÏóedj9�>b�ºº„{É�E�¡�f�£HÅ¼�†;n¬Ç�−Ñ²Å)Ê�
Ó�LY�©Rø¨ô8-*v®ç~® ì�è�.é–®é–Gâ�-¥òØicÀ…]Rc7ö.4òîïú¢ðú.ð�ïð�/ñ�¯ñõR¯ôV/ö^¯övï,¥®ÇNíZ�)+�Üã¶mè…k>"Š¦I\®én*�®üÎ/ýÖ¯ýÞ¯ü�iÇÆ��ÅoÏÔ�…=�ÝaYöY��&�™«C)GPˆ€�?0�G0�‡€�£@
X0�—@ ¤ p°�þ»€ ¸ °À �0 »À ¤°�¼À �Á �A��A�À0� ���Á
����Á����øp��A�(Á��±�,��#1�$ñ�D��D��8±�K��LA�_ñ�X±�PÁ�wñ�XÁ�„1�‡q�\A�g�� ±��A�„��¸q�ŒÁ�˜Á�Ä1�ß1�˜Á�èñ�ôq�˜Á�§A�œ�
�r�¬Á!·A�´ÁÐr�°A�¸Á#¿��¸A�Xò%ÏA�Ì��p²'ËA�tr�Œò(ã�)×�)ë��èA�ìA�è��ì��Ìr�ðA�Üò−‡B�„Â�„‚�ˆÂ/ÿ2)„�)�³1›Bþ)�B)
3*”B*œB3?³4Ÿ‚*¤B*ÌÂ5_³*ÈÂ6�Ã,�Ã7‡s1�ƒ1�C1 C9��¬s3
C;¿³28Ã38CCƒ5@�Lƒ5HC@[�@�ô5�ôAkÃ5pÃ5h�pÃCo�H´DwƒEƒC7`´Fg4GoôF�ÓâÞ!ùQ×,ÍYœ¹�›Ñ�œ¡´I«ôÛºtœ�•ùa¤“�PF8p�xA�8ANïtOó´N;�
ˆÀ��u ”À xp�/µ °@ 8µ ´@T«0 Wu Ç°
Û0�ï°�pµ��ñ��ñ�ù�+q�Gñ�§5�C1�Wq�LA�PþA\{1��q�‡q�›q�ïu�÷u�ÿµ�Ïq�à±��v ëq��r� �!
2"+²#C²dGrWrgò2i¿²i×2−ß²−÷��ø²k·ö(�³(³1's1's)4³n;ó)¤‚3[³,¤Bps³,��qß8'÷8 C1�C:;÷1
Ã10ƒ;�Ã;»s=Ë³v?C>S�wû3?ó³@�·5\Cy#4Bg�84D·÷6dC7pƒEÏ·E��8Ü7~ç·~ëw§±QîQÍì�2ðM‹@�œ€„#����Á
À€ þd@�Ô@�ˆÀP½ ¤Àˆ[pR/u ¸@Š§x�¿ Gõ‹§ð Ï¸ ×°�oµ��A��µ��A�
±X�±Y/Á�G��¤5��»þ>ãs4äó±G�D�A�´A'tCCû{kÃD»·|�Ã6|CFƒCáv»A
À}7,€/ÐºÎ‘èâ/û‰^ÖŠÓ”Ø4>8°�˜À ��8�½;Á…Ã@�D@�x� ˆ@ �µ‰—Š£¸�›°T'< Sµ Ë°� �
ßø�ïð�wuX��'��“u�/qZKñÇS1�?ù�Ë5\W¹�‹ñ]Ÿq—ëu_‡�_g�`Ëñ`Ï1œ¿ya»ùa/vc¯�Ô2�@6Ÿ?2eK²ÑW² or'kv'7½g—²¢¯rìºi“6�Àr−g=�´ö.·¶×�s(dº1�=n+33ó¶oO³5
·p«þ:rËB1À½8�3t?73DwuÃs34Ãv÷}>?�èó@“÷5ü3z�þB?´â»·EË7}k;8Ä¯ôÜw��{€Ë‹�ÎãÕiþIMlyä-w60„“À�|A/Ø‚/À‚�8��Ü
H@�|8�ƒø�“8‰k°R�p�³@ŒÃ¸Œ·0�Ï°
ÏðVç°Að°�û¸�/¿��DÇ/�A(y“3ùÈcq�gñ\£ü�_ù•›1�d�ø›1˜wy�³ñA¨ù�Ëqúã¼›ïñÎš
�ò��r�;r#÷ù��ÄŸ[2ÿ�ºÒ�Ä�9uäüûG°��9 ñ4tˆG��=y�¤D‘2IÊ�ÊR¦V–Bu*Õ©—1cª:¥*•*Y:UÍêÙ“Ø¬b³Œ
%ZÌØ±¤Æ�1E†¬ÊgP¥*söÌÙ²«Î q…�−Ú×hÔÆN³ÅV·®·n{Á�û‡ï�>|ö
J Ï`dÉ“)W¶|�sfÍ›9wÖlïoáÁ���.MX´iÃ¤U·¶Ç�µkØ³OÓ.}:µaÑ¯ÏýýËzpaÇ‘ñý�!â‰��ºþõSã�:� �.Z°xA�ü
ƒ/„¼ Â�ý�!Cˆ ™\ÄH‘#E Ñ˜Ä þ%ŠPb �—8p ƒ €â@) Z�Š(�BŠ((œBŠ)*¬ðð +B¼‚Ä�³È‚Š,´P1 0°�#‹0Ä�#

 Welcome to Eclipse

 idMapping 949

ƒÆ�c 3jŒÌ 2Ì8ãG3Ò0HÈ3ÊH�É4ÐH�É5ÚH£ 'ÙhcÊ)ÝhÃ
ƒ°ŒÃ�9SÍ‰Ôìã¢8áÄÈ�Pê¼3¤PH"EO“J9éO—��©”T M%�Y�MT'bv’ÅÑbd�ª˜J…)F©c0Mê)f�‰
T¨¬ÂŠÔ«¾¢æ+hPµ�š³\Eë�¶Þšõšl°Ñæ®\¹¹«�nöúu¯oÀéÚh¥�–Zj‹»−µ×°�î0l½ýÖ[Ö€�—Üo»�
¶lI3Ç7Ü€�Î k�k¢‰/vñ�£Ô€Ã‹/¸è¡��š8Î �J@!�„ îî»†SpááñÎSï��gÀ� :B‰$R^ùÀ�!ŒB ��´�æ �ü'Ã
§˜¢C+¦ø�h�Á�‘Ä¡WÌâ �ÁPÚ 1n�Ãi"sÌ±Œ�Í0èŒ¬ÏH£È$×Hãë4Ø€�l(¥¤² ƒÜxcmµãx;�9â–C
ƒÊ4óÌ‡"j“¢¾÷àão�4ú(ÏQJÒ³¤’üd‰ñ•d‚ ršrz”'Ÿf þŠR¢4/f˜¥”j
�f�’Šôf’iF«®TÿŠ«°À�‹¬´\5kV·Üjë�º®Áë.ººùf›o�óK4eïQvÙ�úº'±j���úè5»öÜÒÒ%-zÝ�;—ûÝ¼×�üà°÷�ûëW+—ÝkÇ
�Þv�óB�'~±# 8àPã‹/ºxB‡��`A��9�wJ`��üã;’aA \ ��J†=’‘O�êÓ±�…l2þ!™dRad(”3ƒdˆC�î$i
�)Z‚ŠBÁä�’[�å 5);f®R›ÊTRÌ”2xÂÓH��(÷�Ê%p4�¢æÈ¨:6ê�B±”�õØ)@†ª�£"¤©T•ªUµ − f‹¬
i+°êj�Ùè�°~¥Éb�¦“È" ³º��æÁ�Ä!vÞµìZâ�sË|Ý+�.k©âðeoÅÛ�,`zCb»�Æ°ø˜W+ZQ
WÜ�ÇÎdÅ*îà�;8��–5˜Â ’‚îÀú�µ=�n�)éIÁ+Þ¼¹4xÍô?ö0SÁe„p"ioâåSÇ�U¨ˆâ
å,‡¹¤n®sNeŠè�2•©˜�u\ÑuªZ'�¬Ê�−´ƒ îp§»°âåwÁ��añ�2’³ÚÕÜ)iÉ grX¡i6² ƒÀ��ä;�–�
šœ�ïLF„dB�AÖ�A $BÞPB(¤ãð)Cn«Cz�D ¯D\è XdE–Æ†lèip�G�kj¬�H€¤j¸fk¶FIn®l�D�«�m®Ä
.Q»æ Kææ¤æ@LðþÆL®�"Ö„�Ù$�¾HN.¢� ®NØ‹OÜËOØÈ�fQ¾�¥¾�ÅQðKRÀ®�.%Sú+tþ‹*�,í�Œí�l‘`…ÁhÅÁ“(ÌÂ�ï\ M”H��áJ}�ÏÄº−¯\0�Í'ÛêÊ\ÄQ–$�5,ÏÄ0Ï
���a˜�œà�j`�À ��F�–Œš�ÆÉÀã; † %ÆÊQ�eÜ) !ä@��fÞpfÐ Íèpg~ªD\ähTD
þ�ûf¤¡œ¦¡Ìà�«ÆG�ñ‡�±Ð¶ækvR£¢�l:Š�CêÑÞàçàþ�¢L�B��boü†"‡">íþr ��g§ØÈÔL!¨"Gë�p'ZÍ(–
Ö,��Ó-H,{Îq�)Ïñj�ÅdiÜÂ1—�¯2�ã�ÑÑÃ�O˜š �ª€ à� `�.`�V€ ³ƒß�� Ãƒ�Ì£ �ˆ�0¦�Úc �N�¼ð‚ŠS@ò� Í0
Ð� �Ä@Öðeà��K(gè0…ð�hJ„h’†;Å`úb�ûÀS�
±¡`.G|�=ƒÄ$ÑþIÎÆ�±�K.±(£¨�½k)CQ‹´h�MQ�–.�áÄéÊˆŒÎhÿÞK+�…î�@åì�©�¶bíR%�ÙÂ‘âNîœ1Âì.�ƒeX�ÀE_�FcTyÖ
2�ÓFI 4†ÓL�òcÈp?�s@–SeXë9�dAÚ°B¤S�i
CªÀ�9ÄCòpDö�DRNiÄ�ûÈ³�ÍS���h�q?=q!Ð¤?EQ@Kñ�å�#T‘�YµOª.�á‹Pækëþæ�¿tqRô«�ù+Sü
ÀD¥�ŸáT
¬UÚNÁb%îš‘î�ñî¤qZ��l¿öY¥�ð¬ÕlGì/�ÓXÎ�Z�€ï�o�Õ1{rÌH!Ïnï�oûê�ó–oûÖo)So?Ð�ÿ–p�·p��q�·��—4×°�wÃ�ƒm'×3rôG1Lï�Ws!Ï1ø®2Ë§3×�Ç@“ÙÈíÅ"S��o2O·HÇ�°¶G�©1vU—¯Z—vm×Û`°uipòR×w‹´{.WvÅñvY×xolv�÷t•�y{�wŸWp[
[®‘r«×2°•�� 4 �y¹·x»÷x�åmÍ�I}i•"—8.Œ\mƒò6SþÜÄ−5ê Æ6sò4Ó}�o�÷V¯bÉyo�w�×2=ð}ï×–X�ÅÚ—€
x€�ØHç×Äv7� ��#¸€#s��Xte�z-—ƒÓ·�›Mï(ø–�˜„GØ„‡´sïê1Ïµ°H7Ûâ—•��€ 7xý*]f0¯|T�
�–~É€/3‡gØ~…W…gøo�³��º �‰�OÛ�×�k—Hù�ˆ¿−56¸ƒ9Ø�YL{yxs770RøGçê�:ótslˆ_PGÁ
3Á÷ÄÊñÚ¼�°Î—¯DxÜø÷u!Ó�‰��wcˆmøxU7ÅÖØví÷{ÃmŠQ—��™y�¸�W×‡S�Å†W7°8‹«þw�¿-‹�Y[³�Y4Ì‡ÇÕ{�ùŠÝ6‘«‡…YŒn�8Æ´
‰íØ�û�ý×Š_l–Ûø�å��÷·Ä¸��É·–oì‚a�òx4�ƒt˜ùw2¹mŒOø‚_Øˆ…´‡§Ù2÷V�Eð’/Ù1�t“åŠ0Ù¬Ic¤ßÛ½ÓÚ¬Ù� ué¤'Ï’´�]X¸e»»��©³ú‰³;xù¸\�ù²?X�ë�n¯›Á�y¯¤÷©qY¿ûYHcy�¹×ˆïÁ�-��
�¸�ô•g7– ��¿Q´ËûF©çð e”RN
å†c�É^VG:ô�‘1¶Hac|=ô—=§�HYšý…FZ…�‰‰�šhþ%¡œ ™Ù¦E–Õ™�o�"
'_¦é�£z)ú¹¥U6^)�Œ���Û—þ%ÒÆU|kÁÈ"¢¿Á˜�—C� j¨¢*GW£? ˆjªª®Êj«®¾Ú ¦−��Ÿˆø 5WU4�Æ!ƒz¡‚Å
K§°Åöµà�þ9Ëß†Ð�»§²þqÆl³Ä>û'�’ªø"p›Nºe¥Äuš‘¡Çiõ�£–î�é‘«5º‘©8™„Ó�£îËï¾í}{eÀ��LpÁ�ƒK.DY¾ˆO—Yµ;f€��–ìÄ���™cq�x—‡{å‡`œ}2X- �·9ZC�]
aË—…È±…••L2i�Á4b¢[½«�§=¥�Ó‰ŒB\èºø"J®‹0™jÖÑ+Þkâ-ŸöKuÕBz9ã¢æ®¨uþ×8rýu¹‡ºHë¿>9Übq�îvé¥c¹½ÛÚ;þ
�ÃsÇM7¼°á}.Ïi� t¼−ŠK·½�Wþ(J1‰rÌ�$s™Ælbs›Òìþæ5�²ÆÈ9*R_dWï 8©rþ±lZª�Ú�ˆ�–
“vèùšºr6E]>¯~PS�W6„§kYo%�Ð01–þÉ�C�ª(^®d¡�S]/�HÈÍQ�†¯‰#�OŠÒ”ª4¥�\��á–P˜v/¦#ËÂ¾�»¿‰DZ�%ÝeÔ˜8ƒe-tÁìŸ%9â’d‘…‰D\−�Oox½�ATraõ%¡�‡Â#�%�å£])‹ŠÖ·ÆÕ-t½�\KùGñ}«¥�õ .wØS¸°“a‹Dg€ni˜™UfB§�Lc5tÊšH,”›
Lþ#!{³Ñ\vf�²YÌ"K±ÄÆ,¢�ƒYˆNëØ‰yVe�AmÆ
S�ÕÒrP�ý,d÷ãXÆÞ'V‹ÕÌcÓãÛÝz�A°å¬öÌªQ?Bl“�ü–IQ§×è�kºàóhu¥{]êrp\c|å�ó
ÞA†W�k©ÑMó·¾�àKZƒJÓiÞ�±Ÿ‘RY}Rªšê{Ð3î±#SY�ÄT[;Ñd42k−œÚkP
UH’ðõ,fÎôÕ3åI1¦ApUGHÖ«V�6§ƒšI çS»…xÄ��«ûè�R�Š8® ‰àò¸jØ�ŸsÆjŒ�E�ûº öï*ÆzÖÅ
ô`b¡Ê�±òïŸ8«UO¾éXBF,“þ—�,ÞJ¨© �mÈ®�“Î.ÙÇ�«0�
Tå0AÙ‘]þ1Ëf»−$k«½ÜZ–O™‡F,J–ˆ¿Ëœz�[aNð(�|àŸŠlÂ*�µ›ð‹Ð�‡�˜b´b¹
DÄ9m¼v�¯³ÉÛlhCRÚ»{¶ŠMøæBò�‰ò²�†1lìCÂÇ§°�ihhÙæ6Ó·ÉÅ:š·Œ�²h
x[ü�-’Ó}ätÏ×ÓðÎw½y5−k��MXþ¯›îþ=p}Oùß G�À7ýð�ò�xÍ5ª�Ç˜6“
�ÐÀï«à™�ò0�’ðìkþüþØ�š«ä�!¾x‹EN/ë�−‚Ló›�)™5ö�nö%²¾9ÿ.ÎG~?vÚï�cÀ
ÌW¢�þï�©·y„ÿ"_þôÚ–s»æ�HÉæ]æ7=�h€„t€ÈWmÔÆqÓ†bLC�yæ=5v%ne|¾7qbäCÀ¥{ë�Un„mz·U0G>e�Hå„q©‡�(Ø6at{sV{
ä]�ÅBÄ·�
$xmÔz'¤\vÖ7‹�|•Ä|À¤yoæ#»g„ÑÖvÈer%'rNxr��…È¶l–§gÉ�]³Ç;B8b—3XÀ±H*dUûÚ�úÚ¯yµ7Íˆ\DÉr‚XB'¹G�Öxáis\�”Y:X'œ:7þ™‡ZZö9œ·‰v�k\ëº,ïù6Yzbu%Ë±�ë¥r�£ÇÉ`¿Iv^72V'¨T×2ªá�h±„lT°…�K{E´÷”´8É´+”OÔ‰¡nW–¼
€›�ˆ'¨§—BŠ}¹‡x“�“ty7—V+ÅR‘×µ’çµ�åµeŠ�x‡BTÉ¶ËW8D�9~ê[]YC’5˜¸»š}Ó™h¥Ë’+™�Zƒl½—·ú�«�XµI�B0�c£¨ckèW.'‡w[D�øF�ƒ¢�‹q‹»�ºH·�*‰óÛS',xXÔOø»‰q¹�RÇkÁ�¸¿ÜÆÄ�û¼OÜ@W[�…7;
¬º¨˜¾Qln6‘µ±‘S\;x�ùv"È�+˜aþr•]s˜@�*—õ�ÁX5Hÿø~�
º0˜‰ä—8Ó«OH�¿@LhˆÈ)ð‹½Ve¢ŠHµ�ŠÄÁÇÌÛÄ^�ÒE(Ý�*Á -�ÀjÔ�ŒÝ@±µ¦ „CVQ¬�?—eYQ
èò¼ëÉkö½�èñ�ôÈcP�•�°ä"[z$¬hà‡ØòðíŒ‹=ï.¾ö~ØÇKÄ‚®\ñ…tÀ»íÇnÎvû��#�ßø�ÀÛ®O%xËÿ|Õ��Ä>}�þ,‚¢Ê�•²×JféÞœ×¨J−=“��n¦Ì…¿ÔVˆâß8Ü�

 Welcome to Eclipse

 idMapping 950

Äñ�p8mâ�(#�dÌßÏÐ�ü}Ý�çÃçÇ �#�Þ�_ìjE:þª+"��¾{��Ú#8P
>{���,ˆÐ¡A†��R4èð"F†�%�¤ø�ãÇ…�'�´'ðÞÂ�‹6−îép�J=´R”¨Œ½æÚ‚7˜ÛQÐ�beY·~YJê!/¦³Ó^]öD;æzê;^tX=Ë™?ÇýEeƒ³ÙéÎD�=�MJ)›
Æ4{£ôáñ«�qÞzÛúZ¨¾ö¶—‰-T �6©Ê4—åá”�þyÈUø�T†À´Ô�«{×$�”Äîá)z5�O†.–
¶Ôè¥þŠb,êö½günbÉºà:E³‡Ç���NlÜ¢6W¯Ë|�CUˆ�Af‰�¬�æ@V`�Î÷ZOv\è„6��ÎÊUí¤�S§ÉC©���
v�lÿaæ�;O0Ìe.ÖZ«=�¶�^¥Ò�t¿9Ü°ˆ4ól!cO�AÕØjÎ �×õÁ‹ú…«Ëöª[ÿþ�jOƒ—°²Ä �\“™î¥îa„é×
‡Ëu–�"¹¯ºWéñÙO�M2nw,XÃ†û×ì�ëGïøM¦0[›/{råF'ðûâT¾ïtõâ�>¤‚/�zsSíF�šE¡HU,h�jm‡=£›]Kªh#)\tÆzãÃÄ�="+¨�c9ý£I}¡Ê¼ÔË½äË¾ôË©ÜBË“
�üËÂ4L�#!0ƒ�¦dÌF©+%ã�þUì°hË4cL¾�\Ä¾ 2“�?�+,yƒJÃœ��ÍÒ4ÍÓDÍ „ÅÐLÍÖ¼
Ò$Íkd¾ÜÑ½²4¤ÛÄÍðš+¨8ËÙ¹3‹qºí{Æ¶rCój¹¦É-ÊÌ¾—ÄKÔŒM×„Îè”Î~™Më"Ìé¤ÊØ|N�ÙÎÑœ—åI��RÀDB�t*Ïíš¿
�,—˜ÉŠ£L»LÆ6„?×J·XL4�<��*Wá�U©:%���â,éˆW“¨¬Ñ(¼UdÍU[mÐEeÖ(ER^5Øƒµ�*E¥��ÓeUÔdýWc�X�UÖŠõWÕþ¥Ló)z»R0í#�Ã=ŸbQ;¡àÃ½ÆÄ
V�FbÓ
Þ^¢à$�É¶ƒÂÿˆ¸o$GL!¶àcˆ�[3���ñ�ÆvéÜÝá;rk¿^�=šÑ.x�À„â§ š‹Åù�Æhb'¦ãßåÝõšã:¾F−D¤‚8¢´è½Uœ:h…;÷Ú¼ý�!º"Kæ½Kçý@6F/�ì¢Qš�à¤Kë3§«r“ÔÒãNÖ`÷…�Þfvæg†æh–f®™¸í�e;�Î»-`��PU¶�‹þIeÀ�.ød§á~�cg”KÓÃ¢ô#Áe¼±hƒ�è„fè…vh„~h…†è‰–èŠnhŠ¾h‹�èŒnèOÝä3kÎìÌfò−_z±ÑSÞBoî›.D»âj£+.d�[³–æÐýs¬y¼"�Íê�Dx�C�›±ÕŒD¶òiQš>À›æ¤Vê¥fê¦Þ�e–çÁe\%½ÕfMMªÆUÛMÜEmÖ)Ué¯NéÛ³¹6��„³8{:6yT¿¡Í
��Œ@îP…Õ@É|JE6DœæI3>½ ½k�= ¤ÔÀ¶Úü%ìý5lÁÖ_þÄ.lÅ>ìÁnìmÊÇ�6i£¥U¤…Î§U\ÊfT¯^e”�gÉµÊ
�(´c;´F6JîQ�ì¶šB9ŠèÍ"ZÃÊ+ÆÕ|©ñ"Æ�«Ga~¢´ú9�ÆÐß^aà¶\ß�îâ�ná¾Üã6îäfnâ¶�Q^Ú�åÙÓ,\ˆÕÛ¦�V×ëpVéœ€�0
å)ÌšY.3¹SafV¬õ;µr|�½ã
°µä…:E�£íØûç¢^°µÚM�vêþöïÿ�pÜL'èÖlìÆ`¾\Zb−ðˆõì�/¾VÞë3ôn���GVÅ�WæC$§3¾¨{(9¸2Wçš¶�jÆ’bAŒº.ZœÅÇD±�Sî�onäm��Ø‡�î$-]ˆMpÌnÔívðN¾“hÏðu^9Tñ|AÁ$4èSSfâaE¤ñ�/s�Gó3Ws�_ó�Oóñb�É�Í©�TÂ½jªþq'•SDEÒ$ïnà²¡¼"g8™ÖÖ[·Ì�@››��fEI.Õ¶‰±ãÄ�ù{Ëƒ£Â‚s¤ÖtD»¶N�põT?uO�p9çfOÆ—Î�ç$÷î5‚1�}dI4±�Xf�RSøèÒÉtäï[?Ö�NëÙ%GïIZ¢áä,®9LöÇ^lÇfìk·ölOlmþ¯öm÷ö�õÜÁ•õY¯õr?I�@Ë�ÚÍA�´u/ÅËœ
^�é+�Åxš)L�ôµÊ÷øÌm7Í¶[ÒLL�—·Ö¼‚'øƒ:„ÿ>…�ø„wø…�ø†‡ø‰—øŠ7øˆ/xècÍq×FZ÷øî†�>µÁXâE]ôò\ÒÜð¼�FvÏbWí”êÁåd%ãÄrQ+ãŒ·¾óÌ−<
ø�Ð!�_ë,�Ä�÷¼�wˆŸ/ú ÷y£�ú{Cz¡ÏÏ§_z¥?z¦×gäx‘ôó°�í5óJ�iÈ‰ÄH¯”Hº�t,’÷“[:bvöêK¯Ù�æ|�I`ê6ïkx"£·�³´¼ÿ¶½—#pñ{áLIð�|þ¸ç{À÷¶¿—�ÂgüÆšë¬ÏÆ��ëîöŠÆ´üDivZ$9º�ê’%k_Šy™¯gÖ‰Ï[Î%'Jü§÷AÁ÷"−‚ûÖ?të�´Ø¿�ÙŸäY´}�ÄýÁ�æÚç}�ôýÃ_
�ßf„−åjÜúÏFËÏÍ4
FWË�ÄÉ7Lñ{öÉô~eºûéåzá«÷¨ÚÞrì“äýÎ®¾Ùÿ{v¨c£ð÷;�#ÿŸN�Ý��#“ETÃÆ�'PmÙÃwÏ`Â…�ª„øpaÃ‰�/VÄA#G‰��ôèðâÅq�
Z´çpP‚�. †”�qdÌ� E�ÌhÓ£L†4þuæì
�(Â‘7S�¥©Ñ¡N¥�zUz“ãÏ�OC�õXUjÍ¬Qwr�éÕ'Ø˜GqÎ$›Ôl×µEËî�ëV%Ü rÓ¾u«×.K—~ÿ��
0áÂ†�#NüoðbÂŒ ?� ³àÀ“�aÂ�©YmÞÎg¥�
�Ó©gÑ�jµ™ÕœeÒøú¾,8tëÒÓPõÒ�;z−]Õ{ñÞöŒ¶nÍ©c�Þ4�hCŒÞ�çÅ“È qfD2UZò'=Þ4
„Ð1ÝFÂX¡â=è^H‹þ�Hn˜°ë%ÑnxÄ�¿ö8œ;Ú,�uó£µ"3®�ÐˆŠ\$a2S«ù@��t‘
N¢F—A��“ƒ(^ýöGÓ§5B�êj�eå�–'Äƒ�ç¡ �hB�*©R>¬š�e$�ñ�É*U‹’�Y�â.òÍƒœ4Š*…bþÊþ(P jÏ €Ëe
Ñi´��ÓT1íÑˆÞiÈò³’ÿÄeæ�f=£�’G
�g/sf*6=ñ©Iå�T�éT�AUQ�Ä!{¦y%ül´K°ºÏ:�P�mÊ-§¦JékP¢I™�"œ˜dÈ[_ƒR¸nÒ“
�àý*â7×¼Œ(VÄ�+‹º¨¥®Î‹‹âê¾vÉBÁ�’jâKáQ�
/zV�S=Ë,�)'µÅþÔsù,�*;�Ú¦ŠK¦�½ÏØÂÊÚ2™í«��Vj÷�R™�´�tÉ$oa²I—Èõc�Ùd8�ÛV…�â�¿ýG8·Š��Aö†¤ìH;KŠ�nº³Œÿ«“h©ó4ÒÒè���!4þ—VRc�J°YÕ%©Pˆ=È]î½Û�”|
JßÒÎ�hÝUª~ïk�¯¾Êµ�»Ul�H(�vf��fÌ˜¤ª�gïç„Æî!‡îò³ä�c±N�l�y6‹ñ{à�IÕ«nþõ«Wk #áæ,Å
â‘ÑËsCIØG�’²ÛF4æ$WS!²ìµ@Ï29¥ª×`\mñ>�èuRtX� Jó)î¼ÿ´é�=¹ØÁÛYðøõóÁ�Ï©�Öøñ
s$f4ãG©ÖK2„ó,dj2�dò„‰-ËL‰×,º‰Õ�¦œ�8Æ“Võ£và��9˜ƒý�p�¦mFˆ`’X¼5Ùã4¦�I¦Œ©˜#Öå8ª
ám��ªæu�L‡ÜVV†¦A|�BF�^øßM�Œ�’§U–ç�n�HÌ$H|#�¶de¥¡ññ¥6ò¦=‰
��[�5Ç|Ú�y�¤¦ýfa�P=¢QˆÈf�þ��eKI%Uj(zrhs "wªÉDHdPD%‹!Dêá�¼¥¨,uf¸©(W‘Šk²�\Þ¢+ “35È�
�Ay�ZÕ]€– �½�/²cbUÛ��Ò2™¨ˆäSä¥�ôq�sðP”�Ò”�NuÈ å−�ç¹äfêU‹�ãp¦
h:äe�„YõÄÚõÌBìYLå�'/ùc¢Ç1*a,*a®«¸t�Ï%^(š�xY•xU�÷l(
v¨�Æ�V�IºÎ`‰¢âi�ù_y!!cíRîíäsð�>FèèÌ[1Êk¢2Ð)Jg¨}J4šãŸ†‹ðÑ©Pe�³B*�E(.
gÆ��´¦jr�#˜zéÈêE_¤khî+I¬�¤-,�õ% y�·ŠÎ
-�K]¢Eva�R*Rf^“î"ÞA«*q*…�þ©g�Ü×¶�GÆUØŠäGŠ¤Øz˜Ù’¤Ú²mÚ.‘©Âí„�−Ø"Ûp¶©
mO�¾¨¯>Hm�] ÜC�b”¾úä�®©‘�î¤�|+,ñcam�£B¢��+PÊ[�NN½‰.è–�³¥eêªîê²îYÆí�"€ê†� þ�´Rn�i—˜�¥�âh[älDÀ%Œ9–½Æì´9™_ºIo�¬NUÖ=%_�2ëÀ`�¶Bj¡¶W?U–^
*cá¡½fmàÔ\Á.jiŠjùšï¥°QspÝIbaäîmÅ�J@In�¼§e�n�‰ïáš¢�î�ü¶ ��Zî�'–’�Šþîˆ£���¹R�“ ;’nµR�nvâb"…w−ËM0ÓÂ"·…ãû�ŸÇ�K��°�ƒð�›p
£0 «ð £p ¿Ÿ��pÙu�ÝE, ÈâdBšêœãï²$áRV�~’¶�B¶õþpcŠZç�SPÍà:®hÌIp�K'+KIeî©L
”_h•“Ê�µçtó¯Æ–•òõOj ’ã8’�Võ‰�›Ùºä‹�?"¾ø÷\¿åo�¨vŠD #
¢kÆîÖs£_1.Cº±Ez·^/An÷·lµÂš¦_¡4ã+Öôþ˜�c zõ ¦� ÐEä
…ŒÏªÀ�ú��x?•k�ûNpÂ‘¢{ÔˆšÕˆ�;}�”Ÿ�,€K´ª“ï°+DWB»GM»3ve±[»X{÷�cj·sû·o»I‹ûÓ:·
O(þr�$¬c…{ÿ¤fÒ¹w*¹â�£jÙ¹ÿ©7T(û™V;µ{'ÅS;��43v�a|±Wê�ceßð”Sðî—w�¢1a�ë�í3Ïk»£�Ä†oãýVp�Š¥F®�ªœÂK½�?®Àf*´a¬ÌFâ…�åôyÔ"�*NE®Ã¾Å÷-^1ü¯?“C�ÿÚ»ÿ¡‡>×¿jz´,�;�²½¾ÚÏ~´§½üþû9@ÜÃ7�Ÿ=��í��h�!¾ƒ
��ZDXq"Æ‚�)*�xPâE��IŠ�XR$Ê‹�YzÌ˜±cË{,gRM·«Û¶N�Â�ŒVsÚÙ¶kç�[õ+U£Z×Â\ìV%oÝ]o¶ôxÐ�O�-���ê|ñÉµÖ½âlËvìÖØ¼þq*æŠ�úÔáb#"−�^ªÒÜS‘�WŒ[.ÜãÅ5o�L�+qß�7K³¢¼
�@«ZË©+ßÌ[P¹�@‹ ?” I 6�‡ã/ÃÎÎƒI6×ÔÃM»� á1Åv+Ë¤´Ê��°ùÄ¢Ï·ð�²KD‚Æ¡n>éˆŠK;°âûî¶ûh
®®ádCOÆÅl�Ï³ ±;Q?¨�d�Ä�½ƒq8ûæÓ�Cð\œ #èÚûª0Í�SNE)»“PÁïšd³+Ðnc�B ‹üOLð�ôp¿
¼°µôl*�¾BE��K@Oä°ÍëÐ q»�Ùš¨¹¢Ô«pº¢* ,¼œ~Ä®-���òÉ�9�ÕÕPJÃl4^
�twÔ”IL¹ÃZ�Ô�aYóû�èýº¶ŠØ…š�óA†_2þuQdóVŒÎ·�v�ÔGý;�i¹Dö·[ý°m|É�9Î[ì��‹±³°'\®jÂ[bZ¾§yš´P’môYñür.õbÁ”4úôÂ—u�Ì“¦n“›Ýôæ7õE�TÌšå4gKþV�€1�_bñßû�Å·…ñ

 Welcome to Eclipse

 idMapping 951

™h‹¢þ{ &�Õ�‚ETc·¬§EÛ�GR„Û�A�:¾ƒ*ô• −¢:�åP-E‘sõ�Ò½>™Q�n”£�õèGA�R‘�t(�
�A*™Ð‡ªt¢�Í™�{½R¦`ˆ8À’Y�AÈ2¦:‹†D0öÆ‡3Ä��–�U¨NÕpTÝá-¦ �×]ë�ÛÊÎ+ÉH—¿�“¬e5ëYkŠ�4�
kó�fEß�W·Î¤†au
�[¶©ÐÑÎp»ŒÝ‹ÈeW×ô5aƒËÚ¨LTË�ú±cëj¢�‰Ë»}ív•…àe¹–Y.�‘³0ëÕÐ�IÄÆ.n$�Z)CQ{ZÕ¶”¥.míÑþ8S1{4−�ô´¬f;ëµ;yÍ˜�+Ï;›IÕì±Fr�L,ˆŠé+�ÒLvù$‘@ñ�³ãr¶—€S]u“˜]ìn÷fÕånÒ�äEñ¾6vØ-ê÷\vU.k½‚•«T«�_¬ÊWH±u
õœh2ý^·»ý�$Lõ¹‘™îÈ¦P;¨m“IÜÜ@—²-2W¼¸j¹±éöG£Ý˜À {#�þlUƒÅÞ‡=�â
'qÄ#^pQ�ÜUú¨w¢r�p¹�ŒÛÅÞ¶Œ5Î−‚el_�ì•Mj±Ç ��d�—¸ÃDæL†�ãÛÄhŠŠ�v,É�'»b)nüt�T
ª[Û¨ç»Š�í[¿j¿[��¼ �›ÎÐþr£¢�i…K:Ò�føÂ��ñ4ï–¶«¦ �ù�C@È'ÄƒÐÇ 3þPBƒ„NNmH�
¼˜YrxÔlK7ŠsèOv�QØ }µY�äS
—-J’*h]rúie7›è6d¶Ñ¹œ¯t¥ˆ±Ô”(q-6i2/û¯ãjw-g�u¬o½à8»ºHt”�£ÝÚh'jÑ±TWË�EÉÁ�®¯ì9n¨g˜™Ù;*�ñùëˆv�Îïnê“u�O¦2*P
>.µ¼�ù†ëlU‡eb«Æ-w,³ `�¢Ó™ÕågÑï;ß�Þ/¿
-2L}Ä'±cltÎ��¶?Òì@�²µó>q�¤�Ô�±41Á�Ã���uW�PÌÓxz‰_ïõˆ�UÂ'ìïÄYt�Ì%þŠ3§mþ[��û^§>fÕÜé\ã’TæÝuF�þX®¿©‰€ö"Ò©��¸×OÄÿ-×@øw8Fw¼íŸ¤öÿMˆœòNÛÒêl|�åò�Ñ
ì…�i�"©‘)x$�‘y'���É��i�G��)�QÐ�U��9°��I†�llà−à�ë}|Pf~Ð_‚�)æÄ¤Xƒz€H.¬�0ú�ä€,öB†°¸
½ö+�îaÀ�ä^Ài ¹° ½ð Á0 Åp É° Í� ûÌ¹¤ v(ün,Æ�ÝÐÏ��"¥�d‚�#.Ð�
7îì:.öB.�¿ï%ä�—�þ¢îÒ�£Hj��±��ñ�!ñ�¡æNÈ -,ñ‘1�ËJ:Zb@œÉæ‚«¯ô ¢ª(Î Ì g �ÑmæÂ®„ºkY¤¢iâbSð�
|"Mn�è�Æþ.ÌÅ"8‘¢RKk\
cZ‡¼Vë�§qð Q�µFSê#¬è��#�˜R−nØ°ŠÔ‹é�è�Ë/�_Ä¾ê°ëÆlü�ÍyÚçòÜeZä„.�±�‚ñ�ù±�ýñ�©è!¤#‘@P�iÐ
cÐ�?�� ²!�I!�Ò�#�!�RS�°�#’"�r��r"cp#�R#3R$;²xŒ�.êÆòþ®;6*KvÆÇþHNp”j0 ˆ8��
q2'uR¤RN›Îð'�2(…r(‰²(�rƒ�ä0zj êMÊ�oô–-]Ojò±$˜l'±2+µ²Éþk+½ò+Á2,År,½R-�ÂÑTòÚšqþJ¥ä°¨+�°Kn’,é².5j�kÊ.õr/ù²/ýÒ�Å)åF−á�o�H�(^
JšÂÛ�c.ÿò1±²'÷Š)³2−ó2Á²'$1�’r�=°•båúð¡s6yrìðá(Å�)���béAT“6�³£V��ƒ³8�ó8ÿ�/5q9Y�§Œã�¥�9¥ó.Éé7§ó:±3þ;‡1�¯±�©Ñ�¥QïÔÏ°�ÓÅ´s:¹3/Ïs=Ù³=kÓÕpé−�ÈÂâÓ«šK���»Ã:Ýó2‡S=û3@�”=“q±@ÑšL�æ¶æÜ$¢ïÆ
bÀXQL‹õ�ï¯U³µ[�ô?ãb%�c�ëë�ñNÕ�lŸvå4{ÓésGÍbH
™»—œÇ›|·‡+š†−çHXc8�Ru8ÂG¹Ë�ÜKº�Êg��ÉXCÍW1j;¹=·–•\Í³þu8eb]›Î™LÓÉŒ8ŒZ�¹µ|a™\ÏïÜâB—ú4�º™³yïê¦¶;Ï�Âªí\Õu�°ièwþæ�þè�~èÑ:¦¦ëÁL�Î¿ÜrðíC�\��~ë
^ØIKÆV±—áp—u9�Á¾ÕÉ^ìyùìÇÞìã�íÝ>íÙ~íß~áVg�é-©h.qô„Ê2�Ç�÷µß}ðå�ÞÛýð ?ñ
�ñß½è^ý0G�ò¡’™—�õ™A�ô“�¬¢�Oe½¯@]Ë^òÜ��¡¹>ö·>¨öö•é�ÙB×ö‡ì›oŸ÷w�èPV÷½�ø…�÷Ùrøs¿÷‰_ù“ÿþ÷�É±S§ðHñ]Þ¯wÑE�@}8õbU¥�©fµº�«Ó®M™FÕúµ¬Ø«a¥‚�ËÕ¬Z·dÏ®EËÖ«\¸\óödjµáÐ½
‹ò� ñ#_¥��',w2ÑÊs/«µÌ9sgþÉ�Có�;ØðTÀY÷*Ö
4uÖÕ§_÷e-zvìÅ�oÓ–�Û5îÖ°}ïþ]»wðã¶…ë^®¼9rãÉŸ�EZ¸êOÒ� gÏÞ�öÞ¿Á�sÜZÝ4yÙ�ÑG�
œ}íô‹á_–¿”~JèöQâ_o��œ}�BÈàƒ�FXá„�fˆá†®]Ø¡†�r(Xd‡¥UZp-¥X‘XÜMä×h¿Au�Fã©ˆÚ�[ÁHYrç¹H•�öÄ�G�"
ÿ–ÈÄÖ���Ä�z‘‡D ã�‡8Æ.‚±Œb7±Í½þTnßIpË4ë–—−ír¿{Þ¥z6º‰bN��/Ï¿=sŸAòãO-ÓVh�–…³F«á*üÃ
G¸�¥»ð•ñöUü0�Ï#Å!nq‰‹Üã$�¹É¹�r–¯|ã/×ZËa��=�ðe�W�–#$ßåzÇµ™Þ`£:8t
��‚G�`ÒCH�¥7�é@�ÝÓ
¸tªO]êQ�]Õ±¾Í-kýê_Ïú°Á¾ã,F‡·¿î²ÁIèå'gõÌ}Úù²â�fbíVîæ¹{Ýç�n�ç�î[ä»º�,øvïýï}'ð‹�¼ßÉœøÆC¸íÝî¯²3¯wÈS�ñ
¿üæí�xþ�ïz3�×£œ�� �«JåâŸß{‚øãf×ŸÙõ³¯}šqßûàÿ~ÌÄ/~™‰��"1?ømFþ�”¿ýì��Íà/³�œ¨ß��
àh¼�¯9�ç|±rzƒÓq•ÒŒj¥râF�‡u)£�zÃ£8�g|ý�wØ©aÁiš²�lõH˜�y#ÝÙ˜Ü
�Yw�ã¹zÓc�d¶�ßY�ÉI"éxa=w�¿9›°��W��(‰�þ‡vñ›É7^¿È–�²�ÿYv|†P‰�–��˜²Rq†¨‹�—�©÷•D©*�(|jw¡Ö¡Ê7J�Š��:¢¡T¢•t¢�'¢−Ê¢ãxJ**¡%è+«™aùÖ��:›�:q�I�~
3=¸��š�g)�hi–i©¤z©¤û �(ÒŠþ°CRe5mÔ�kð©‘˜×��š{øØm��h%¡ŠÖ9¦QX¦Ó�¦Bh‡
(¦iÚ¦kÚ–EÌR§é©š¿2�Š—Ÿ�á¤:H[où�)‰lŠÑ£
‘¤úÉ–Iš–OZ)çÁ¨@Ñ†yªeA6](2i�V¡DAd�F”ð6hý8"òe�¬êsïÙ•�X�éõ‰´ú^«*«¶ÊE¸êªºJWÏÙª± – x«÷Å�
a†�Ç«:�©‡ºŸ�)�SñŸ$_=ñš a—O*›Ûz¨Ú
©³ˆ’þ“LcÉ'©Ä$`©�Çãœ���Ë§z8¶bàÕ*ê…�³R¯ËÆ*øšþoúŠ¥1*pñF¯þ:r„�°ýªª§R°öÊz�»�ûZ�
«��Št�g¨OZ¤{E�q�¤÷°›öx�=J©—Z© ›��+š�{�ñè•>J§8Ê¡�j§�§
i7y˜e›þäby)R1öt/�"œÉ’½�´:;´†H’AG´=û˜6–´G+´K÷³NË³Ìá³�§¬îQ³¨±£Ïú¬5[��gœbÉ²ÔÉµ´I²Üz¶ÛŠ¶ƒº�bkDTÊ_í
‚ïŠ�S‹…Š’“©J�¸yr¸½g¸�‡¸x�¸¶Ã¸�û¸ò¶h‘›¸�»¸˜;¹oÇl� VG7±
ç§°þy¤Hº�Øz[�2"š*ºï´�‘jº¥«¤";»KªŸÆ�šú¦w`v‡"��loø©×µG� Jl5¬I(ªöé®¨‹Ñ{½G’½Óë½Â
¾°*¾C(¯ZBòø–Î‰q”˜;çx�Ê*�±¡v�hO�w�p¹†™rzË�tyÆ�Þ•°?ÌB, Ì··éw]:ÁŠWÁ LÁ��œ��°ñá�9:�
�m"�‡ÚæÀ¨�àÈ²‹rnq§ºu‹ ¤���Kº�Ø©¤¦¨Z±»��˜
ÌÁèÙÁ�Yšµ�Ãæ9‚1Ö‡Zë»}{_þ)V½OÜ¼�æ`MFÅ\fÅS�aU¬ÅWÌÅY Å7æÅH2—‚�\uacÊë>÷“��µ6
¼?,cˆ‰›¿"“~§˜ ��KR‘çôxHì»¯‡Å$ì�Ë²n5�‹”T}ˆuÁ9¼³¶‘Æ8=0ñ�”,Ô>mÈ�-]ÉIa2
ÀM¼�~��ƒ�§…m�‡Ý×_ŒØ‹-ØYöÐ
�Ù’=Ù”]Ù–}Ù˜�Ùš�ÙI±Ù�ýÙ þ�Ú•ý$>�³¬üÀÃ8ŸÆ+\™Ãy�™®*‰°nÚÚ›Á…]Y…�’g¶M¬0� µí…¼�Û¯Š¾Àý“Â}ÛZˆÜ»m +
ƒ(çÜ÷˜Òî,ÓÜûÎEL¿�Ì¾{=j21¿[úœm½É€›Ñ�©ÇË�÷Þr�ßí½Þôm‘6(ß}
Ãâô�•Ã7Ÿ*W #†¼x8ƒ�x+ëËEëNü•à�¼¯¶ÜÒÎÛ�Ã−O Ì§�ü†
æÏ�)�ŸÉ´s+Íz8âæ)[àœ¯�•âüºâ!^â,�±��ãé�‰•àþ;ÝùÏe�ç�§�µìØ��K¦R|ªtV³h^^t

 Welcome to Eclipse

 idMapping 952

po½Áâ�é¨7é�öÒ‚�éqìÖð]f�.‡�n˜”s§ŸãÈÑbêzøLª�ÊÉÁ¿�åæ›ñ:9�Þæ:«q¢�¯‡“ršÀ�—Ô¦*�Lh��IÄî“Æ~hÅ~Ë4‹ìÌ¾Ú�õªÐnÞÚxÇ��½Ë.íF\®dåC��xvÞ(ÊY{Wåí%×ˆóª_nÌÂ�−‹VY\�,ã��þÝ�
cŒ−Á�[¿°ªæÈ�™Â~¥c^Ñ›.ð�ÿÐ��ð�Nð oð �ð‘,%ãî��ø¿`·Ç0ü¦jÓ8wöb½kÏ��„»uå~; ´*z¹í�=��
Ì¥~v¹�Îö¦§Ýý±ý�c”\ó¼I�ò¡�:ÏàÜl®·þó2�¿7ÿ¦6ßÏEÇò¤gñT×l÷šÁ”·„‡��þÝ©ÐæçÏÅ†f7Í¢®�E´\¯w×
¹³�^ïÈ×À7©°h�oó^7Ì�ñ½ØïnO|Íí�r�‹¦Z÷q�Ýsï{p_”|�÷:þÉ�—>�ÆvN
õµî™"gø¨��gÊ�Óý»��á3ë²k�Ó�þv€þ�Ïóëá�M•ë©�¥Wõ3Oj2«`]Jôµ†8ª?§6ßú‰ a«oïÖKà´�ûªŠç�
]f�™K‰½%�¨]Ã�
GIF89aZ�å÷���)1�A��B�B��BB9BBBB��J��J��J!�J)!J1)J��R��R�!R!�R!�R!�R)�R)�R)�R1�R1)R91RJBR��Z!�Z!�Zk�!c�!k�)k�)s��k�!k�)k��c�)k!�k!)k)�Z)�c)�Z)�c1�Z1�c9�Z1�k)!Z1!Z9!Z)!c9!k9)c9)kB1c99kB9ZR9kODe�s�{�„!�w�)s�)s�sÁs!1s�{Á{!1{!9s�9{!9{!9„)�{1�w)!„)9{!B{)B{!B„)B„5â££�ûàÓã�>�
ä�B�Iä‘F)�Xmñó–�PF)å”^¼eÂ�W� Â \�Ñ×
F�aÄ�c–yÄ™‰5�D�N°É¦�m:A…�VPaE�wæéY�W„1†���JÆ�¦•AF�ˆªñÚ¢jÄÑh�qÈ�i¤sÈa‡¥rÜQ‡o¿uŠG�xðÁ‡�xø1ª¨ŒRk*Ý¥òÝw¶¨b
+¿ÚrË°¹Ü’ .Ã ‹,1ó1ë,1ÊØ·Œ1Ë0³L3×6��3Ûn;M4Ô€ ®4ÚT£Í6Ôls.7�n#�„áˆã�8ãÐ;Î8ët˜�9é¬CÎ:ì
0N9�šÓ¡9ë„�p‰'šX°Â°Ë�#=õØXãÄ;î˜±G!ñ.RH�¸ä»I½'°»ðÈ�ßã’a¹%‚�(�„�X��H�XDÑÂ��\àE�oa9Â
ã“ð¥�`¦`æ˜@7!´ÐL8æT+”¡Ê ���ð5�ê�¤�()IÕáRwÈÔ�U²’�ÞFx+¾õm�~ë•
‡ÅBbÝ"YÃ�F.dø,f�ãqÖ¢�¶$§−n
H\þ—�½ÊEÄm°Ës�{W7ÄÑ�z9±�øÒ—9Ôa�€YÑD�c��ÛO¶�ä�oYNˆ "bƒ"„Ä%Îë›÷Ú�éÏ 8Æ?ú� 8 â
o�$ 2P%�|$KÿàÒùÀ$sªS�ð”?þõi
�¡�¡�…¨C%ŠQ�|Ô¤�X);ÊPœ2 uÃ²Zk‡=„F4š��o�Q�ä2—¹ÔeÄv)1�M¤—½¢˜¯¾þËŠ�;Ñ��¦0†‰±a�«ÇíÌx±z�ô
m�H?';²8J��Ùç?÷QÇ’=¯ …ð„?H��H@Â�Šˆ¨ dP%�Œä.ÿHþ$GyæH ¥ #1ÚHCÔ¦65A�ê4Y{
��Õ(¯Õåæ�^Þ−oÚ >�‡“óÏ€ t9�)è¾›{‡A÷MyAQœ§3gêÐéºuÆî�´³��ÒHOË²1x’=�f¿b
s�¸À�Æá§�¤ ”…Ã‡ßô��H5•ÛR„�×ø#i²1nw[RÊLá#VøÈ�…¬ì+�ùøý‡i>B†�´æ#Z›Í*m3]Xší7³¼n©l‰Ëå#l�M‹œÓ��ù¨é8ê�Ëb�àð�,h1‹ÖÇâ�-è�£1FkBI?"�¤ÿÃiÊþHh��íiCý�×þ�×šûµ°µ�º¹‰òÙhþ¹¶q»
nÛ��/AQ�`î�ª»��°ÌsæÂ±çýöv�ãÜ 9øRîßõÍÜÀõÛM �Ü¿ 7N¨Ãp�H`i�Gaua—�jÆ³aLRr7��èÀ
��Š��„`�?€�à�,Fs�õb±�Ptÿp'Æ×'�¡tÿÐtÐF„OG@Q§5
ä5MvuPdv`v+âuB)ä+¾ÒBo—frÇfº�VÌ�−84−r€�EƒFE€uhXÄE_´0�6F�gF“Ö#þkT
Š¸ˆ��Y�Øy•�z�8��¶i�Ujk
�,ð��°�„P‚?À��à�@{ˆô‚A��¼–%�lÿ@Ioò�‘�d:8���dS³tÔöt©�dÙ¦JÛ†}Ý�K�BKØe*·Ä]Ñ�nÔ¡nÀÄnÄ�8ì‡Lô¶Lí��Í’oú±oñE9Öt9�’Mû‡DŸó���`äD€�æ:é�qí¤€�W1�§;�¶$‹¨ˆ�62ú4YŸ�j™W�s¤�Íã$ÏC� �×à
�à�>ð�= ���*ø�ä“%ãÓ%çÓQës"SUCS�T�S§59µ@Ï…þu˜�AAUŒ^wTaÇT�ä*O5+Re+|£ve–U[�w^5wn–†w×†oÈwn%.€'Wç¢gvˆW�v/|¥x†�X��y†õ0”Wˆ�•qþ0äs��
ƒF >�Å‘Áæ>M�?q�’V`?*•?ûã?üs’$@‡R@¤¤„Ô×„“ò„RVASø)UÈA\–…P�f}CUd�†fw6DRYWä¨D~¦W££‡ûÂ‡††E�¨h_4ˆ�Vˆ’–F�“�¤
0¤D�¤F:¤Gš¤B�¤�¸¤Nª¤�v‰�I%T�%v±%ˆ”3}ñ�„éH�$I‘�‹p²�ýÙ˜šd�ú�\�A™¡$J¤dJŒ¢m^ÃJ®4Œß†6Æè}XVnºÄŒ¾´n¹��Æ´~þÄ’Lõvoó¡�ÒÔ�þ�pôe_¼™_ä8!æ�N
'`çôpÉù�ïÔœ�gqÏÙ1õ¢¤š1£Zª¦*j�è�i��‰>a²‘
…Ÿ#5?JT—@V·S=�e5ÙuF5¡\¶“e�U¶R-^˜~l',nçB]¥fHy†bEV9T−LYMNéwQYDTIxÝ`•0ŠxYé/[©E‚õxëô•“w�Š%–�c$©š$Hr$��°þÚ–¤¦��›°
»° Û°y°��±�;±�[±r4��›±�»±�[�nÙ± �²";²k�±${²(›²�»ª*Ûþ².û²
û±0;³4[³X!³6›³:»³�Á²»´Nû´�‹´P;µT‹°R[µX›µ]Ñ´ZÛµ^k�Wûµb;¶%Û$d{¶h{±f+²ØÙ¶nû¶p�·r;·t[·v{·x›·z;·kYikË´� ¤‚û¤„;¸†[¸ˆ{¸Š›¸Œ»¸�Û¸�û¸’�¹”;¹–›¸���a»²ÁÃ{�û¹ �º¢;º¤[º¦{º¨›ºª»º¬«º�ËF�Ë¶�Ûº´[»¶{»¸›»º»»�ûºod²L»q¼;¼Ä[¼Æ{¼ÈË{™û�›«±ùÄ»€»Ñ›¼Ô[½Öþ{»¾‹O±Û�”õˆgñ¼¡;½×�¾ã[¾æ{¾Ù+PÀË�˜F‰TÑ¾�(¼ä{¾�+¾ô{¿øË»é
Yë»�ðë½�ñ¿¿;�üô�Ó�½ûdÀ ü��,¾ |À�ÌÀö+Á LÁ�ÌÀ�¬Àù»Á�\»û«yÛË¾�xi�æO
÷i˜UÂ�¬¾�|Á�ŒÁ0ŒÁ�üÂ�LÀ��Ã1\Ã.|Ã:ÜÁ>üÃ¥ûÁ�+Ä¡‡i)ì¾��aFLÂJ¬¹Â;Y� ÃPìÀ−,Ã6LÅ
ŒÅWœÃ8 Ä^üÅ2FÄ!'Æî›i$lÂœ—Âýä½GÌ¼�;Á®±ð}ßý}ë¶�ëú�ë»®ëüíëLñßÓ
ã¯^ìÞläÆ�ìÕòsþñ�ûÆ¡ì»(¬ÆL¬ÆŒÝ×µLÕVÍóÆÍÉgÜÕC�Ë�oìä®ña�ó”�ô>�ÆSÿäm½óhÙÆ¹,È^¿ÉóQ�zzýõ$�Û��ÊâkôšÕõ¶}Ú¶-Ø9ê#áÝ
ßÄg¿×=�ókÏî„�ò†œöÅÝô�Ëñ˜ÌõLoð’_i�oÚW~Ú��ö�føN�ñ+Ïç{�÷•�öo$�aÌóŒ�ôz�÷™�O¨ÿ÷ªOúšŸñqÏúÎÎö›ÿú‹ÿó™¿û�á��!üi�Â{ŸôSÏù�Ÿ�Ä/�Íþ?ñ·¿ÉË/ýx¯öÅ®ûÓ�õÅ�ü^�Â��ü²o±%áðP�úä�þiÉíèïíà¾þîþôîïþí�ÿé>ÿô_îð�ÿäoÿúÏþ���ü��$XÐàA„
�.dØÐáCˆ�%N¤XÑâEŒ�k%à÷/ãG�!E�$YÒäI”
k!è˜ÒåK˜1eÎ¤ùqeËš9uîäÙÓ§J����%ZÔèQŠ7…"eÚÔéÓœJ¡N¥ZÕªÅ�8¯nåÚÕªT¯aÅ�ý
–ìY´iOf]ªÖí[¸�ÍÆ¥[×.¿¹wõî�Ë–ï_À\ó�ºØñã™ˆ!O¦l“eÛÊ™5'm¼Ùóg‡þ’A��−šôéÌ~Q¯þlšõëÄ®aÏ�¬šöíØ—qï.,›÷oµ¶��§ë›øñ®Æ‘/¯*œùs¯Ê¡O?*�úõ²�±o�j�û÷ÈºÁ�/êœüy�ÞÑ¯�©�ý{ŒæáÏ7é�þý‡öñïW(Ÿÿÿ¤Ä�pÀŠô#�@ÿ�T0!��Ä¯A�éK0B
!¤ð= ±�`C�;ôðC�C�qD�G,È��þIqE�[dñE�c„qF�k¤ñÆ�XšhBüøçG ƒ�rH"‹4òH$‰L€�ÅÊjG��ô1º%›
ë�œähGí¶¤òË�Â¼RG‰2¼nÊä¼´2:6åþŠ’@8Cêp
4Ñ´ÌO~Ô¤hÏŒÍoÌ6ËÄ“Ë‹üüòÑ‘6�TP‰�−4@L�ý/Ï�,å‡IC3ZiÒŠBm�Ó,5å�ÓKù�hÃ’F�³Òƒ8|õÓ>a}UWS�âLËEEòT×H«�³T…@…´ÏO]íu!,Û¼s@V1�¶ÙHå

 Welcome to Eclipse

 idMapping 953

Platform questions index

Getting started

How do I install the examples?•

Core runtime

What is an extension point? an extension?•
What is the formal definition for the manifest file?•
Where do I put translated files for NLS?•

Resources

What is a workspace? •
What is a resource?•
What are resource properties?•
How can I save my plug−in's information when the workspace is saved?•
How do I know what changes are being made to resources in the workspace?•
How do I use markers?•
How do I define my own marker?•
What is a project nature?•
How do I set up an incremental project builder?•

New file types in the UI

How do I set up an editor for a particular file extension?•
How do I add a properties page for a resource?•
How do I add a new resource wizard to the workbench?•
How do I provide special icons for my new file type?•

Workbench UI

What is a view? an editor? a page?•
What is a perspective? How do I define one?•
When do I want to build a view vs. an editor?•
How do I customize a content outliner for an editor?•
How do I add a page to the preferences dialog?•
Where should I start learning how to extend the workbench UI?•
What extension points are defined by the workbench UI?•
How do I add a menu to the workbench?•
How do I specify menu and toolbar paths?•
How do I implement common actions like cut/copy/paste?•
How should I manage the icons in my plug−in?•
How do I build an error or message dialog?•
How do I implement a simple dialog of my own?•
How should I remember the user settings in a dialog?•
Why would I want a viewer instead of an SWT widget?•
How should I start learning about the text framework?•

 Platform questions index 954

How do I launch a wizard if I'm not adding it as a workbench extension?•
How do I build a wizard with multiple pages?•
What widgets are available in SWT?•
How do I implement an SWT layout?•
How do I implement an SWT native widget?•
How do I implement a custom widget in SWT?•
How do I draw my own graphics?•

Installation and upgrade

How do I configure my own splash screens and product name?•
What is a feature?•
How do I package a feature so it will work with the update manager?•
How do I configure a custom welcome (intro) page?•
How do I install an Eclipse based product?•

 Welcome to Eclipse

Installation and upgrade 955

http://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm

	Table of Contents
	Platform Plug-in Developer Guide
	Guide
	 Welcome to Eclipse
	 Notices

	About This Content
	License
	Contributions

	 Who needs a platform?
	 End users
	 Software developers

	 The holy grail
	 What is Eclipse?
	 Open architecture
	 Platform structure
	 Out of the box

	Platform architecture
	 Platform SDK roadmap
	Runtime core
	 Resource management
	 Workbench UI
	Team support
	Debug support
	 Help System
	 Java Development Tools (JDT)
	 Plug-in Development Environment (PDE)

	 Team support
	Repository providers
	Extension point
	Implementing a RepositoryProvider
	 Configuring a project
	 Finding a provider
	Repository Providers and Capabilities
	Resource modification hooks

	 Resource properties
	 Resource modification hooks
	 Resource move/delete hooks
	 File modification validators

	Repository resource management
	Ignored files
	File Types
	Team and linked resources
	Team private resources
	Project sets

	Linked resources
	Path variables
	Broken links
	Compatibility with installed plug-ins
	Linked resources in code

	 Project natures
	 Defining a nature
	 Associating the nature with a project
	 Nature descriptors

	Synchronization Support
	Terminology
	The Basics - SyncInfo
	Managing the synchronization state
	Displaying the synchronizations state in the UI

	Local History Example
	Defining the variants for local history
	Creating the Subscriber
	Adding a Local History Synchronize Participant
	Conclusion

	Beyond the Basics
	Implementing a Subscriber From Scratch
	ThreeWaySubscriber
	ThreeWaySynchronizer
	ThreeWayRemoteTree
	CachedResourceVariant
	Building on Top of Existing Workspace Synchronization

	Team Repository Provider
	Configuration Wizards
	Move/Delete Hook
	Ignore
	File Types
	Project Natures
	Team Hook
	Project Sets
	Synchronize Participant Creation Wizards
	 Program debug and launch support
	 Plugging in help
	Table of Contents (TOC)
	 Plug it in: Hello World meets the workbench
	 A minimal plug-in
	 Hello world view

	 Creating the plug-in project
	Creating your plug-in project

	 The Hello World view
	 The Hello World manifest
	 Running the plug-in
	Launching the workbench
	Running Hello World

	 Beyond the basics
	 Basic workbench extension points
	 Installing examples via the Update Manager
	 Installing examples manually

	 Example - Readme Tool
	 Introduction
	 Running the example
	 Details
	 Notices

	 Workbench menu contributions

	Views
	 Installing the examples
	 Advanced workbench concepts
	 Plugging into the workbench
	 Quick tour of the workbench
	 Views
	 Editors

	JFace: UI framework for plug-ins
	 JFace and the workbench
	JFace and SWT

	 Standard Widget Toolkit
	 Portability and platform integration
	 Consistency with the platform

	 Resources overview
	 Workbench wizard extension points
	Platform runtime
	Workspace
	Platform text
	Workbench
	Team
	Debug
	Help
	Other

	Platform Extension Points
	Adapters
	Applications
	Content Types
	Preferences
	Products
	Incremental Project Builders
	File Modification Validator
	Resource Markers
	Auto-refresh providers
	Annotation Model Creation
	Document Creation
	Document Setup
	Annotation Types
	Document Providers
	Marker Annotation Specification
	Marker Updaters
	Editor Template
	Reference Provider
	Accelerator Configurations
	Commands
	Action Sets
	Accelerator Scopes
	Accelerator Sets
	Action Definitions
	Action Set Part Associations
	Activities
	Cheat Sheet Content
	Cheat Sheet Content File XML Format
	cheatsheet
	intro
	description
	item
	subitem
	conditional-subitem
	repeated-subitem
	action
	perform-when
	Example

	Cheat Sheet Item Extension
	Contexts
	Decorators
	Drop Actions
	Editor Menus, Toolbars and Actions
	Internal and External Editors
	Element Factories
	Export Wizards
	Font Definitions
	HelpSupport
	Marker Help
	Marker Image Providers
	Marker Resolutions
	Project Nature Images
	Resource Filters
	Import Wizards
	Intro Part
	Intro Part Configuration
	Intro Content File XML Format
	introContent
	page
	group
	link
	html
	title
	text
	include
	head
	img
	extensionContent
	anchor

	Intro Part Configuration Extension
	Creation Wizards
	Perspective Extensions
	Perspectives
	Pop-up Menus
	Preference Pages
	Presentation Factories
	Property Pages
	Startup
	System Summary Sections
	Themes
	View Menus,Toolbars and Actions
	Working Sets
	Synchronize Participants
	Breakpoints
	Launch Configuration Comparators
	Launch Configuration Types
	Launch Delegates
	Launcher (Obsolete)
	Launch Modes
	Logical Structure Types
	Process Factories
	Source Container Types
	Source Locators
	Source Path Computers
	Status Handlers
	watchExpressionDelegates
	Console Color Providers
	Console Line Trackers
	Context View Bindings
	Debug Model Context Bindings
	Debug Model Presentation
	Launch Configuration Tab Groups
	Launch Configuration Type Images
	Launch Groups
	Launch Shortcuts
	Source Container Presentations
	String Variable Presentations
	Help Content Producer
	Contexts
	Browser
	Lucene Analyzer
	Ant Properties
	Ant Tasks
	Ant Types
	Extra Ant Classpath Entries
	ContentMerge Viewers
	Content Viewers
	Stream Merger
	Structure Creators
	StructureMerge Viewers
	Property Testers
	Dynamic Stirng Substitution Variables
	Value Variables
	Search Pages
	Result Sorters
	Search Result View Pages
	Configuration Duplication Maps
	Feature Type Factory
	Global Install Handlers
	Site Type Factory
	 Runtime overview
	 The runtime plug-in model
	 Plug-ins and bundles

	 org.osgi.framework Interface BundleContext
	 getProperty
	 getBundle
	 installBundle
	 installBundle
	 getBundle
	 getBundles
	 addServiceListener
	 addServiceListener
	 removeServiceListener
	 addBundleListener
	 removeBundleListener
	 addFrameworkListener
	 removeFrameworkListener
	 registerService
	 registerService
	 getServiceReferences
	 getServiceReference
	 getService
	 ungetService
	 getDataFile
	 createFilter

	 org.osgi.framework Class BundleEvent
	 INSTALLED
	 STARTED
	 STOPPED
	 UPDATED
	 UNINSTALLED
	 RESOLVED
	 UNRESOLVED
	 BundleEvent
	 getBundle
	 getType

	 org.osgi.framework Interface BundleActivator
	 start
	 stop

	 org.osgi.framework Interface Bundle
	 UNINSTALLED
	 INSTALLED
	 RESOLVED
	 STARTING
	 STOPPING
	 ACTIVE
	 getState
	 start
	 stop
	 update
	 update
	 uninstall
	 getHeaders
	 getBundleId
	 getLocation
	 getRegisteredServices
	 getServicesInUse
	 hasPermission
	 getResource
	 getHeaders
	 getSymbolicName
	 loadClass
	 getEntryPaths
	 getEntry
	 Extension points and the registry

	 Runtime preferences
	 Preference scopes
	 Using scopes and nodes
	 Extending the scopes

	Products and features
	Products extension point
	Customizing a product
	About dialogs
	Window images
	Welcome page
	Preferences defaults
	Splash screens
	 Intro support
	Features

	 Project-scoped preferences
	Specifying the scope
	Project-scoped preference nodes

	 Content types
	Defining and describing content
	Finding out about content types

	 Concurrency infrastructure
	Jobs
	Common job operations
	Job states
	Job change listeners
	The job manager
	Job families
	 Reporting progress
	Progress monitors and the UI
	Progress groups

	 Workbench concurrency support
	Progress service
	Showing that a part is busy
	Progress Properties for Jobs
	Workbench jobs

	 Long-running operations
	Runnables and progress
	Modal operations
	IProgressService

	 Threading issues
	 Native event dispatching
	 Toolkit UI threads
	 SWT UI thread
	 Executing code from a non-UI thread
	 The workbench and threads
	 Job scheduling
	 Scheduling rules
	Making your own rules
	Rule hierarchies
	 Locks

	 Workbench under the covers
	 Workbench
	 Page
	 Perspectives
	 Views and editors
	 org.eclipse.ui.views

	 Viewers
	 Standard viewers
	 Viewer architecture
	 Viewers and the workbench
	 org.eclipse.ui.viewActions
	 org.eclipse.ui.editors
	Contributing new retargetable actions

	 Content outliners
	Text editors and platform text
	 org.eclipse.ui.editorActions
	 org.eclipse.ui.popupMenus
	 org.eclipse.ui.actionSets

	 Application dialogs
	 Preference pages
	Contributing a preference page
	Implementing a preference page
	 Field editors

	 The plug-in class
	 Plug-in definition
	 AbstractUIPlugin

	Eclipse platform plug-in manifest
	Dialogs and wizards
	 Standard dialogs
	 Dialog settings
	 Wizards
	 Wizard dialog
	 Wizard
	 Wizard page
	 org.eclipse.ui.newWizards
	 org.eclipse.ui.importWizards
	 org.eclipse.ui.exportWizards

	 Wizard dialogs
	 Multi-page wizards
	 Validation and page control

	 Actions and contributions
	 Actions
	 Contribution items
	 Contribution managers

	 User interface resources
	 Image descriptors and the registry
	 Plug-in patterns for using images
	 Font registry
	 JFaceResources

	 Widgets
	 Widget application structure
	 Widget life cycle
	Running the example

	SWT standalone example - Hello World
	SWT standalone examples setup
	Importing example source
	Running the Example
	Examples Overview

	SWT standalone example - Address Book
	Running the example
	 Notices

	SWT standalone example - Clipboard
	Running the example

	SWT standalone example - File Viewer
	Running the example

	SWT standalone example - Hover Help
	Running the example

	SWT standalone example - Image Analyzer
	Running the example

	SWT standalone example - Java Syntax Viewer
	Running the example

	SWT standalone example - Text Editor
	Running the example
	 Controls
	 Events
	 Custom widgets

	 Layouts
	 FillLayout
	 RowLayout
	 FormLayout
	 GridLayout
	 StackLayout
	 Custom layouts

	 Error handling
	 IllegalArgumentException
	 SWTException
	 SWTError

	 Graphics
	 Graphics context
	 Fonts
	 Colors
	 Images
	 Graphics object lifecycle

	 Resources and the workspace
	 A sample resource tree

	 Resources and the local file system
	 Our sample tree on disk
	 Our sample tree in code
	 Mapping resources to disk locations
	 Resource API and the file system

	 Refresh providers
	 File encoding and content types
	 Setting a character set
	 Querying the character set

	 Resource markers
	 Marker operations
	 Extending the platform with new marker types

	 Modifying the workspace
	 Batching resource changes
	 Tracking resource changes
	Concurrency and the workspace

	 Incremental project builders
	 Invoking a build
	 Defining an incremental project builder
	 Associating an incremental project builder with a project

	Derived resources
	Team private resources

	 Workspace save participation
	 Implementing a save participant
	 Using previously saved state

	 Menu and toolbar paths
	 Menu paths
	Tool bar paths
	Using paths from another plug-in

	 Action set part associations
	 Boolean expressions and action filters
	 Boolean expressions
	Using objectState with content types

	Retargetable actions
	Setting a global action handler

	 Perspectives
	 Workbench part layout
	 Linking views and editors with "show-in"
	 org.eclipse.ui.perspectives
	 org.eclipse.ui.perspectiveExtensions
	 Decorators

	Workbench key bindings
	Commands
	Key bindings
	Key configurations
	Contexts and key bindings
	 Contexts
	Element factories

	Accessible user interfaces
	Assistive technology
	Accessibility resources
	SWT and accessibility

	Honoring single click support
	Single click in JFace viewers
	Single click in SWT controls
	Activating editors on open

	Working sets
	Adding new working set types
	 Contributing resource filters

	 Filtering large user interfaces
	 Activities
	Activities vs. perspectives

	 Guiding the user through tasks
	 Cheat sheets

	 Workbench resource support
	Contributing a property page
	Implementing a property page
	Marker help and resolution
	Text file encoding

