
org.eclipse.jdt.doc.user.I20050627-1435.pdf

 Basic tutorial
Adam Kiezun

Copyright (c) IBM Corporation and others 2000, 2005. This page is made available under license. For full details see the LEGAL in the documentation book that contains this page.

Table of Contents
 Basic tutorial...1

 Preparing Eclipse...2
 Verifying JRE installation and classpath variables...2

Java projects..5

Java builder...6

Build classpath..7

Classpath variables...8

Java development tools (JDT)..9

Debugger..10

Breakpoints..11

 Adding breakpoints...12

Java perspectives...13
Java..13
Java Browsing..13
Java Type Hierarchy..13
Debug...13

Java views..15
Package Explorer view..15
Hierarchy view...15
Projects view..15
Packages view..15
Types view...15
Members view..15

 Changing the appearance of the console view...17

 Console view...18

 Stepping through the execution of a Java program..19
 Step over...19
 Step into..19
 Step into Selection..19
 Step with filters...19
 Run to return...19
 Run to line...20

 Basic tutorial

i

Table of Contents
 Launching a Java program...21

Java editor...22

 Opening an editor for a selected element...23

 Using the Java editor...24

 Generating getters and setters..25

 Creating a new class in an existing compilation unit..26

 Creating a new Java class..27

 Creating Java elements..28

 Creating a new Java project...29

 Creating a Java project as its own source container..30

 Creating a Java project with source folders..31

 Creating a new source folder..33

Java Build Path page..34
Source tab...34
Projects tab...34
Libraries tab...35
Order and Export tab..36
Default output folder..36

 File actions..37

New Java Project Wizard...39
Project name page..39
Java settings page...39

 Java Compiler..41
 General..41

JDK Compliance...41
Classfile generation...41

 Building..42
General..42
Build path problems..42
Output folder...43

 Errors/Warnings..43
Code style..43
Potential programming problems..44

 Basic tutorial

ii

Table of Contents
 Java Compiler

Name shadowing and conflicts..44
Name shadowing and conflicts..45
Unnecessary code..45
J2SE 5.0 options..46

 Building a Java program...49

 Building automatically...50

 Building manually..51
 Incremental build..51
 Incremental project build..51
 Clean and rebuild from scratch (full build)...51
 Clean and rebuild selected projects...51

 Working with build paths...53

 Viewing and editing a project's Java build path...54

 Adding a JAR file to the build path...55

 Adding a library folder to the build path..56

 Creating a new JAR file..57

 Attaching source to a JAR file..58

 Attaching source to a class path variable..59

 Adding a classpath variable to the build path...60

 Defining a classpath variable..62

 Deleting a classpath variable...63

 Classpath variables..64
 Configurable variables..64
 Reserved class path variables..64

 Working with JREs..65

 Adding a new JRE definition..66

 Assigning the default JRE for the workbench..67

 Basic tutorial

iii

Table of Contents
 Choosing a JRE for a launch configuration..68

 Running and debugging..69

Remote debugging...70

 Using the remote Java application launch configuration...71

 Disconnecting from a VM...72

 Debug view..73

Local debugging..75

 Resuming the execution of suspended threads..76

 Evaluating expressions..77

 Suspending threads..78

 Catching Java exceptions..79

 Removing breakpoints...80

 Enabling and disabling breakpoints...81

 Applying hit counts..82

 Setting method breakpoints..83

 Breakpoints view..84

 Managing conditional breakpoints...85

 Views and editors...86

 Changing the appearance of the Hierarchy view..87

 Using the Hierarchy view..88

 Opening a type hierarchy on a Java element..89

 Changing new type hierarchy defaults..90

 Opening a type hierarchy on the current text selection...91

 Basic tutorial

iv

Table of Contents
 Opening a type hierarchy in the workbench...92

 Opening a type hierarchy in its own perspective..93

 Type Hierarchy view..94
 Type Hierarchy tree pane toolbar buttons...94
 Member list pane toolbar buttons...94

 Java..96

 Navigate actions...98

 Package Explorer view..100

 Toolbar buttons..101

 Java element filters dialog...102

 Filtering elements...103

 Using the Package Explorer view...104

 Showing and hiding elements..105

 Showing and hiding system files...106

 Showing and hiding CLASS files generated for inner types..107

 Showing and hiding libraries..108

 Showing single element or whole Java file...109

 Java editor..110
 Toolbar actions..110
 Key binding actions..110

 Viewing documentation and information..112

 Viewing Javadoc information...113

 Using content/code assist...114

Scrapbook..115

 Creating a Java scrapbook page...116

 Basic tutorial

v

Table of Contents
 Java scrapbook page..117

 Displaying the result of evaluating an expression...118

 Executing an expression..119

 Inspecting the result of evaluating an expression...120

 Viewing runtime exceptions..121

 Expressions view..122

New Java Scrapbook Page Wizard...123

 Viewing compilation errors and warnings..124

 Setting execution arguments...125

 Creating a Java application launch configuration..126

 Changing the active perspective when launching...128

 Debug preferences..130

 Preparing to debug..132

 Run and debug actions..133

Java search tab..135
Search string...135
Search For..135
Limit To...136
Scope..136

Java search..137

 Searching Java code...138

 Conducting a Java search using pop−up menus...139

 Search actions...140

 Conducting a Java search using the Search dialog...142

 Formatting Java code..143

 Basic tutorial

vi

Table of Contents
 Setting code formatting preferences...144

 Formatting files or portions of code...145

 Source actions...146

 Code Formatter..149

 Java editor..150
Appearance and Navigation..150
Code assist..151
Syntax Coloring..152

List of Quick Assists..154

Quick Fix..158

 JDT actions...161

 Frequently asked questions on JDT...162
 Can I use a Java compiler other than the built−in one (javac for example) with the workbench?.....162

 Where do Java packages come from?..162
 When do I use an internal vs. an external JAR library file?...162
 When should I use source folders within a Java project?...162
 What are source attachments, How do I define one?...162
 Why are all my resources duplicated in the output folder (bin, for example)?............................162
 How do I prevent having my documentation files from being copied to the project's output

 folder?..163
 How do I create a default package?..163
 What is refactoring?...163
 When do I use code select/code resolve (F3)?...163
 Is the Java program information (type hierarchy, declarations, references, for example)

 produced by the Java builder? Is it still updated when auto−build is off?.............................163
 After reopening a workbench, the first build that happens after editing a Java source file

 seems to take a long time. Why is that?...163
 I can't see a type hierarchy for my class. What can I do?..163
 How do I turn off "auto compile" and do it manually when I want?...164
When I select a method or a field in the Outline view, only the source for that element is

 shown in the editor. What do I do to see the source of the whole file?.................................164
Can I nest source folders?...164
Can I have separate output folders for each source folder?..164
Can I have an output or source folder that is located outside of the workspace?.........................164

 JDT glossary...165

 Edit actions...167

 Basic tutorial

vii

Table of Contents
 Using Quick Fix..169

 Using Quick Assist...170

 Quick fix..171

 Java outline...172
 Toolbar buttons...172

 Restoring a deleted workbench element..173

 Using the local history...174

 Replacing a Java element with a local history edition..175

 Comparing a Java element with a local history edition...176

Showing and hiding members..177

 Appearance...178

Showing full or compressed package names..179

Showing and hiding override indicators...180

Showing and hiding method return types...181

Sorting elements in Java views..182

 Java toolbar actions...183

New Java Package Wizard...185

 Creating a new Java package..186

 Moving folders, packages, and files..187

Refactoring support..188

 Refactoring...189

 Refactoring without preview...191

 Refactoring with preview..192

 Previewing refactoring changes..193

 Basic tutorial

viii

Table of Contents
 Undoing a refactoring operation..194

 Redoing a refactoring operation...195

 Refactor actions..196

 Using Structured Selection..199

 Using Surround with Try/Catch...200

 Extracting a method..201

 Renaming a method...202

 Renaming method parameters..203

 Changing method signature..204

 Refactoring Dialog...205

 Wizard based refactoring user interface...206
 Parameter pages..206
 Preview page...206
 Problem page..206

 JDT icons..208
 Objects..208
 Object adornments..209
 Build path..210
 Code assist..211
 Compare..211
 Debugger...211
 Editor..213
 JUnit..213
 NLS tools..214
 Quick fix...214
 Refactoring..215
 Search..215
 Search − Occurrences in File..215
 Type hierarchy view...215

 Dialog based refactoring user interface...217
 Input dialog...217
 Preview dialog..217
 Problem dialog..217

 Basic tutorial

ix

Table of Contents
 Override methods...219

 Extract method errors...220

 Extracting a local variable..222

 Inlining a local variable...223

 Replacing a local variable with a query...224

 Copying and moving Java elements...225

 Extracting a constant...227

 Renaming a package..228

 Opening a package...229

 Showing an element in the Package Explorer view..230

 Renaming a compilation unit..231

 Creating a new interface in an existing compilation unit...232

 Creating a new Java interface..233

 Creating a top−level interface...234

 Creating a nested interface...235

 Renaming a type...236

 Creating a new Java enum..237

New Java Enum Wizard...238

 Creating a new Java annotation...239

New Java Annotation Wizard..240

 Creating a top−level class..241

 Creating a nested class...243

New Java Class Wizard..244

 Basic tutorial

x

Table of Contents
New Source Folder Wizard..246

New Java Interface Wizard..247

 Opening a type in the Package Explorer view...248

 Organizing existing import statements..249

 Adding required import statements...250

 Managing import statements..251

 Setting the order of import statements..252

 Organize Imports...253

 Renaming a field..254

Renaming a local variable..255

Parameters page..256

 Inlining a method...257

 Inlining a constant..258

 Self encapsulating a field...259

 Pulling members up to superclass..260

 Pushing members down to subclasses..261

 Moving static members between types...262

 Moving an instance method to a component...263

 Converting a local variable to a field...264

 Converting an anonymous inner class to a nested class...265

 Converting a nested type to a top level type..266

 Extracting an interface from a type...267

 Replacing references to a type with references to one of its supertypes...268

 Basic tutorial

xi

Table of Contents
 Replacing a single reference to a type with a reference to one of its supertypes.....................................269

 Replacing an expression with a method parameter..270

 Replacing constructor calls with factory method invocations...271

 Inferring type parameters for generic type references...272

 Opening an editor on a type..273

 Open Type...274

 Project actions..275

 Run menu..276

 Content/Code Assist...277

 Templates..278
 Template dialog..278
 Template variables..279

Templates...281

 Using templates..282

Writing your own templates..284

 Task Tags..285

 Code templates...286
Code and Comments..286

Comment templates...286
New Java files template...286
Catch block body template..287
Method body template...287
Constructor body template..287
Getter body template...287
Setter body template..287

Code Template dialog..287

 Code style..289
Naming Conventions...289
Code Conventions..289

 Create Getters and Setters..291

 Basic tutorial

xii

Table of Contents
String externalization...292

Finding strings to externalize...293

Externalizing Strings..294

Finding unused and incorrectly used keys in property files...295

 Using the Externalize Strings Wizard..296

Key/value page..297
...298

Property File page...300

 Externalize Strings Wizard...302
 String selection page...302
 Translation settings page...302
 Error page..303
 Preview page...303

 Viewing marker help...304

 Javadoc location page..305

 Javadoc generation..306
 First page...306
 Standard doclet arguments..306
 General arguments..307

Creating Javadoc documentation..309

Selecting types for Javadoc generation...310

Configuring Javadoc arguments for standard doclet..312

Configuring Javadoc arguments...314

Showing and hiding empty packages..316

Showing and hiding empty parent packages..317

Showing and hiding Java files..318

Showing and hiding non−Java elements...319

 Basic tutorial

xiii

Table of Contents
Showing and hiding non−Java projects..320

Showing and hiding import declarations..321

Showing and hiding package declarations..322

 Finding overridden methods...323

 Display view..325

 Variables view..326

 Show detail pane..327

 Show detail pane..328

 Re−launching a program...329

 Console preferences...330

 JRE installations..331

Source attachments...332
JAR..332
Variable..332

 Editing a JRE definition..334

 Deleting a JRE definition..335

 Overriding the default system libraries for a JRE definition..336

 Installed JREs...337

 Defining the JAR file's manifest...338
 Creating a new manifest..338
 Using an existing manifest..338

 Setting advanced options...340

 JAR file exporter..341
 JAR package specification..341
 JAR packaging options...341
 JAR manifest specification...342

 Creating JAR files..343

 Basic tutorial

xiv

Table of Contents
 Regenerating a JAR file...344

 Adding source code as individual files...345
 From a ZIP or JAR file...345
 From a directory..345

 Adding a JAR file as a library..347

Java Compiler page..348

 Converting line delimiters...349

 Finding and replacing..350

Using the Find/Replace dialog...351

Using Incremental Find..352

Finding next or previous match...353

 Changing the encoding used to show the source...354

 Commenting and uncommenting lines of code...355

 Shifting lines of code left and right...356

Exclusion and inclusion filters...357

Access rules..358

 Creating a new source folder with exclusion filter...359
Starting from scratch..359
From an existing Java Project..359

 Creating a new source folder with specific output folder..361

 Creating your first Java project...362
Getting the Sample Code (JUnit)...362
Creating the project..362

 Browsing Java elements using the package explorer..366

 Opening a Java editor..368

 Adding new methods..371

 Basic tutorial

xv

Table of Contents
 Using content assist..374

 Identifying problems in your code..376

 Using code templates..379

 Organizing import statements..382

 Using the local history...384

 Extracting a new method...386

 Creating a Java class...390

 Renaming Java elements...398

Moving and copying Java elements...401

 Navigate to a Java element's declaration...403

Viewing the type hierarchy..406

 Searching the workbench..412
 Performing a Java search from the workbench...412
 Searching from a Java view..414
 Searching from an editor...414
 Continuing a search from the search view..415
 Performing a file search..416
 Viewing previous search results...417

 Running your programs..419

 Debugging your programs..424

 Evaluating expressions..429

 Evaluating snippets..431
Notices..433
About This Content..433

License...434

 Using the Java browsing perspective...435

 Writing and running JUnit tests...437
 Writing Tests...437
 Running Tests...438
 Customizing a Test Configuration..439
 Debugging a Test Failure..440

 Basic tutorial

xvi

Table of Contents
 Writing and running JUnit tests

 Creating a Test Suite...440

 Project configuration tutorial...442

 Detecting existing layout..443
Layout on file system...443

Steps for defining a corresponding project..443

 Sibling products in a common source tree...447
Layout on file system...447

Steps for defining corresponding projects...447

 Organizing sources...452
Layout on file system...452

Steps for defining a corresponding project..452

 Overlapping products in a common source tree...459
Layout on file system...459

Steps for defining corresponding "Product1" and "Product2" projects...459

 Product with nested tests...467
Layout on file system...467

Steps for defining a corresponding project..467

 Products sharing a common source framework...475
Layout on file system...475

Steps for defining corresponding projects...475

 Nesting resources in output directory..483
Layout on file system...483

Steps for defining a corresponding project..483

 Project using a source framework with restricted access..493
Layout on file system...493

Steps for defining corresponding projects...493

Getting Started with Eclipse 3.1 and J2SE 5.0...504
Prerequisites...504

Compiler Compliance Level...504
Generic Types..506
Annotations..508
Enumerations...509
Autoboxing..509
Enhanced for loop..510
Other..510

 Basic tutorial

xvii

Table of Contents
 Creating a new Java Scrapbook Page..512

 Parameters page...513

 Problems page..514

 Parameters page...515

 Parameters page...516

 Parameters page...517

 Parameters page...518

 Parameters page...519

 Parameters page...520

 Parameters page...521

..522

 Parameters page...523

..524

 Parameters page...525

..526

 Parameters page...527

..528

..529

 Parameters page...531

..532

 Building circular projects..533

 Building without cleaning the output location..534

 Attaching source to a library folder...535

 Basic tutorial

xviii

Table of Contents
 Launching a Java applet...536

 Launching a Java program in debug mode...537

 Inspecting values..538

 Using code assist...539

 Scrapbook error reporting..540

 Viewing compilation errors...541

 Go to file for breakpoint..542

 Add Java exception breakpoint..543

 Suspend policy..544

 Hit count...545

 Uncaught...546

 Caught...547

 Modification..548

 Access..549

 Exit..550

 Entry..551

 Select all..552

 Enable..553

 Disable...554

 Remove selected breakpoint..555

 Remove all breakpoints...556

 Show qualified names..557

 Show supported breakpoints..558

 Basic tutorial

xix

Table of Contents
 Properties..559

 Copy..560

 Select all..561

 Find/Replace...562

 Go to line...563

 Clear..564

 Terminate..565

 Inspect...566

 Display...567

 Clear the display..568

 Select all..569

 Copy variables..570

 Remove selected expressions...571

 Remove all expressions..572

 Change variable value...573

 Show constants...574

 Show static fields..575

 Show qualified names..576

 Show type names..577

 Add/Remove watchpoint...578

 Inspect...579

 Open declared type..580

 Show qualified names..581

 Basic tutorial

xx

Table of Contents
 Show type names..582

 Add/Remove watchpoint...583

 Change variable value...584

 Inspect...585

 Step commands...586

 JUnit..587

Java Task Tags page...588

Java Build Path page..589
Source tab...589
Projects tab...590
Libraries tab...590
Order and Export tab..591
Default output folder..591

 Refactoring...593
Tips and Tricks..593

Editing source..593
Searching...608
Code navigation and reading...610
Java views..616
Miscellaneous..621
Debugging...626

What's New in 3.1..637
J2SE 5.0...637
Java Debugger..652
Java Compiler..656
Java Editor...659
General Java Tools...665

 Basic tutorial

xxi

Basic tutorial
This tutorial provides a step by step walk−through of the Java development tools.

 Basic tutorial 1

Preparing Eclipse
In this section, you will verify that Eclipse is properly set up for Java development.

The following is assumed:

You are starting with a new Eclipse installation with default settings.•
You are familiar with the basic Eclipse workbench mechanisms, such as views and perspectives.•

If you're not familiar with the basic workbench mechanisms, please see the Getting Started chapter of the
Workbench User Guide.

Verifying JRE installation and classpath variables

If you still see the Eclipse Welcome page, click the arrow icon to begin using Eclipse.1.
Select the menu item Window > Preferences to open the workbench preferences. 2.
Select Java > Installed JREs in the tree pane on the left to display the Installed Java Runtime
Environments preference page. Confirm that a JRE has been detected. By default, the JRE used to
run the workbench will be used to build and run Java programs. It should appear with a checkmark in
the list of installed JREs. We recommend that you use a Java SDK instead of a JRE. An SDK is
designed for development and contains the source code for the Java library, easing debugging.
Additional SDKs can be added by searching the hard drive for installed SDKs. To do so, simply click
the Search button and specify a root folder for the search.

3.

Select General > Workspace in the tree pane to display the Workspace preference page. Confirm that
the Build automatically option is checked.

4.

 Preparing Eclipse 2

Select Java > Build Path in the tree pane to display the Build Path preference page. Confirm that
Source and output folder is set to Project.

5.

Select Java > Editor in the tree pane to display the Java Editor preference page. Confirm that option
Report problems as you type is checked.

6.

Click on OK to save the preferences.7.

Java projects
Classpath variables
Build classpath

 Basic tutorial

Verifying JRE installation and classpath variables 3

Working with build paths
Working with JREs

JRE Installations Preferences
Java Editor Preferences

 Basic tutorial

Verifying JRE installation and classpath variables 4

Java projects
A Java project contains source code and related files for building a Java program. It has an associated Java
builder that can incrementally compile Java source files as they are changed.

A Java project also maintains a model of its contents. This model includes information about the type
hierarchy, references and declarations of Java elements. This information is constantly updated as the user
changes the Java source code. The updating of the internal Java project model is independent of the Java
builder; in particular, when performing code modifications, if auto−build is turned off, the model will still
reflect the present project contents.

You can organize Java projects in two different ways:

Using the project as the source container. This is the recommended organization for simple projects.•
Using source folders inside the project as the source container. This is the recommended organization
for more complex projects. It allows you to subdivide packages into groups.

•

Java builder
Refactoring support

Creating a new Java project
Creating a Java project as its own source container
Creating a Java project with source folders
Creating a new source folder
Creating Java elements
Copying and moving Java elements
Generating getters and setters
Filtering elements

New Java Project wizard

Java projects 5

Java builder
The Java builder builds Java programs using a compiler that implements the Java Language Specification.
The Java builder can build programs incrementally as individual Java files are saved.

Problems detected by the compiler are classified as either warnings or errors. The existence of a warning does
not affect the execution of the program; the code executes as if it were written correctly. Compile−time errors
(as specified by the Java Language Specification) are always reported as errors by the Java compiler. For
some other types of problems you can, however, specify if you want the Java compiler to report them as
warnings, errors or to ignore them. To change the default settings, use the Window > Preferences > Java >
Compiler > Errors/Warnings preference page.

The Java compiler can create CLASS files even in presence of compilation errors. However, in the case of
serious errors (for example, references to inconsistent binaries, most likely related to an invalid build path),
the Java builder does not produce any CLASS files.

Build classpath
Java development tools (JDT)

Building a Java program
Building automatically
Building manually
Viewing compilation errors and warnings
Working with build paths Viewing and editing a project's build path
Adding a JAR file to the build path
Adding a library folder to the build path

Java Build Path properties
Java Compiler preferences

Java builder 6

Build classpath
The build classpath is the path which is used to find classes that are referenced by your source code. During
compilation, this path is used to search for classes outside of your project. The build classpath is specified for
each project. In the project properties, it is referred to as the "Java Build Path."

Java builder
Classpath variable
Exclusion and inclusion filters
Access rules

Adding a JAR file to the build path
Adding a library folder to the build path
Building a Java program
Building automatically
Building manually
Viewing and editing a project's build path
Working with build paths
Creating a new source folder with exclusion filter
Creating a new source folder with specific output folder

Classpath Variables preferences
Java Build Path properties

Build classpath 7

Classpath variables
The build path for a Java project can include source code files, other Java projects, and JAR files. JAR files
can be specified using file system paths, or by using variables that refer to locations on the network.

Classpath variables allow you to avoid references to the location of a JAR file on your local file system. By
using a classpath variable, you can specify a JAR file or library using only a variable name, such as JRE_LIB,
rather than specifying the location of the JRE on your workstation. In this way, you can share build paths
across teams and define the variables to refer to the correct location for your particular computer.

Java development tools (JDT)
Build classpath

Adding a variable classpath entry
Attaching source to a classpath variable
Defining a classpath variable
Deleting a classpath variable

Classpath Variables preferences
Java Build Path properties

Classpath variables 8

Java development tools (JDT)
The Java development tools (JDT) are a set of extensions to the workbench that allow you to edit, compile,
and run Java programs.

Build classpath
Classpath variables
Debugger
Java builder
Java editor
Java projects
Java perspectives
Java views
Java search
Refactoring support
Scrapbook

Adding source code as individual files
Creating Java elements
Formatting Java code
Restoring a deleted workbench element
Showing and hiding files
Working with JREs

JDT actions
Frequently asked questions on JDT
JDT glossary

Java development tools (JDT) 9

Debugger
The JDT includes a debugger that enables you to detect and diagnose errors in your programs running either
locally or remotely.

The debugger allows you to control the execution of your program by setting breakpoints, suspending
launched programs, stepping through your code, and examining the contents of variables.

The debugger has a client/server design so you can debug programs running remotely on other systems in the
network as well as programs running locally on your workstation. The debug client runs inside the workbench
on your workstation. The debugger server runs on the same system as the program you want to debug. This
could be a program launched on your workstation (local debugging) or a program started on a computer that is
accessible through a network (remote debugging).

Java development tools (JDT)
Breakpoints
Remote debugging
Local debugging

Adding breakpoints
Changing debugger launch options
Connecting to a remote VM with the Remote Java application launch configuration
Disconnecting from a VM
Evaluating expressions
Launching a Java program
Preparing to debug
Resuming the execution of suspended threads
Running and debugging
Suspending threads

Debug preferences
Debug view
Run and debug actions

Debugger 10

Breakpoints
A breakpoint causes the execution of a program thread to suspend at the location where the breakpoint is set.

Breakpoints can be enabled and disabled via their context menus in the Breakpoints view.

When a breakpoint is enabled, it will cause a thread to suspend whenever the breakpoint is reached.
Enabled breakpoints are indicated with a blue circle. Enabled breakpoints are shown with a
checkmark overlay after their class is loaded by the VM and the breakpoint is successfully installed.

•

When a breakpoint is disabled, it will not cause threads to suspend. Disabled breakpoints are indicated
with a white circle.

•

Breakpoints are displayed in the vertical editor ruler and in the Breakpoints view.

Adding breakpoints
Resuming the execution of suspended threads
Running and debugging
Suspending threads

Debug preferences
Debug view
Run menu
Run and debug actions
Breakpoints view

Breakpoints 11

Adding breakpoints
Line breakpoints are set on an executable line of a program.

In the editor area, open the file where you want to add the breakpoint.1.
Directly to the left of the line where you want to add the breakpoint, open the marker bar (vertical
ruler) pop−up menu and select Toggle Breakpoint. You can also double−click on the marker bar
next to the source code line. A new breakpoint marker appears on the marker bar, directly to the left
of the line where you added the breakpoint. Also, the new breakpoint appears in the Breakpoints view
list.

2.

While the breakpoint is enabled, thread execution suspends before that line of code is executed. The debugger
selects the thread that has suspended and displays the stack frames on that thread's stack. The line where the
breakpoint was set is highlighted in the editor in the Debug perspective.

Debugger
Java perspectives
Java editor

Applying hit counts
Catching Java exceptions
Removing breakpoints
Enabling and disabling breakpoints
Managing conditional breakpoints
Setting method breakpoints
Stepping through the execution of a program

Breakpoints view

 Adding breakpoints 12

Java perspectives
The Java development tools contribute the following perspectives to the workbench:

Java

A perspective designed for working with Java projects. It consists of an editor area and the following views:

Package Explorer•
Hierarchy•
Outline•
Search•
Console•
Tasks•

Java Browsing

A perspective designed for browsing the structure of Java projects. It consists of an editor area and the
following views:

Projects•
Packages•
Types•
Members•

Java Type Hierarchy

A perspective designed for exploring a type hierarchy. It can be opened on types, compilation units, packages,
projects or source folders and consists of the Hierarchy view and an editor.

Debug

A perspective designed for debugging your Java program. It includes an editor area and the following views.

Debug•
Breakpoints•
Expressions•
Variables•
Display•
Outline•
Console•

Java development tools (JDT)
Java views

Java perspectives 13

Adding breakpoints
Opening a type hierarchy in its own perspective
Suspending threads

Breakpoints view
Console view
Debug view
Display view
Expressions view
Java outline
Package Explorer view
Type Hierarchy view
Variables view

 Basic tutorial

Debug 14

Java views
The Java development tools contribute the following views to the workbench:

Package Explorer view

The Package Explorer view shows the Java element hierarchy of the Java projects in your workbench. It
provides you with a Java−specific view of the resources shown in the Navigator. The element hierarchy is
derived from the project's build class paths.
For each project, its source folders and referenced libraries are shown in the tree. You can open and browse
the contents of both internal and external JAR files.

Hierarchy view

The Hierarchy view allows you to look at the complete hierarchy for a type, only its subtypes, or only its
supertypes.

Projects view

The Projects view shows Java projects, source folders, external and internal libraries.
Note: source folders and libraries (both internal and external) presented in this view are not expandable. When
they are selected, their contents are shown in the Packages view.

Packages view

The Packages view shows a list of Java packages from the currently selected Java projects, source folders or
libraries. Typically, the Projects view is used to make this selection.

Types view

The Types view shows a list of Java types from the currently selected packages. Typically, the Packages view
is used to make this selection.

Members view

The Members shows the content of a type, compilation unit or CLASS file. Typically, the Types view is used
to make this selection.

Java perspectives

Changing the appearance of the Console view
Changing the appearance of the Hierarchy view

Java views 15

Breakpoints view
Console view
Debug view
Display view
Expressions view
Java outline
Package Explorer view
Type Hierarchy view
Variables view
Views and editors

 Basic tutorial

Members view 16

Changing the appearance of the console view
To set the types of output (and their colors) in the Console view:

From the menu bar, select Window > Preferences > Debug > Console to view the Console
Preferences page.

1.

Checking the Show when program writes to standard out checkbox will make the Console view
visible each time new output is written to the console from the program's standard output stream. If
there is no Console view in the current perspective, one will be created.

2.

Checking the Show when program writes to standard err checkbox will make the Console view
visible each time new output is written to the console from the program's standard error stream. If
there is no Console view in the current perspective, one will be created.

3.

Click any of the color buttons to change the color for the corresponding text stream. 4.

To set the fonts used in the Console view:

From the menu bar, select Window > Preferences > General > Appearance > Colors and Fonts to
view the Fonts Preferences page.

1.

Select Debug Console Text Font from the list of fonts and use the Change... button to change the
font. (The Detail Pane Text Font can be used to change the font of the debugger's detail pane).

2.

Debugger
Java views

Console view
Views and editors

 Changing the appearance of the console view 17

Console view
This view shows the output of a process and allows you to provide keyboard input to a process. The console
shows three different kinds of text, each in a different color.

Standard output•
Standard error•
Standard input•

You can choose the different colors for these kinds of text on the preferences pages (Window > Preferences >
Debug > Console).

Java views
Java perspectives

Changing the appearance of the console view
Stepping through the execution of a program

Run menu Breakpoints view Views and editors

 Console view 18

Stepping through the execution of a Java program
When a thread is suspended, the step controls can be used to step through the execution of the program
line−by−line. If a breakpoint is encountered while performing a step operation, the execution will suspend at
the breakpoint and the step operation is ended.

Step over

Select a stack frame in the Debug view. The current line of execution in that stack frame is
highlighted in the editor in the Debug perspective.

1.

Click the Step Over button in the Debug view toolbar, or press the F6 key. The currently−selected
line is executed and suspends on the next executable line.

2.

Step into

Select a stack frame in the Debug view. The current line of execution in the selected frame is
highlighted in the editor in the Debug perspective.

1.

Click the Step Into button in the Debug view toolbar, or press the F5 key. The next expression on the
currently−selected line to be executed is invoked, and execution suspends at the next executable line
in the method that is invoked.

2.

Step into Selection

Select a stack frame in the Debug view. The current line of execution in the selected frame is
highlighted in the editor in the Debug perspective.

1.

In the Java editor, within the current line of execution, place the cursor on the name of a method that
you would like to step into.

2.

Click the Step into Selection action in the Run menu or Java editor context menu, or press the
Ctrl−F5 key. Execution resumes until the selected method is invoked.

3.

Step with filters

Toggle the Use Step Filters button in the Debug view toolbar, or use Shift+F5. When the action is
toggled on, each of the step actions (over, into, return) will apply the set of step filters which are
defined in the user preferences (see Window > Preferences > Java > Debug > Step Filtering). When
a step action is invoked, stepping will continue until an unfiltered location is reached or a breakpoint
is encountered.

1.

Run to return

Select a stack frame in the Debug view. The current line of execution in the selected frame is
highlighted in the editor in the Debug perspective.

1.

Click the Run to Return button in the Debug view toolbar or press the F7 key. Execution resumes
until the next return statement in the current method is executed, and execution suspends on the next
executable line.

2.

 Stepping through the execution of a Java program 19

Run to line

When a thread is suspended, it is possible to resume execution until a specified line is executed. This is a
convenient way to suspend execution at a line without setting a breakpoint.

Place your cursor on the line at which you want the program to run.1.
Select Run to Line from the pop−up menu or use Ctrl+R. Program execution is resumed and
suspends just before the specified line is to be executed.

2.

It is possible that the line will never be hit and that the program will not suspend.

Breakpoints and exceptions can cause the thread to suspend before reaching the specified line.

Breakpoints
Java perspectives

Adding breakpoints
Launching a Java program
Resuming the execution of suspended threads
Running and debugging
Setting execution arguments
Suspending threads

Debug view

 Basic tutorial

 Run to line 20

Launching a Java program
The simplest way to launch a Java program is to run it using a Java Application launch configuration. This
launch configuration type uses information derived from the workbench preferences and your program's Java
project to launch the program.

In the Package Explorer, select the Java compilation unit or class file you want to launch.1.
From the pop−up menu, select Run > Java Application. Alternatively, select Run > Run As > Java
Application in the workbench menu bar, or Select Run As > Java Application in the drop−down
menu on the Run tool bar button.

2.

Your program is now launched, and text output is shown in the Console.3.

You can also launch a Java program by selecting a project instead of the compilation unit or class file. You
will be prompted to select a class from those classes that define a main method. (If only one class with a main
method is found in the project, that class is launched as if you selected it.)

Java views
Java editor
Debugger

Connecting to a remote VM with the Java Remote Application launcher
Re−launching a program
Running and debugging
Setting execution arguments
Stepping through the execution of a program

Debug view
Package Explorer

 Launching a Java program 21

Java editor
The Java editor provides specialized features for editing Java code.

Associated with the editor is a Java−specific Outline view, which shows the structure of the active Java
compilation unit. It is updated as the user edits the compilation unit.

The Java editor can be opened on binary CLASS files. If a JAR file containing the CLASS files has a source
attachment, then the editor shows the corresponding source.

The editor includes the following features:

Syntax highlighting•
Content/code assist•
Code formatting•
Import assistance•
Quick fix•
Integrated debugging features•

The Java editor can be configured to either show an entire compilation unit or a single Java element only. To
change the setting, use the toolbar button Show Source of Selected Element Only.

The most common way to invoke the Java editor is to open a Java file from the Navigator or Package explorer
using pop−up menus or by clicking the file (single or double−click depending on the user preferences). You
can also open the editor by opening Java elements, such as types, methods, or fields, from other views.

Java development tools (JDT)

Opening an editor for a selected element
Using the Java editor
Using content/code assist
Formatting Java code
Adding required import statements
Generating getters and setters
Viewing compilation errors and warnings
Viewing runtime exceptions
Evaluating expressions

Java editor actions
Java editor preferences
Java outline
Views and editors

Java editor 22

Opening an editor for a selected element
You can select the name of a type, method, or field in the Java source editor or in the scrapbook and open an
editor on the definition of the element.

In the Java editor, select the name of a type, method, or field. You can also just click into the name
once.

1.

Do one of the following:
From the menu bar, select Navigate > Open Declaration♦
From the editor's pop−up menu, select Open Declaration♦
Press F3♦

2.

or

Hold down the Ctrl key.1.
In the Java editor, move the mouse over the name of a type, method, or field until the name becomes
underlined.

2.

Click the hyperlink once.3.

If there are multiple definitions of the same name, a dialog is shown, and you can select one definition that
you want to open. An editor opens containing the selected element.

Java editor

Using the Java editor

Navigate menu
Views and editors

 Opening an editor for a selected element 23

Using the Java editor
Note: Keyboard shortcuts used in the section (Java editor−related tasks) are the default key bindings.
You can change between the Standard and the Emacs key binding sets by using the Active configuration
combo box on Window > Preferences > General > Keys.

Java editor

Generating getters and setters
Managing import statements
Using the local history
Formatting Java code
Viewing documentation and information
Using templates
Writing your own templates
Converting line delimiters
Finding and replacing
Changing the encoding used to show the source
Using quick fix
Using Structured Selection
Commenting and uncommenting lines of code
Shifting lines of code left and right
Using Surround with try/catch
Showing single elements or whole Java files
Opening an editor for a selected element
Using content/code assist

Java Editor
Java outline
Java editor actions

 Using the Java editor 24

Generating getters and setters
The Java editor allows you to generate accessors ("getters and setters") for the fields of a type inside a
compilation unit.

In the editor, select the field for which you want to generate accessors (or a type in which you want to
create these methods).

1.

Select Generate Getter and Setter from the Source pop−up menu.2.
A dialog will open to let you select which methods you want to create.3.
Select the methods and press OK.4.

Java editor
Java projects

Using the Java editor
Creating a class in an existing compilation unit

Generate Getter and Setter
Java outline

 Generating getters and setters 25

Creating a new class in an existing compilation
unit
An alternative way to create a new class is to add it to an existing compilation unit.

In the Package Explorer, double−click a compilation unit to open it in an editor.1.
Type the code for the class at the desired position in the compilation unit.2.

Java projects

Creating a new Java class
Creating a top−level class
Creating a nested class
Renaming a class, field, or interface
Renaming a compilation unit
Setting execution arguments

Package Explorer

 Creating a new class in an existing compilation unit 26

Creating a new Java class
Use the New Java Class wizard to create a new Java class. There are a number of ways to open this wizard:

Select the container where you want the new class to reside.1.
Click the New Java Class button in the workbench toolbar.2.

or

Select the container where you want the new class to reside.1.
From the container's pop−up menu, select New > Class.2.

or

Select the container where you want the new class to reside.1.
From the drop−down menu on the New button in the workbench toolbar, select Class.2.

or

Click the New button in the workbench toolbar to open the New wizard.1.
Select Class or Java > Class and click Next.2.

or

Select the container where you want the new class to reside.1.
Then, select from the menu bar File > New > Class.2.

Java projects

Creating Java elements
Creating a new Java project
Creating a top−level class
Creating a nested class
Creating a class in an existing compilation unit
Setting execution arguments

New Java Project wizard
New Source Folder wizard
New Java Package wizard
New Java Class wizard
Java Toolbar actions

 Creating a new Java class 27

Creating Java elements

Java projects
Java development tools (JDT)

Organizing Java projects
Creating a Java project as its own source container
Creating a Java project with source folders
Creating a new source folder
Creating a new Java package
Creating a new Java class
Creating a new Java enum
Creating a new Java interface
Creating a new Java annotation
Creating a Java scrapbook page
Adding a variable class path entry
Copying and moving Java elements
Defining a class path variable

New Java Project wizard
New Source Folder wizard
New Java Package wizard
New Java Class wizard
New Java Enum wizard
New Java Interface wizard
New Java Annotation wizard
New Scrapbook Page wizard
Java Toolbar actions

 Creating Java elements 28

Creating a new Java project
You can organize Java projects in two different ways.

Use the project as the container of packages. In this organization, all Java packages are created
directly inside the project. This is the selected organization by default. The generated CLASS files are
stored along with the JAVA source files.

•

Use source folders as the container for packages. In this project organization, packages are not created
directly inside the project but in source folders. You create source folders as children of the project
and create your packages inside these source folders.

•

The default organization for new projects can be changed on the preference pages (Window > Preferences >
Java > Build Path).

Java projects

Creating a Java project as its own source container
Creating a Java project with source folders
Creating a new Java class
Creating a new Java interface
Creating a new source folder
Creating Java elements
Working with build paths

New Java Project wizard

 Creating a new Java project 29

Creating a Java project as its own source
container
For simple projects, the project itself acts as the source container.

From the main workbench window, click File > New > Project. The New Project wizard opens.1.
Select Java Project, then click Next. The New Java Project wizard opens.2.
In the Project name field, type a name for your new Java project.3.
Select a location for the project and configure the JDK Compliance.4.
In the Project layout section, make sure Use project folder as root for source and class files is
selected.

5.

Click Next. The Java Settings Page opens.6.
On the Source tab, check that the project is the only source folder and the default output folder.7.
Optionally, on the Projects tab, select the required projects to be on the build path for this project. Use
these options only if your project depends on other projects.

8.

Optionally, on the Libraries tab, select JAR files and CLASS folders to add to the build path for this
new project and attach source to the JAR files. Use these options only if your project requires
additional libraries.

9.

On the Order and Export tab, use the Up and Down buttons to move the selected JAR file or CLASS
folders up or down in the build path order for this new project.

10.

Click Finish when you are done.11.

Java projects

Creating Java elements
Creating a new Java project
Creating a Java project with source folders
Creating a new Java package
Creating a new Java class
Creating a new interface in a compilation unit
Working with build paths

New Java Project wizard

 Creating a Java project as its own source container 30

Creating a Java project with source folders
For larger projects, create a project with source folders.

Note: When using source folders, non−Java resources are copied to the output folder by the
Java builder. If you have non−Java resources (documentation, for example) that should not
be copied into the output folder, you can create an ordinary folder and store the resources
there. You can also use the preferences page Window > Preferences > Java > Compiler >
Building to specify a list of resources that will not be automatically copied to the output
folder.

From the main workbench window, click File > New > Project. The New Project wizard opens.1.
Select Java Project, then click Next. The New Java Project wizard opens.2.
In the Project name field, type a name for your new Java project.3.
Select a location for the project and configure the JDK Compliance.4.
In the Project layout section, make sure Create separate source and output folders is selected.5.
Click Next. The Java Settings Page opens.6.
On the Source tab, check that the project contains a source folder. You can create additional source
folders at any time later.

7.

Optionally, replace the default name in the Default output folder field to use a different name for the
output folder.

8.

On the Projects tab, select the required projects to be on the build path for this project.9.
On the Libraries tab, select JAR files and CLASS file containers to add to the build path for this new
project and attach source to the JAR files.

10.

On the Order and Export tab, use the Up and Down buttons to move the selected JAR file or CLASS
file container up or down in the build path order for this new project.

11.

Click Finish when you are done.12.

Note: When you are using CVS as your repository, it is recommended that you create a
.cvsignore file inside the project. In this file, add a line with the name of the output folder
("bin" for example). Adding the output folder in the .cvsignore file ensures that the CVS
versioning support ignores the output folder in versioning operations.

Java projects
Java builder

Creating Java elements
Creating a new Java project
Creating a new source folder
Creating a Java project as its own source container
Creating a new Java package
Creating a new Java class
Creating a Java scrapbook page
Working with build paths

 Creating a Java project with source folders 31

New Java Project wizard

 Basic tutorial

 Creating a Java project with source folders 32

Creating a new source folder
You can create a new folder to contain Java source code using the New Source Folder wizard.

In the Package Explorer, select the project where you want the new source folder to reside.1.
From the project's pop−up menu, select New > Source Folder. The New Source Folder wizard opens.2.
In the Project Name field, the name of the selected project appears. If you need to edit this field, you
can either type a path or click Browse to choose a project that uses source folders.

3.

In the Folder Name field, type a name for the new source folder.4.
If the new folder nests with an existing source folder you can check Update exclusion filters in other
source folders to solve nesting. Otherwise you have to use the Java Build Path page (Project >
Properties > Java Build Path) to fix the nesting conflict by removing other source folders.

5.

Click Finish when you are done.6.

Java projects

Creating Java elements
Creating a new Java project
Creating a new Java package
Creating a Java project as its own source container
Creating a Java project with source folders

Java Build Path
New Source Folder wizard
Java Toolbar actions
Package Explorer

 Creating a new source folder 33

Java Build Path page
The options in this page indicate the build path settings for a Java project. You can reach this page through the
project properties (Project > Properties > Java Build Path) from the context menu on a created project or the
File menu of the workbench.

The build class path is a list of paths visible to the compiler when building the project.

Source tab

Source folders are the root of packages containing .java files. The compiler will translate the contained files to
.class files that will be written to the output folder. The output folder is defined per project except if a source
folder specifies an own output folder. Each source folder can define an exclusion filter to specify which
resources inside the folder should not be visible to the compiler.
Resources existing in source folders are also copied to the output folder unless the setting in the Compiler
preference page (Window > Preferences > Java > Compiler > Building) specifies that the resource is filtered.

Source folder options

Option Description

Add Folder Creates a new folder to contain source

Edit Allows to modify the currently selected source folder or source folder
attribute.

Remove Removes the selected folders from the class path. This does not delete the
folders nor their contents.

Allow output
folder per source
folder

Shows/Hides the 'output folder' attribute of the source folders

Source folder attributes

Attribute Description

Exclusion filter Selects which resources are not visible to the compiler

Output folder Only available when Allow output folder per source folder is checked.
Defines a source folder specific output location. If not set the project's
default output folder is used.

Projects tab

In the Required projects on the build path list, you can add project dependencies by selecting other
workbench projects to add to the build path for this new project. The Select All and Deselect All buttons can
be used to add or remove all other projects to or from the build path.

Adding a required project indirectly adds all its classpath entries marked as 'exported'. Setting a classpath
entry as exported is done in the Order and Export tab.

Java Build Path page 34

The projects selected here are automatically added to the referenced projects list. The referenced project list is
used to determine the build order. A project is always build after all its referenced projects are built.

Libraries tab

On this page, you can add libraries to the build path. You can add:

Workbench−managed (internal) JAR files•
File system (external) JAR files•
Folders containing CLASS files•
Predefined libraries like the JRE System Library•

JAR files can also be added indirectly as class path variables.

By default, the library list contains an entry representing the Java runtime library. This entry points to the JRE
selected as the default JRE. The default JRE is configured in the Installed JREs preferences page (Window >
Preferences > Java > Installed JREs)

Libraries tab options

Option Description

Add JARs Allows you to navigate the workbench hierarchy and select JAR files to add
to the build path.

Add External
JARs

Allows you to navigate the file system (outside the workbench) and select
JAR files to add to the build path.

Add Variable Allows you to add classpath variables to the build path. Classpath variables
are an indirection to JARs with the benefit of avoiding local file system
paths in a classpath. This is needed when projects are shared in a team.
Variables can be created and edited in the Classpath Variable preference
page (Window > Preferences > Java > Build Path > Classpath Variables)

Add Library
Allows to add a predefined libraries like the JRE System Library. Such
libraries can stand for an arbitrary number of entries (visible as children
node of the library node)

Add Class Folder Allows to navigate the workbench hierarchy and select a class folder for the
build path. The selection dialog also allows you to create a new folder.

Edit Allows you to modify the currently selected library entry or entry attribute

Remove Removes the selected element from the build path. This does not delete the
resource.

 Libraries have the following attributes (presented as library entry children nodes):

Library entry attributes

Attribute Description

Javadoc location

 Basic tutorial

Projects tab 35

Specifies where the library's Javadoc documentation can be found. If
specified you can use Shift+F2 on an element of this library to open its
documentation.

Source
attachment

Specifies where the library's source can be found.

Order and Export tab

In the Build class path order list, you can click the Up and Down buttons to move the selected path entry up
or down in the build path order for this new project.

Checked list entries are marked as exported. Exported entries are visible to projects that require the project.
Use the Select All and Deselect All to change the checked state of all entries. Source folders are always
exported, and can not be deselected.

Default output folder

At the bottom of this page, the Default output folder field allows you to enter a path to a folder path where
the compilation output for this project will reside. The default output is used for source folders that do not
specify an own output folder. Use Browse to select an existing location from the current project.

Build classpath
Classpath variables

Working with build paths
Attaching source to variables
Attaching source to a JAR file

Frequently asked questions on JDT
Classpath Variables preferences
Java Compiler properties

 Basic tutorial

Libraries tab 36

File actions
File Menu Commands:

Name Function Keyboard
Shortcut

New Create a Java element or a new resource. Configure which elements are shown in
the submenu in Window > Customize Perspective. In a Java perspective, by
default action for creating a project, package, class, enum, interface , annotation ,
source folder, scrapbook, file and folder are available.

Ctrl + N

Close Close the current editor. If the editor contains unsaved data, a save request dialog
will be shown. Ctrl + F4

Close All Close all editors. If editors contains unsaved data, a save request dialog will be
shown.

Ctrl + Shift
+ F4

Save Save the content of the current editor. Disabled if the editor does not contain
unsaved changes. Ctrl + S

Save As Save the content of the current editor under a new name.

Save All Save the content of all editors with unsaved changes. Disabled if no editor
contains unsaved changes.

Ctrl + Shift
+ S

Revert Revert the content of the current editor back to the content of the saved file.
Disabled if the editor does not contain unsaved changes.

Move Move a resource. Disabled on Java Elements. To move Java elements use
Refactor > Move (with updating all references to the file) or Edit > Cut / Paste
(no updating of references).

Rename Renames a resource. Disabled on Java Elements. To rename Java elements use
Refactor > Rename (with updating all references to the file).

Refresh Refreshes the content of the selected element with the local file system.When
launched from no specific selection, this command refreshes all projects.

Print Prints the content of the current editor. Enabled when an editor has the focus. Ctrl + P

Import Opens the import wizard dialog. JDT does not contribute any import wizards.

Export Opens the export wizard dialog. JDT contributes the JAR file export wizard and
the Javadoc generation wizard.

Properties Opens the property pages of the select elements. Opened on Java projects the
Java Build Path page and the Javadoc Location page are available. For JAR
archives, configure the JAR's Source Attachment and Javadoc Location here.

Alt + Enter

Exit Exit Eclipse

 File actions 37

Java development tools (JDT)

Creating Java elements
Creating JAR Files

New Java Project wizard
New Java Package wizard
New Java Class wizard
New Java Enum wizard
New Java Interface wizard
New Java Annotation wizard
New Java Scrapbook Page wizard
JAR file exporter
Javadoc generation
Javadoc Location properties
Java Build Path properties
Source Attachment properties

 Basic tutorial

 File actions 38

New Java Project Wizard
This wizard helps you create a new Java project in the workbench.

Project name page

Option Description Default

Project name Type a name for the new project. <blank>

Contents
Create new project in workspace:

When selected, the New Project Wizard will create a new project
with the specified name in the workspace.

Create project from existing source:
When selected, you can specify the location from which the New
Java Project Wizard will retrieve an existing Java project.
Click on Browse... to browse for a location of an existing Java
project.

workspace

JDK
Compliance Use default compiler compliance:

When selected, the New Java Project Wizard creates a new Java
project with the default compiler compliance. The default
compiler compliance can be configured on the Compiler
preference page.

Use project specific compliance:
When selected, you can explicitly specify the compiler compliance
of the new Java project.

default
compliance

Project layout
Use project folder as root for sources and class files:

When selected, the project folder is used both as source folder and
as output folder for class files.

Create separate source and output folders:
When selected, the New Java Project Wizard creates a source
folder for Java source files and an output folder which holds the
class files of the project.

Use project
folder

Java settings page

You can skip this page by pressing Finish on the first page. Otherwise press Next to configure the Java Build
Path.
If the project location on the first page has been set to an existing directory, you will be prompted if the New
Java Project wizard should try to detect existing classpath settings. To do this the project will be created early
on the invocation of the Next button, and the Back will be disabled on the Java Settings page.

Java projects

New Java Project Wizard 39

Creating a new Java project

File actions

 Basic tutorial

Java settings page 40

Java Compiler
This preference page lets you configure the various settings related to compiling, building and checking Java
source code.

The Java compiler preferences are separated in the following sections:

General•
Building•
Errors/Warnings•

General

JDK Compliance

Option Description Default

Compiler compliance
level

Specifies the compiler compliance level. 1.4

Use default compliance
settings

If enabled, the default compliance settings for the compiler
compliance level are applied.

On

Generated class files
compatibility

Specifies the generated class file compatibility. 1.2

Source compatibility Specifies the compatibility of the accepted source code. 1.3

Disallow identifiers
called 'assert'

When enabled, the compiler will issue an error or a warning whenever
'assert' is used as an identifier (reserved keyword in J2SE 1.4).

Warning

Disallow identifiers
called 'enum'

When enabled, the compiler will issue an error or a warning whenever
'enum' is used as an identifier (reserved keyword in J2SE 5.0).

Warning

Classfile generation

Add variable attributes to generated class
files

If enabled, variable attributes are
added to the class file. This will
enable local variable names to be
displayed in the debugger (in
places where variables are
definitely assigned) The resulting
.class file is then bigger.

On

Add line number attributes to generated
class files

If enabled, line number information
is added to the class file. This will
enable source code highlighting in
the debugger.

On

Add source file name to generated class file On

 Java Compiler 41

If enabled, the source file name is
added to the class file. This will
enable the debugger to present the
corresponding source code.

Preserve unused local variables If enabled, unused local variables
(i.e. never read) are not stripped
from the class file. If stripped this
potentially alters debugging.

On

Inline finally blocks If enabled, finally blocks are
inlined in the generated class files.
This positively affects
performance, but may result in
larger class files.

Off

Building

General

Option Description Default

Maximum number of reported problems per
compilation unit

Specifies how many
problems should be reported
for a compilation unit.

100

Enable using exclusion patterns in source
folders

When disabled, no entry on a
project classpath can be
associated with an exclusion
pattern.

On

Enable using multiple output locations for
source folders

When disabled, no entry on a
project classpath can be
associated with a specific
output location, preventing
thus usage of multiple output
locations.

On

Build path problems

Abort building on build path errors Allow to toggle the builder to
abort if the classpath is invalid.

On

Incomplete build path Indicate the severity of the
problem reported when an entry
on the classpath does not exist, is
not legitimate or is not visible
(e.g. a reference project is
closed).

Error

Circular dependencies Error

 Basic tutorial

Classfile generation 42

Indicate the severity of the
problem reported when a project
is involved in a cycle.

Incompatible required binaries Indicated the severity of the
problem reported when a project
requires incompatible binaries.

Ignore

Output folder

Duplicated resources Indicate the severity of the
problem reported when more
than one occurrence of a
resource is to be copied into
the output location.

Warning

Scrub output folders when cleaning projects Indicate whether the Java
Builder is allowed to clean the
output folders when
performing full build
operations.

On

Filtered resources A comma separated list of file
patterns which are not copied
to the output folder.

''

Errors/Warnings

Code style

Option Description Default

Non−static access to a
static member

When enabled, the compiler will issue an error or a warning
whenever a static field or method is accessed with an expression
receiver. A reference to a static member should be qualified with a
type name.

Warning

Indirect access to a static
member

When enabled, the compiler will issue an error or a warning
whenever a static field or method is indirectly accessed. A static
field of an interface should be qualified with the declaring type
name.

Warning

Unqualified access to
instance field

When enabled, the compiler will issue an error or a warning
whenever it encounters a field access which is not qualified (eg.
misses a 'this').

Ignore

Undocumented empty
block

When enabled, the compiler will issue an error or a warning
whenever it encounters an empty block statement with no
explaining comment.

Ignore

Access to a non−accessible When enabled, the compiler will issue an error or a warning Ignore

 Basic tutorial

Build path problems 43

member of an enclosing
type

whenever it emulates access to a non−accessible member of an
enclosing type. Such accesses can have performance implications.

Methods with a constructor
name

Naming a method with a constructor name is generally considered
poor style programming. When enabling this option, the compiler
will signal such scenario either as an error or a warning.

Warning

Usage of non−externalized
strings

When enabled, the compiler will issue an error or a warning for
non externalized String literal (i.e. non tagged with
//$NON−NLS−<n>$).

Ignore

Potential programming problems

Serializable class
without
serialVersionUID

When enabled, the compiler will issue an error or a warning whenever
a type implementing 'java.io.Serializable' does not contain a
serialVersionUID field.

Warning

Assignment has no
effect (eg. 'x = x')

When enabled, the compiler will issue an error or a warning whenever
an assignment has no effect (eg. 'x = x').

Warning

Possible accidential
boolean assigment (eg.
'if (a = b)')

When enabled, the compiler will issue an error or a warning whenever
if encounters a possible accidential boolean assignment (eg. 'if (a =
b)').

Warning

'finally' does not
complete normally

When enabled, the compiler will issue an error or a warning whenever
a 'finally' statement does not complete normally (eg. contains a return
statement).

Warning

Empty statement When enabled, the compiler will issue an error or a warning whenever
it encounters an empty statement (eg. a superfluos semicolon).

Ignore

Using a char array in
string concatenation

When enabled, the compiler will issue an error or a warning whenever
a char[] expression is used in String concatenations,

"hello" + new char[]{'w','o','r','l','d'}

Warning

Hidden catch blocks Locally to a try statement, some catch blocks may hide others , eg.

try { throw new
java.io.CharConversionException();
} catch (java.io.CharConversionException e) {
} catch (java.io.IOException e) {}.

When enabling this option, the compiler will issue an error or a
warning for hidden catch blocks corresponding to checked exceptions.

Warning

Name shadowing and conflicts

Field declaration hides
another field or

When enabling this option, the compiler will issue an error or a
warning if a field declaration hides another inherited field.

Ignore

 Basic tutorial

Code style 44

variable

Local variable
declaration hides
another field or
variable

When enabling this option, the compiler will issue an error or a
warning if a local variable declaration hides another field or variable.

Ignore

Include constructor or
setter method
parameters

When enabling this option, the compiler additionally will issue an
error or a warning if a constructor or setter method parameter hides
another field or variable.

Off

Type parameter hides
another type

When enabling this option, the compiler will issue an error or a
warning if eg. a type parameter of an inner class hides an outer type.

Warning

Methods overridden
but not package visible

A package default method is not visible in a different package, and
thus cannot be overridden. When enabling this option, the compiler
will signal such scenario either as an error or a warning.

Warning

Conflict of interface
method with protected
'Object' method

When enabled, the compiler will issue an error or a warning whenever
an interface defines a method incompatible with a non−inherited
Object method. Until this conflict is resolved, such an interface cannot
be implemented, eg.

interface I {
 int clone();
}

Warning

Name shadowing and conflicts

Deprecated API When enabled, the compiler will signal use of deprecated API
either as an error or a warning.

Warning

Signal use of deprecated
API inside deprecated code

When enabled, the compiler will signal use of deprecated API
inside deprecated code. The severity of the problem is controlled
with option "Deprecated API".

Off

Signal overriding or
implementing deprecated
method

When enabled, the compiler will signal overriding or
implementing a deprecated method The severity of the problem is
controlled with option "Deprecated API".

Off

Forbidden reference (access
rules)

When enabled, the compiler will signal a forbidden reference
specified in the access rules.

Error

Discouraged reference
(access rules)

When enabled, the compiler will signal a discouraged reference
specified in the access rules.

Warning

Unnecessary code

Local variable is never
read

When enabled, the compiler will issue an error or a warning
whenever a local variable is declared but never used within the its

Warning

 Basic tutorial

Name shadowing and conflicts 45

scope.

Parameter is never read When enabled, the compiler will issue an error or a warning
whenever a parameter is declared but never used within the its
scope.

Ignore

Check overriding and
implementing methods

When enabled, the compiler additionally will issue an error or a
warning whenever a parameter is declared but never used within the
its scope in overriding or implementing methods.

Off

Unused imports When enabled, the compiler will issue an error or a warning for
unused import reference.

Warning

Unused local or private
members

When enabled, the compiler will issue an error or a warning
whenever a local or private member is declared but never used
within the same unit.

Warning

Unnecessary else
statement

When enabled, the compiler will issue an error or a warning
whenever it encounters an unnecessary else statement (eg. if
(condition) return; else doSomething();).

Ignore

Unnecessary cast or
'instanceof' operation

When enabled, the compiler will issue an error or a warning
whenever it encounters an unnecessary cast or 'instanceof' operation
(eg. if (object instanceof Object) return;).

Ignore

Unnecessary declaration
of thrown checked
exception

When enabled, the compiler will issue an error or a warning
whenever it encounters an unnecessary declaration of a thrown
exception.

Ignore

Check overriding and
implementing methods

When enabled, the compiler additionally will issue an error or a
warning whenever it encounters an unnecessary declaration of a
thrown exception in an overriding or implementing method.

Off

J2SE 5.0 options

Unchecked generic type operation When enabled, the compiler will
issue an error or a warning
whenever it encounters an
unchecked generic type operation.

Warning

Generic type parameter declared with a final
type bound

When enabled, the compiler will
issue an error or a warning
whenever it encounters a type
bound involving a final type.

Warning

Inexact type match for vararg arguments When enabled, the compiler will
issue an error or a warning
whenever it encounters an inexact
type match for vararg arguments.

Warning

Boxing and unboxing conversions When enabled, the compiler will
issue an error or a warning
whenever it encounters a boxing or

Ignore

 Basic tutorial

Unnecessary code 46

unboxing conversion. Autoboxing
may affects performance negatively.

Missing '@Override' annotation When enabled, the compiler will
issue an error or a warning
whenever it encounters a method
overriding another implemented
method, and the '@Override'
annotation is missing.

Ignore

Missing '@Deprecated' annotation When enabled, the compiler will
issue an error or a warning
whenever it encounters a deprecated
type without additional
'@Deprecated' annotation.

Ignore

Annotation is used as super interface When enabled, the compiler will
issue an error or a warning
whenever it encounters a type
implementing an annotation.
Although possible, this is
considered bad practice.

Warning

Not all enum constants covered on 'switch' When enabled, the compiler will
issue an error or a warning
whenever it encounters a switch
statement which does not contain
case statements for every enum
constant of the referenced enum.

Ignore

Unhandled warning tokens in
'@SuppressWarnings'

When enabled, the compiler will
issue an error or a warning
whenever it encounters an
unhandled warning token in a
'@SuppressWarnings' annotation.

Warning

Enable '@SuppressWarnings' annotations When enabled, the compiler will
process '@SuppressWarnings'
annotations.

On

Java builder

Building a Java program
Working with build paths
Working with JREs

 Basic tutorial

J2SE 5.0 options 47

Classpath Variables preferences
Java Build Path properties

 Basic tutorial

J2SE 5.0 options 48

Building a Java program
A build command compiles workbench resources. A build command can be triggered in different ways:

Building automatically: If auto build is turned on (Project > Build Automatically, or Window >
Preferences > General > Workspace > Build automatically), then an incremental build occurs every
time you save a modified workbench resource.

•

Building manually: You can perform a manual build using a keyboard shortcut, a project's pop−up
menu or the Project menu in the menu bar.

•

Build classpath
Java builder

Building automatically
Building manually
Adding a JAR file to the build path
Adding a library folder to the build path
Viewing and editing a project's build path
Working with build paths

Java Build Path
Java Compiler preferences Project menu

 Building a Java program 49

Building automatically
To enable automatic building:

Enable Project > Build Automatically or
select the Window > Preferences > General > Workspace > Build automatically checkbox.

To disable automatic building:

Disable Project > Build Automatically or
clear the Window > Preferences > General > Workspace > Build automatically checkbox.

Java builder
Build class path

Building a Java program
Building manually
Viewing compilation errors and warnings
Working with build paths
Adding a JAR file to the build path
Adding a library folder to the build path
Viewing and editing a project's build path

Java Build path

 Building automatically 50

Building manually

Incremental build

The Build command performs an incremental build that compiles all resources modified since the last build.
To trigger an incremental build, either:

press Ctrl+B or•
from the menu bar, select Project > Build All•

Incremental project build

You can also incrementally build single projects. Select the project that you want to build and:

Select Project > Build Project from the menu bar or•
Select Build Project from the project's pop−up menu•

Clean and rebuild from scratch (full build)

To clean and rebuild all workbench resources that have an associated builder (e.g. Java projects), select
Project > Clean... from the menu bar. Then select Clean all projects and press OK.

Clean and rebuild selected projects

To clean and rebuild all resources contained in one or multiple projects:

Select the projects•
Select Project > Clean... from the menu bar•
Press OK•

or

Select Project > Clean... from the menu bar•
Select Clean projects selected below•
Select the projects to clean and press OK•

Java builder
Build classpath

Building a Java program
Building automatically
Working with build paths
Adding a JAR file to the build path

 Building manually 51

Adding a library folder to the build path
Viewing and editing a project's build path

Java Build path
Project menu

 Basic tutorial

Clean and rebuild selected projects 52

Working with build paths
Setting up the proper Java build path is an important task when doing Java development. Without the correct
Java build path, you cannot compile your code. In addition, you cannot search or look at the type hierarchies
for Java elements.

Java builder
Build classpath

Viewing and editing a project's build path
Adding a JAR file to the build path
Adding a library folder to the build path
Adding source code as individual files
Assigning the default JRE for the workbench
Building a Java program
Building automatically
Building manually
Choosing a JRE for launching a project

Java Build path
Installed JREs preference page

 Working with build paths 53

Viewing and editing a project's Java build path
A project's Java build path can either be defined when creating the project with the New Wizard or later in the
project's property dialog. The Java build path settings dialog is the same in both cases. To view and edit a
project's Java build path, follow these steps:

Select the project you want to view or edit1.
From the project's pop−up menu, select Properties2.
Select the Java Build Path page3.
Define the source entries for the build path on the Source page:

Click the Add Folder button to add source folders to the Java build path.
The Remove button removes the selected folder(s) from the build path.
Edit lets you modify the selected entry.

♦
4.

On the Projects page, identify the other projects that are required for building this project. The list
shows all the existing Java projects from the workbench. Note: Each selected project is automatically
added to the list of referenced projects.

5.

On the Libraries page, define the libraries required by your project. Libraries come in different forms.
There are buttons for adding a library in each form. By default, each Java project has a 'JRE System
Library' entry on the build path. This entry stands for the workbench's default JRE.

6.

On the Order and Export page, define the Java build path order. The recommended ordering is to
have source entries before the library entries and the required projects.

7.

Java builder
Build classpath

Adding a JAR file to the build path
Adding a library folder to the build path
Adding a variable class path entry
Building a Java program
Working with build paths
Working with JREs

Java Build path

 Viewing and editing a project's Java build path 54

Adding a JAR file to the build path
You can add a JAR file stored either in the workbench or anywhere in your file system to the build class path.

To add a JAR to your build class path follow these steps:

Select the project, and from its pop−up menu, select Properties. In the Properties dialog, select the
Java Build Path page.
Click the Libraries tab.
You can now either add a JAR file which is contained in your workspace or which is somewhere else:

to add a JAR file which is inside your workspace click the Add JARs button♦
to add an external JAR file click the Add External JARs button♦

1.

In the dialog that appears, select the JAR file that you want to add. Note that you can add multiple
JARs at once.

2.

Alternatively, to add an external JAR to your build class path follow these steps:

Select the project, and from its pop−up menu, select Build Path > Add external archives.1.
In the dialog that appears, select the JAR file that you want to add. Note that you can add multiple
JARs at once.

2.

Java builder
Build classpath

Adding a library folder to the build path
Building a Java program
Building automatically
Building manually
Creating a new JAR file
Viewing and editing a project's build path
Working with build paths

Java Build path

 Adding a JAR file to the build path 55

Adding a library folder to the build path
A library folder is an ordinary folder containing a collection of class files inside the workbench. Use this
format for a library when a library is not packaged as a JAR file.

To add a library folder to the project's build class path, follow these steps:

Select the project, and from its context menu, select Properties.1.
In the Properties dialog, select the Java Build Path page.2.
Click the Libraries tab.3.
Click the Add Class Folder button.4.
In the dialog that appears, select a folder to add press the OK button. If you want to add a not yet
existing folder use first Create New Folder. After the folder is created select the new folder and press
the OK button

5.

Java builder
Build classpath

Adding a JAR file to the build path
Building a Java program
Building automatically
Building manually
Viewing and editing a project's build path
Working with build paths

Java Build Path

 Adding a library folder to the build path 56

Creating a new JAR file
To create a new JAR file in the workbench:

In the Package Explorer, you can optionally pre−select one or more Java elements to export. (These
will be automatically selected in the JAR Package Specification wizard page, described in Step 4.)

1.

Either from the context menu or from the menu bar's File menu, select Export.2.
Select JAR file, then click Next.3.
In the JAR Package Specification page, select the resources that you want to export in the Select the
resources to export field.

4.

Select the appropriate checkbox to specify whether you want to Export generated class files and
resources or Export Java source files and resources. Note: Selected resources are exported in both
cases.

5.

In the Select the export destination field, either type or click Browse to select a location for the JAR
file.

6.

Select or clear the Compress the contents of the JAR file checkbox.7.
Select or clear the Overwrite existing files without warning checkbox. If you clear this
checkbox, then you will be prompted to confirm the replacement of each file that will be overwritten.

8.

Note: The overwrite option is applied when writing the JAR file, the JAR description, and the
manifest file.

9.

You have two options:
Click Finish to create the JAR file immediately.♦
Click Next to use the JAR Packaging Options page to set advanced options, create a JAR
description, or change the default manifest.

♦

10.

Java development tools (JDT)

Adding a JAR file to the build path
Attaching source to a JAR file
Defining the JAR file's manifest
Setting advanced options

JAR file exporter
Package Explorer

 Creating a new JAR file 57

Attaching source to a JAR file
You can attach source to a JAR file to enable source−level stepping and browsing of classes contained in a
binary JAR file. Unless its source code is attached to a JAR file in the workbench, you will not be able to view
the source for the JAR file.

To attach source to a JAR file:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Build Path page.

1.

On the Libraries tab, select the JAR file to which you want to attach source.
Expand the node by clicking on the plus and select the node Source Attachment. Click the Edit button
to bring up the source attachment dialog.

2.

Fill in the Location path field depending on the location, choose between the workspace, an external
file or external folder.

3.

Click OK.4.

or

Select the JAR file in the Package Explorer, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Source Attachment page.

1.

Fill in the Location path field depending on the location, choose between the workspace, an external
file or external folder.

2.

Click OK .3.

Java development tools (JDT)

Attaching source to variables
Creating a new JAR file
Stepping through the execution of a program

Java Build Path
Source Attachment dialog

 Attaching source to a JAR file 58

Attaching source to a class path variable
When attaching source for a class path variable entry, both the path to the Archive and the Root Path must be
defined by variables. Follow these steps to make a source attachment for a variable:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Build Path page.

1.

On the Libraries tab, select the class path variable to which you want to attach source.
Expand the node by clicking on the plus and select the node Source Attachment. Click the Edit button
to bring up the source attachment dialog.

2.

In Location variable path field, use a variable to define the location of the archive. Use the Variable
button to select an existing variable and the Extension button to append an optional path extension.

3.

Click OK.4.

or

Select the JAR file in the Package Explorer, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Source Attachment page.

1.

In Location variable path field, use a variable to define the location of the archive. Use the Variable
button to select an existing variable and the Extension button to append an optional path extension.

2.

Click OK .3.

Classpath variables

Adding a variable class path entry
Defining a class path variable
Deleting a class path variable

Classpath Variables preference page
Source Attachment dialog

 Attaching source to a class path variable 59

Adding a classpath variable to the build path
To add a classpath variable to the Java build path of a project, follow these steps:

Select the project to which you want to add the classpath variable1.
From the project's pop−up menu, select Properties2.
In the Properties page, select the Java Build Path page.3.
On the Libraries tab, click Add Variable for adding a variable that refers to a JAR file.
The New Variable Classpath Entry dialog appears which shows all available classpath variables.

4.

Select a classpath variable then press OK.
If the variable resolves to a folder, you can specify a path extension that points to a JAR. To
do this press the Extend... button.

♦

Press Edit... to create a new classpath variable or edit an existing one.♦

5.

Hint: You can add multiple variable entries at once to the Java build path: Select more than one variable in the
New Variable Classpath Entry dialog, or multiple JAR files in the Variable Extension dialog.

Classpath variables
Build classpath

 Adding a classpath variable to the build path 60

Attaching source to a class path variable
Creating Java elements
Defining a class path variable
Deleting a class path variable
Viewing and editing a project's build path

Classpath Variables preference page
Build path properties page

 Basic tutorial

 Adding a classpath variable to the build path 61

Defining a classpath variable
Classpath variables are stored global to the workbench; in other words, all projects in the workbench can share
the classpath variables.

To add or change a class path variable, follow these steps:

From the menu bar, select Window > Preferences.
Select the Java > Build Path > Classpath Variables page.

1.

This page allows you to add, edit, or remove class path variables.
To add a new class path variable, click the New... button. The New Variable Entry page
opens.

♦

To edit an existing class path variable, select the variable in the Defined class path variables
list and click the Edit... button. The Edit Variable Entry page opens. Note: The reserved class
path variables, JRE_LIB, JRE_SRC, and JRE_SRCROOT cannot be edited in this page. To
change them, change the default workbench JRE on the Installed JREs page (Window >
Preferences > Java > Installed JREs).

♦

Type a name for the variable in the Name field.

2.

Type a path to be referenced by the variable in the Path field. You can also click the File or Folder
buttons to browse the file system.

3.

Click OK when you are done. The new or modified variable appears in the Defined class path
variables list on the Preferences page.

4.

Classpath variables

Adding a variable class path entry
Attaching source to a class path variable
Creating Java elements
Deleting a class path variable

Classpath Variables preference page

 Defining a classpath variable 62

Deleting a classpath variable
To delete an existing class path variable:

From the menu bar, select Window > Preferences.1.
Select the Java > Build Path > Classpath Variables page.2.
Select the variable(s) you want to delete in the Defined class path variables list and click the Remove
button. The variable(s) are removed from the classpath variables list on the preferences page.

3.

Note: The reserved class path variables, JRE_LIB, JRE_SRC, and JRE_SRCROOT cannot be deleted.

Classpath variables

Adding a variable class path entry
Attaching source to a class path variable
Creating Java elements
Defining a class path variable

Classpath Variables preference page

 Deleting a classpath variable 63

Classpath variables

Configurable variables

Classpath variables can be used in a Java Build Path to avoid a reference to the local file system. Using a
variable entry, the classpath only contains a variable and the build path can be shared in a team. The value of
the variable has to be configured on this page.

Command Description

New... Adds a new variable entry. In the resulting dialog, specify a name and path for the new
variable. You can click the File or Folder buttons to browse for a path.

Edit... Allows you to edit the selected variable entry. In the resulting dialog, edit the name and/or path
for the variable. You can click the File or Folder buttons to browse for a path.

Remove Removes the selected variable entry.

Reserved class path variables

Certain class path variables are set internally and can not be changed in the Classpath variables preferences:

JRE_LIB: The archive with the runtime JAR file for the currently used JRE.•
JRE_SRC: The source archive for the currently used JRE.•
JRE_SRCROOT: The root path in the source archive for the currently used JRE.•

Classpath variables

Working with JREs
Working with build paths
Adding a variable classpath entry
Attaching source to a classpath variable
Defining a classpath variable
Deleting a classpath variable

Installed JREs

 Classpath variables 64

Working with JREs
You can install as many different Java Runtime Environments (JREs) as you like. A JRE definition consists
of:

The type of the JRE (e.g. Standard VM or Standard 1.x.x VM)•
A name•
The location where the JRE is installed•
The location (URL) of the Javadoc•
The system libraries containing the Java system classes (like java.lang.Object). Optionally, the system
libraries can be associated with the source file containing the source for the classes in the JRE's
CLASS files

•

You can switch the default JRE for the workbench. The default JRE is the JRE to which the pre−defined
classpath variables JRE_LIB, JRE_SRC and JRE_SRCROOT are bound.

Java development tools (JDT)
Classpath variable

Adding a new JRE definition
Assigning the default JRE for the workbench
Choosing a JRE for launching a project
Deleting a JRE definition
Editing a JRE definition
Overriding the default system libraries for a JRE definition
Viewing and editing a project's build path

Installed JREs preference page

 Working with JREs 65

Adding a new JRE definition
You can add any number of JRE definitions.

From the menu bar, select Window > Preferences.1.
In the left pane, expand the Java category and select Installed JREs.2.
Click the Add... button. The Create JRE dialog opens.3.
In the JRE type field, select the type of JRE you want to add from the drop−down list.4.
In the JRE name field, type a name for the new JRE definition. All JREs of the same type must have
a unique name.

5.

In the JRE home directory field, type or click Browse to select the path to the root directory of the
JRE installation (usually the directory containing the bin and lib directories for the JRE). This location
is checked automatically to make sure it is a valid path.

6.

In the Javadoc URL field, type or click Browse to select the URL location. The location is used by
the Javadoc export wizard as a default value and by the 'Open External Javadoc' action.

7.

If you want to use the default libraries and source files for this JRE, select the Use default system
libraries checkbox. Otherwise, clear it and customize as desired. Source can be attached for the
referenced JARs as well.

8.

Click OK when you are done.9.

Java development tools (JDT)

Working with JREs
Assigning the default JRE for the workbench
Editing a JRE definition
Overriding the default system libraries for a JRE definition

Installed JREs preference page

 Adding a new JRE definition 66

Assigning the default JRE for the workbench
The default JRE is used for compiling and launching Java programs in all projects unless you specifically
override the default JRE. The default JRE is the installed JRE to which JRE_LIB, JRE_SRC and
JRE_SRCROOT are bound. A project is not compiled against the default JRE if the JRE_LIB variable has
been removed from its build path. A program is not launched with the default JRE if a custom runtime JRE
has been set for its project.

Here is how you can change the default JRE:

From the workbench's menu bar, select Window > Preferences.1.
Expand the Java category in the left pane and select Installed JREs.2.
Check the box on the line for the JRE that you want to assign as the default JRE in your workbench. If
the JRE you want to assign as the default does not appear in the list, you must add it.

3.

Click OK.4.

Note: The JRE_LIB, JRE_SRC and JRE_SRCROOT system variables are automatically updated when you
change the default JRE. This may cause a build to occur if you have auto build enabled (Project > Build
Automatically or Window > Preferences > General > Workspace > Build automatically).

Java development tools (JDT)

Adding a new JRE definition
Choosing a JRE for launching a project
Working with build paths
Working with JREs

Installed JREs preference page

 Assigning the default JRE for the workbench 67

Choosing a JRE for a launch configuration
Instead of using the default JRE for running and debugging all Java Application launch configurations, you
can specifically assign a JRE for launching an individual configuration.

With a Java Application configuration selected in the Launch Configuration Dialog, select the JRE
tab.

1.

In the list of available JREs, select the JRE you want to use to launch this configuration and click
Apply, Run, or Debug.

2.

Note: Changing the JRE used for running does not affect the way Java source is compiled. You can adjust the
build path to compile against custom libraries.

Java development tools (JDT)

Assigning the default JRE for the workbench
Running and debugging
Working with build paths
Working with JREs

 Choosing a JRE for a launch configuration 68

Running and debugging
You may launch your Java programs from the workbench. The programs may be launched in either run or
debug mode.

In run mode, the program executes, but the execution may not be suspended or examined.•
In debug mode, execution may be suspended and resumed, variables may be inspected, and
expressions may be evaluated.

•

Debugger
Remote debugging
Local debugging

Changing debugger launch options
Choosing a JRE for launching a project
Creating a Java scrapbook page
Disconnecting from a VM
Launching a Java program
Local debugging
Preparing to debug
Re−launching a program
Remote debugging
Resuming the execution of suspended threads
Setting execution arguments
Stepping through the execution of a program
Suspending threads
Viewing compilation errors and warnings

Run and debug actions
Debug view
Debug preferences
Console preferences

 Running and debugging 69

Remote debugging
The client/server design of the Java debugger allows you to launch a Java program from computer on your
network and debug it from the workstation running the platform. This is particularly useful when you are
developing a program for a device that cannot host the development platform. It is also useful when
debugging programs on dedicated machines such as web servers.

Note: To use remote debugging, you must be using a Java VM that supports this feature.

To debug a program remotely, you must be able to launch the program in debug mode on the remote machine
so that it will wait for a connection from your debugger. The specific technique for launching the program
and connecting the debugger are VM−specific. The basic steps are as follows:

Ensure that you are building your Java program with available debug information. (You can control
these attributes from Window > Preferences > Java > Compiler).

1.

After you build your Java program, install it to the target computer. This involves copying the
.CLASS files or .JAR files to the appropriate location on the remote computer.

2.

Invoke the Java program on the remote computer using the appropriate VM arguments to specify
debug mode and a communication port for the debugger.

3.

Start the debugger using a remote launch configuration and specify the address and port of the remote
computer.

4.

More specific instructions for setting up a launch configuration for remote debugging should be obtained from
your VM provider.

Using the remote Java application launch configuration
Disconnecting from a VM

Remote debugging 70

Using the remote Java application launch
configuration
The Remote Java Application launch configuration should be used when debugging an application that is
running on a remote VM. Since the application is started on the remote system, the launch configuration does
not specify the usual information about the JRE, program arguments, or VM arguments. Instead, information
about connecting to the application is supplied.

To create a Remote Java Application launch configuration, do the following:

Select Run >Debug....from the workbench menu bar (or Debug... from the drop−down menu on the
Debug tool bar button) to show the launch configuration dialog.

1.

Select the Remote Java Application in the list of configuration types on the left.2.
Click the New button. A new remote launch configuration is created and three tabs are shown:
Connect, Source, and Common.

3.

In the Project field of the Connect tab, type or browse to select the project to use as a reference for
the launch (for source lookup). A project does not need to be specified.

4.

In the Host field of the Connect tab, type the IP address or domain name of the host where the Java
program is running.
If the program is running on the same machine as the workbench, type localhost.

5.

In the Port field of the Connect tab, type the port where the remote VM is accepting connections.
Generally, this port is specified when the remote VM is launched.

6.

The Allow termination of remote VM flag is a toggle that determines whether the Terminate
command is enabled in the debugger. Select this option if you want to be able to terminate the VM to
which you are connecting.

7.

Click Debug. The launch attempts to connect to a VM at the specified address and port, and the result
is displayed in the Debug view. If the launcher is unable to connect to a VM at the specified address,
an error message appears.

8.

Specific instructions for setting up the remote VM should be obtained from your VM provider.

Debugger

Launching a Java program
Disconnecting from a VM
Setting execution arguments

Debug view

 Using the remote Java application launch configuration 71

Disconnecting from a VM
To disconnect from a VM that was connected to with a Remote Java Application launch configuration:

In the Debug view, select the launch.1.
Click the Disconnect button in the view's toolbar. Communication with the VM is terminated, and all
threads in the remote VM are resumed. Although the remote VM continues to execute, the debug
session is now terminated.

2.

Debugger

Connecting to a remote VM with the Remote Java application launch configuration
Running and debugging

Debug view

 Disconnecting from a VM 72

Debug view
This view allows you to manage the debugging or running of a program in the workbench. It displays the
stack frame for the suspended threads for each target you are debugging. Each thread in your program appears
as a node in the tree. It displays the process for each target you are running.

If the thread is suspended, its stack frames are shown as child elements.

Debug View Commands

Command Name Description
Resume This command resumes a suspended thread.

Suspend This command suspends the selected thread of a target so that you can browse
or modify code, inspect data, step, and so on.

Terminate This command terminates the selected debug target.

Context
menu only

Terminate &
Remove

This command terminates the selected debug target and removes it from the
view.

Context
menu only

Terminate All This command terminates all active launches in the view.

Disconnect This command disconnects the debugger from the selected debug target when
debugging remotely.

Remove All
Terminated
Launches

This command clears all terminated debug targets from the view display.

Use Step Filters This command toggles step filters on/off. When on, all step functions apply
step filters.

Step Into This command steps into the highlighted statement.

Step Over This command steps over the highlighted statement. Execution will continue
at the next line either in the same method or (if you are at the end of a
method) it will continue in the method from which the current method was
called.

The cursor jumps to the declaration of the method and selects this line.

Run to Return This command steps out of the current method. This option stops execution
after exiting the current method.

Show Qualified
Names

This option can be toggled to display or hide qualified names.

Context
Copy Stack This command copies the selected stack of suspended threads as well as the

state of the running threads to the clipboard.

 Debug view 73

menu only

Drop to Frame This command lets you drop back and reenter a specified stack frame. This
feature is similar to "running backwards" and restarting your program
part−way through.

To drop back and reenter a specified stack frame, select the stack frame that
you want to "drop" to, and select Drop to Frame.

Some caveats apply to this feature:

You cannot drop past a native method on the stack.•
Global data are unaffected and will retain their current values. For
example, a static vector containing elements will not be cleared.

•

Note: This command is only enabled if the underlying VM supports this
feature.

Context
menu only

Relaunch This command re−launches the selected debug target.

Context
menu only

Properties This command displays the properties of the selected launch. It also allows
you to view the full command line for a selected process.

Debugger
Java views
Local debugging
Remote debugging

Changing debugger launch options
Connecting to a remote VM with the Remote Java application launch configuration
Disconnecting from a VM
Launching a Java program
Preparing to debug
Resuming the execution of suspended threads
Running and debugging
Stepping through the execution of a program
Suspending threads

Debug preferences
Run and debug actions
Views and editors

 Basic tutorial

 Debug view 74

Local debugging
The Java debugger has a client/server design so that it can be used to debug programs that run locally (on the
same workstation as the debugger) or remotely (on another computer on the network).

Local debugging is the simplest and most common kind of debugging. After you have finished editing and
building your Java program, you can launch the program on your workstation using the Run > Debug... menu
item on the workbench. Launching the program in this way will establish a connection between the debugger
client and the Java program that you are launching. You may then use breakpoints, stepping, or expression
evaluation to debug your program.

Breakpoints

Adding breakpoints
Resuming the execution of suspended threads
Running and debugging
Suspending threads

Debug preferences
Debug view
Run and debug actions

Local debugging 75

Resuming the execution of suspended threads
To resume the execution of a suspended threads:

Select the thread or its stack frame in the Debug view.1.
Click the Resume button in the Debug view toolbar (or press the F8 key). The thread resumes its
execution, and stack frames are no longer displayed for the thread. The Variables view is cleared.

2.

Debugger

Evaluating expressions
Stepping through the execution of a program
Suspending threads

Debug view

 Resuming the execution of suspended threads 76

Evaluating expressions
When the VM suspends a thread (due to hitting a breakpoint or stepping through code), you can evaluate
expressions in the context of a stack frame.

Select the stack frame in which an evaluation is to be performed. For the detail panes of the Variables
and Expressions views, the evaluation context will be a selected variable. If no variable is selected,
the selected stack frame will be the context.

1.

Expressions can be entered and evaluated in the following areas:
Display view♦
Detail pane of the Expressions view♦
Detail pane of the Variables view♦
Java editor when it is displaying source and it is not read−only♦

2.

Select the expression to be evaluated and select Display, Inspect or Execute from the context pop−up
menu. The result of a Display or Inspect evaluation is shown in a popup window. Note that Execute
does not display a result − the expression is just executed.

3.

The result popup window can be dismissed by clicking outside of the popup window or by pressing
Esc. The result can be persisted to the Display view (if Display was chosen) or Expressions view (if
Inspect was chosen) by pressing the key sequence shown at the bottom of the popup window. For
example, to move the result of an Inspect evaluation to the Expressions view press CTRL−Shift−I.
Note that when the Display action is used from the Display view the result is written to the Display
view rather than a popup

4.

Note: Evaluations cannot be performed in threads that have been manually suspended.

Debugger
Java editor

Suspending threads
Resuming the execution of suspended threads

Display view
Expressions view
Expressions view Show Detail Pane
Variables view
Variables view Show Detail Pane

 Evaluating expressions 77

Suspending threads
To suspend an executing thread:

Select the thread in the Debug view.1.
Click the Suspend button in the Debug view toolbar. The thread suspends its execution. The current
call stack for the thread is displayed, and the current line of execution is highlighted in the editor in
the Debug perspective.

2.

When a thread suspends, the top stack frame of the thread is automatically selected. The Variables view
shows the stack frame's variables and their values. Complex variables can be further examined by expanding
them to show the values of their members.

When a thread is suspended and the cursor is hovered over a variable in the Java editor, the value of that
variable is displayed.

Debugger
Java editor
Java perspectives

Catching Java exceptions
Evaluating expressions
Resuming the execution of suspended threads
Stepping through the execution of a program

Debug view
Variables view

 Suspending threads 78

Catching Java exceptions
It is possible to suspend the execution of thread when an exception is thrown by specifying an exception
breakpoint. Execution can be suspended at locations where the exception is uncaught, caught, or both.

Choose Add Java Exception Breakpoint from the Breakpoints view or the workbench Run menu. 1.
A dialog listing all of the available exceptions is shown.2.
Either type the name of the exception you want to catch or select it from the list.3.
At the bottom of the page, use the checkboxes to specify how you want execution to suspend at
locations where the exception is thrown.

Select Caught if you want execution to suspend at locations where the exception is thrown
but caught.

♦

Select Uncaught if you want execution to suspend at locations where the exception is
uncaught.

♦

4.

Note: Exception breakpoints can be enabled and disabled and have hit counts just like regular breakpoints.

Java development tools (JDT)
Breakpoints

Suspending threads
Adding breakpoints
Removing breakpoints
Enabling and disabling breakpoints
Setting method breakpoints

Breakpoints view

 Catching Java exceptions 79

Removing breakpoints
Breakpoints can be easily removed when you no longer need them.

In the editor area, open the file where you want to remove the breakpoint.1.
Directly to the left of the line where you want to remove the breakpoint, open the marker bar pop−up
menu and select Toggle Breakpoint. The breakpoint is removed from the workbench. You can also
double−click directly on the breakpoint icon to remove it.

2.

Breakpoints can also be removed in the Breakpoints view. Select the breakpoint(s) to be removed and from
the context menu select Remove.
All breakpoints can be removed from the workbench using the Remove All action in the context menu of the
Breakpoints view.

If you find yourself frequently adding and removing a breakpoint in the same place, consider disabling the
breakpoint when you don't need it (using Disable Breakpoint in the breakpoint context menu or the
Breakpoints view) and enabling it when needed again.

Debugger
Java perspectives
Java editor

Adding breakpoints
Enabling and disabling breakpoints
Applying hit counts
Catching Java exceptions
Managing conditional breakpoints
Setting method breakpoints
Stepping through the execution of a program

Breakpoints view

 Removing breakpoints 80

Enabling and disabling breakpoints
Breakpoints can be enabled and disabled as needed. When a breakpoint is enabled, thread execution suspends
before that line of code is executed. When a breakpoint is disabled, thread execution is not suspended by the
presence of the breakpoint.

To disable a breakpoint in the Breakpoints view:

Open the breakpoint's context menu and select Disable, or deselect the breakpoint's checkbox.1.
The breakpoint image will change to a white circle and its checkbox will be empty.2.

To disable a breakpoint in the marker bar of an editor:

Open the breakpoint's context menu and select Disable Breakpoint.1.
The breakpoint image will change to a white circle.2.

To enable the breakpoint in the Breakpoints view:

Open the breakpoint's context menu and select Enable, or select the breakpoint's checkbox.1.
The breakpoint image will change back to a blue circle, and its checkbox will be checked.2.

To enable a breakpoint in the marker bar of an editor:

Open the breakpoint's context menu and select Enable Breakpoint.1.
The breakpoint image will change to a white circle.2.

Debugger
Java perspectives
Java editor

Applying hit counts
Catching Java exceptions
Removing breakpoints
Setting method breakpoints
Managing conditional breakpoints
Stepping through the execution of a program

Breakpoints view

 Enabling and disabling breakpoints 81

Applying hit counts
A hit count can be applied to line breakpoints, exception breakpoints, watchpoints and method breakpoints.
When a hit count is applied to a breakpoint, the breakpoint suspends execution of a thread the nth time it is
hit, but never again, until it is re−enabled or the hit count is changed or disabled.

To set a hit count on a breakpoint:

Select the breakpoint to which a hit count is to be added.1.
From the breakpoint's pop−up menu, select Hit Count.2.
In the Enter the new hit count for the breakpoint field, type the number of times you want to hit the
breakpoint before suspending execution.

Note: When the breakpoint is hit for the nth time, the thread that hit the breakpoint suspends. The
breakpoint is disabled until either it is re−enabled or its hit count is changed.

3.

Breakpoints

Adding breakpoints
Removing breakpoints
Enabling and disabling breakpoints
Setting method breakpoints

Breakpoints view

 Applying hit counts 82

Setting method breakpoints
Method breakpoints are used when working with types that have no source code (binary types).

Open the class in the Outline view, and select the method where you want to add a method
breakpoint.

1.

From the method's pop−up menu, select Toggle Method Breakpoint.2.
A breakpoint appears in the Breakpoints view. If source exists for the class, then a breakpoint also
appears in the marker bar in the file's editor for the method that was selected.

3.

While the breakpoint is enabled, thread execution suspends when the method is entered, before any
line in the method is executed.

4.

Method breakpoints can also be setup to break on method exit. In the Breakpoints view, select the breakpoint
and toggle the Exit item in its context menu.

Method breakpoints can be removed, enabled, and disabled just like line breakpoints.

Breakpoints

Adding breakpoints
Removing breakpoints
Enabling and disabling breakpoints
Applying hit counts
Catching Java exceptions

Breakpoints view
Java outline

 Setting method breakpoints 83

Breakpoints view
The Breakpoints view lists all the breakpoints you have set in the workbench projects. You can double−click a
breakpoint to display its location in the editor. In this view, you can also enable or disable breakpoints, delete
them, or add new ones.

This view also lists Java exception breakpoints, which suspend execution at the point where the exception is
thrown. You can add or remove exceptions.

Breakpoints
Java views

Adding breakpoints
Applying hit counts
Catching Java exceptions
Removing breakpoints
Enabling and disabling breakpoints
Managing conditional breakpoints
Setting method breakpoints

Views and editors

 Breakpoints view 84

Managing conditional breakpoints
An enabling condition can be applied to line breakpoints, so that the breakpoint suspends execution of a
thread in one of these cases:

when the enabling condition is true•
when the enabling condition changes•

To set a condition on a breakpoint:

Find the breakpoint to which an enabling condition is to be applied (in the Breakpoints view or in the
editor marker bar).

1.

From the breakpoint's pop−up menu, select Breakpoint Properties.... The Breakpoint properties
dialog will open.

2.

In the properties dialog, check the Enable Condition checkbox. 3.
In the Condition field enter the expression for the breakpoint condition.4.
Do one of the following:

If you want the breakpoint to stop every time the condition evaluates to true, select the
condition is 'true' option. The expression provided must be a boolean expression.

♦

If you want the breakpoint to stop only when the result of the condition changes, select the
value of condition changes option.

♦

5.

Click OK to close the dialog and commit the changes. While the breakpoint is enabled, thread
execution suspends before that line of code is executed if the breakpoint condition evaluates to true.

6.

A conditional breakpoint has a question mark overlay on the breakpoint icon.

Debugger
Java perspectives
Java editor

Adding breakpoints
Applying hit counts
Catching Java exceptions
Removing breakpoints
Setting method breakpoints
Stepping through the execution of a program

Breakpoints view

 Managing conditional breakpoints 85

Views and editors

Java editor
Java views
Java Development Tools (JDT)

Changing the appearance of the console view
Changing the appearance of the Hierarchy view
Opening an editor for a selected element
Opening an editor on a type
Using content/code assist

Java editor actions
Breakpoints view
Console view
Debug view
Display view
Expressions view
Java outline
Package Explorer view
Type Hierarchy view
Variables view

 Views and editors 86

Changing the appearance of the Hierarchy view
The Hierarchy view offers three different ways to look at a type hierarchy (use the toolbar buttons to alternate
between them):

Show the Type Hierarchy displays the type hierarchy of a type. This view shows all super− and
subtypes of the selected type. Type java.lang.Object is shown in the top−left corner. Interfaces are not
shown.

•

Show the Supertype Hierarchy displays the supertype hierarchy of a type. This view shows all
supertypes and the hierarchy of all implemented interfaces. The selected type is always shown in the
top−left corner.

•

Show the Subtype Hierarchy displays the subtype hierarchy of a type. This view shows all subtypes
of the selected type and all implementors of the selected interface (if the view is opened on an
interface). The selected type is always shown in the top−left corner.

•

Java views

Using the Hierarchy view

Views and editors
Type Hierarchy view

 Changing the appearance of the Hierarchy view 87

Using the Hierarchy view

Changing the appearance of the Hierarchy view
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in its own perspective
Finding overridden methods

Views and editors
Type Hierarchy view

 Using the Hierarchy view 88

Opening a type hierarchy on a Java element
There are several ways to open a type hierarchy. Select a Java element in a Java view and:

Press F4 or•
Choose Open Type Hierarchy from the view's pop−up menu or•
Drag and drop the element to the Hierarchy view or•
Press Ctrl+Shift+H and select a type from the list in the resulting dialog (you cannot select a package,
source folder, or project with this method) or

•

Select Navigate > Open Type in Hierarchy from the menu bar or•
Select Focus On... from the pop−up menu of the type hierarchy viewer.•

Java development tools (JDT)

Changing new type hierarchy defaults
Creating Java elements
Using the Hierarchy view
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in the workbench
Opening a type hierarchy in its own perspective

Views and editors
Type Hierarchy view

 Opening a type hierarchy on a Java element 89

Changing new type hierarchy defaults
New type hierarchies can open in a Hierarchy view or in a Java Hierarchy perspective. You can indicate
which is the default method for opening new type hierarchies on the preferences pages.

Select Window > Preferences, and select the Java category. The general Java Preferences page
opens.

1.

Use the radio buttons that appear under When opening a Type Hierarchy to indicate your preference.2.

Java development tools (JDT)

Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in the workbench
Opening a type hierarchy in its own perspective

Java Base preference page

 Changing new type hierarchy defaults 90

Opening a type hierarchy on the current text
selection
To open a type hierarchy on a text selection, select the name of a Java element in the editor, and do one of the
following:

Press F4•
select Open Type Hierarchy from the editor's pop−up menu•
select Navigate > Open Type Hierarchy from the menu bar•

Note: If the selected Java element (or editor selection) is not a type or a compilation unit, the hierarchy opens
on the type enclosing the current selection.

Java editor

Using the Hierarchy view
Changing new type hierarchy defaults
Changing the appearance of the Hierarchy view
Opening a type hierarchy on a Java element
Opening a type hierarchy in the workbench
Opening a type hierarchy in its own perspective

Views and editors
Type Hierarchy view
Edit menu

 Opening a type hierarchy on the current text selection 91

Opening a type hierarchy in the workbench
You can open a type hierarchy from a button in the workbench toolbar.

In the workbench toolbar, click the Open Type button.1.
Select a type in the dialog.2.
Select the Open in Type Hierarchy checkbox.3.
Click OK.4.

Java development tools (JDT)

Changing new type hierarchy defaults
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in its own perspective

Views and editors
Type Hierarchy view

 Opening a type hierarchy in the workbench 92

Opening a type hierarchy in its own perspective
The default behavior for opening the Hierarchy view is to replace the Hierarchy view that is already open in
the perspective. If there are no open Hierarchy views, one is opened automatically.

Sometimes, it is useful to look at or work with several type hierarchies in different perspectives. This can be
achieved by changing a workbench preference.

From the menu bar, select Window > Preferences and select the Java category. The general Java
Preferences page opens.

1.

In the When Opening a Type Hierarchy category, select the radio button Open a new Type
Hierarchy Perspective.

2.

Java perspectives

Using the Hierarchy view
Changing new type hierarchy defaults
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in the workbench

Views and editors
Type Hierarchy view
Java Base preference page

 Opening a type hierarchy in its own perspective 93

Type Hierarchy view
This view shows the hierarchy of a type. The Type Hierarchy view consists of two panes:

Type Hierarchy tree pane•
Member list pane (optional)•

Type Hierarchy tree pane toolbar buttons

Command Description

Previous
Hierarchy Inputs

This menu displays a history of previously displayed type hierarchies.

Show the Type
Hierarchy

This command displays the type in its full context (i.e., superclasses and subclasses) in
the Hierarchy view. To see for which type the hierarchy is shown, hover over the view
title (e.g., "Types").

Show the
Supertype
Hierarchy

This command displays the supertypes and the hierarchy of all implemented interfaces
of the type in the Hierarchy view. The tree starts at the selected type and displays the
result of traversing up the hierarchy.

Note: The selected type is always at the top level, in the upper−left corner.

Show the
Subtype
Hierarchy

This command displays the subtypes of the selected class and/or all implementors of the
interface in the Hierarchy view. The tree starts at the selected type and displays the result
of traversing down the hierarchy

Note: The selected type is always at the top level, in the upper−left corner.

Vertical View
Orientation

Arranges the two panes vertically.

Horizontal View
Orientation

Arranges the two panes horizontally.

Hierarchy View
Only

Hides the member list pane.

Member list pane toolbar buttons

The member list pane displays the members of the currently selected type in the type hierarchy tree pane.

Command Description

Lock View and Show Members
in Hierarchy

Shows the members implementing the selected method Only types
implementing the method are shown.

When the view is locked, the member list pane no longer tracks the
selection in the hierarchy pane above.

Show All Inherited Members

 Type Hierarchy view 94

Shows or hides all methods and fields inherited by base classes. When
this option is set, the name of the type that defines the method is
appended to the method name.

Sort Members by the Defining
Type

Sorts the members according to the type in which they are defined.

Hide Fields Shows or hides the fields.

Hide Static Members Shows or hides the static fields and methods.

Hide Non−Public Members Shows or hides the static fields and methods.

Views and editors

 Basic tutorial

Member list pane toolbar buttons 95

Java
On this page, indicate your preferences for the general Java settings.

Java Preferences

Option Description Default

Action on double click
in the Package
Explorer

Go into the selected element:
When you double click a container, a Go Into command
is executed.
See Go Into from the Navigate menu.

Expand the selected element:
When you double click a container, it is expanded and its
children are revealed.

Expand the
selected
element

When opening a Type
Hierarchy Open a new Type Hierarchy Perspective

Opens a new Type Hierarchy perspective whenever a
Type Hierarchy view is opened.

Show the Type Hierarchy View in the current perspective
The Type Hierarchy view is displayed in the current
perspective.

Note: On the Workbench preferences page, you can choose
whether new perspectives open in a new window, in the current
window, or as a replacement for the current perspective.

Show the Type
Hierarchy
View in the
current
perspective

Refactoring Java Code
Save all modified resources automatically prior to refactoring

If this option is turned on, all refactorings prompt
whether any modified files should be saved before
opening the refactoring wizard.

On

Search
Use reduced search menu

If this option is turned on, the search context menus show
only the most frequently used search actions.

On

Java views

Using the Package Explorer
Using the Hierarchy view

 Java 96

Package Explorer view
Hierarchy view

 Basic tutorial

 Java 97

Navigate actions
Navigate menu commands:

Name Function Keyboard
Shortcut

Go Into Sets the view input to the currently selected element. Supported by the
Packages Explorer view.

Go To
Back: Sets the view input to the input back in history: Only
enabled when a history exists (Go Into was used)

•

Forward: Sets the view input to the input forward in history: Only
enabled when a history exists (Go Into, Go To > Back were
used)

•

Up One Level: Sets the input of the current view to its input's
parent element

•

Referring Tests: Browse for all JUnit tests that refer to the
currently selected type

•

Type: Browse for a type and reveal it in the current view.
Supported by the Package Explorer view

•

Package: Browse for a package and reveal it in the current view.
Supported by the Package Explorer view

•

Resource: Browse for a resource and reveal it in the current view.•

Open Tries to resolve the element referenced at the current code selection and
opens the file declaring the reference. F3

Open Type
Hierarchy

Tries to resolve the element referenced at the current code selection and
opens the element in the Type Hierarchy view. Invoked on elements,
opens the type hierarchy of the element. Supported in the Java editor and
views showing Java elements.

F4

Open Super
Implementation

Open an editor for the super implementation of the currently selected
method or method surrounding the current cursor position. No editor is
opened if no method is selected or the method has no super
implementation.

Open External
Javadoc

Opens the Javadoc documentation of the currently selected element or text
selection. The location of the Javadoc of a JAR or a project is specified in
the Javadoc Location property page on projects or JARs. Note that this
external Javadoc documentation may not be up to date with the Javadoc
specified in the current code. You can create Javadoc documentation for
source files in a Java project using the Javadoc export wizard.

Shift + F2

Open Type Brings up the Open Type dialog to open a type in the editor.The Open
Type selection dialog shows all types existing in the workspace.

Ctrl +
Shift + T

Open Type In
Hierarchy

Brings up the Open Type dialog to open a type in the editor and the Type
Hierarchy view. The Open Type selection dialog shows all types that exist
in the workspace.

Ctrl +
Shift + H

 Navigate actions 98

Show in >
Package Explorer

Reveals the currently selected element (or the element surrounding the
current cursor position) in the Package Explorer view.

Show Outline Opens the lightweight outliner for the currently selected type. Ctrl + O

Go to Next
Problem Selects the next problem. Supported in the Java editor. Ctrl + .

Go to Previous
Problem Selects the previous problem. Supported in the Java editor. Ctrl + ,

Go to Last Edit
Location Reveal the location where the last edit occurred. Ctrl + Q

Go to Line Opens an a dialog which allows entering the line number to which the
editor should jump to. Editor only. Ctrl + L

Java views
Java development tools (JDT)

Opening an editor for a selected element
Showing an element in the Package Explorer
Opening a type in the Package Explorer
Opening an editor on a type
Opening a package
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening a type hierarchy in the workbench
Opening a type hierarchy in its own perspective

Package Explorer view
Type Hierarchy view
Javadoc Location properties
Javadoc export wizard

 Basic tutorial

 Navigate actions 99

Package Explorer view
The Package Explorer view, shown by default in the Java perspective, shows the Java element hierarchy of
the Java projects in your workbench. It provides you with a Java−specific view of the resources shown in the
Navigator. The element hierarchy is derived from the project's build paths.

For each project, its source folders and referenced libraries are shown in the tree. You can open and browse
the contents of both internal and external JAR files. Opening a Java element inside a JAR opens the CLASS
file editor, and if there is a source attachment for the JAR file, its corresponding source is shown.

 Package Explorer view 100

Toolbar buttons

Command Description

Back Navigates to the most recently−displayed state of the view with a different
element at the top level.

Forward Navigates to the state of the view with a different element at the top level
that was displayed immediately after the current state.

Up Navigates to the parent container of the package that is currently
displayed at the top level in the view.

Collapse All Collapses all tree nodes.

Link with Editor Links the package explorer's selection to the active editor.

Select Working Set... Opens the Select Working Set dialog to allow selecting a working set.

Deselect Working Set Deselects the current working set.

Edit Active Working Set Opens the Edit Working Set wizard..

Hide Non−Public Members Shows or hides the static fields and methods.

Hide Static Members Shows or hides the static fields and methods.

Hide Fields Shows or hides fields.

Filters... Opens the Java Element Filters dialog.

See Java Element Filters dialog

Java views
Java perspectives

Using the Package Explorer
Showing and hiding elements

Java Element Filters dialog
Views and editors

 Toolbar buttons 101

Java element filters dialog
This dialog lets you define Java element filters for the Package Explorer view.

Option Description Default

Name filter patterns If enabled, a comma separated list of patterns can be
specified additionally.

Off

Select the elements to exclude
from the view

List of pre−defined filters which can be enabled. .* files
Empty parent
packages
Import
declarations
Inner class
files
Package
declarations

The Filter description field displays the description for the currently selected filter.

Filtering elements
Showing and hiding elements

Package Explorer view

 Java element filters dialog 102

Filtering elements
To filter elements:

On the Package Explorer toolbar, click the Menu button and choose Filters.1.
Select or clear the filters that you want to apply to the view (read Filter description to learn about the
selected filter's functionality).

2.

Optionally, you can select patterns for filtering the view:
Select the Name filter patterns checkbox at the top of the dialog.♦
In the text field below, specify the desired patterns (names matching one of the patterns will
be hidden).

♦

3.

Java projects

Using the Package Explorer
Showing and hiding system files

Java Element Filters
Package Explorer

 Filtering elements 103

Using the Package Explorer view

Filtering elements
Showing and hiding elements
Moving folders, packages and files

Package Explorer

 Using the Package Explorer view 104

Showing and hiding elements
You can use filters to control which files are displayed in the Package Explorer.

Showing and hiding system files
Showing and hiding CLASS files generated for inner types
Showing and hiding libraries
Showing single elements or whole Java files
Showing and hiding empty packages
Showing and hiding empty parent packages
Showing and hiding Java files
Showing and hiding non−Java elements
Showing and hiding non−Java projects in Java views
Showing and hiding members in Java views
Showing and hiding override indicators
Showing and hiding method return types in Java views
Showing and hiding import declarations in Java views
Showing and hiding package declarations in Java views

Java Element Filters
Package Explorer

 Showing and hiding elements 105

Showing and hiding system files
To show system files:

Select the Filters command from the Package Explorer view drop−down menu.1.
In the exclude list clear the checkbox for .* files.2.

To hide system files:

Select the Filters command from the Package Explorer view drop−down menu.1.
In the exclude list select the checkbox for .* files. This hides files that have only a file extension but
no file name, such as .classpath.

2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

 Showing and hiding system files 106

Showing and hiding CLASS files generated for
inner types
To show CLASS files for inner types:

Select the Filters command from the Package Explorer drop−down menu.1.
Ensure that the Inner class files filter is not selected.2.

To hide CLASS files for inner types:

Select the Filters command from the Package Explorer drop−down menu.1.
Ensure that the Inner class files filter is selected.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

 Showing and hiding CLASS files generated for inner types 107

Showing and hiding libraries
To show libraries:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Referenced libraries.2.

To hide libraries:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Referenced libraries.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

 Showing and hiding libraries 108

Showing single element or whole Java file
To display the selected Java file in a single element view, click the Show Source of Selected Element
Only button in the workbench toolbar, so that it is pressed.

•

To display the selected Java file in a whole (non−segmented) view, click the Show Source of Selected
Element Only button in the workbench toolbar, so that it is not pressed.

•

Note: this toolbar button is enabled only when a Java editor is open.

Java editor

Using the Java editor

Java editor

 Showing single element or whole Java file 109

Java editor

Toolbar actions

Command Description

Show Source of
Selected Element
Only

This option can be toggled to display a segmented view of the source of the selected
Java element. This button applies to the currently−active editor and to all editors
opened in the future; other currently−open editors are not affected.

For example, if a method is selected in the Outline view, the Show Source Of
Selected Element Only option causes only that method to be displayed in the editor,
as opposed to the entire class.

Off:
The entire compilation unit is displayed in the editor, with the selected Java
element highlighted in the marker bar with a range indicator.

On:
Only the selected Java element is displayed in the editor, which is linked to
the selection in the Outline or Hierarchy view.

Go to Next Problem This command navigates to the next problem marker in the active editor.

Go to Previous
Problem

This command navigates to the previous problem marker in the active editor.

Key binding actions

The following actions can only be reached through key bindings. The Key bindings field in Window >
Preferences > General > Keys must be set to 'Emacs'.

Key binding Description

Alt+0 Ctrl+K, Esc 0 Ctrl+K Deletes from the cursor position to the beginning of the line.

Ctrl+K Deletes from the cursor position to the end of the line.

Ctrl+Space, Ctrl+2 Sets a mark at the current cursor position.

Ctrl+X Ctrl+X Swaps the cursor and mark position if any.

Java editor

Using the Java editor
Viewing documentation and information
Showing single elements or whole Java files
Opening an editor for a selected element

 Java editor 110

Java outline
Java editor preferences
JDT actions
Views and editors

 Basic tutorial

Key binding actions 111

Viewing documentation and information
You can view different kinds of documentation information while working in the workbench.

Java development tools (JDT)

Using the Java editor
Viewing Javadoc information
Viewing marker help

 Viewing documentation and information 112

Viewing Javadoc information
The JDT provides easy access to Javadoc information for the code edited in the Java editor.

Open the Java editor on a Java file.1.
Place the mouse pointer over the element whose Javadoc information you want to view (a method
name, for example).

2.

If Javadoc information is available, a pop−up window opens, displaying the Javadoc information.
HTML Javadoc can be viewed as any other resource in the workbench, through an embedded or
external editor or viewer. Import the Javadoc into the workbench and double−click it in the Package
Explorer.

3.

You can also view Javadoc information by:

Opening the Java editor on a Java file.1.
Placing the mouse pointer over the element whose Javadoc information you want to view (a method
name, for example).

2.

Pressing F2 or selecting Edit > Show Tooltip Description from the menu bar.3.

To view Javadoc in the Javadoc view:

Open the Java editor on a Java file.1.
Place the caret over the element whose Javadoc information you want to view (a method name, for
example).

2.

Open the Javadoc View (press Alt+Shift+Q, J or select Window > Show View > Javadoc).3.

To view Javadoc in an external browser:

Open the Java editor on a Java file.1.
Place the caret over the element whose Javadoc information you want to view (a method name, for
example).

2.

Press Shift+F2 or select Navigate > Open External Javadoc from the menu bar.3.

Java editor

Using the Java editor
Using content/code assist
Viewing documentation and information
Viewing marker help

Package Explorer
Javadoc Location

 Viewing Javadoc information 113

Using content/code assist
You can use content assist (also called code assist) when writing Java code or Javadoc comments.

Place your cursor in a valid position on a line of code in an editor and either
Press Ctrl+Space♦
Select Edit > Content Assist from the menu bar♦

If the Java editor finds valid candidates for this position, a list of possible completions is shown in a
floating window. You can type further to narrow the list. You can also hover over the selected list
items to view its Javadoc information, if it is available.

1.

Use the arrow keys or the mouse pointer to navigate through the possible completions.2.
Select an item in the list to complete the fragment by doing one of the following:

Selecting it and pressing Enter♦
Double−clicking it♦
Note: When a list item is selected, you can view any available Javadoc information for this
item in hover help. Note that you must click an item to select it in the list before you can view
Javadoc hover help for it.

♦

3.

Java editor
Scrapbook

Using the Java editor
Formatting Java code
Using the Java editor
Viewing Javadoc information
Views and editors

Java Content Assist

 Using content/code assist 114

Scrapbook
The JDT contributes a scrapbook facility that can be used to experiment and evaluate Java code snippets
before building a complete Java program. Snippets are edited and evaluated in the Scrapbook page editor,
with resultant problems reported in the editor.

From a Java scrapbook editor, you can select a code snippet, evaluate it, and display the result as a string. You
can also show the object that results from evaluating a code snippet in the debugger's expressions view.

Java development tools (JDT)
Debugger

Creating a Java scrapbook page
Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Using content/code assist
Viewing compilation errors and warnings

New Java Scrapbook Page wizard
Java scrapbook page
Expressions view

Scrapbook 115

Creating a Java scrapbook page
The scrapbook allows Java expressions, to be run, inspected, and displayed under the control of the debugger.
Breakpoints and exceptions behave as they do in a regular debug session.

Code is edited on a scrapbook page. A VM is launched for each scrapbook page in which expressions are
being evaluated. The first time an expression is evaluated in a scrapbook page after it is opened, a VM is
launched. The VM for a page will remain active until the page is closed, terminated explicitly (in the debugger
or via the Stop the Evaluation button in the editor toolbar), or when a System.exit() is evaluated.

There are several ways to open the New Java Scrapbook Page wizard.

Create a file with a .jpage extension•
From the menu bar, select File > New > Other. Then select Java > Java Run/Debug > Scrapbook
Page. Then click Next.

•

Once you've opened the New Java Scrapbook Page wizard:.

In the Enter or select the folder field, type or click Browse to select the container for the new page.1.
In the File name field, type a name for the new page. The .jpage extension will be added
automatically if you do not type it yourself.

2.

Click Finish when you are done. The new scrapbook page opens in an editor.3.

Scrapbook
Java projects

Creating a new source folder
Creating Java elements
Running and debugging

Java scrapbook page

 Creating a Java scrapbook page 116

Java scrapbook page
The scrapbook allows Java expressions to be run, inspected, and displayed, under the control of the debugger.

Note: Content assist (such as code assist) is available on scrapbook pages.

Java Scrapbook page buttons

Command Name Description
Run Snippet Running an expression evaluates an expression but does not

display a result.

Display Displaying shows the result of evaluating an expression as a
string in the scrapbook editor.

Inspect Inspecting shows the result of evaluating an expression in
the Expressions view.

Terminate This command terminates the Java VM that is used to
evaluate expressions.

Set the Import Declarations This commands sets the import declarations to be used for
the context of evaluating the code

Scrapbook

Creating a Java scrapbook page
Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Executing an expression

New Java Scrapbook Page wizard

 Java scrapbook page 117

Displaying the result of evaluating an expression
Displaying shows the result of evaluating an expression in the scrapbook editor.

In the scrapbook page, either type an expression or highlight an existing expression to be displayed.
For example: System.getProperties();

1.

Click the Display button in the toolbar (or select Display from the selection's pop−up menu.)2.
The result of the evaluation appears highlighted in the scrapbook editor. The result displayed is either

the value obtained by sending toString() to the result of the evaluation, or♦
when evaluating a primitive data type (e.g., an int), the result is the simple value of the result.♦

3.

For example:

Type and highlight new java.util.Date() in the editor, and click Display. A result such as
(java.util.Date) Tue Jun 12 14:03:17 CDT 2001 appears in the editor.

•

As another example, type and highlight 3 + 4 in the editor, and press Display. The result (int) 7
is displayed in the editor.

•

Scrapbook

Executing an expression
Inspecting the result of evaluating an expression
Viewing runtime exceptions

Java scrapbook page

 Displaying the result of evaluating an expression 118

Executing an expression
Executing an expression evaluates an expression but does not display a result.

If you select the expression to execute and click the Execute button in the toolbar, no result is displayed, but
the code is executed.

For example, if you type and highlight System.out.println("Hello World"), and click the
Execute button, Hello World appears in the Console view, but no result is displayed in the scrapbook editor or
the Expressions view.

Java views

Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Viewing runtime exceptions

Expressions view
Console view

 Executing an expression 119

Inspecting the result of evaluating an expression
Inspecting shows the result of evaluating an expression in the Expressions view.

In the scrapbook page, either type an expression or highlight an existing expression to be inspected.
For example: System.getProperties();

1.

Click the Inspect button in the toolbar (or select Inspect from the selection's pop−up menu).2.
The result of the inspection appears in a pop−up. 3.
The result can be inspected like a variable in the debugger (for example, children of the result can be
expanded).

4.

Scrapbook

Creating a Java scrapbook page
Displaying the result of evaluating an expression
Executing an expression
Viewing runtime exceptions

Expressions view
Java scrapbook page

 Inspecting the result of evaluating an expression 120

Viewing runtime exceptions
If an expression you evaluate causes a runtime exception, the exception will be reported in the editor. For
example:

Type and select the expression Object x = null; x.toString() in the editor and click Display in
the toolbar.

The error message:

An exception occurred during evaluation: java.lang.NullPointerException

will be displayed in the editor.

Java editor

Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Executing an expression

 Viewing runtime exceptions 121

Expressions view
Data can be inspected in the Expressions view. You can inspect data from a scrapbook page, a stack frame of
a suspended thread, and other places. The Expressions view opens automatically when an item is added to the
view.

Java views
Java perspectives
Scrapbook

Evaluating expressions
Suspending threads

Views and editors

 Expressions view 122

New Java Scrapbook Page Wizard
This wizard helps you to create a new Java scrapbook page in a project.

Create Java Scrapbook Page Options

Option Description Default

Enter or select the
parent folder

Type or browse the hierarchy below to select a container
(project or folder) for the scrapbook page.

The container of
the selected
element

File name Type a name for the new file. The ".jpage " extension is
appended automatically when not added already.

<blank>

Java Scrapbook page File actions

New Java Scrapbook Page Wizard 123

Viewing compilation errors and warnings
The workbench supports different ways to examine errors and warnings:

Error ticks in Java views (e.g. Package Explorer)•
Marker annotations in the editor•
Problems in the Problems view•
Tasks in the Tasks view•

If an expression you select to evaluate has a compilation error, it will be reported in the Scrapbook editor.

For example, if you type and select the (invalid) expression System.println("hi") in the editor and click Run in
the toolbar, the error message:

The method println(java.lang.String) is undefined for the type java.lang.System

is displayed in the editor at the point of the error.

Java builder
Java editor
Scrapbook

Building automatically
Building manually
Running and debugging
Setting execution arguments

Package Explorer

 Viewing compilation errors and warnings 124

Setting execution arguments
If you want to specify execution arguments for your program, you must define a launch configuration that
specifies the arguments.

Select Run >Run... (or Run >Debug...) from the workbench Run menu to open the list of launch
configurations. Launch configurations for Java programs are shown underneath Java Application in
this list.

1.

Create a new launch configuration by pushing the New button after selecting Java Application.2.
On the Arguments tab for the configuration, you can specify the following fields as necessary:

Program Arguments: Application−specific values that your code is expecting (a user name or
a URL for locating help files, for example).

♦

VM Arguments: Values meant to change the behavior of the Java virtual machine (VM). For
example, you may need to tell the VM whether to use a just−in−time (JIT) compiler, or you
may need to specify the maximum heap size the VM should use. Refer to your VM's
documentation for more information about the available VM arguments.

♦

Working Directory: The working directory used for the launched process. To change from
using the default working directory, uncheck Use default working directory and specify the
workspace or local directory to use for the working directory of the launched process.

♦

3.

Click Apply or Close when you are done. Every time you launch this configuration, these execution
arguments will be used.

4.

Creating a Java Application launch configuration
Launching a Java program

 Setting execution arguments 125

Creating a Java application launch configuration
When you choose Run >Run As >Java Application to launch your class, you are running your class using a
generic Java Application launch configuration that derives most of the launch parameters from your Java
project and your workbench preferences. In some cases, you will want to override the derived parameters or
specify additional arguments.

You do this by creating your own Java Application launch configuration.

Select Run >Run... or Run >Debug... from the workbench menu bar. This opens a dialog that lets
you create, modify, and delete launch configurations of different types.

1.

Select Java Application in the left hand list of launch configuration types, and press New. This will
create a new launch configuration for a Java application. The tabs on the right hand side allow you
control specific aspects of the launch.

2.

The Main tab defines the class to be launched. Enter the name of the project
containing the class to launch in the project field, and the fully qualified name of the
main class in the the Main class field. Check the Stop in main checkbox if you want
the program to stop in the main method whenever the program is launched in debug
mode.
Note: You do not have to specify a project, but doing so allows a default classpath,
source lookup path, and JRE to be chosen.

♦

The Arguments tab defines the arguments to be passed to the application and to the
virtual machine (if any). You can also specify the working directory to be used by the
launched application.

♦

The JRE tab defines the JRE used to run or debug the application. You can select a
JRE from the already defined JREs, or define a new JRE.

♦

The Classpath tab defines the location of class files used when running or debugging
an application. By default, the user and bootstrap class locations are derived from the
associated project's build path. You may override these settings here.

♦

The Source tab defines the location of source files used to display source when
debugging a Java application. By default, these settings are derived from the
associated project's build path. You may override these settings here.

♦

The Environment tab defines the environment variable values to use when running or
debugging a Java application. By default, the environment is inherited from the
Eclipse runtime. You may override or append to the inherited environment.

♦

The Common tab defines general information about the launch configuration. You
may choose to store the launch configuration in a specific file and specify which
perspectives become active when the launch configuration is launched.

♦

Debugger
Local debugging

 Creating a Java application launch configuration 126

Choosing a JRE for launching a project
Launching a Java program
Setting execution arguments
Changing debugger launch options

Debug preferences
Debug view
Run and debug actions

 Basic tutorial

 Creating a Java application launch configuration 127

Changing the active perspective when launching
You can control which perspective becomes active when a program is launched and when it suspends. The
setting is configurable for each launch configuration type, for each of the launch modes it supports.

To activate a particular perspective when a program is launched, do the following:

Open the debugger launch options preferences page (Window > Preferences > Run/Debug >
Launching).

1.

Select the Always option for the Open the associated perspective when launching preference. This
will cause the perspective associated with a program to become active whenever it is launched.

2.

To activate a particular perspective when a program is suspends, do the following:

Open the debugger preferences page (Window > Preferences > Run/Debug).1.
Select the Always option for the Open the associated perspective when a breakpoint is hit
preference. This will cause the perspective associated with a program to become active whenever a
program suspends.

2.

To associate a particular perspective with a program, do the following:

Open the run dialog (Run > Run...).1.
Select the type of launch configuration (program) that you would like to associate a perspective with
(for example, Java Application). The Perspectives tab will be displayed.

2.

For each launch mode, select the desired perspective using the combo box. This will cause the
perspective you choose to become active based on your preference settings (i.e. when a program is
launched and/or when it suspends).

3.

Press the Apply button to save the settings.4.

If the specified perspective is not open at the time it needs to be activated, that perspective is created.

Debugger
Remote debugging
Local debugging
Java perspectives

Running and debugging
Setting execution arguments
Launching a Java program

Console view
Debug preferences
Debug view

 Changing the active perspective when launching 128

Run and debug actions

 Basic tutorial

 Changing the active perspective when launching 129

Debug preferences
The following preferences can be set using the Debug Preferences page.

Option Description Default

Build (if required)
before launching

If the workspace requires building, an incremental build will be performed
prior to launching an application.

On

Remove terminated
launches when a
new launch is
created

When an application is launched, all terminated applications in the Debug
view are automatically cleared.

On

Reuse editor when
displaying source
code

The debugger displays source code in an editor when stepping through an
application. When this option is on, the debugger will reuse the editor that it
opened to display source from different source files. This prevents the
debugger from opening an excessive number of editors. When this option is
off, the debugger will open a new editor for each source file that needs to be
displayed.

On

Activate the
workbench when
when a breakpoint
is hit

This option brings attention to the debugger when a breakpoint is
encountered, by activating the associated window. The visual result varies
from platform to platform. For example, on Windows, the associated
window's title bar will flash.

On

Save dirty editors
before launching

This option controls whether the user will be prompted to save any dirty
editors before an application is launched. The allowable settings are:

Never − when this option is selected, the user is never prompted to
save dirty editors, and editors are not automatically saved.

•

Prompt − when this option is selected, the user is prompted to save
dirty editors before launching an application.

•

Auto−save − when this option is selected, any dirty editors are
automatically saved before launching (and the user is not
prompted).

•

Prompt

Debugger
Local Debugging
Remote Debugging

Changing Debugger Launch Options
Preparing to Debug
Running and Debugging

 Debug preferences 130

Java search tab
Search menu

 Basic tutorial

 Debug preferences 131

Preparing to debug
You can make your programs easier to debug by following these guidelines:

Where possible, do not put multiple statements on a single line, because some debugger features
operate on a line basis. For example, you cannot step over or set line breakpoints on more than one
statement on the same line.

•

Attach source code to JAR files if you have the source code.•

Debugger
Remote debugging
Local debugging

Changing debugger launch options
Running and debugging

Debug preferences
Debug view
Run and debug actions

 Preparing to debug 132

Run and debug actions
Run and Debug Actions

Toolbar
Button Command Description

Run This command re−launches the most recently launched application.

Debug This command re−launches the most recently launched application under
debugger control.

Run
Menu

Debug Last
Launched

This command allows you to quickly repeat the most recent launch in debug
mode (if that mode is supported).

Run
Menu

Run Last
Launched

This command allows you to quickly repeat the most recent launch in run
mode (if that mode is supported).

Run
Menu

Run History Presents a sub menu of the recent history of launch configurations launched
in run mode

Run
Menu

Run As Presents a sub menu of registered run launch shortcuts. Launch shortcuts
provide support for workbench or active editor selection sensitive launching.

Run
Menu

Run... This command realizes the launch configuration dialog to manage run mode
launch configurations.

Run
Menu

Debug History Presents a sub menu of the recent history of launch configurations launched
in debug mode.

Run
Menu

Debug As Presents a sub menu of registered debug launch shortcuts. Launch shortcuts
provide support for workbench or active editor selection sensitive launching.

Run
Menu

Debug... This command realizes the launch configuration dialog to manage debug
mode launch configurations.

Run
Menu

Various step
commands

These commands allow you to step through code being debugged.

Run
Menu

Inspect When a thread suspends, this command uses the Expressions view to show
the result of inspecting the selected expression or variable in the context of a
stack frame or variable in that thread.

Run
Menu

Display When a thread suspends, this command uses the Display view to show the
result of evaluating the selected expression in the context of a stack frame or
variable in that thread. If the current active part is a Java Snippet Editor, the
result is displayed there.

Run
Menu

Run Snippet Within the context of the Java snippet editor, this command allows you to
evaluate an expression but does not display a result.

Run
Menu

Run to Line When a thread is suspended, it is possible to resume execution until a
specified line is executed. This is a convenient way to suspend execution at a
line without setting a breakpoint.

 Run and debug actions 133

Run
Menu

Toggle Line
Breakpoint

This command allows you to add or remove a Java line breakpoint at the
current selected line in the active Java editor.

Run
Menu

Add Java
Exception
Breakpoint

This command allows you to create an exception breakpoint. It is possible to
suspend the execution of thread or VM when an exception is thrown by
specifying an exception breakpoint. Execution can be suspended at locations
where the exception is uncaught, caught, or both.

Run
Menu

Toggle Method
Breakpoint

This command allows you to add or remove a method breakpoint for the
current binary method. The binary method can be selected in source of a
Java class file editor, or be selected in any other view (such as the Outline
view).

Run
Menu

Toggle
Watchpoint

This command allows you to add or remove a field watchpoint for the
current Java field. The field can be selected in the source of a Java editor, or
be selected in any other view (such as the Outline view).

Debugger
Local Debugging
Remote Debugging

Running and Debugging
Connecting to a remote VM with the Remote Java application launch configuration
Line breakpoints
Setting method breakpoints
Catching exceptions

Debug View
Debug Preferences
Run and Debug actions

 Basic tutorial

 Run and debug actions 134

Java search tab
This tab in the Search dialog allows you to search for Java elements.

Search string

In this field, type the expression for which you wish to search, using the wildcard characters mentioned in the
dialog as needed. This field is initialized based on the current selection.

Depending on what is searched for, the search string should describe the element:
Type: the type name (may be qualified or not).
Examples:

org.eclipse.jdt.internal.core.JavaElement◊
MyClass.Inner◊
Foo◊

♦

Method: the defining type name (may be qualified or not as for Type search, optional), the
method selector and its parameters (optional).
Examples:

org.eclipse.jdt.internal.core.JavaElement.getHandleFromMemento(MementoTokenizer,
WorkingCopyOwner)

◊

equals(Object)◊
foo◊

♦

Package: the package name for a package (e.g. org.eclipse.jdt.internal.core)♦
Constructor: the defining type name (may be qualified or not as for Type search, optional)
and the constructor parameters (optional).
Examples:

org.eclipse.jdt.internal.core.JavaElement(JavaElement, String)◊
Foo◊

Note that the constructor name should not be entered as it is always the same as the type
name.

♦

Field: the defining type name (qualified or not as for Type search, optional) and the field
name.
Examples:

org.eclipse.jdt.internal.core.JavaElement.name◊
foo◊

♦

•

From the drop−down menu, you can choose to repeat (or modify) a recent search.
Select the Case sensitive field to force a case aware search. Case sensitive is enabled when a custom
search string is entered.

•

Search For

Select to search for one of the following kinds of elements:

Type•
Method•
Package•
Constructor•
Field•

Java search tab 135

Limit To

Select to limit your search results to one of the following kinds of matches:

Declarations•
Implementors (available only when searching for types)•
References•
All Occurrences•
Read Access (available only when searching for fields)•
Write Access (available only when searching for fields)•

If you would like to search the JRE system libraries as well, select the Search the JRE system libraries
checkbox.

Scope

Select to limit your search results to one of the following scope

Workspace•
Selected Resources•
Working Set•

Press Choose to select or create a working set.

Java search

Conducting a Java search using the search dialog
Conducting a Java search using pop−up menus

Search

 Basic tutorial

Limit To 136

Java search
The Java searching support allows you to find declarations, references and occurrences of Java elements
(packages, types, methods, fields). Searching is supported by an index that is kept up to date in the
background as the resources corresponding to Java elements are changed. The Java search operates on
workspaces independent of their build state. For example, searches can be conducted when auto−build is
turned off.

The following searches can be initiated from the pop−up menus of Java elements:

Command Description

References Finds all references to the selected Java element

Declarations Finds all declarations of the selected Java element

Implementors Finds all implementors of the selected Java interface

Read Access Finds all read accesses to the selected Java field

Write Access Finds all write accesses to the selected Java field

Occurrences in File Finds all occurrences of the selected Java element in its file

The scope of the search is defined as:

Workspace − all projects and files in the workspace are included in this search

Enclosing Projects − the projects enclosing the currently selected elements

Hierarchy − only the type hierarchy of the selected element is included in this search

Working Set − only resources that belong to the chosen working set are included in this search

Java development tools (JDT)

Searching Java code

Search actions
Java Search tab

Java search 137

Searching Java code
A Java search can be conducted using the Search dialog as well as using the pop−up menu of selected
resources and elements.

Java search

Conducting a Java search using pop−up menus
Conducting a Java search using the Search button

Search menu

 Searching Java code 138

Conducting a Java search using pop−up menus
Open the context menu on any Java element visible in a view.

Search, Outline, and Hierarchy views: The selected Java element in these views can be searched for
declarations and references.

•

Package Explorer: Packages, Java compilation units, types and their members can be searched for
declarations and references. If a compilation unit or CLASS file contains more than one type, a dialog
prompts you to choose one.

•

The search pop−up menu is also available in the Java editor. If the selection in the Java editor can be resolved
to a Java element, then you can search for declarations and references.

To conduct a search from a pop−up menu, follow these steps:

Select a Java element (for example a Java compilation unit in the Package Explorer or a method in the
Outline view) or some text in a Java editor.

1.

From the selection's pop−up menu, navigate to the available Java searches. After you select a search
to perform, the search progress is shown in a dialog. Note: in the editor searches are available under
the Search submenu.

2.

You may stop the search process by clicking Cancel in the progress dialog.3.

The type of the selected Java element defines which search pop−up menus are available. The Java editor does
not constrain the list of available Java searches based on the selection.

Java search

Searching Java code

Java search tab
Search menu

 Conducting a Java search using pop−up menus 139

Search actions
Search menu commands:

Name Function Keyboard Shortcut

Search... Opens the search dialog Ctrl + H

File... Opens the search dialog on the File search page

Help... Opens the search dialog on the Help search page

Java... Opens the search dialog on the Java search page

References Finds all references to the selected Java element

Declarations Finds all declarations of the selected Java element

Implementors Finds all implementors of the selected interface.

Read Access Finds all read accesses to the selected field

Write Access Finds all write accesses to the selected field

Occurrences in File Finds all occurrences of the selected Java element in its file Ctrl + Shift + U

Search Scopes Submenu:

Scope Availability Description

Workspace all elements Searches in the full workspace

Project all elements Searches in the project enclosing the selected element

Hierarchy types and members Searches in the type's hierarchy

Workings Set all elements Searches in a working set

Scopes can be saved and names in the working set dialog. Existing instances of working sets are also available
in the Search Scope submenu

A Java search can also be conducted via the context menu of selected resources and elements in the following
views:

Package Explorer•
Outline view•
Search result view•
Hierarchy view•
Browsing views•

The search context menu is also available in the Java editor. The search is only performed if the currently
selected text can be resolved to a Java element.

The type of the selected Java element defines which search context menus are available. The Java editor does
not constrain the list of available Java searches based on the selection.

 Search actions 140

Java search

Conducting a Java search using the search dialog
Conducting a Java search using pop−up menus

Java Search tab

 Basic tutorial

 Search actions 141

Conducting a Java search using the Search dialog
Java search allows you to quickly find references to and declarations of Java elements.

Open the Search dialog by either:
Clicking the Search button in the toolbar or♦
Pressing Ctrl+H or♦
Selecting Search > Search... from the menu bar.♦

•

Select the Java Search tab.•
In the Search string field, type the string for which you want to search, using wildcards as needed.•
You can also choose a previous search expression from the drop−down list. Selecting a previous
search expression restores all values associated with that previous search in the dialog.

•

Select the Java element type in the Search For area.•
Narrow your search in the Limit To area, or select All occurrences to search for references and
declarations to a Java element.

•

Optionally, select the Search the JRE system libraries checkbox to include the JRE in your search.•
Optionally, use the Scope area to narrow the scope of your search.•
Click Search, and the search is carried out. The results are displayed in the Search view in the
workbench window.

•

Optionally, use the Search view's view menu to switch between flat and hierarchical result
presentation, or to configure filters.

•

Java search

Conducting a Java search using pop−up menus

Java search tab
Search menu

 Conducting a Java search using the Search dialog 142

Formatting Java code
The Java editor supports the formatting of Java code according to your personal preferences.

Java development tools (JDT)
Java editor

Using the Java editor
Setting code formatting preferences
Formatting files or portions of code
Using content/code assist

Code Formatter preferences

 Formatting Java code 143

Setting code formatting preferences
From the workbench menu bar, select Window > Preferences. The Workbench Preferences page
opens.

1.

In the left pane, expand the Java category and select Code Formatter. The Code Formatter
Preferences page opens.

2.

Select a profile and click the Show or Edit button to configure it, or press New to create a new profile.3.
In the dialog, select the code formatting conventions that you want the formatter to follow.4.
Note that at the right side of the page, you can observe an example effect of each individual code
formatting option and see a preview of what your formatted code will look like.

5.

Click OK when you are done.6.

Note: Code formatter settings can also be configured per project:

Select a java project, open the pop−up menu and choose Properties.1.
Select the Code Style > Formatter page and check Enable project specific sttings.2.
Select or edit a profile as explained above.3.
Click OK when you are done.4.

Java development tools (JDT)

Formatting Java code
Formatting files or portions of code

Code Formatter preferences

 Setting code formatting preferences 144

Formatting files or portions of code
To format Java code:

Use the Code Formatting Preferences page (Window > Preferences > Java > Code Style >
Formatter) to specify your preferences for code formatting.

1.

Open a Java file and select the code you want to format. If nothing is selected, then all of the editor
content is formatted.

2.

Format the code by either
Selecting Source > Format from the editor's pop−up menu or♦
Pressing Ctrl+Shift+F or♦
Selecting Source > Format from the menu bar.♦

3.

Java development tools (JDT)
Java editor

Using the Java editor
Formatting Java code
Setting code formatting preferences

Source menu
Code Formatter preferences

 Formatting files or portions of code 145

Source actions
Source menu commands:

Name Function Keyboard
Shortcut

Toggle Comment Comments or uncomments all lines containing the current selection. Ctrl + Shift
+ C

Add Block Comment Adds a block comment around all lines containing the current
selection.

Ctrl + Shift
+ /

Remove Block
Comment

Removes a block comment from all lines containing the current
selection.

Ctrl + Shift
+ \

Shift Right Increments the level of indentation of the currently select lines. Only
activated when the selection covers multiple lines or a single whole
line.

Shift Left Decrements the level of indentation of the currently select lines. Only
activated when the selection covers multiple lines or a single whole
line.

Format Uses the code formatter to format the current text selection. The
formatting options are configured on the Code Formatter preference
page (Window > Preferences > Java > Code Style > Formatter)

Ctrl + Shift
+ F

Format Element Uses the code formatter to format the Java element comprising the
current text selection. The Format Element action works on method
and type level. The formatting options are configured on the Code
Formatter preference page (Window > Preferences > Java > Code
Style > Formatter)

Correct Indentation Corrects the indentation of the line denoted by the current text
selection. Ctrl + I

Sort Members Sorts the members of a type according to the sorting order specified
in (Window > Preferences > Java > Appearance > Members Sort
Order)

Organize Imports

Organizes the import declarations in the compilation unit currently
open or selected. Unnecessary import declarations are removed, and
required import declarations are ordered as specified in the Organize
Imports preference page (Window > Preferences > Java > Organize
Imports). Organize imports can be executed on incomplete source
and will prompt you when a referenced type name can not be mapped
uniquely to a type in the current project.
You can also organize multiple compilation units by invoking the
action on a package or selecting a set of compilation units.

Ctrl + Shift
+ O

Add Import Creates an import declaration for a type reference currently selected.
If the type reference if qualified, the qualification will be removed if

Ctrl + Shift
+ M

 Source actions 146

possible. If the referenced type name can not be mapped uniquely to
a type of the current project you will be prompted to specify the
correct type. Add Import tries to follow the import order as specified
in the Organize Import preference page

Override/Implement
Methods

Opens the Override Method dialog that allows you to override or
implement a method in the current type. Available on types or on a
text selection inside a type.

Generate Getter and
Setter

Opens the Generate Getters and Setters dialog that allows you to
create Getters and Setters for fields in the current type. Available on
fields and types or on a text selection inside a type.

Generate Delegate
Methods

Opens the Generate Delegate Methods dialog that allows you to
create method delegates for fields in the current type. Available on
fields.

Generate Constructor
using Fields

Adds constructors which initialize fields for the currently selected
types. Available on types, fields or on a text selection inside a type.

Add Constructor from
Superclass

Adds constructors as defined in the super class for the currently
selected types. Available on types or on a text selection inside a type.

Add Comment Adds constructors as defined in the super class for the currently
selected types. Available on types or on a text selection inside a type.

Alt + Shift
+ J

Surround with
try/catch

For the selected statements all exception that have to be caught are
evaluated. A try catch block is created around these expressions. You
can use Expand Selection to from the Edit menu to get a valid
selection range.

Externalize Strings Opens the Externalize strings wizard. This wizards allows you to
replace all strings in the code by statements accessing a property file.

Find Strings to
Externalize

Shows a dialog presenting a summary of number of strings not
externalized. Available on projects, source folders and packages.

Java editor
String externalization
Java development tools (JDT)

Using the Java editor
Externalizing Strings

Java editor
Java editor preferences
Java outline

 Basic tutorial

 Source actions 147

Views and editors

 Basic tutorial

 Source actions 148

Code Formatter
This page lets you manage your code formatter profiles for the Java code formatter.

Action Description

New... Shows the dialog to create a new formatter profile. The dialog requires
you to enter a name for the new formatter profile. Additionally, you
may select a built−in or user−defined existing formatter profile to base
your new formatter profile on.

Show/Edit... Shows a dialog which displays the settings stored in the selected code
formatter profile. Only user−defined profiles can be edited.

Rename... Renames the selected code formatter profile. This action is only
available on user−defined profiles.

Remove Removes the selected code formatter profile. This action is only
available on user−defined profiles.

Import... Imports code formatter profiles from the file system.

Export... Exports the selected code formatter profile to the file system. This
action is only available on user−defined profiles.

Formatting Java code

Java editor
Java editor preferences

 Code Formatter 149

Java editor
The following Java editor preferences can be set on this page and its sub−pages.

Appearance and Navigation•
Code Assist•
Syntax Coloring•

Note that some options that are generally applicable to text editors can be configured on the text editor
preference page.

Appearance and Navigation

Java editor appearance and navigation options.

Appearance and Navigation

Option Description Default

Smart caret positioning at line
start and end

If enabled, the Home and End commands jump to the first and
last non whitespace character on a line.

On

Smart caret positioning in Java
names (overrides platform
behavior)

If enabled, there are additional word boundaries inside
|Camel|Case| Java names.

On

Report problems as you type If enabled, the editor marks errors and warnings as you type,
even if you do not save the editor contents. The problems are
updated after a short delay.

On

Highlight matching brackets If enabled, whenever the cursor is next to a parenthesis,
bracket or curly braces, its opening or closing counter part is
highlighted.

The color of the bracket highlight is specified with
Appearance color options.

On

Light bulb for quick assists If enabled, a shows up in the vertical ruler whenever a
quick assist is available. See the quick assist section for a list
of the available assists.

Off

Appearance color options The colors of various Java editor appearance features are
specified here.

Matching brackets highlight
The color of brackets highlight.

Find scope
The color of find scope.

Completion proposal background
The background color of the completion proposal
window

default
colors

 Java editor 150

Completion proposal foreground
The foreground color of the completion proposal
window

Method parameter background
The background color of the parameter window

Method parameter foreground
The foreground color of the parameter window

Completion overwrite background
The background color of the completion overwrite
window

Completion overwrite foreground
The foreground color of the completion overwrite
window

Code assist

Configures Code Assist behavior.

Code Assist

Option Description Default

Completion
inserts/Completion
overwrites

If Completion inserts is on, the completion text is inserted at
the caret position, so it never overwrites any existing text.
If Completion overwrites is on, the completion text replaces
the characters following the caret position until the end of the
word.

Note that pressing Ctrl when applying a completion proposal
toggles between the two insertion modes.

Completion
inserts

Insert single proposals
automatically

If enabled, code assist will choose and insert automatically
single proposals.

On

Insert common prefixes
automatically

If enabled, code assist will automatically insert the common
prefix of all possible completions similar to unix shell
expansion. This can be used repeatedly, even while the code
assist window is being displayed.

Off

Automatically add import
instead of qualified name

If enabled, type proposals which are in other packages will
invoke the addition of the corresponding import declaration.
Otherwise, the type will be inserted fully qualified.

On

Fill argument names on
completion

If enabled, code assist will add the argument names when
completing a method or generic type.

Off

Guess filled method
arguments

If enabled, code assist will try to guess method parameters
from the context where a method proposal is inserted.

Off

Present proposals in
alphabetical order

If enabled, the proposals are sorted in alphabetical order. Off

On

 Basic tutorial

Appearance and Navigation 151

Hide proposals not visible
in the invocation context

If enabled, the Java element proposals are limited by the rules
of visibility. For example, private field proposals of other
classes would not be displayed.

Hide forbidden references If enabled, references to Java elements forbidden by access
rules are not displayed.

On

Hide discouraged
references

If enabled, references to Java elements discouraged by access
rules are not displayed.

Off

Enable auto activation If enabled, code assist can be invoked automatically.

The condition for automatic invocation is specified with the
preferences Auto activation delay, Auto activation triggers
for Java and Auto activation triggers for Javadoc.

On

Auto activation delay If the time starting when an auto activation trigger character is
encountered until a new character is typed exceeds the auto
activation delay, code assist is invoked.

200

Auto activation triggers for
Java

If one of the trigger characters is typed inside Java source
code (but not inside a Javadoc comment) and no other
character is typed before the auto activation delay times out,
the code assist is invoked.

'.'

Auto activation triggers for
Javadoc

If one of the trigger characters is typed inside a Java doc and
no other character is typed before the auto activation delay
times out, the code assist is invoked.

'@#'

Syntax Coloring

Syntax Coloring specifies how Java source code is rendered. Note that general text editor settings such as the
background color can be configured on the general 'Text Editors' preference pages. Fonts may be configured
on the general 'Colors and Fonts' preference page.

Syntax Coloring

Option Description Default

Element Each category (Java, Javadoc and Comments) contains a list of language
elements that may be rendered with its own color and style.

Note that some semantic highlighting options can be disabled by the user in
order to ensure editor performance on low−end systems.

default colors
and styles

Preview Displays the preview of a Java source code respecting the current colors and
styles.

n/a

Java Editor

 Basic tutorial

Code assist 152

Using the Java editor

Java editor
Code Formatter preferences
Java outline
Java Content Assist
Quick Fix

 Basic tutorial

Syntax Coloring 153

List of Quick Assists
Quick assists perform local code transformations. They are invoked on a selection or a single cursor in the
Java editor and use the same shortcut is used as for quick fixes (Ctrl +1), but quick assist are usually hidden
when an error is around.

A selection of quick assist can be assigned to a direct shortcut. By default these are:

Rename in file: Ctrl + 2 + R•
Assign to local: Ctrl + 2 + L•
Assign to field: Ctrl + 2 + F•

Assign more shortcuts or change the default shortcuts on the keys preference page.

A quick assist light bulb can be turned on on the Java Editor preference page.

Name Code example Invocation
location

Inverse if
statement if (x) a(); else b(); > if (!x) b(); else

a();

on 'if'
statements
with 'else'
block

Inverse
boolean
expression

a && !b > !a || b
on a boolean
expression

Remove extra
parentheses

if ((a == b) && (c != d)
{}

> if (a == b && c !=
d) {}

on selected
expressions

Add
paranoidal
parentheses

if (a == b && c != d) {} > if ((a == b) && (c
!= d)

on selected
expressions

Join nested if
statements if (a) { if (b) {} } > if (a && b) {}

on a nested if
statement

Swap nested
if statements if (a) { if (b) {} } > if (b) { if (a) {} }

on a nested if
statement

Split if
statement
with and'ed
expression

if (a && b) {} > if (a) { if (b) {} }
on an and'ed
expression in
a 'if'

Split if
statement
with or'd
expression

if (a || b) x(); > if (a) x(); if (b)
x();

on an or'd
expression in
a 'if'

Inverse x ? b : c > !x ? c : b on a

List of Quick Assists 154

conditional
expression

conditional
expression

Pull negation
up b && c > !(!b || !c)

On a boolean
expression

Push
negation
down

!(b && c) > !b || !c
On a negated
boolean
expression

If−else
assignment to
conditional
expression

if (a) x= 1; else x= 2; > x= a ? 1 : 2;
on an 'if'
statement

If−else return
to conditional
expression

if (a) return 1;
else return 2;

> return a ? 1 : 2;
on an 'if'
statement

Conditional
expression
assignment to
If−else

x= a ? 1 : 2; > if (a) x= 1; else x=
2;

on a
conditional
expression

Conditional
expression
return to
If−else

return a ? 1 : 2; > if (a) return 1;
else return 2;

on a
conditional
expression

Switch to
If−else

switch (kind) {
case 1: return −1;
case 2: return −2;
}

>

if (kind == 1) {
 return −1;
} else if (kind ==
2) {
 return −2;
}

on a switch
statement

Exchange
operands a + b > b + a

on an infix
operation

Cast and
assign

if (obj instanceof Vector)
{
}

>

if (obj instanceof
Vector) {
 Vector vec=
(Vector)obj;
}

on a
instanceof
expression in
an 'if' or
'while'
statement

Pick out
string "abcdefgh" > "abc" + "de" + "fgh"

select a part
of a string
literal

Split variable int i= 0; > int i; i= 0;
On a variable
with
initialization

 Basic tutorial

List of Quick Assists 155

Join variable int i; i= 0; > int i= 0
On a variable
without
initialization

Assign to
variable foo() > X x= foo();

On an
expression
statement

Extract to
local foo(getColor()); >

Color color=
getColor();
foo(color);

On an
expression

Assign
parameter to
field

public A(int color) {} >

Color fColor;
public A(int color)
{
 fColor= color;
}

On a
parameter

Add finally
block

try {
} catch (Expression e) {
}

>

try {
} catch (Expression
e) {
} finally {}

On a try/catch
statement

Add else
block if (a) b(); > if (a) b(); else { }

On a if
statement

Replace
statement
with block

f (a) b(); > if (a) { b(); }
On a if
statement

Invert equals a.equals(b) > b.equals(a)
On a
invocation of
'equals'

Array
initializer to
Array
creation

int[] i= { 1, 2, 3 } > int[] i= new int[] {
1, 2, 3 }

On an array
initializer

Convert to
'enhanced for
loop' (J2SE
5.0)

for (Iterator i=
c.iterator();i.hasNext();)
{
}

> for (x : c) {
}

On a for loop

Create
method in
super class

On a method
declaration

Unwrap
blocks { a() } > a()

On blocks,
if/while/for
statements

Rename in
file On identifiers

 Basic tutorial

List of Quick Assists 156

Java editor
Quick Fix

JDT actions

 Basic tutorial

List of Quick Assists 157

Quick Fix
The Java editor offers corrections to problems found while typing and after compiling. To show that
correction proposals are available for a problem or warning, a 'light bulb' is visible on the editor's annotation
bar.

Left click on the light bulb or invoking Ctrl+1 (Edit > Quick Fix) brings up the proposals for the problem at
the cursor position.
Each quick fix show a preview when selected in the proposal window.

Some selected quick fixes can also be assigned with direct shortcuts. You can configure these shortcuts on the
keys preference page.

The following quick fixes are available:

Package
Declaration Add missing package declaration or correct package declaration•

Move compilation unit to package that corresponds to the package declaration•

Imports
Remove unused, unresolvable or non−visible import•
Invoke 'Organize imports' on problems in imports•

Types
Create new class, interface, enum, annotation or type variable for references to
types that can not be resolved

•

Change visibility for types that are accessed but not visible•
Rename to a similar type for references to types that can not be resolved•
Add import statement for types that can not be resolved but exist in the project•
Add explicit import statement for ambiguous type references (two
import−on−demands for the same type)

•

If the type name is not matching with the compilation unit name either rename
the type or rename the compilation unit

•

Remove unused private types•

Quick Fix 158

Constructors Create new constructor for references to constructors that can not be resolved
(this, super or new class creation)

•

Reorder, add or remove arguments for constructor references that mismatch
parameters

•

Change method with constructor name to constructor (remove return type)•
Change visibility for constructors that are accessed but not visible•
Remove unused private constructor•
Create constructor when super call of the implicit default constructor is
undefined, not visible or throws an exception

•

If type contains unimplemented methods, change type modifier to 'abstract' or
add the method to implement

•

Methods
Create new method for references to methods that can not be resolved•
Rename to a similar method for references to methods that can not be resolved•
Reorder or remove arguments for method references that mismatch parameters•
Correct access (visibility, static) of referenced methods•
Remove unused private methods•
Correct return type for methods that have a missing return type or where the
return type does not match the return statement

•

Add return statement if missing•
For non−abstract methods with no body change to 'abstract' or add body•
For an abstract method in a non−abstract type remove abstract modifier of the
method or make type abstract

•

For an abstract/native method with body remove the abstract or native modifier
or remove body

•

Change method access to 'static' if method is invoked inside a constructor
invocation (super, this)

•

Change method access to default access to avoid emulated method access•

Fields and
variables Correct access (visibility, static) of referenced fields•

Create new fields, parameters, local variables or constants for references to
variables that can not be resolved

•

Rename to a variable with similar name for references that can not be resolved•
Remove unused private fields•
Correct non−static access of static fields•
Add 'final' modifier to local variables accessed in outer types•
Change field access to default access to avoid emulated method access•
Change local variable type to fix a type mismatch•
Initialize a variable that has not been initialized•

Exception
Handling Remove unneeded catch block•

Handle uncaught exception by surrounding with try/catch or adding catch
block to a surrounding try block

•

Handle uncaught exception by adding a throw declaration to the parent method
or by generalize an existing throw declaration

•

 Basic tutorial

Quick Fix 159

Build Path
Problems

Add a missing JAR or library for an unresolvable type•
Open the build path dialog for access restriction problems or missing binary
classes.

•

Change project compliance and JRE to 5.0•
Change workspace compliance and JRE to 5.0•

Others
Add cast or change cast to fix type mismatches•
Let a type implement an interface to fix type mismatches•
For non−NLS strings open the NLS wizard or mark as non−NLS•
Add missing @Override, @Deprecated annotations•
Suppress a warning using @SuppressWarning•

Quick Assists are proposals available even if there is no problem or warning. See the Quick Assist page for
more information.

Java editor
Quick Assist

JDT actions

 Basic tutorial

Quick Fix 160

JDT actions
JDT actions are available from

Menu bar•
Toolbar•
Context menus in views•

Java Development Tools (JDT)

Frequently Asked Questions on JDT
JDT Glossary
File actions
Edit actions
Source actions
Refactor actions
Navigate actions
Search actions
Project actions
Run actions
Java Toolbar actions
Java Editor actions
Run and Debug actions

 JDT actions 161

Frequently asked questions on JDT
Can I use a Java compiler other than the built−in one (javac for example)
with the workbench?

No. The JDT provides a number of sophisticated features including fully automatic incremental
recompilation, code snippet evaluation, code assist, type hierarchies, and hot code replace. These features
require special support found in the workbench Java compiler (an integral part of the JDT's incremental
project builder), but not available in standard Java compilers.

Where do Java packages come from?

A project contains only files and folders. The notion of a Java package is introduced by a Java project's class
path (at the UI, the Package Explorer presents the packages as defined by the classpath). Tip: If the package
structure is not what you expect, check out your class path. The Java search infrastructure only finds
declarations for and references from Java elements on the class path.

When do I use an internal vs. an external JAR library file?

An internal resource resides in some project in the workbench and is therefore managed by the workbench;
like other resources, these resources can be version managed by the workbench. An external resource is not
part of the workbench and can be used only by reference. For example, a JRE is often external and very large,
and there is no need to associate it with a VCM system.

When should I use source folders within a Java project?

Each Java project locates its Java source files via one or more source type entries on the project's class path.
Use source folders to organize the packages of a large project into useful grouping, or to keep source code
separate from other files in the same project. Also, use source folders if you have files (documentation for
example) which need not be on the build path.

What are source attachments, How do I define one?

Libraries are stored as JAR files containing binary class files (and perhaps other resources). These binary class
files provide signature information for packages, classes, methods, and fields. This information is sufficient to
compile or run against, but contains far less information that the original source code. In order to make it
easier to browse and debug binary libraries, there is a mechanism for associating a corresponding source JAR
(or ZIP) file with a binary JAR file.

Why are all my resources duplicated in the output folder (bin, for
example)?

If your Java project is using source folders, then in the course of compiling the source files in the project, the
Java compiler copies non−Java resources to the output folder as well so that they will be available on the class
path of the running program. To avoid certain resources to be copied to the output location you can set a
resource filter in the Java compiler preferences: Window > Preferences > Java > Compiler > Building

 Frequently asked questions on JDT 162

How do I prevent having my documentation files from being copied to
the project's output folder?

Use source folders and put any resources that you do not want to be copied to the output folder into a separate
folder that is not included on the class path.You can also set a resource filter in the Java compiler preferences:
Window > Preferences > Java > Compiler > Building to for example *.doc.

How do I create a default package?

You don't have to. Files in the root folder of a source folder or project are considered to be in the default
package. In effect, every source folder has the capability of having a fragment of the default package.

What is refactoring?

Refactoring means behavior−preserving program transformations. The JDT supports a number of
transformations described in Martin Fowler's book Refactoring: Improving the Design of Existing Code,
Addison Wesley 1999.

When do I use code select/code resolve (F3)?

To find out the Java element that corresponds to a source range with the help of the compiler.

Is the Java program information (type hierarchy, declarations,
references, for example) produced by the Java builder? Is it still updated
when auto−build is off?

The Java program information is independent from the Java builder. It is automatically updated when
performing resource changes or Java operations. In particular, all the functionality offered by the Java tooling
(for example, type hierarchies, code assisting, search) will continue to perform accurately when auto−build is
off; for example, when doing heavy refactoring which require to turn off the builders, you can still use code
assist, which will reflect the latest changes (not yet build). Other than the launching (that is, running and
debugging) of programs, the only functionality which requires the Java builder is the evaluation of code
snippets.

After reopening a workbench, the first build that happens after editing a
Java source file seems to take a long time. Why is that?

The Java incremental project builder saves its internal state to a file when the workbench is closed. On the
first build after the project is reopened, the Java incremental project builder will restore its internal state.
When this file is large, the user experiences an unusually long build delay.

I can't see a type hierarchy for my class. What can I do?

Check that you have your build class path set up properly. Setting up the proper build class path is an
important task when doing Java development. Without the correct build path, you will not be able to compile
your code. In addition, you will not be able to search or look at the type hierarchies for Java elements.

 Basic tutorial

 How do I prevent having my documentation files from being copied to the project's output folder?163

How do I turn off "auto compile" and do it manually when I want?

Clear the Window > Preferences > General > Workspace > Build automatically checkbox. When you want
to build, press Ctrl+B, or select Project > Build All from the menu bar.

Hint: when you turn "auto compile" off and build manually, you may also want to select the Window >
Preferences > General > Workspace > Safe automatically before build checkbox.

When I select a method or a field in the Outline view, only the source for
that element is shown in the editor. What do I do to see the source of the
whole file?

There is a toolbar button Show Source of Selected Element Only − all you have to do is un−press it.

Can I nest source folders?

Yes, you can use exclusion filters to create nested source folders.

Can I have separate output folders for each source folder?

Yes, select the Allow output folders for source folders checkbox in the Java Build Path > Source property
page of your Java project.

Can I have an output or source folder that is located outside of the
workspace?

Yes, you can create a linked folder that points to the desired location and use that folder as the source or
output folder in your Java project.

Java development tools (JDT)

Java Build Path page
JDT glossary

 Basic tutorial

 How do I turn off "auto compile" and do it manually when I want? 164

JDT glossary
CLASS file

A compiled Java source file.

compilation unit

A Java source file.

field

A field inside a type.

import container

Represents a collection of import declarations. These can be seen in the Outline view.

import declaration

A single package import declaration.

initializer

A static or instance initializer inside a type.

JAR file

JAR (Java archive) files are containers for compiled Java source files. They can be associated with an archive
(such as, ZIP, JAR) as a source attachment. The children of JAR files are packages. JAR files can be either
compressed or uncompressed.

JAVA elements

Java elements are Java projects, packages, compilation units, class files, types, methods and fields.

JAVA file

An editable file that is compiled into a byte code (CLASS) file.

Java projects

Projects which contain compilable Java source code and are the containers for source folders or packages.

JDT

Java development tools. Workbench components that allow you to write, edit, execute, and debug Java code.

JRE

 JDT glossary 165

Java runtime environment (for example, J9, JDK, and so on).

method

A method or constructor inside a type.

package declaration

The declaration of a package inside a compilation unit.

packages

A group of types that contain Java compilation units and CLASS files.

refactoring

A comprehensive code editing feature that helps you improve, stabilize, and maintain your Java code. It
allows you to make a system−wide coding change without affecting the semantic behavior of the system.

type

A type inside a compilation unit or CLASS file.

source folder

A folder that contains Java packages.

VCM

Version control management. This term refers to the various repository and versioning features in the
workbench.

VM

Virtual machine.

Java development tools (JDT)

Frequently asked questions on JDT

 Basic tutorial

 JDT glossary 166

Edit actions
Edit menu commands shown when a Java Editor is visible:

Name Function Keyboard
Shortcut

Undo Revert the last change in the editor Ctrl + Z

Redo Revert an undone change Ctrl + Y

Cut Copies the currently selected text or element to the clipboard and removes
the element. On elements, the remove is not performed before the clipboard
is pasted.

Ctrl + X

Copy Copies the currently selected text or elements to the clipboard Ctrl + C

Paste Paste the current content as text to the editor, or as a sibling or child element
to the a currently selected element. Ctrl + V

Delete Delete the current text or element selection. Delete

Select All Select all the editor content.. Ctrl + A

Find / Replace Open the Find / Replace dialog. Editor only. Ctrl + F

Find Next Finds the next occurrence of the currently selected text. Editor only. Ctrl + K

Find Previous Finds the previous occurrence of the currently selected text. Editor only. Ctrl + Shift
+ K

Incremental
Find Next

Starts the incremental find mode. After invocation, enter the search text as
instructed in the status bar. Editor only. Ctrl + J

Incremental
Find Previous

Starts the incremental find mode. After invocation, enter the search text as
instructed in the status bar. Editor only.

Ctrl + Shift
+ J

Add Bookmark Add a bookmark to the current text selection or selected element.

Add Task Add a user defined task to the current text selection or selected element. Alt + Enter

Expand
Selection to Enclosing Element: Selects the enclosing expression, block, method

in the code. This action is aware of the Java syntax. It may not
function properly when the code has syntax errors. (Arrow Up)

•

Next Element: Selects the current and next element. (Arrow Right)•
Previous Element: Selects the current and the previous element
(Arrow Left)

•

Restore Last Selection: After an invocation of Expand Selection to
restore the previous selection. (Arrow Down)

•

Alt + Shift
+ Arrow
Keys

Show Tooltip
Description

Shows the value of a hover that would appear at the current cursor location.
The dialog shown is scrollable and does not shorten descriptions. F2

Content Assist

 Edit actions 167

Opens a context assist dialog at the current cursor position to bring up Java
code assist proposals and templates. See the Templates preference page for
available templates (Window > Preferences > Java > Editor > Templates)
and go to the Java Editor preference page (Window > Preferences > Java >
Editor > Code Assist) for configuring the behavior of code assist.

Ctrl +
Space

Quick Fix If the cursor is located at a location with problem indication this opens a
context assist dialog at the current cursor to present possible corrections. Ctrl + 1

Parameter
Hints

If the cursor is located at the parameter specification for method reference,
this actions shows a hover with parameter types information.The parameter
at the current cursor location is shown in bold.

Ctrl + Shift
+ Space

Encoding Toggles the encoding of the currently shown text content.

Java editor
Java development tools (JDT)

Using the Java editor
Using Quick Fix

Java editor
Java editor preferences
Java outline
Views and editors

 Basic tutorial

 Edit actions 168

Using Quick Fix
To use the Quick Fix feature:

You need to have the Window > Preferences > Java > Editor > Report problems as you type
checkbox selected.

•

In the Java editor, if you see an error or a warning underlined with a squiggly line, position the caret
inside the underlined range and do one of the following

Press Ctrl+1 or♦
From the menu bar, select Edit > Quick Fix♦

•

A list of suggested corrections is presented, with a preview displayed when an entry is selected.•
Select an entry form the list and press Enter.•

Light bulb icons appear on the left−hand side vertical ruler to indicate Quick Fix'able problems. You can then
click on one of the the light bulb icons to invoke Quick Fix.

Note: Occasionally, invoking Quick Fix will not suggest any corrections. A message saying 'No suggestions
available' will be displayed in such cases.

 Using Quick Fix 169

Using Quick Assist
The Java editor also offers some common code changes even when there's no error or warning in your code.
For example, set the caret into the if of the following if−else statement, press Ctrl+1, and select "Change
'if−else' statements to blocks":

 String test(int arg) {
 if (arg > 1000)
 return "big";
 else
 return "small";
 }

Braces are added around the return statements:

 String test(int arg) {
 if (arg > 1000) {
 return "big";
 } else {
 return "small";
 }
 }

Check out the Available Quick Fix proposals and the Available Quick Assist proposals, or just press Ctrl+1
to see what quick fixes or quick assists Eclipse offers in your current context.

Java editor
Available Quick Fix proposals
Available Quick Assist proposals

Using the Java editor

Quick Fix

 Using Quick Assist 170

Quick fix
For certain problems underlined with a problem highlight line, the Java editor can offer corrections. This is
shown by the light bulb shown in the editor marker bar.

To see the correction proposals use the Quick Fix action

Set the cursor inside the highlight range, and select Quick Fix from the Edit menu or the context
menu.

•

Set the cursor inside the highlight range, and press Ctrl + 1•
Click on the light bulb•

Quick fix is also available on a problem entry in the Problem view. The Quick Fix action will open a dialog to
select the correction.

Note that the light bulb is only a hint. It is possible that even with the light bulb shown, it turns out that no
corrections can be offered.
A overview of quick fixes available in the Java editor can be found here.

Quick Assists are proposals available even if there is no problem or warning. See the Quick Assist page for
more information.

Quick Fix
Quick Assist
Java editor

Using quick fix

Java editor preferences
Edit menu

 Quick fix 171

Java outline
This view displays an outline of the structure of the currently−active Java file in the editor area.

Toolbar buttons

Command Description

Go into Top Level
Type

Makes the top level type of the compilation unit the new input for this view. Package
declaration and import statements are no longer shown.

Sort This option can be toggled to either sort the outline elements in alphabetical order or
sequential order, as defined inside the compilation unit.

Note: Static members are always listed first.

Hide Fields Shows or hides the fields.

Hide Static Fields
and Methods

Shows or hides the static fields and methods.

Hide Non−Public
Members

Shows or hides the static fields and methods.

Hide Local Types Shows or hides the local types.

Java editor
Java views

Generating getters and setters
Restoring a deleted workbench element
Setting method breakpoints
Showing and hiding members in Java views
Showing and hiding override indicators
Showing and hiding method return types in Java views
Sorting elements in Java views

Override methods
Views and editors

 Java outline 172

Restoring a deleted workbench element
Ensure that a Java view that show Java elements inside files (such as the Outline view) is visible.1.
Open the compilation unit to which you want to add a previously removed Java element from the
local history.

2.

Activate the editor by clicking its tab in the editor area, and the Java view shows the content of the
Java file.

3.

In the Java view, select the element to whose container type you want to restore the deleted element.4.
From the type's pop−up menu in the Java view, select Restore from Local History.5.
In the upper left pane of the resulting dialog, all available editions of the selected element in the local
history are displayed.

6.

In the left pane check all elements that you want to replace.7.
For every checked element select an edition in the right hand pane and view its content in the bottom
pane.

8.

When you have identified the edition that you want to restore, press Restore. The local history
editions are loaded into the editor.

9.

Java editor

Using the local history

Java outline

 Restoring a deleted workbench element 173

Using the local history
The JDT extends the workbench concept of a local history in three ways:

A file can be replaced with an edition from the local history not just in the Navigator but also in the
Package Explorer view.

•

The JDT allows you to compare and/or replace individual Java elements (types and their members)
with editions from the local history.

•

The JDT allows you to restore Java elements (and files) deleted from the workbench that have been
kept in the local history.

•

Note: Files and Java elements such as types and their members change in time. A 'snapshot' of what they look
like a point in time (as saved in the local history) is called an edition.

Java development tools (JDT)
Java views

Using the Java editor
Replacing a Java element with a local history edition
Comparing a Java element with a local history edition
Restoring a deleted workbench element

Package Explorer

 Using the local history 174

Replacing a Java element with a local history
edition

Make sure that a Java view is visible.1.
Open a Java editor for the Java file in which you want to replace a Java element with an edition from
the local history.

2.

Activate the editor by clicking its tab in the editor area. The Outline view also displays the Java file.
Note: The Package Explorer can be configured to show or not show Java elements in files. Use
Window > Preferences > Java > Appearance > Show Members in Package Explorer to set your
preference.

3.

Select the element that you want to replace in the Outline or the Package Explorer.4.
From the element's pop−up menu, select Replace With > Element from Local History.5.
In the upper pane of the resulting dialog, all available editions of the selected element in the local
history are displayed.

6.

Select an edition in the upper pane to view the differences between the selected edition and the edition
in the workbench.

7.

When you have identified the edition with which you want to replace the existing Java element, click
Replace.

8.

The local history edition replaces the current one in the editor. Note: The changed compilation unit
has not yet been saved at this point.

9.

Java views
Java editor

Using the local history

Java outline

 Replacing a Java element with a local history edition 175

Comparing a Java element with a local history
edition

Make sure that a Java view is visible.1.
Open a Java editor for the Java file in which you want to compare a Java element with an edition from
the local history.

2.

Activate the editor by clicking its tab in the editor area. The Outline view also displays the Java file.
Note: The Package Explorer can be configured to show or not show Java elements in files. Use
Window > Preferences > Java > Appearance > Show Members in Package Explorer to set your
preference.

3.

Select the element that you want to compare in the Outline or the Package Explorer.4.
From the element's pop−up menu, select Compare With > Element from Local History.5.
In the upper pane of the resulting dialog, all available editions of the selected element in the local
history are displayed.

6.

Select an edition in the upper pane to view the differences between the selected edition and the edition
in the workbench.

7.

If you are done with the comparison, click OK to close the dialog.8.

Java views
Java editor

Using the local history

Java outline

 Comparing a Java element with a local history edition 176

Showing and hiding members
Several Java views (e.g. Outline, Package Explorer, Members) offer filtering of members (fields, types and
methods). The filters are available as toolbar buttons or as view menu items, depending on the view. There are
3 member filters:

Hide Fields: when activated, this filter causes all fields to be removed from the view.•
Hide Static Members: when activated, this filter causes all static members to be removed from the
view.

•

Hide Non−Public Members: when activated, this filter causes all non−public members to be removed
from the view.

•

Additionally, the Package Explorer can display or hide all elements inside compilation units.

To show members in the Package Explorer:

Select the Show members in Package Explorer checkbox in the Window > Preferences > Java >
Appearance page.

•

To hide members in the Package Explorer:

Clear the Show members in Package Explorer checkbox in the Window > Preferences > Java >
Appearance page

•

Showing and hiding elements
Filtering elements

Appearance preference page
Package Explorer

Showing and hiding members 177

Appearance
On this preference page, the appearance of Java elements in views can be configured. The options are:

Option Description Default

Show method return types If enabled, methods displayed in views show the return type. Off

Show method type parameters If enabled, methods displayed in views show the their type
parameters.

On

Show members in Package
Explorer

If enabled, Java elements below the level of Java files and
Class files are displayed as well.

On

Fold empty packages in
hierarchical layout

If enabled, empty packages which do not contain resources or
other child elements are folded.

On

Compress package name
segments

If enabled, package names, except for the final segment, are
compressed according to the compression pattern.

Off

Stack views vertically in the Java
Browsing perspective

If enabled, views in Java Browsing perspective will be
stacked vertically, rather than horizontally.

Off

Java views

Showing and hiding elements
Showing full or compressed package names

Package Explorer view

 Appearance 178

Showing full or compressed package names
Package Explorer and Packages views can show full or compressed package names.

To show full package names:

Clear the Compress all package name segments, except the final segment checkbox on the Window >
Preference > Java > Appearance page

•

To show compressed package names:

Check the Compress all package name segments, except the final segment checkbox on the Window
> Preference > Java > Appearance page

Compression patterns control how many characters of each package name segment are displayed. The
last segment of a package name is always displayed.

A compression pattern of "." indicates that only the separating periods are shown to represent a
segment. A digit (n) in a compression pattern represents the first n characters of a package name
segment. Examples are the best way to understand compression patterns. The package org.eclipse.jdt
would be displayed as follows using the example compression patterns:

. ..jdt

0 jdt

2~ or~.ec~.jdt

3~ org.ecl~.jdt

•

Java Appearance preference page
Package Explorer

Showing full or compressed package names 179

Showing and hiding override indicators
Outline and Hierarchy views can show special icons (override indicators) to indicate members that override or
implement other members from supertypes.

To show the override indicators:

Select the Show override indicators in outline and hierarchy checkbox in the Window > Preferences >
Java > Appearance page

•

To hide the override indicators:

Clear the Show override indicators in outline and hierarchy checkbox in the Window > Preferences >
Java > Appearance page

•

Showing and hiding elements
Filtering elements

Appearance preference page
Package Explorer

Showing and hiding override indicators 180

Showing and hiding method return types
Several Java views (e.g. Outline, Members) present methods and can also show their return types.

To show method return types in Java views:

Open the Window > Preferences > Java > Appearance page and select the Show method return types
checkbox

•

To hide method return types in Java views:

Clear the Show method return types checkbox in the Window > Preferences > Java > Appearance
page

•

Showing and hiding elements
Filtering elements

Appearance preference page
Package Explorer

Showing and hiding method return types 181

Sorting elements in Java views
Members and Outline views can present members sorted or in the order of declaration in the compilation unit.

To sort members:

Toggle on the Sort toolbar button in the Java view•
The sorting order can be configured on the on the Window > Preferences... > Java > Appearance >
Members Sort Order page

•

After the above sorting is performed, members in each group are sorted alphabetically•

To present members in the order of declaration in the compilation unit.

Toggle off the Sort toolbar button in the Java view•

Java Toolbar actions

Sorting elements in Java views 182

Java toolbar actions

Java Actions

Toolbar
Button Command Description

Create a Java
Project

This command helps you create a new Java project.

See New Java Project Wizard

Create a Java
Package

This command helps you create a new Java package.

See New Java Package Wizard

Create a Java
Class

This command helps you create a new Java class.

See New Java Class Wizard

Create a Java
enum

This command helps you create a new Java enum.

See New Java Enum Wizard

Create a Java
Interface

This command helps you create a new Java interface.

See New Java Interface Wizard

Create a Java
annotation

This command helps you create a new Java annotation.

See New Java Annotation Wizard

Create a
Scrapbook
Page

This command helps you create a new Java scrapbook page for experimenting
with Java expressions.

See New Java Scrapbook Page Wizard

Open Type This command allows you to browse the workspace for a type to open in the
defined default Java editor. You can optionally choose to display the type
simultaneously in the Hierarchy view.

Select a type to open:

 Java toolbar actions 183

In this field, type the first few characters of the type you want to open
in an editor. You may use wildcards as needed ("?" for any character,
"*" for any string, and "TZ" for types containing "T" and "Z" as
upper−case letters in camel−case notation, e.g.
java.util.TimeZone).

Matching Types:
This list displays matches for the expression you type in the Select a
type to open field.

Java development tools (JDT)

Creating Java elements
Opening an editor on a type

New Java Project wizard
New Java Package wizard
New Java Class wizard
New Java Enum wizard
New Java Interface wizard
New Java Annotation wizard
New Java Scrapbook Page wizard
Views and editors

 Basic tutorial

 Java toolbar actions 184

New Java Package Wizard
This wizard helps you create a folder corresponding to a new Java package. The corresponding folder of the
default package always exists, and therefore doesn't have to be created.

Java Package Options

Option Description Default

Source folder Type or browse to select a container (project or
folder) for the new package.

The source folder of the element that was
selected when the wizard has been
started.

Name Type a name for the new package <blank>

Creating a new Java package

File actions

New Java Package Wizard 185

Creating a new Java package
To create new Java packages in the Package Explorer:

Optionally, select the project or source folder where you want the package to reside.1.
Click the New Java Package button in the workbench toolbar. The New Java Package wizard opens.2.
Edit the Source Folder field to indicate in which container you want the new package to reside. You
can either type a path or click Browse to find the container. If a folder was selected when you chose to
create the new package, that folder appears in the Source Folder field as the container for the new
package.

3.

In the Name field, type a name for the new package.4.
Click Finish when you are done.5.

Note: the default (unnamed) package always exists and does not need to be created.

Java projects

Creating Java elements
Moving folders, packages, and files
Organizing Java projects
Opening a package
Renaming a package

New Java Package wizard
New Source Folder wizard
Java Toolbar actions

 Creating a new Java package 186

Moving folders, packages, and files
In the Package Explorer, select the folder, package or file you want to move.1.
Drag−and−drop the selected resources onto the desired location.2.

Note: You can use drag−and−drop to move resources between different workbench windows. Select a
resource you want to move, and drag−and−drop it onto the desired destination. If you want to copy rather than
move, hold the Ctrl key down while dragging.

You can also use drag−and−drop to copy resources between the workbench and the desktop (both ways), but
you cannot move files from the desktop to the workbench using drag−and−drop.

Java projects
Refactoring support

Using the Package Explorer
Creating a new Java package
Copying and moving Java elements
Opening a package
Renaming a package

Package Explorer
Refactoring actions

 Moving folders, packages, and files 187

Refactoring support
The goal of Java program refactoring is to make system−wide code changes without affecting the behavior of
the program. The Java tools provide assistance in easily refactoring code.

The refactoring tools support a number of transformations described in Martin Fowler's book Refactoring:
Improving the Design of Existing Code, Addison Wesley 1999, such as Extract Method, Inline Local
Variable, etc.

When performing a refactoring operation, you can optionally preview all of the changes resulting from a
refactoring action before you choose to carry them out. When previewing a refactoring operation, you will be
notified of potential problems and will be presented with a list of the changes the refactoring action will
perform. If you do not preview a refactoring operation, the change will be made in its entirety and any
resultant problems will be shown. If a problem is detected that does not allow the refactoring to continue, the
operation will be halted and a list of problems will be displayed.

Refactoring commands are available from the context menus of several Java views (e.g. Package Explorer,
Outline) and editors. Many "apparently simple" commands, such as Move and Rename, are actually
refactoring operations, since moving and renaming Java elements often require changes in dependent files.

Java development tools (JDT)

Refactoring
Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions
Refactoring wizard
Java preferences
Extract Method Errors

Refactoring support 188

Refactoring

Refactoring support

Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Undoing a refactoring operation
Redoing a refactoring operation

Copying and moving Java elements
Extracting a method
Extracting a local variable
Extracting a constant
Renaming a package
Renaming a compilation unit
Renaming a type
Renaming a method
Renaming a field
Renaming a local variable
Renaming method parameters
Changing method signature
Inlining a local variable
Inlining a method
Inlining a constant
Self encapsulating a field
Replacing a local variable with a query
Pulling members up to superclass
Pushing members down to subclasses
Moving static members between types
Moving an instance method to a component
Converting a local variable to a field
Converting an anonymous inner class to a nested class
Converting a nested type to a top level type
Extracting an interface from a type
Replacing references to a type with references to one of its supertypes
Replacing a single reference to a type with a reference to one of its supertypes
Replacing an expression with a method parameter
Replacing constructor calls with factory method invocations
Inferring type parameters for generic type references

Refactoring actions

 Refactoring 189

Refactoring dialogs
Java preferences

 Basic tutorial

 Refactoring 190

Refactoring without preview
Activate a refactoring command. For example, rename a type by selecting it in the Outline view and
choosing Refactor > Rename from its pop−up menu.

1.

The Refactoring Parameters page prompts you for information necessary for the action. For example,
the Rename Type Refactoring dialog asks you for a new name for the selected type.

2.

Provide the necessary data on the parameters page, and click OK.3.
If no problems are anticipated, then the refactoring is carried out.
Otherwise, the problems page comes to the front to display the errors.

4.

If a fatal problem was anticipated, then only the Back and Cancel buttons are enabled, and you are
prevented from carrying out the refactoring. If the problems are related to data provided on the
parameters page, click Back and attempt to remedy the problem. Otherwise, click Cancel to close the
dialog.

5.

If other kinds of problems were anticipated, you can click Continue to acknowledge the problems.
The refactoring is carried out, and the dialog closes.

6.

Refactoring support

Refactoring with preview
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions
Refactoring dialogs
Java preferences

 Refactoring without preview 191

Refactoring with preview
Activate a refactoring command. For example, rename a type by selecting it in the Outline view and
choosing Refactor > Rename from its pop−up menu.

1.

The Refactoring Parameters page prompts you for information necessary for the action. For example,
the Rename Type Refactoring dialog asks you for the new name for the selected type.

2.

Provide the necessary data on the parameters page, and then click Preview.3.
If problems are anticipated, then the problems page comes to the front to display them.

If a fatal problem was anticipated, then only the Back and Cancel buttons are enabled, and
you are prevented from carrying out the refactoring. If the problems are related to data
provided on the parameters page, click Back and attempt to remedy the problem. Otherwise,
click Cancel to close the dialog.

♦

If other kinds of problems were anticipated, you can click Continue to acknowledge the
problems and move on to the preview page.

♦

The Refactoring Preview page opens.

4.

Click OK to execute the refactoring and close the dialog.5.

Refactoring support

Refactoring without preview
Previewing refactoring changes
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions
Refactoring dialogs
Java preferences

 Refactoring with preview 192

Previewing refactoring changes
The Preview page shows the proposed effects of a refactoring action. You can use this page as follows.

Select a node in the tree to examine a particular change.•
To examine a change inside a compilation unit, expand a compilation unit node in the tree and select
one of its children.

•

When selecting nodes, the compare viewer is adjusted only to show a preview for the selected node.•
Clear the checkbox for a node to exclude it from the refactoring.•

Note: Excluding a node can result in compile errors when performing the refactoring without further warning.

Refactoring support

Refactoring with preview
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions
Refactoring dialogs
Java preferences

 Previewing refactoring changes 193

Undoing a refactoring operation
The most recent refactoring can be undone as long as you have not modified any Java elements in the
workbench. After performing a refactoring operation, you can build the project, run and debug it, and execute
any test cases, and still undo the refactoring action.

To undo the most recent refactoring, select Edit > Undo from the menu bar.

Note: If the workbench contains unsaved files that affect undoing the refactoring, an error dialog appears. The
dialog contains a list of files that must be reverted to their saved editions before the refactoring can be
completed.

Refactoring support

Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Redoing a refactoring operation

Refactoring actions
Refactoring dialog
Java preferences

 Undoing a refactoring operation 194

Redoing a refactoring operation
To redo a previously undone refactoring operation, select Edit > Redo from the menu bar.

Refactoring support

Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Undoing a refactoring operation

Package Explorer
Java outline
Refactoring actions
Refactoring dialogs
Java preferences

 Redoing a refactoring operation 195

Refactor actions
Refactor menu commands:

Name Function Keyboard
Shortcut

Rename Starts the Rename refactoring dialog: Renames the selected element and (if
enabled) corrects all references to the elements (also in other files). Is
available on methods, method parameters, fields, local variables, types, type
parameters, enum constants, compilation units, packages, source folders,
projects and on a text selection resolving to one of these element types.

Alt + Shift
+ R

Move Starts the Move refactoring dialog: Moves the selected elements and (if
enabled) corrects all references to the elements (also in other files). Can be
applied to one instance method (which can be moved to a component), one
or more static methods, static fields, types, compilation units, packages,
source folders and projects and on a text selection resolving to one of these
element types.

Alt + Shift
+ V

Change Method
Signature

Starts the Change Method Signature refactoring dialog. Changes parameter
names, parameter types, parameter order and updates all references to the
corresponding method. Additionally, parameters can be removed or added
and method return type as well as its visibility can be changed. This
refactoring can be applied to methods or on text selection resolving to a
method.

Convert
Anonymous
Class to Nested

Start the Convert Anonymous Class to Nested Class refactoring dialog.
Helps you convert an anonymous inner class to a member class. This
refactoring can be applied to anonymous inner classes.

Move Member
Type to New
File

Starts the Move Member Type to New File refactoring dialog. Creates a
new Java compilation unit for the selected member type, updating all
references as needed. For non−static member types, a field is added to allow
access to the former enclosing instance, if necessary. This refactoring can
be applied to member types or text resolving to a member type.

Push Down

Starts the Push Down refactoring dialog. Moves a set of methods and fields
from a class to its subclasses. This refactoring can be applied to one or more
methods and fields declared in the same type or on a text selection inside a
field or method.

Pull Up Starts the Pull Up refactoring wizard. Moves a field or method to a
superclass of its declaring class or (in the case of methods) declares the
method as abstract in the superclass. This refactoring can be applied on one
or more methods, fields and member types declared in the same type or on a
text selection inside a field, method or member type.

Extract Interface

Starts the Extract Interface refactoring dialog. Creates a new interface with
a set of methods and makes the selected class implement the interface,
optionally changing references to the class to the new interface wherever
possible. This refactoring can be applied to types.

 Refactor actions 196

Generalize Type

Starts the Generalize Type refactoring dialog. Allows the user to choose a
supertype of the reference's current type. If the reference can be safely
changed to the new type, it is. This refactoring can be applied to type
references and declarations of fields, local variables, and parameters with
reference types.

Use Supertype
Where Possible

Starts the Use Supertype Where Possible refactoring dialog. Replaces
occurrences of a type with one of its supertypes after identifying all places
where this replacement is possible.This refactoring is available on types.

Infer Generic
Type Arguments

Starts the Infer Generic Type Arguments refactoring dialog. Replaces raw
type occurrences of generic types by parameterized types after identifying
all places where this replacement is possible.This refactoring is available on
projects, packages and types.

Inline Starts the Inline refactoring dialog. Inlines local variables, methods or
constants. This refactoring is available on methods, static final fields and
text selections that resolve to methods, static final fields or local variables.

Alt + Shift
+ I

Extract Method Starts the Extract Method refactoring dialog. Creates a new method
containing the statements or expression currently selected and replaces the
selection with a reference to the new method. You can use Expand Selection
to from the Edit menu to get a valid selection range.
This feature is useful for cleaning up lengthy, cluttered, or
overly−complicated methods.

Alt + Shift
+ M

Extract Local
Variable

Starts the Extract Variable refactoring dialog. Creates a new variable
assigned to the expression currently selected and replaces the selection with
a reference to the new variable. This refactoring is available on text
selections that resolve to local variables. You can use Expand Selection to
from the Edit menu to get a valid selection range.

Alt + Shift
+ L

Extract Constant

Starts the Extract Constant refactoring dialog. Creates a static final field
from the selected expression and substitutes a field reference, and optionally
rewrites other places where the same expression occurs. This refactoring is
available on static final fields and text selections that resolve to static final
fields.

Introduce
Factory

Starts the Introduce Factory refactoring dialog. This will create a new
factory method, which will call a selected constructor and return the created
object. All references to the constructor will be replaced by calls to the new
factory method. This refactoring is available on constructor declarations.

Introduce
Parameter

Starts the Introduce Parameter refactoring dialog. Replaces an expression
with a reference to a new method parameter, and updates all callers of the
method to pass the expression as the value of that parameter. This
refactoring is available on text selections that resolve to expressions.

Convert Local
Variable to Field

Start the Convert Local Variable to Field refactoring dialog. Turn a local
variable into a field. If the variable is initialized on creation, then the
operation moves the initialization to the new field's declaration or to the
class's constructors. This refactoring is available on text selections that
resolve to local variables.

 Basic tutorial

 Refactor actions 197

Encapsulate
Field

Starts the Self Encapsulate Field refactoring dialog. Replaces all references
to a field with getting and setting methods. Is applicable to a selected field
or a text selection resolving to a field.

Refactoring commands are also available from the context menus in many views and the Java editor.

Refactoring support

Refactoring
Using Structured Selection

Refactoring dialogs
Extract Method Errors
Java preferences

 Basic tutorial

 Refactor actions 198

Using Structured Selection
Structured Selection lets you quickly select Java code in a syntax−aware way.

To use Structured Selection:

In a Java editor, (optionally) select some text and press Alt+Shift+Arrow Up or select Edit >
Expand Selection To > Enclosing Element from the menu bar.

•

The current text selection is expanded to the inner−most syntax element (more precisely, Abstract
Syntax Tree node) that encloses the selection.

•

When a statement or a list of statements is selected, you can press Alt+Shift+Arrow Right or select
Edit > Expand Selection To > Next Element, which will expand the selection with the statement (if any
exists) that is immediately after the selected statements.

When a statement or a list of statements is selected, you can press Alt+Shift+Arrow Left or select Edit
> Expand Selection To > Previous Element, which will expand the selection with the statement (if any
exists) that is immediately before the selected statements.

Pressing Alt+Shift+Arrow Down or selecting Edit > Expand Selection To > Restore Last Selection
from the menu bar lets you restore the previous structured selection.

Java editor

Using the Java editor
Using Surround with Try/Catch
Extracting a method
Extracting a local variable
Inlining a local variable
Replacing a local variable with a query

Edit menu

 Using Structured Selection 199

Using Surround with Try/Catch
To surround a statement or a set of statements with a try/catch block:

In the Java editor, select the statement or a set of statements that you want to surround with a try/catch
block.

•

Do one of the following:
From the menu bar, select Source > Surround with try/catch Block or♦
From the editors pop−up menu, select Source > Surround with try/catch Block♦

•

'catch' blocks for all uncaught exceptions (if there are any) are created. If there are no uncaught
exceptions, a dialog appears informing you about this fact and asking if you want to create a 'catch'
block for java.lang.RuntimeException.

•

Java editor

Using the Java editor
Using Structured Selection

Source menu

 Using Surround with Try/Catch 200

Extracting a method
To extract a method:

In an editor, select a set of statements or an expression from a method body.1.
Do one of the following:

From the pop−up menu in the editor, select Refactor > Extract Method.♦
From the menu bar, select Refactor > Extract Method.♦

2.

Java development tools (JDT)

Renaming a method

Refactoring actions
Refactoring dialogs
Java preferences
Extract method errors

 Extracting a method 201

Renaming a method
You can rename a method by modifying its declaration in the compilation unit in which it is declared.
However, if you also want to update all references to it, you must either:

In a Java view presenting methods (for example the Outline view) select the method to be renamed.1.
From the view's pop−up menu, select Refactor > Rename or select Refactor > Rename from the
global menu bar.

2.

or

In a Java editor, select a reference to or the declaration of the method to be renamed.1.
From the editor's pop−up menu, select Refactor > Rename or select Refactor > Rename from the
global menu bar.

2.

Note 1: Renaming a method declared in an interface also renames (and updates all references to) all methods
that are implementations of that method.

Note 2: When renaming a non−static method declared as public, package visible, or protected, all methods
overriding it are also renamed and all references to them are updated.

Note 3: Renaming a static method or a private method updates references only to that method.

Java development tools (JDT)

Extracting a method
Renaming method parameters

Override methods
Refactoring actions
Refactoring dialogs
Java preferences

 Renaming a method 202

Renaming method parameters
You can rename the parameters of a method by renaming the parameter's declaration as well as all references
to the parameters inside the method body.

Use the Change Method Signature command to rename one or more parameters of a method as well as all
references to these parameters.

Select the method in a Java view (the Outline view, for example)•
From the method's pop−up menu, select Refactor > Change Method Signature or, from the menu
bar, select Refactor > Change Method Signature.
Note: these menu entries will no be active if the method has no parameters.

•

Select a parameter, press the Edit button, enter a new name for the parameter and press OK•

To rename a single parameter, it is often easier to:

Select the parameter in the Java editor.•
From the editor's pop−up menu, select Refactor > Rename to open the Rename refactoring dialog.•

Java development tools (JDT)

Changing method signature

Refactoring actions
Refactoring dialogs
Java preferences

 Renaming method parameters 203

Changing method signature
In addition to renaming a method, you can change other parts of the method's signature.

Select the method in a Java view (e.g. Outline, Package Explorer, Members).•
Do one of the following to open the Change Method Signature refactoring dialog:

From the menu bar, select Refactor > Change Method Signature or♦
From the method's pop−up menu, select Refactor > Change Method Signature♦

•

Java development tools (JDT)

Renaming a method

Refactoring actions
Refactoring dialogs
Java preferences

 Changing method signature 204

Refactoring Dialog
A dialog based user interface guides you through the steps necessary to execute a selected refactoring.
Depending on the complexity of the refactoring, either a wizard or a simple dialog is used to gather
information that is required for the refactoring.

Wizard based user interface (used for example, for Pull Up)•
Dialog based user interface (used for example, for Rename)•

Refactoring support

Refactoring actions

Icons

 Refactoring Dialog 205

Wizard based refactoring user interface
A wizard based user interface guides you through the steps necessary to execute a refactoring. A refactoring
wizard consists of 1 − n parameter pages, a preview page and a problem page.

Parameter pages

These pages gather information that is required for the refactoring. For example, the Pull Up refactoring uses
two pages to gather the methods and fields to be pulled up and to gather the obsolete methods and fields in
subclasses that can be deleted. The user can navigate the parameter pages using the Next > and < Back button.

After you have provided the required information, you can click Finish to carry out the refactoring without
previewing the results. If you want to preview the changes press Next >.

Preview page

The JDT allows you to preview the results of a refactoring action before you execute it.

The preview page consists of two parts:

A tree at the top containing all Java elements affected by the refactoring. Each top−level node in the
tree represents one compilation unit.

•

A compare viewer at the bottom. The left side of the compare viewer shows the original, the right side
displays the refactored source.

•

Problem page

The Refactoring Problem page indicates if there are suspected, potential, or definite problems with the
refactoring action you are attempting.

Four types of problems are possible:

Information
A problem described as Information will not affect the refactoring in any way, nor will it negatively
affect the code in the workbench. You can most likely ignore this type of problem.

Warnings
Warnings attempt to predict compiler warnings. This type of problem most likely will not negatively
affect the code in your workbench.

Errors
A problem described as an Error is very likely to cause compiler errors or change your workbench
code semantically. You can choose to continue with the refactoring in spite of these errors, although it
is not recommended.

Stop problems
This type of problem prevents the refactoring from taking place. For example, if you select a
comment and choose the Extract Method command from it, the workbench will issue a stop problem
on the refactoring attempt because you cannot extract a comment.

 Wizard based refactoring user interface 206

If there aren't any stop problems then the refactoring can be carried out by pressing the Finish button. To
preview the results of the refactoring action, press the Next > button.

Refactoring support

Previewing refactoring changes
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions

Icons

 Basic tutorial

Problem page 207

JDT icons

Objects

Compilation Unit (*.java file)

Java file which is not on a build path

class file

file without icon assigned to its type

unknown object

Java scrapbook page (*.jpage file)

Java scrapbook page (evaluation in
progress)

JAR description file

Java Working Set

Java Model

JRE system library container

JAR file with attached source

JAR file without attached source

source folder

package

empty package

logical package

empty logical package

package only containing non Java
resources

package declaration

import container

import

default type (package visible)

 JDT icons 208

public type

default interface (package visible)

public interface

default inner type (package visible)

private inner type

protected inner type

public inner type

default inner interface (package
visible)

private inner interface

protected inner interface

public inner interface

default field (package visible)

private field

protected field

public field

default method (package visible)

private method

protected method

public method

Object adornments

marks project as Java project

this Java element causes an error

this Java element causes warning

 Basic tutorial

Objects 209

this Java element is deprecated

constructor

abstract member

final member

static member

synchronized member

type with public static void
main(String[] args)

implements method from interface

overrides method from super class

type with focus in Type hierarchy

maximal expansion level in Call
Hierarchy

recursive call in Call Hierarchy

Build path

class path variable

unresolved class path variable

JAR with attached source

JAR without attached source

system library

reference to unavailable project

reference to unavailable source
folder

reference to unavailable JAR

build path ordering

inclusion filter

 Basic tutorial

Object adornments 210

exclusion filter

output folder

Javadoc location

source attachment

Code assist

HTML tag

Javadoc tag

local variable

template

Compare

field

method

Debugger

debug launch

run launch

terminated run launch

process

terminated process

debug target

suspended debug target

terminated debug target

thread

suspended thread

stack frame

 Basic tutorial

Build path 211

running stack frame

adornment that marks a stack frame
that may be out of synch with the
target VM as a result of an
unsuccessful hot code replace

adornment that marks a stack frame
that is out of synch with the target
VM as a result of an unsuccessful hot
code replace

inspected object or primitive value

watch expression

local variable

monitor

a monitor in contention

a thread in contention for a monitor

a monitor that is owned by a thread

a thread that owns a monitor

current instruction pointer (top of
stack)

current instruction pointer

enabled line breakpoint

disabled line breakpoint

adornment that marks a line
breakpoints as installed

adornment that marks a breakpoint as
conditional

adornment that marks an entry
method breakpoint

adornment that marks an exit method
breakpoint

field access watchpoint

 Basic tutorial

Debugger 212

field modification watchpoint

field access and modification
watchpoint

adornment that marks a watchpoint
as installed

exception breakpoint

runtime exception breakpoint

disabled exception breakpoint

adornment that marks an exception
breakpoint as caught

adornment that marks an exception
breakpoint as uncaught

adornment that marks an exception
breakpoint as scoped

adornment that marks an exception
breakpoint as installed

Editor

implements

overrides

quick assist available

search match

collapsed

expanded

JUnit

test

currently running test

successful test

 Basic tutorial

 Editor 213

failing test

test throwing an exception

test suite

currently running test suite

successfully completed test suite

test suite with failing test

test suite with exception throwing
test

NLS tools

skipped NLS key

translated NLS key

untranslated NLS key

search for unused NLS keys

Quick fix

quick fixable error

quick fixable warning

error that got fixed in source but file
still needs a recompile

warning that got fixed in source but
file still needs a recompile

add

change

change cast

move to another package

remove

remove import

 Basic tutorial

JUnit 214

rename

surround with try/catch

Refactoring

general change

composite change

compilation unit change

text change

file change

Stop error

Error

Warning

Information

Search

Java Search

search for declarations

search for references

search for unused NLS keys

Search − Occurrences in File

a general match

read access to local or field

write access to local or field

Type hierarchy view

type from non selected package

 Basic tutorial

Quick fix 215

interface from non selected package

 Basic tutorial

Type hierarchy view 216

Dialog based refactoring user interface
A dialog based user interface guides you through the steps necessary to execute a selected refactoring. A
dialog based refactoring user interface consists of a short first dialog gathering information that is required to
execute the refactoring, a separate problem dialog that pops up if any errors are detected and a preview dialog
to preview the results of a refactoring.

Input dialog

This dialog gathers information that is required for the refactoring. For example, for a rename refactoring you
will enter the new name for the Java element. You can either press OK to execute the refactoring or Preview >
to preview the result of the refactoring.

Preview dialog

The JDT allows you to preview the results of a refactoring action before you execute it.

The preview dialog consists of two parts:

A tree at the top containing all Java elements affected by the refactoring. Each top−level node in the
tree represents one compilation unit.

•

A compare viewer at the bottom. The left side of the compare viewer shows the original, the right side
displays the refactored source.

•

Problem dialog

The problem dialog indicates if there are suspected, potential, or definite problems with the refactoring action
you are attempting.

Four types of problems are possible:

Information
A problem described as Information will not affect the refactoring in any way, nor will it negatively
affect the code in the workbench. You can most likely ignore this type of problem.

Warnings
Warnings attempt to predict compiler warnings. This type of problem most likely will not negatively
affect the code in your workbench.

Errors
A problem described as an Error is very likely to cause compiler errors or change your workbench
code semantically. You can choose to continue with the refactoring in spite of these errors, although it
is not recommended.

Stop problems
This type of problem prevents the refactoring from taking place. For example, if you select a
comment and choose the Extract Method command from it, the workbench will issue a stop problem
on the refactoring attempt because you cannot extract a comment.

If there aren't any stop problems then the refactoring can be carried out by pressing the OK button. To preview
the results of the refactoring action, press the Continue button.

 Dialog based refactoring user interface 217

Refactoring support

Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Undoing a refactoring operation
Redoing a refactoring operation

Refactoring actions

Icons

 Basic tutorial

Problem dialog 218

Override methods
This dialog lets you define methods to override.

Use Override/Implement Methods from the Source menu or the context menu on a selected type or on a text
selection in a type.

The dialog presents all methods that can be overridden from supertypes or implemented from interfaces.
Abstract methods or unimplemented methods are selected by default.

The tree view groups methods by the type declaring the method. If more than one type in the hierarchy declare
the same method, the method is only shown once, grouped to the first type in the list of supertypes that
implements or defines this method.

The flat view shows only methods, sorted alphabetically.

When pressing OK, method stubs for all selected methods are created.

Option Description Default

Select methods to override
or implement

Select methods to override or implement Abstract methods from
superclasses and unimplemented
methods from interfaces are
selected

Group methods by types Shows methods grouped by a list of the
super types in which they are declared.

selected

Select All Select all methods n/a

Deselect All Deselect all methods n/a

You can control whether Javadoc comments are added to the created methods with the Generate method
comments option at the bottom of the dialog.

Source actions

 Override methods 219

Extract method errors
When you attempt to extract a method, you may get one or more of the following common errors:

Selected block references a local type declared outside the
selection A local type declaration is not part of the selection but is referenced by one of the
statements selected for extraction. Either extend the selection that it includes the local type declaration
or reduce the selection that no reference to the local type declaration is selected.

•

A local type declared in the selected block is referenced outside
the selection The selection covers a local type declaration but the type is also referenced
outside the selected statements. Either extend the selection that is includes all references to the local
type or reduce the selection that the local type declaration isn't selected.

•

Ambiguous return value: selected block contains more than one
assignment to local variable More than one assignment to a local variable was found
inside the selected block. Either reduce the selection that only one assignment is selected or extend
the selection that at least all reference except of one to the local variables are covered by the selection
too.

•

Ambiguous return value: expression access to local and return
statement selected The selected statement generates more than one return value. This is for
example the case if an expression is selected and an expression's argument is modified as well. To
remedy this problem extend the selection to cover the read access of the modified argument as well.

•

Selection contains a break statement but the corresponding break
target isn't selected To remedy the problem either extend the selection to include the
break / continue target or reduce the selection that the break / continue statement isn't covered by the
selection.

•

Selection contains a continue statement but the corresponding
continue target isn't selected To remedy the problem either extend the selection to
include the break / continue target or reduce the selection that the break / continue statement isn't
covered by the selection.

•

Selection starts inside a comment Parts of a comment cannot be extracted. Either
extend the selection that it covers the whole comment or reduce the selection that the comment isn't
covered at all.

•

Selection ends inside a comment Parts of a comment can't be extracted. Either extend
the selection that it covers the whole comment or reduce the selection that the comment isn't covered
at all.

•

Cannot extract selection that ends in the middle of a statement Adjust
selection so that it fully covers a set of statements or expressions. The users can extend the selection
to a valid range using the Expand Selection to in the Edit menu.

•

Java development tools (JDT)
Refactoring support

Extracting a method
Using Structured Selection

 Extract method errors 220

Source menu
Refactor Menu

 Basic tutorial

 Extract method errors 221

Extracting a local variable
To extract a local variable from an expression:

In a Java editor, select the expression that you want to extract to a local variable•
Do one of the following:

From the editor's pop−up menu, select Refactor > Extract Local Variable or♦
From the menu bar, select Refactor > Extract Local Variable♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Extracting a local variable 222

Inlining a local variable
To inline a local variable:

In a Java editor, select the variable that you want to inline (you can select a reference to the variable)•
Do one of the following:

From the menu bar, select Refactor > Inline or♦
From the editor's pop−up menu, select Refactor > Inline♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Inlining a local variable 223

Replacing a local variable with a query
To replace a local variable with a query:

In the Java editor, select the expression with which the local variable is initialized•
Invoke the Extract Method refactoring by either:

Selecting Refactor > Extract Method from the editor's pop−up menu or♦
Selecting Refactor > Extract Method from the menu bar♦

•

Perform the Extract Method refactoring•
Select the local variable (or a reference to it)•
Invoke the Inline Local Variable by either:

Selecting Refactor > Inline from the editor's pop−up menu or♦
Selecting Refactor > Inline from the menu bar♦

•

Perform the Inline Local Variable refactoring•

Java development tools (JDT)

Extracting a method
Inlining a local variable

Refactoring actions
Refactoring dialogs
Java preferences

 Replacing a local variable with a query 224

Copying and moving Java elements
To move Java elements:

From a Java view, select the Java elements you want to move.1.
From the menu bar, select Refactor > Move or, from the view's pop−up menu, select Refactor
> Move.

2.

In the resulting dialog, select the new location for the element and press OK.
Note: Moving static members (such as methods and types), classes or compilation units allows you to
choose to also update references to these elements. Additional options may be available; for more on
these options, see the documentation for the corresponding "Rename" refactoring.

3.

You can also move Java elements by dragging them and dropping in the desired new location.

Note: Dragging and dropping compilation units and types allows you to update references to these elements.
In the dialog that appears on dropping, press Yes if you want to update references, press Preview if you want
to see the preview of the reference updates, press No if you want to move the elements without updating
references or press Cancel if you want to cancel the move operation. Additional options may be available; for
more on these options, see the documentation for the corresponding "Rename" refactoring.

To copy Java elements you need to copy them to the clipboard and paste them in the desired new location:

From a Java view, select the Java elements you want to copy to the clipboard and do one of the
following:

Press Ctrl+C♦
From the menu bar, select Edit > Copy♦
From the view's pop−up menu, select Copy♦

1.

Now, to paste the elements, select the desired destination and do one of the following:
Press Ctrl+V♦
From the menu bar, select Edit > Paste♦
From the view's pop−up menu, select Copy♦

2.

You can also copy Java elements by dragging them and dropping in the desired new location. You will need
to have Ctrl pressed while dragging to copy the elements.

Java projects

Creating Java elements
Moving folders, packages, and files
Copying and moving Java elements

Edit menu

 Copying and moving Java elements 225

Refactoring actions

 Basic tutorial

 Copying and moving Java elements 226

Extracting a constant
To extract a constant from an expression:

In a Java editor, select the expression that you want to extract to a constant•
Do one of the following:

From the editor's pop−up menu, select Refactor > Extract Constant or♦
From the menu bar, select Refactor > Extract Constant♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Extracting a constant 227

Renaming a package
To rename a package:

In the Package Explorer or the Packages view select the package that you want to rename.1.
From the view's pop−up menu, select Refactor > Rename.2.

This updates all import statements of any affected compilation units and all fully qualified references to types
declared in the renamed package.

Java projects
Refactoring support

Opening a package
Moving folders, packages, and files
Creating a new Java package

Package Explorer
Refactoring actions
Refactoring dialog
Java preferences

 Renaming a package 228

Opening a package
To reveal a package in the tree of the Package Explorer:

Select Navigate > Go To > Package from the menu bar. The Go to Package dialog opens.1.
Type a package name in the Choose a package field to narrow the list of available packages, using
wildcards as needed. As you type, the list is filtered to display only packages that match the current
expression.

2.

Select a package from the list, then click OK. The selected package is displayed in the Package
Explorer.

3.

Java views

Showing a type's compilation unit in the Package Explorer
Renaming a package
Moving folders, packages, and files
Creating a new Java package

Navigate actions
Package Explorer

 Opening a package 229

Showing an element in the Package Explorer view
You can reveal an element's location in the Package Explorer view

Select a Java element or activate a Java editor.1.
From the menu bar, select Navigate > Show In > Package Explorer. If the Package Explorer
is not already open, then it opens in the current perspective. The workbench navigates to the
selected element (or the edited compilation unit).

2.
•

From the Java editor's pop−up menu, select Show in Package Explorer. The currently edited
compilation unit will be revealed.

•

Note: The element might not be revealed if Package Explorer filters are active or the Window > Preferences
> Java > Appearance > Show Members in Package Explorer preference is cleared.

Java views

Setting execution arguments
Renaming a compilation unit
Opening a type in the Package Explorer
Organizing existing import statements

Java Base preference page
Package Explorer

 Showing an element in the Package Explorer view 230

Renaming a compilation unit
To rename a compilation unit:

In the Package Explorer, select the compilation unit you want to rename.1.
From the view's pop−up menu, select Refactor > Rename.2.

Renaming a compilation unit also renames (and updates all references to) the top−level type that has the same
name as the compilation unit. For example, renaming a compilation unit A.java in which a class A is declared
also renames class A and updates all references to it.

Refactoring support

Copying and moving Java elements
Viewing compilation errors and warnings
Creating a class in an existing compilation unit
Creating a new interface in a compilation unit
Showing a type's compilation unit in the Packages view

Package Explorer
Refactoring actions
Refactoring dialogs
Java preferences

 Renaming a compilation unit 231

Creating a new interface in an existing
compilation unit
An alternative way to create a new interface is to add it to an existing compilation unit.

In the Package Explorer, double−click a compilation unit.1.
Type the code for the interface at the desired position in the compilation unit.2.

Java projects

Creating Java elements
Creating a new Java interface
Creating a nested interface
Creating a top−level interface
Renaming a compilation unit

Package Explorer

 Creating a new interface in an existing compilation unit 232

Creating a new Java interface
Use the New Java Interface wizard to create a new Java interface. There are a number of ways to open this
wizard:

Select the container where you want the new class to reside.1.
From the drop−down menu on the New Java Class button in the workbench toolbar, select Interface.2.

or

Select the container where you want the new class to reside.1.
From the container's pop−up menu, select New > Interface.2.

or

Select the container where you want the new class to reside.1.
From the drop−down menu on the New button in the workbench toolbar, select Interface.2.

or

Click the New button in the workbench toolbar to open the New wizard.1.
Select Interface or Java > Interface and click Next.2.

or

Select the container where you want the new interface to reside.1.
Then, select from the menu bar File > New > Interface.2.

Java projects

Creating a top−level interface
Creating a nested interface
Creating a new interface in an existing compilation unit
Renaming a type

New Java Interface wizard
Java Toolbar actions
Package Explorer

 Creating a new Java interface 233

Creating a top−level interface
You can create interfaces that are not enclosed in other types.

Open the New Java Interface wizard.1.
Edit the Source Folder field as needed to indicate in which folder you want the new interface to
reside. You can either type a path or click the Browse button to find the folder. If a folder is found for
the current selection, that folder appears in the Source Folder field as the container for the new
interface.

2.

In the Package field, type a name or click Browse to select the package where you want the new
interface to reside. If you want the new interface to be created in the default package, leave this field
empty.

3.

Clear the Enclosing type checkbox.4.
In the Name field, type a name for the new interface. (Optionally, in a 5.0 project, add type
parameters enclosed in < and >).

5.

Select the public or default access modifier using the Modifiers radio buttons.6.
Click the Add button to add interfaces for the new interface to extend. (Optionally, in a 5.0 project,
add type arguments enclosed in < and >).

7.

Click Finish.8.

Java projects

Creating a new Java interface
Creating a nested interface
Creating a new interface in a compilation unit
Renaming a type

New Java Interface wizard
Java Toolbar actions
Package Explorer

 Creating a top−level interface 234

Creating a nested interface
You can create interfaces that are enclosed in other types (that is, nested interfaces).

Open the New Java Interface wizard.1.
Edit the Source Folder field to indicate in which folder you want the new interface to reside. You can
either type a path or click the Browse button to find the folder. If a folder is found for the current
selection, that folder appears in the Source Folder field as the container for the new interface.

2.

Select the Enclosing type checkbox.3.
In the Enclosing type field, type the name of the enclosing type or click the Browse button to select
the enclosing type for the new interface.

4.

In the Name field, type a name for the new interface. (Optionally, in a 5.0 project, add type
parameters enclosed in < and >).

5.

Select the public or default access modifier by using the Modifiers radio buttons.6.
Select the static checkbox if you want the new interface to be static.7.
Click the Add button to add interfaces for the new interface to extend. (Optionally, in a 5.0 project,
add type arguments enclosed in < and >).

8.

Click Finish when you are done.9.

Note: The new interface is created in the same compilation unit as its enclosing type.

Java projects

Creating a new Java interface
Creating a top−level interface
Creating a new interface in a compilation unit
Renaming a type

New Java Interface wizard
Java Toolbar actions
Package Explorer

 Creating a nested interface 235

Renaming a type
You can rename a type by modifying its declaration in the compilation unit in which it is declared. However,
if you also want to update all references to it, do one of the following:

In a Java view presenting types (e.g. the Outline view, the Type Hierarchy views, etc.) select a type.1.
From the type's pop−up menu, select Refactor > Rename or use the Refactor > Rename action from
the global menu bar.

2.

or

In a Java editor, select a reference to the type.1.
From the editor's pop−up menu, select Refactor > Rename or use the Refactor > Rename action from
the global menu bar.

2.

Java projects

Creating a new Java class
Creating a new Java enum
Creating a new Java annotation
Creating a nested interface
Creating a top−level interface
Creating a top−level class
Creating a nested class
Creating a class in an existing compilation unit

Package Explorer
Refactoring actions
Refactoring dialogs
Java preferences

 Renaming a type 236

Creating a new Java enum
Use the New Java Enum wizard to create a new Java enum. There are a number of ways to open this wizard:

Select the container where you want the new enum to reside.1.
Click the New Java Enum button in the workbench toolbar.2.

or

Select the container where you want the new enum to reside.1.
From the container's pop−up menu, select New > Enum.2.

or

Select the container where you want the new enum to reside.1.
From the drop−down menu on the New button in the workbench toolbar, select Enum.2.

or

Click the New button in the workbench toolbar to open the New wizard.1.
Select Java > Enum and click Next.2.

or

Select the container where you want the new enum to reside.1.
Then, select from the menu bar File > New > Enum.2.

Java projects

Renaming a type

New Java Enum wizard
Java Toolbar actions
Package Explorer

 Creating a new Java enum 237

New Java Enum Wizard
This wizard helps you to create a new Java enum in in a Java project.

Java Enum Options

Option Description Default

Source folder Enter a source folder for the new enum. Either type a valid
source folder path or click Browse to select a source
folder via a dialog.

The source folder of the
element that was
selected when the wizard
has been started.

Package Enter a package to contain the new enum. You can select
either this option or the Enclosing Type option, below.
Either type a valid package name or click Browse to select
a package via a dialog.

The package of the
element that was
selected when the wizard
has been started.

Enclosing type Select this option to choose a type in which to enclose the
new enum. You can select either this option or the
Package option, above. Either type a valid name in the
field or click Browse to select a type via a dialog.

The type or the primary
type of the compilation
unit that was selected
when the wizard has
been started or <blank>

Name Type a name for the new enum. <blank>

Modifiers Select one or more access modifiers for the new enum.

Either public, default, private, or protected
(private and protected are only available if you
specify an enclosing type)

•

public

Interfaces Click Add to choose interfaces that the new enum
implements.

<blank>

Do you want to add
comments?

When selected, the wizard adds comments to the new
enum where appropriate.

Do not add comments

Creating a new Java enum

File actions

New Java Enum Wizard 238

Creating a new Java annotation
Use the New Java Annotation wizard to create a new Java annotation. There are a number of ways to open
this wizard:

Select the container where you want the new class to reside.1.
From the drop−down menu on the New Java Class button in the workbench toolbar, select
Annotation.

2.

or

Select the container where you want the new class to reside.1.
From the container's pop−up menu, select New > Annotation.2.

or

Select the container where you want the new class to reside.1.
From the drop−down menu on the New button in the workbench toolbar, select Annotation.2.

or

Click the New button in the workbench toolbar to open the New wizard.1.
Select Java > Annotation and click Next.2.

or

Select the container where you want the new annotation to reside.1.
Then, select from the menu bar File > New > Annotation.2.

Java projects

Renaming a type

New Java Annotation wizard
Java Toolbar actions
Package Explorer

 Creating a new Java annotation 239

New Java Annotation Wizard
This wizard helps you to create a new Java Annotation in a Java project.

Java Annotation Options

Option Description Default

Source folder Enter a source folder for the new annotation. Either type a
valid source folder path or click Browse to select a source
folder via a dialog.

The source folder of the
element that was
selected when the
wizard has been started.

Package Enter a package to contain the new annotation. You can
select either this option or the Enclosing Type option,
below. Either type a valid package name or click Browse
to select a package via a dialog.

The package of the
element that was
selected when the
wizard has been started.

Enclosing type Select this option to choose a type in which to enclose the
new annotation. You can select either this option or the
Package option, above. Either type a valid name in the
field or click Browse to select a type via a dialog.

The type or the primary
type of the compilation
unit that was selected
when the wizard has
been started or <blank>

Name Type a name for the new annotation. <blank>

Modifiers Select one or more access modifiers for the new
annotation.

Either public, default, private, or protected
(private and protected are only available if you
specify an enclosing type)

•

public

Do you want to add
comments?

When selected, the wizard adds comments to the new class
where appropriate.

Do not add comments

Creating a new Java annotation

File actions

New Java Annotation Wizard 240

Creating a top−level class
You can create classes that are not enclosed in other types.

Open the New Class wizard.1.
Edit the Source Folder field as needed to indicate in which folder you want the new class to reside.
You can either type a path or click the Browse button to find the folder. If a folder is found for the
current selection, that folder appears in the Source Folder field as the container for the new class.

2.

In the Package field, type or click Browse to select the package where you want the new class to
reside. Leave this field empty to indicate that you want the new class to be created in the default
package.

3.

Leave the Enclosing type box deselected.4.
In the Name field, type a name for the new class. (Optionally, in a 5.0 project, add type parameters
enclosed in < and >).

5.

Select the public or default access modifier using the Modifiers radio buttons.
Note: The private and protected options are available only when creating a class enclosed in a type.

6.

Optionally, select the abstract or final modifier for the new class using the appropriate checkboxes:
Note: The static option is available only when creating a class enclosed in a type.

7.

In the Superclass field, type or click Browse to select a superclass for the new class. (Optionally, in a
5.0 project, add type arguments enclosed in < and >).

8.

Click the Add button to add interfaces for the new class to implement. (Optionally, in a 5.0 project,
add type arguments enclosed in < and >).

9.

If you want to create some method stubs in the new class:
Select the public static void main(String[] args) box if you want the wizard to add the main
method to the new class, thus making it a starting point of an application.

♦

Select the Constructors from superclass checkbox if you want the wizard to create, in the
new class, a set of constructors, one for each of the constructors declared in the superclass.
Each of them will have the same number of parameters (of the same types) as the respective
constructor from the superclass.

♦

Select the Inherited abstract methods checkbox if you want the wizard to generate method
stubs for each of the abstract methods that the new class will inherit from its superclass and
implemented interfaces.

♦

10.

Click Finish when you are done.11.

Java projects

Creating a new Java class
Creating a nested class
Creating a class in an existing compilation unit

New Java Project wizard
New Source Folder wizard

 Creating a top−level class 241

New Java Package wizard
New Java Class wizard
Java Toolbar actions

 Basic tutorial

 Creating a top−level class 242

Creating a nested class
You can create classes that are enclosed in other types (that is, nested classes).

Open the New Java Class wizard.1.
Edit the Source Folder field to indicate in which folder you want the new class to reside. You can
either type a path or click Browse to find the folder. If a folder is found for the current selection, that
folder appears in the Source Folder field as the container for the new class.

2.

Select the Enclosing Type checkbox and type the name of the enclosing type in the Enclosing Type
field. You can also click Browse to select the enclosing type for the new class.

3.

In the Name field, type a name for the new class. (Optionally, in a 5.0 project, add type parameters
enclosed in < and >).

4.

Select the desired modifiers by using the Modifiers radio buttons and checkboxes.5.
In the Superclass field, type or click Browse to select a superclass for the new class. (Optionally, in a
5.0 project, add type arguments enclosed in < and >).

6.

Click the Add button to add interfaces for the new class to implement. (Optionally, in a 5.0 project,
add type arguments enclosed in < and >).

7.

If you want to create some method stubs in the new class:8.
Select the public static void main(String[] args) checkbox if you want the wizard to add the
main method to the new class, thus making it a starting point of an application.

♦

Select the Constructors from superclass checkbox if you want the wizard to create, in the
new class, a set of constructors, one for each of the constructors declared in the superclass.
Each of them will have the same number of parameters (of the same types) as the respective
constructor from the superclass.

♦

Select the Inherited abstract methods checkbox if you want the wizard to generate method
stubs for each of the abstract methods that the new class will inherit from its superclass and
implemented interfaces.

♦

9.

Click Finish when you are done.10.

Note: The new class is created in the same compilation unit as its enclosing type.

Java projects

Creating a new Java class
Creating a top−level class
Creating a class in an existing compilation unit

New Java Class wizard

 Creating a nested class 243

New Java Class Wizard
This wizard helps you to create a new Java class in in a Java project.

Java Class Options

Option Description Default

Source folder Enter a source folder for the new class. Either
type a valid source folder path or click Browse to
select a source folder via a dialog.

The source folder of the element
that was selected when the wizard
has been started.

Package Enter a package to contain the new class. You
can select either this option or the Enclosing
Type option, below. Either type a valid package
name or click Browse to select a package via a
dialog.

The package of the element that was
selected when the wizard has been
started.

Enclosing type Select this option to choose a type in which to
enclose the new class. You can select either this
option or the Package option, above. Either type
a valid name in the field or click Browse to select
a type via a dialog.

The type or the primary type of the
compilation unit that was selected
when the wizard has been started or
<blank>

Name Type a name for the new class. <blank>

Modifiers Select one or more access modifiers for the new
class.

Either public, default, private, or
protected (private and protected are only
available if you specify an enclosing
type)

•

abstract•
final•
static (only available if you specify an
enclosing type)

•

public

Superclass Type or click Browse to select a superclass for
this class.

The type (not the compilation unit!)
that was selected when the wizard
has been started or
<java.lang.Object>

Interfaces Click Add to choose interfaces that the new class
implements.

<blank>

Which method
stubs would you
like to create?

Choose the method stubs to create in this class:

public static void main(String [] args):
Adds a main method stub to the new
class.

•

Inherited abstract methods enabled

New Java Class Wizard 244

Constructors from superclass: Copies the
constructors from the new class's
superclass and adds these stubs to the
new class.

•

Inherited abstract methods: Adds to the
new class stubs of any abstract methods
from superclasses or methods of
interfaces that need to be implemented.

•

Do you want to
add comments?

When selected, the wizard adds comments to the
new class where appropriate.

Do not add comments

Creating a new Java class

File actions

 Basic tutorial

New Java Class Wizard 245

New Source Folder Wizard
This wizard helps you to create a new source folder to a Java project.

Note that a new source folder can not be nested in existing source folders or in an output folder. You can
choose to add exclusion filters to the other nesting source folders or the wizard will suggest to replace the
nesting classpath entry with the new created entry. The wizard will also suggest to change the output location.

New Source Folder Options

Option Description Default

Project name Enter a project to contain the new source folder. Either type
a valid project name or click Browse to select a project via
a dialog.

The project of the
element that was
selected when the
wizard has been
started.

Folder name Type a path for the new source folder. The path is relative
to the selected project.

<blank>

Update exclusion
filter in other source
folders to solve
nesting

Select to modify existing source folder's exclusion filters to
solve nesting problems. For example if there is an existing
source folder src and a folder src/inner is created, the
source folder src will be updated to have a exclusion filter
src/inner.

Off

Java projects

Creating Java elements
Creating a new source folder

File actions

New Source Folder Wizard 246

New Java Interface Wizard
This wizard helps you to create a new Java interface in a Java project.

Java Interface Options

Option Description Default

Source folder Enter a source folder for the new interface. Either type
a valid source folder path or click Browse to select a
source folder via a dialog.

The source folder of the element
that was selected when the
wizard has been started.

Package Enter a package to contain the new interface. You can
select either this option or the Enclosing Type option,
below. Either type a valid package name or click
Browse to select a package via a dialog.

The package of the element that
was selected when the wizard has
been started.

Enclosing type Select this option to choose a type in which to enclose
the new interface. You can select either this option or
the Package option, above. Either type a valid name in
the field or click Browse to select a type via a dialog.

The type or the primary type of
the compilation unit that was
selected when the wizard has
been started or <blank>

Name Type a name for the new interface. <blank>

Modifiers Select one or more access modifiers for the new
interface.

Either public, default, private, or protected
(private and protected are only available if
you specify an enclosing type)

•

static (only available if you specify an
enclosing type)

•

public

Extended
interfaces

Click Add to choose interfaces that the new interface
extends.

<blank>

Do you want to
add comments?

When selected, the wizard adds comments to the new
class where appropriate.

Do not add comments

Creating a new Java interface

File actions

New Java Interface Wizard 247

Opening a type in the Package Explorer view
You can open the Package Explorer on any type that is included on a project's class path.

From the menu bar, select Navigate > Go To > Type. The Go to Type dialog opens.1.
In the Choose a type field, begin typing an expression to narrow the list of available types, using
wildcards as needed. As you type, the list is filtered to display only types that match the current
expression.

2.

In the Matching types list, select a type. Hint: you can press the Down key to move to the first type.3.
Click OK when you are done. The selected type is displayed in the Package Explorer.4.

Note: The Goto Type dialog maintains a history of recently opened types. These are shown when the dialog is
opened and stay above a separator line when you start to type a filter expression.

Note: Revealing may not be possible if Package Explorer filters are applied.

Java development tools (JDT)

Showing a type's compilation unit in the Package Explorer

Navigate actions
Package Explorer

 Opening a type in the Package Explorer view 248

Organizing existing import statements
The Java editor can help you improve the existing import statements inside a compilation unit.

Do one of the following while editing your Java code:
Select Source > Organize Imports from the pop−up menu in the editor♦
Select Source > Organize Imports from the menu bar♦
Press Ctrl+Shift+O♦

1.

The Java editor generates a complete list of import statements, as specified by the import order
preference, and new import statements replace the old ones.

2.

Note: Source > Organize Imports also works on whole packages or projects − just select them in the Package
Explorer.

Java editor

Adding required import statements
Managing import statements
Setting the order of import statements
Showing a type's compilation unit in the Package Explorer view

Source menu

 Organizing existing import statements 249

Adding required import statements
The Java editor can help you adding required import statements for a selected type inside a compilation unit.

Select a reference to a type in your Java code, and do one of the following:
Select Source > Add Import from the pop−up menu in the editor♦
Select Source > Add Import from the menu bar.♦
Press Ctrl + Shift + M♦

1.

Either the editor can identify the type or you are prompted to choose the desired type from a list of
possible types.

2.

The import statement is generated and inserted as specified by the import order preference.3.

Java editor

Using the Java editor
Managing import statements
Organizing existing import statements
Setting the order of import statements

Source menu

 Adding required import statements 250

Managing import statements
The default Java editor includes several features that help you manage import statements.

Java editor

Using the Java editor
Adding required import statements
Organizing existing import statements
Setting the order of import statements

Source menu

 Managing import statements 251

Setting the order of import statements
From the menu bar, select Window > Preferences.1.
In the left pane, expand the Java > Code Style category and select Organize Imports.2.
The Organize Imports page defines the sorting order of import statements. In the Imports list, manage
the list of package prefixes as follows:

New to add a new prefix♦
New Static to add a new prefix for static imports (J2SE 5.0 only)♦
Edit to change the name of an existing prefix♦
Use Up and Down buttons to rearrange the sequence of the list by moving the selected prefix
up or down

♦

Remove to remove the selected prefix from the list♦
Use Import... and Export... to load a list of prefixes from a file or to store it to a file♦

3.

In the Number of imports needed before .* field, type the number of import statements that are
allowed to refer to the same package before <package prefix>.* is used. This number is called the
import threshold.

4.

Click OK when you are done.5.

Note: The order of import statements can also be configured per project:

Select a java project, open the pop−up menu and choose Properties.1.
Select the Code Style > Organize Imports page and check Enable project specific sttings.2.
Manage the list as explained above.3.
Click OK when you are done.4.

Java editor

Adding required import statements
Managing import statements
Organizing existing import statements

Refactoring actions
Organize Import preference page

 Setting the order of import statements 252

Organize Imports
The following preferences define how the Organize Imports command generates the import statements in a
compilation unit.

Organize Imports Preferences

Option Description Default
Import order list This list of prefixes shows the sequential order for packages

imported into a Java compilation unit. Each entry defines a block.
Different blocks are separated by a spacer line.

java
javax
org
com

New... Adds a package name prefix to the import order list. In the resulting
dialog, type a package name or package name prefix.

n/a

New Static... Adds a package name prefix to the import order list. In the resulting
dialog, type a package name or package name prefix.

n/a

Edit... Change the name of an existing package name prefix. In the
resulting dialog, type a package name or package name prefix.

n/a

Remove Removes a package name prefix from the import order list. n/a

Up Moves the selected package name prefix up in the import order list. n/a

Down Moves the selected package name prefix down in the import order
list.

n/a

Import... Load a list of package name prefixes from a file. n/a

Export... Save the list of package name prefixes to a file. n/a

Number of imports needed
for .*

The number of fully−qualified import statements that are allowed
from the same package before <package>.* is used.

99

Do not create imports for
types starting with a lower
case letter

If enabled, types starting with a lowercase letter are not imported. On

Managing import statements

Source actions

 Organize Imports 253

Renaming a field
You can rename a field by modifying its declaration in the compilation unit in which it is declared. However,
if you also want to update all references to it, do one of the following:

In a Java view presenting fields (for example in the Outline view) select a field.1.
From the view's pop−up menu, select Refactor > Rename or select Refactor > Rename from the
global menu bar.

2.

or

In a Java editor, select a reference to the field (or the field's declaration).1.
From the editor's pop−up menu, select Refactor > Rename or select Refactor > Rename from the
global menu bar.

2.

Refactoring actions
Refactoring dialogs
Java preferences
Package Explorer

 Renaming a field 254

Renaming a local variable
To rename a local variable (or a method parameter):

Select the variable (or a reference to it) in the Java editor•
Do one of the following:

From the menu bar, select Refactor > Rename or♦
From the editor's pop−up menu, select Refactor > Rename♦

•

Java development tools (JDT)

Parameters page
Extracting a local variable
Inlining a local variable
Renaming method parameters
Changing method signature
Replacing a local variable with a query

Refactoring actions
Refactoring dialogs
Java preferences

Renaming a local variable 255

Parameters page

Parameters Page for the Rename Local Variable Refactoring Command

In the Enter new name field, type a new name for the local variable.•
If you do not want to update references to the renamed local variable, deselect the Update references
to the renamed element checkbox.

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Renaming a local variable
See Refactoring without Preview
See Refactoring with Preview

Parameters page 256

Inlining a method
To inline a method:

In a Java editor or in one of the Java views, select the method that you want to inline (you can also
select an invocation site of the method)

•

Do one of the following:
From the menu bar, select Refactor > Inline or♦
From the editor's pop−up menu, select Refactor > Inline♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Inlining a method 257

Inlining a constant
To inline a constant:

In a Java editor or in one of the Java views, select the constant that you want to inline (you can select
a reference to the constant)

•

Do one of the following:
From the menu bar, select Refactor > Inline or♦
From the editor's pop−up menu, select Refactor > Inline♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Inlining a constant 258

Self encapsulating a field
To self−encapsulate a field:

Select the field in one of the Java views (e.g. Outline, Package Explorer or Members view)•
Do one of the following

From the menu bar, select Refactor > Self Encapsulate or♦
From the field's pop−up menu, select Refactor > Self Encapsulate♦

•

You can also invoke this refactoring from the Java editor:

In the Java editor, select the field (or a reference to it)•
Do one of the following

From the menu bar, select Refactor > Self Encapsulate or♦
From the editor's pop−up menu, select Refactor > Self Encapsulate♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Self encapsulating a field 259

Pulling members up to superclass
To pull up class members (fields and methods) to the class's superclass:

In a Java view (e.g. Outline, Package Explorer, Members), select the members that you want to pull
up.

•

Do on of the following:
From the menu bar, select Refactor > Pull Up or♦
From the pop−up menu, select Refactor > Pull Up♦

•

Note: the selected members must all have the same declaring type for this refactoring to be enabled.

Refactoring actions
Refactoring dialogs
Java preferences

 Pulling members up to superclass 260

Pushing members down to subclasses
To push down class members (fields and methods) to the class's subclasses:

In a Java view (e.g. Outline, Package Explorer, Members), select the members that you want to push
down.

•

Do on of the following:
From the menu bar, select Refactor > Push Down or♦
From the pop−up menu, select Refactor > Push Down♦

•

Note: the selected members must all have the same declaring type for this refactoring to be enabled.

Refactoring actions
Refactoring dialogs
Java preferences

 Pushing members down to subclasses 261

Moving static members between types
To move static members (fields and methods) between types:

In a Java view, select the static members that you want to move•
Do one of the following:

From the menu bar, select Refactor > Move or♦
From the pop−up menu select, Refactor > Move♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Moving static members between types 262

Moving an instance method to a component
To move an instance method to a component:

In a Java view or in the Java editor, select the method that you want to move•
Do one of the following:

From the menu bar, select Refactor > Move or♦
From the pop−up menu select, Refactor > Move♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Moving an instance method to a component 263

Converting a local variable to a field
To convert a local variable to a field:

In a Java editor or in one of the Java views, select the local variable•
Do one of the following:

From the menu bar, select Refactor > Convert Local Variable to Field or♦
From the editor's pop−up menu, select Refactor > Convert Local Variable to Field♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Converting a local variable to a field 264

Converting an anonymous inner class to a nested
class
To convert an anonymous inner class to a nested class:

In a Java editor, position the care inside the anonymous class•
Do one of the following:

From the menu bar, select Refactor > Convert Anonymous Class to Nested or♦
From the editor's pop−up menu, select Refactor > Convert Anonymous Class to Nested♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Converting an anonymous inner class to a nested class 265

Converting a nested type to a top level type
To convert a nested type to a top level type:

In a Java editor or a Java view, select the member type•
Do one of the following:

From the menu bar, select Refactor > Convert Nested Type to Top Level or♦
From the editor's pop−up menu, select Refactor > Convert Nested Type to Top Level♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Converting a nested type to a top level type 266

Extracting an interface from a type
To extract an interface from a type:

In a Java editor or a Java view, select the type from which you want to extract an interface•
Do one of the following:

From the menu bar, select Refactor > Extract Interface or♦
From the editor's pop−up menu, select Refactor > Extract Interface♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Extracting an interface from a type 267

Replacing references to a type with references to
one of its supertypes
To replace references to a type with references to one of its supertypes:

In a Java editor or a Java view, select the type•
Do one of the following:

From the menu bar, select Refactor > Use Supertype Where Possible or♦
From the editor's pop−up menu, select Refactor > Use Supertype Where Possible♦

•

Refactoring actions
Refactoring dialogs
Java preferences

 Replacing references to a type with references to one of its supertypes 268

Replacing a single reference to a type with a
reference to one of its supertypes
To replace a single reference to a type with a reference to one of its supertypes:

In the Java editor, select the type reference, or the declaration of a field, parameter, or local variable•
Do one of the following:

From the menu bar, select Refactor > Generalize Type or♦
From the editor's pop−up menu, select Refactor > Generalize Type♦

•

You will be prompted for the type to which you would like to update the reference. If the reference can be
safely changed to the new type, the refactoring proceeds.

Refactoring actions
Refactoring dialogs
Java preferences

 Replacing a single reference to a type with a reference to one of its supertypes 269

Replacing an expression with a method parameter
To replace an expression with a method parameter:

In the Java editor, select the expression•
Do one of the following:

From the menu bar, select Refactor > Introduce Parameter or♦
From the editor's pop−up menu, select Refactor > Introduce Parameter♦

•

The highlighted expression will be replaced with a reference to a new method parameter. Callers of the
method will be updated to pass the expression as the value of the new parameter.

Note: this refactoring may result in non−compiling code if the highlighted expression explicitly or implicitly
references this.

Refactoring actions
Refactoring dialogs
Java preferences

 Replacing an expression with a method parameter 270

Replacing constructor calls with factory method
invocations
To replace calls to a constructor with calls to an equivalent factory method:

In a Java editor or Java view, select the constructor declaration•
Do one of the following:

From the menu bar, select Refactor > Introduce Factory or♦
From the pop−up menu, select Refactor > Introduce Factory♦

•

You will be asked what to name the new factory method, on what class it should be placed, and whether to
make the constructor private when the refactoring is complete. When the refactoring executes, it will create
the new factory method, which will call the selected constructor and return the created object. All references
to the constructor will be replaced by calls to the new factory method.

Refactoring actions
Refactoring dialogs
Java preferences

 Replacing constructor calls with factory method invocations 271

Inferring type parameters for generic type
references
Eclipse can attempt to infer type parameters for all generic type references in a class, package, or project. This
is especially useful when migrating from Java 1.4 code to Java 5.0 code, allowing you to automatically make
use of the generic classes in Java's collections API.

Open a class in the Java editor, or in a Java view, select a class, package, or project.•
Do one of the following:

From the menu bar, select Refactor > Infer Generic Type Arguments or♦
From the pop−up menu, select Refactor > Infer Generic Type Arguments♦

•

You will be given a dialog with two configurable options:

Assume clone() returns an instance of the receiver type Well−behaved classes generally respect this
rule, but if you know that your code violates it, uncheck the box.

•

Leave unconstrained type arguments raw (rather than inferring <?>). If there are no constraints on
the elements of e.g. ArrayList a, unchecking this box will cause Eclipse to still provide a
wildcard parameter, replacing the reference with ArrayList<?> a.

•

Press OK or Preview to continue with the operation.

Note: It may in some cases be impossible to assign consistent type parameters in a selection, or require deeper
analysis than Eclipse can perform.

Refactoring actions
Refactoring dialogs
Java preferences

 Inferring type parameters for generic type references 272

Opening an editor on a type
You can open an editor on any type in the workbench.

Press Ctrl+Shift+T or, select Navigate > Open Type from the menu bar. The Open Type dialog
opens.

1.

In the Choose a type field, begin typing an expression to narrow the list of available types, using
wildcards as needed. As you type, the list is filtered to display only types that match the current
expression.

2.

In the Matching types list, select a type. Hint: you can press the Down key to move to the first type.3.
Click OK when you are done. An editor opens on the selected type.4.

Note: The Open Type dialog maintains a history of recently opened types. These are shown when the dialog is
opened and stay above a separator line when you start to type a filter expression.

Note: If you open a type from a CLASS or JAR file, you will see a special editor showing only method
signatures unless you have attached source to it.

Java editor

Attaching source to a JAR file
Opening an editor for a selected element
Using the Java editor

Open Type dialog Navigate actions
Views and editors

 Opening an editor on a type 273

Open Type
This command allows you to browse the workbench for a type to open in an editor or type hierarchy

Select a type to open: In this field, type the first few characters of the type you want to open in an
editor. You may use wildcards as needed ("?" for any character, "*" for any string, and "TZ" for types
containing "T" and "Z" as upper−case letters in camel−case notation, e.g.
java.util.TimeZone).

•

Matching types: This list displays matches for the expression you type in the Select a type to open
field.

•

The behavior of the Open Type dialog can be further customized using the dialog menu:

Open Type Preferences

Option Description Default

Fully Qualify
Duplicates

When selected, duplicate matches are displayed using fully qualified
names, packages, and container information (e.g. the package and
containing JRE)

Do not fully
qualify

Show Container
Info

When selected, the Open Type dialog shows an additional bar at the
bottom of the dialog which displays the package and containing JRE of
the selected type

Do not
show
container
info

Additionally, the dialog menu allows to use working sets to further constrain the matching types.

Opening an editor on a type

Navigate actions

 Open Type 274

Project actions
Project menu commands:

Name Function Keyboard
Shortcut

Open Project Shows a dialog that can be used to select a closed project and open it

Close Project Closes the currently selected projects

Build All Builds the all projects in the workspace. This is an incremental build,
meaning that the builder analyzes the changes since the last time of build
and minimizes the number of changed files.

Ctrl + B

Build Project Builds the currently selected project. This is an incremental build, meaning
that the builder analyzes the changes since the last time of build and
minimizes the number of changed files.

Build Working
Set

Builds the projects contained in the currently selected working set. This is
an incremental build, meaning that the builder analyzes the changes since
the last time of build and minimizes the number of changed files.

Clean... Shows a dialog where the projects to be cleaned can be selected.

Build
Automatically

If selected, all modified files are automatically rebuilt if saved. This is an
incremental build, meaning that the builder analyzes the changes since the
last time of build and minimizes the number of changed files.

Generate
Javadoc... Opens the Generate Javadoc wizard on the currently selected project.

Properties Opens the property pages on the currently selected project.

Java projects
Java builder

Building a Java program

 Project actions 275

Run menu
This menu allows you to manage the running of an application in the workbench. Some menu items are only
active if the Debug view is the active view.

Java development tools (JDT)

Launching a Java program
Running and debugging

Run and debug actions

 Run menu 276

Content/Code Assist
If activated from a valid line of code in an editor, this command opens a scrollable list of available code
completions. Some tips for using code assist are listed in the following paragraph:

If you select and then hover over a selected line in the content assist list, you can view Javadoc
information for that line.

•

You can use the mouse or the keyboard (Up Arrow, Down Arrow, Page Up, Page Down, Home, End,
Enter) to navigate and select lines in the list.

•

Clicking or pressing Enter on a selected line in the list inserts the selection into the editor.•
You can access specialized content assist features inside Javadoc comments.•

Configure the behavior of the content assist in the Java > Editor > Code Assist preference page.

Java editor
Java Development Tools (JDT)

Using content/code assist

Edit menu
Java editor preferences
Templates preferences

 Content/Code Assist 277

Templates
The Templates preference page allows to create new and edit existing templates. A template is a convenience
for the programmer to quickly insert often reoccurring source code patterns.

The following buttons allow manipulation and configuration of templates:

Action Description

New... Opens a dialog to create a new template.

Edit... Opens a dialog to edit the currently selected template.

Remove Removes all selected templates.

Import... Imports templates from the file system.

Export... Exports all selected templates to the file system.

Export All... Exports all templates to the file system.

Enable All Enables all templates.

Disable All Disables all templates.

Use code formatter If enabled, the template is formatted according to the code formatting rules specified
in the Code Formatter preferences, prior to insertion. Otherwise, the template is
inserted as is, but correctly indented.

Template dialog

Creating a new template and editing an existing template uses the same dialog, which is described here.

The following fields and buttons appear in the dialog:

Option Description

Name The name of the template.

Context The context determines where the template can be used and the set of available
pre−defined template variables.

Java
The Java context

Javadoc
The Javadoc context

Automatically insert If selected, code assist will automatically insert the template if it is the only
proposal available at the caret position.

Description A description of the template, which is displayed to the user when choosing the
template.

Pattern The template pattern.

 Templates 278

Insert Variables... Displays a list of pre−defined context specific variables.

Template variables

Both Java and Javadoc context define the following variables:

Variable Description

${cursor} Specifies the cursor position when the template edit mode is left. This
is useful when the cursor should jump to another place than to the end
of the template on leaving template edit mode.

${date} Evaluates to the current date.

${dollar} Evaluates to the dollar symbol '$'.

Alternatively, two dollars can be used: '$$'.

${enclosing_method} Evaluates to the name of the enclosing name.

${enclosing_method_arguments} Evaluates to a comma separated list of argument names of the
enclosing method. This variable can be useful when generating log
statements for many methods.

${enclosing_package} Evaluates to the name of the enclosing package.

${enclosing_project} Evaluates to the name of the enclosing project.

${enclosing_type} Evaluates to the name of the enclosing type.

${file} Evaluates to the name of the file.

${line_selection} Evaluates to content of all currently selected lines.

${primary_type_name} Evaluates to the name primary type of the current compilation unit.

${return_type} Evaluates to the return type of the enclosing method.

${time} Evaluates to the current time.

${user} Evaluates to the user name.

${word_selection} Evaluates to the content of the current text selection.

${year} Evaluates to the current year.

The Java context additionally defines the following variables:

Variable Description

${array} Evaluates to a proposal for a declared array name.

${array_element} Evaluates to a proposal for an element name of a declared array.

${array_type} Evaluates to a proposal for the element type of a declared array.

${collection}

 Basic tutorial

Template dialog 279

Evaluates to a proposal for a declared collection implementing
java.util.Collection.

${index} Evaluates to a proposal for an undeclared array index iterator.

${iterator} Evaluates to a proposal for an undeclared collection iterator.

${iterable} Evaluates to a proposal for a declared iterable name.

${iterable_element} Evaluates to a proposal for an element name of a declared iterable.

${iterable_type} Evaluates to a proposal for the element type of a declared iterable.

${todo} Evaluates to a proposal for the currently specified default task tag.

Templates

Using templates
Writing your own templates

Java content assist
Task tag preferences
Code templates preferences
Code style preferences

 Basic tutorial

Template variables 280

Templates
Templates are a structured description of coding patterns that reoccur in source code. The Java editor supports
the use of templates to fill in commonly used source patterns. Templates are inserted using content assist
(Ctrl+Space).

For example, a common coding pattern is to iterate over the elements of an array using a for loop that indexes
into the array. By using a template for this pattern, you can avoid typing in the complete code for the loop.
Invoking content assist after typing the word for will present you with a list of possible templates for a for
loop. You can choose the appropriate template by name (iterate over array). Selecting this template
will insert the code into the editor and position your cursor so that you can edit the details.

Many common templates are already defined. These can be browsed in Window > Preferences > Java >
Editor > Templates. You can also create your own templates or edit the existing ones.

Using templates
Writing your own templates

Edit menu
Java Content Assist
Templates preferences

Templates 281

Using templates
To use templates:

In the Java editor, position the caret in a place where you want to insert a template.1.
Invoke content assist by pressing Ctrl+Space.2.
Templates appear in the presented list. Note that the list is filtered as you type, so typing a few first
characters of a template name will reveal it.

3.

Note that a preview is presented for each selected template.4.

Notes:

Templates can have variables, which are place−holders for the dynamic part of a template pattern, e.g. subject
to change with every application of the particular template.

When a template is inserted in the Java editor and the template pattern contained a template variable, the
editor enters the template edit mode.

A box is drawn around all variables. The first variable is selected and can be modified by typing in the editor.
If the same variable existed multiple times in the template pattern, all instances of the same variable are
highlighted in blue and updated instantaneously to save typing.

Pressing Tab navigates to the next unique template variable, Shift−Tab navigates to the previous unique
template variable.

The template edit mode is left by either pressing Tab on the last template variable or pressing Esc or Enter.

Example:

Create a method void m(int[] intarray){} and position the caret inside the method.•
Type for and press Ctrl+Space to open Code Assist•
Select the first entry from the list (i.e.for − iterate over array). Note the template preview window.•
Note also that the name of the array (i.e. intarray) is automatically detected.•
The local variable i is now selected and you are in the template edit mode. Typing another name
instantaneously updates all occurrences of it.

•

Press Tab. You can now modify the suggested name for the array (pressing Shift−Tab will let you
modify the name of the local variable again).

•

To leave the template edit mode
press Tab or Enter, which will move the caret so that you can enter the body of the newly
created loop or

♦

press Esc, which will not move the caret and preserves the current selection in the editor.♦

•

Java editor
Templates

Using the Java editor
Writing your own templates

 Using templates 282

Templates preference page

 Basic tutorial

 Using templates 283

Writing your own templates
You can define your own templates.

Go to Window > Preferences > Java > Editor > Templates and press the New button.•
In the Name field, enter the name for the template. This name need not be unique. It is used for
selecting templates from the Code Assist list.

•

Specify the context for the template using the Context combo−box:
Select Java if the template is to be used in normal Java code♦
Select javadoc if the template is to be used in Javadoc comments♦

•

Uncheck the Automatically insert checkbox, if the template should not be inserted automatically if it
is the only proposal available at the caret position.

•

In the Description field, enter a brief description of the template.•
Use the Pattern text field to enter the template pattern
The pattern may contain pre−defined and custom template variables.
Template variables are place−holders for the dynamic part of the template pattern, i.e. they are
different in every application of the particular template. Before a template is inserted, the variables in
its pattern are evaluated and the place−holders are replaced with the evaluated values. Variables are of
the form ${variable_name}.

To insert a pre−defined template variable, use the Insert Variable button or press
Ctrl+Space and select the variable from the presented list.

♦

You can insert your own template variables, which will evaluate to the name of the variable
itself. You must, however, make sure that the name does not conflict with the pre−defined
template variable names in the specific context.

♦

If the dollar symbol $ should be displayed, it must be escaped by using two dollar symbols or
by using the variable ${dollar}.

♦

•

Templates

Using the Java editor
Using templates

Template preference page

Writing your own templates 284

Task Tags
On this preference page, the task tags can be configured. When the tag list is not empty, the compiler will
issue a task marker whenever it encounters one of the corresponding tag inside any comment in Java source
code. Generated task messages will include the tag and range until the next line separator or comment ending.

See the Compiler preference page for information on how to enable task tags in your source code.

Action Description

New... Adds a new task tag. In the resulting dialog, specify a name and priority for the new task tag.

Remove Removes the selected task tag.

Edit... Allows you to edit the selected task tag. In the resulting dialog, edit the name and/or priority for
the task tag.

Default Sets the currently selected task tag as the default task tag. The default task tag is the one that is
used in the code templates as specified on the Code Templates preference page. The default task
tag is displayed in bold font.

Case sensitivity of the task tags can be specified at the bottom of the preference page using the option Case
sensitive task tag names.

Java compiler preferences
Code template preferences

 Task Tags 285

Code templates
This page lets you configure the format of newly generated code and comments.

Code and Comments

The code and comment page contains code templates that are used by actions that generate code. Templates
contain variables that are substituted when the template is applied. Some variables are available in all
templates, some are specific to templates.

Action Description

Edit... Opens a dialog to edit the currently selected code template.

Import... Imports code templates from the file system.

Export... Exports all selected code templates to the file system.

Export All... Exports all code templates to the file system.

Comment templates

Comment templates can contain the variable ${tags} that will be substituted by the standard Javadoc tags
(@param, @return..) for the commented element. The 'Overriding method' comment can additionally contain
the template ${see_to_overridden}

Getter comment: Template that specifies the comment for a getter method•
Setter comment: Template that specifies the comment for a setter method•
Constructor comment: Template that specifies the comment for new constructors•
File comment: Template that specifies the header comment for newly created files. Note that this
template can be referenced in the 'New Java File' template

•

Type comment: Template that specifies the comment for new types. Note that this template can be
referenced in the 'New Java File' template

•

Field comment: Template that specifies the comment for new fields. Note that this template can be
referenced in the 'New Java File' template

•

Method comment: Template that specifies the comment for new methods that do not override an
method in a base class

•

Overriding method comment: Template that specifies the comment for new methods that override an
method in a base class. By default the comment is defined as a non−Javadoc comment (Javadoc will
replace this comment with the comment of the overridden method). You can change this to a real
Javadoc comment if you want

•

New Java files template

The 'New Java files' template is used by the New Type wizards when a new Java file is created. The template
can specify where comments are added. Note that the template can contain the variable ${typecomment} that
will be substituted by the evaluation of the type comment template.

 Code templates 286

Catch block body template

The 'Catch block body' template is used when a catch block body is created. It can use the variables
${exception_type} and ${exception_var}.

Method body template

The 'Method body' templates are used when new method with a body is created that still needs some code to
complete its functionality. It contains the variable ${body_statement} that resolves to a return statement
or/and a super−call.

Constructor body template

The 'Constructor body' templates are used when new method or constructor with body is created. It contains
the variable ${body_statement} that resolves a super call.

Getter body template

The 'Getter body' templates are used when new getter method is created . It contains the variable
${body_statement} that resolves to the appropriate return statement.

Setter body template

The 'Setter body' templates are used when new setter method is created . It contains the variable
${body_statement} that resolves to the appropriate assignment statement.

Code Template dialog

The following fields and buttons appear in the dialog:

Action Description

Description A description of the template

Pattern The template pattern.

Insert Variables... Displays a list of pre−defined template specific variables.

Generating getters and setters

Source actions
Java editor
Java editor preferences

 Basic tutorial

Catch block body template 287

Templates preferences

 Basic tutorial

Code Template dialog 288

Code style
The Code style preference page allows to configure naming conventions, style rules and comment settings.
These preferences are used when new code has to be generated.

Naming Conventions

The list defines the naming conventions for fields (static and non−static), parameters and local variables. For
each variable type it is possible to configure a list of prefix or suffix or both.
Naming conventions are used by all actions and 'Quick Fix' proposals that create fields, parameters and local
variables, in particular the Source actions.

Action Description

Edit... Opens a dialog to edit the list of prefix and suffixes for the currently
selected variable type

Code Conventions

The following settings specify how newly generated code should look like. The names of getter methods can
be specified as well as the format of field accesses, method comments, annotations and exception variables.

Action Description Default

Qualify field accesses
with 'this'

If selected, field accesses are always prefixed with 'this',
regardless whether the name of the field is unique in the
scope of the field access or not.

Off

Use 'is' prefix for
getters returning
boolean

If selected, the names of getter methods of boolean type are
prefixed with 'is' rather than 'get'.

On

Add comments for
new methods and
types

If selected, newly generated methods and types are
automatically generated with comments where appropriate.
See the Code templates preference page to specify the format
of the generated comments.

Off

Add '@Override'
annotation for
overriding methods

If selected, methods which override an already implemented
method are annotated with an '@Override' annotation. See
the Compiler preference page for settings related to
annotations.

On

Exception variable
name in catch blocks

Specify the name of the exception variable declared in catch
blocks.

e

Source actions
Java editor
Java editor preferences
Java compiler preferences

 Code style 289

Code templates preferences

 Basic tutorial

Code Conventions 290

Create Getters and Setters
This dialog lets select the getter and setter methods to create.

Use Generate Getters and Setters from the Source menu or the context menu on a selected field or type, or a
text selection in a type to open the dialog. The Generate Getters and Setters dialog shows getters and setters
for all fields of the selected type. The methods are grouped by the type's fields.

The names of the getter and setter methods are derived from the field name. If you use a prefix or suffix for
fields (e.g. fValue, _value, val_m), you can specify the suffixes and prefixes in the Code Style preference
page (Windows > Preferences > Java > Code Style).

When pressing OK, all selected getters and setters are created.

Option Description

Select getters and setters
to create

A tree containing getter and setter methods that can be created. Getters and
setters are grouped by field their associated field.

Select All Select all getter and setter methods

Deselect All Deselect all getter and setter methods

You can control whether Javadoc comments are added to the created methods with the Generate method
comments option at the bottom of the dialog.

Generating getters and setters
Source actions

 Create Getters and Setters 291

String externalization
The Java tools help you to develop applications that can be run on international platforms. An important facet
of designing a program for use in different countries is the localization, or externalization, of text that is
displayed by the program. By externalizing strings, the text can be translated for different countries and
languages without rebuilding the Java program.

The JDT provides the following support for internationalization and string externalization:

A compiler option lets you mark non−externalized strings as compile−time warnings or errors.
See the Window > Preferences > Java > Compiler > Errors/Warnings > Code style > Usage of
non−externalized strings preference

♦
•

Tools that allow you to find strings that have not been externalized.•
A wizard that will guide you through externalizing the strings.•
Tools that help you to find unused and incorrectly used keys for strings located in property files.•

Comments can be used to denote strings that should not be externalized and should not result in compile−time
warnings or errors. These comments are of form //$NON−NLS−n$ where n is the 1−based index of the
string in a line of code.

Additional information about internationalized applications can be found in the following documents:

http://eclipse.org/articles/Article−Internationalization/how2I18n.html•
http://java.sun.com/docs/books/tutorial/i18n/intro/index.html•

Finding strings to externalize
Finding unused and incorrectly used keys in property files
Using the Externalize Strings wizard

Source menu
Externalize Strings wizard
Java Compiler preferences

String externalization 292

http://eclipse.org/articles/Article-Internationalization/how2I18n.html

http://java.sun.com/docs/books/tutorial/i18n/intro/index.html

Finding strings to externalize
To find strings to externalize:

In a Java view (e.g. Package Explorer), select a set of packages, source folders or projects.•
From the menu bar, select Source > Find Strings to Externalize•
A dialog comes up with a list of all compilation units that have some non−externalized strings•
In the dialog, you can double click on a listed compilation unit or press the Externalize button to
open the Externalize Strings wizard

•

String Externalization

Externalizing Strings
Finding unused and incorrectly used keys in property files
Using the Externalize Strings wizard

Externalize Strings wizard
Source menu

Finding strings to externalize 293

Externalizing Strings

Java editor
String Externalization

Finding strings to externalize
Finding unused and incorrectly used keys in property files
Using the Externalize Strings wizard

Externalize Strings wizard

Externalizing Strings 294

Finding unused and incorrectly used keys in
property files
Finding unused and incorrectly used keys in a property file:

Open the Search dialog by:
pressing Ctrl+H or♦
selecting Search > Search from the menu bar♦

•

See if a tab called NLS Keys is visible. If it is, then select it.•
If it is not visible, press the Customize button and select the NLS Keys checkbox, press OK to close
the dialog and switch to the NLS Key tab.

•

In the Resource bundle accessor class field, enter the name of the class that you use to retrieve strings
from the property file. You can use the Browse button to select the class from a list.

•

In the Property file name field, enter the name of the property file. You can use the Browse button to
select the file.

•

Select the scope of the search by using the controls in the Scope group.•
Press Search•

After the search is finished, the Search Result view displays a list of unused keys in the property file and all
incorrect references to non−existing keys.

Note: This feature assumes that the resource bundle accessor class used a method called getString with a
single String parameter to retrieve strings from the property file.

String Externalization

Externalizing Strings
Finding strings to externalize
Using the Externalize Strings wizard

Externalize Strings wizard
Source menu

Finding unused and incorrectly used keys in property files 295

Using the Externalize Strings Wizard
To open the Externalize Strings wizard, do one of the following:

Find strings to externalize (using the Find Strings To Externalize function), select an entry in the
resulting dialog and press the Externalize button or

•

Select the compilation unit in which you want to externalize strings and selecting Source >
Externalize Strings from the menu bar.

•

Note: Externalizing strings is undoable (with the same restrictions as for refactorings). Use Refactor > Undo
from the menu bar to undo externalizing strings.

String Externalization

Externalizing Strings
Undoing a refactoring operation
Redoing a refactoring operation
Key/value page
Property file page

Externalize Strings wizard

 Using the Externalize Strings Wizard 296

Key/value page

Key/value page 297

Externalize Strings Key/value page

In the Enter common prefix for generated keys text field, you can specify an optional prefix that will
be used for all keys.

•

Select one or more entries in the table and:
Press the Translate button to mark them as entries to externalize or♦
Press the Never Translate button to mark them as entries to be not externalized♦
Press the Skip button to mark them as entries excluded from externalization♦

•

Icons on the left side of the entries are updated and so are the counter below the table•
To edit a key, single−click on a row in the Key column. You can edit the key in−place. You can also
press the Edit Key button and edit the key in the dialog that appears then.

•

Press Next to proceed to the Property File page or press Finish to externalize strings without checking
the settings from the Property File page (if you are not familiar with the externalize strings
functionality, it is recommended that you press Next to proceed to the Property File page).

•

298

Note: You can double−click on the icons that are displayed on the left side of the table entries to alternate the
state between Translate, Never Translate and Skip

Note (explanation of the table entry states):

Strings from entries marked as 'Translate' will be externalized and marked as such in the Java file by
adding non−nls tags.

•

Strings from entries marked as 'Never Translate' will not be externalized but an non−nls tag will be
added to them to inform the wizard that they need not be translated.

•

Strings from entries marked as 'Skip' will not be externalized and no tags will be added to them.•

Externalizing Strings
Using the Externalize Strings wizard
Property file page
Undoing a refactoring operation
Redoing a refactoring operation
Refactoring with preview
Refactoring without preview

Externalize Strings wizard

 Basic tutorial

299

Property File page

Externalize Strings Property File page

In the Package field, enter the name for the package in which you want the wizard to locate the
property file (you can use the Browse button to display the list of all packages)

1.

In the Property file name field, enter the name of the property file (new or existing) in which the
externalized strings will be put (you can use the Browse button to display the list of all .properties
files located in the package selected in the Package field.)

2.

Select the Create resource bundle accessor class checkbox if you want to create a class that will be
used to access the externalized strings (Note: the class will be reused if it exists already).

3.

In the Class name field, if you have the above−mentioned checkbox selected, you can specify the
name of the accessor class

4.

Press Next to see a preview of the modifications or press Finish to externalize strings without
previewing changes.

5.

Note: The default behavior of the wizard (i.e. creating a class with a name specified in the Class name field
and using getString as the name of the method used to retrieve strings from the property file) can be
overridden. You may want to do so if you already have an accessor class in another package or your accessor
class uses another method with another name to get strings from the property file.

Clear the Use default substitution pattern checkbox1.
In the Substitution pattern field enter the new pattern that will be used to retrieve strings from the
property file. For each externalized string, the first occurrence of ${key} will be substituted with the
key.

2.

Use the Add import declaration field if you want the wizard to add an additional import to the
compilation unit (you can use the Browse button to help you find a class that you want to import.)

3.

Property File page 300

Externalizing Strings
Using the Externalize Strings wizard
Key/value page
Undoing a refactoring operation
Redoing a refactoring operation
Refactoring with preview
Refactoring without preview

Externalize Strings wizard

 Basic tutorial

Property File page 301

Externalize Strings Wizard
The Externalize Strings wizard allows you to refactor a compilation unit such that strings used in the
compilation unit can be translated to different languages. The wizard consists of the following pages:

String selection page•
Translation settings page•
Error page•
Preview page•

String selection page

This page specifies which strings are translated and which not.

Field Description

Enter common prefix for generated
keys

Specifies an optional prefix for every generated key. For example,
the fully qualified name of the compilation unit could be used.

Strings to externalize Displays the list of non−externalized strings with proposed keys and
values.

Translate Marks the selected strings to be translated.

Never Translate Marks the selected strings as not to be translated.

Skip Marks the selected strings as to be skipped.

Edit Key... Opens a dialog for entering a new key.

Context Displays the occurrence of the string in the context of the
compilation unit.

Translation settings page

This page specifies translation specific settings.

Option Description

Package Specifies the destination package for the property file.

Property file name Specifies the property file name.

Create resource bundle accessor
class in "package"

If enabled, the wizard creates a class to access the language specific
resource bundle.

Class name The name of the class to access the resource bundle.

Use default substitution pattern If enabled, the wizard will use default substitution patterns.

Substitution pattern Specifies the source pattern to replace the string to externalize.

Add import declaration Specifies additional import declarations. This might be required

 Externalize Strings Wizard 302

depending on referenced types by the substitution pattern.

Error page

Displays a list of errors and warnings if any.

Preview page

Displays a preview of the actions which will be performed on 'Finish'.

String externalization

Externalizing Strings
Using the Externalize Strings wizard

Source actions

 Basic tutorial

Translation settings page 303

Viewing marker help
You can use hover help to view various kinds of information in the marker bar in the editor area. For example:

Information about problems•
Information about breakpoints•

Hover your mouse pointer over the marker in the marker bar to view any available hover help.

Java development tools (JDT)

Using the Java editor
Viewing documentation and information
Viewing Javadoc information

 Viewing marker help 304

Javadoc location page
This dialog lets you define the location of the Javadoc documentation for a JAR or a Java project.

You can reach this dialog the following ways:

Select a JAR or Java project, open the context menu and select Properties > Javadoc Location or
use Properties from the File menu

•

In the Javadoc generation wizard, on the Standard doclet settings page, choose Configure•

Javadoc can be attached to JARs or Java projects. For projects it documents the elements of all source folders,
for JARs, elements contained in the JAR are documented. The location is used by

Open External Javadoc in the Navigate menu to find the Javadoc location of an element•
Context Help (F1) to point to a Javadoc location•
Javadoc Export Wizard to link to other documentation or as default destination for a project's
documentation

•

Valid locations are URLs that point to a folder containing the API documentation's index.html
and package−list file. Examples are:

file:///M:/JAVA/JDK1.2/DOCS/API/
http://java.sun.com/j2se/1.4/docs/api/

Option Description Default

Javadoc Location Specify the location of the generated
Javadoc documentation. You
can Browse in the local file system for
a Javadoc location (will result in a
file:// URL)

<empty>

Validate Validate the current location by trying
to access the index.html
and package−list file with the given
URL. If the validation was successful,
you can directly open the
documentation.

 Javadoc location page 305

Javadoc generation
This wizard allows you to generate Javadoc Generation.It is a user interface for the javadoc.exe tool available
in the Java JDK. Visit Sun's Javadoc Tool page for a complete documentation of the Javadoc tool.

First page

Type Selection:

Option Description

Select types for
which Javadoc will
be generated

In the list, check or clear the boxes to specify exactly the types that you want to
export to the JAR file. This list is initialized by the workbench selection. Only one
project can be selected at once as only one project's classpath can be used at a time
when running the Javadoc tool.

Create Javadoc for
members with
visibility

Private: All members will be documented•
Package: Only members with default, protected or public visibility will be
documented

•

Protected: Only members with protected or public visibility will be
documented

•

Public: Only members with public visibility will be documented (default)•

Use Standard Doclet Start the Javadoc command with the standard doclet (default)

Destination: select the destination to which the standard doclet will write the
generated documentation. The destination is a doclet specific argument, and
therefore not enabled when using a custom doclet.

•

Use Custom Doclet Use a custom doclet to generate documentation

Doclet name: Qualified type name of the doclet•
Doclet class path: Classpath needed by the doclet class•

Standard doclet arguments

Standard Doclet Arguments (available when Use standard doclet has been selected):

Option Description

 Javadoc generation 306

http://java.sun.com/j2se/1.4/docs/tooldocs/javadoc/index.html

Document title Specify a document title.

Generate use page Selected this option if you want the documentation to contain
a Use page.

Generate hierarchy tree Selected this option if you want the documentation to contain
a Tree page.

Generate navigator bar Selected this option if you want the documentation to contain
a navigation bar (header and footer).

Generate index Selected this option if you want the documentation to contain
a Index page.

Generate index per letter Create an index per letter. Enabled when Generate Index is
selected.

@author Selected this option if you want to the @author tag to be
documented.

@version Selected this option if you want to the @version tag to be
documented.

@deprecated Selected this option if you want to the @deprecated tag to be
documented.

deprecated list
Selected this option if you want the documentation to contain
a Deprecated page. Enabled when the @deprecated option is
selected.

Select referenced classes to which Javadoc
should create links

Specify to which other documentation Javadoc should create
links when other types are referenced.

Select All: Create links to all other documentation
locations

•

Clear All: Do not create links to other documentation
locations

•

Configure: Configure the Javadoc location of a
referenced JAR or project.

•

Style sheet Select the style sheet to use

General arguments

General Javadoc Options:

Option Description

Overview Specifies that Javadoc should retrieve the text for the overview
documentation from the given file. It will be placed in
overview−summary.html.

Extra Javadoc options Add any number of extra options here: Custom doclet options,VM
options or JRE 1.4 compatibility options.

 Basic tutorial

Standard doclet arguments 307

Note that arguments containing spaces must enclosed in quotes. For
arguments specifying html code (e.g. −header) use the or
" to avoid spaces and quotes.

Save the settings of this Javadoc
export as an Ant script

Specify to store an Ant script that will perform the specified Javadoc
export without the need to use the wizard. Existing Ant script can be
modified with this wizard (Use Open Javadoc wizard' from the
context menu on the generated Ant script)

Open generated index file in
browser

Opens the generated index.html file in the browser (Only available
when using the standard doclet)

Press Finish to start the Javadoc generation. If the destination is different to the location configured the
project's Javadoc Location page , you will be asked if you want to set the project's Javadoc location to the
new destination folder. By doing this, all invocations of Open External Javadoc will use the now created
documentation.

A new process will be started and the generation performed in the background. Open the Console view
(Window > Show View > Console) to see the progress and status of the generation.

Creating Javadoc documentation

File actions
Javadoc Location properties

 Basic tutorial

General arguments 308

Creating Javadoc documentation
Select the set (containing one or more elements) of packages, source folders or projects for which you want to
generate Javadoc documentation.

Open the Export wizard by doing one of the following:

Selecting Export from the selection's pop−up menu or•
Selecting File > Export from the menu bar.•

In the resulting dialog, select Javadoc from the list and press Next.

Selecting types for Javadoc generation

Javadoc Generation wizard
Javadoc Location property page

Creating Javadoc documentation 309

Selecting types for Javadoc generation

The JDT uses the Javadoc command (typically available in JRE distributions) to generate Javadoc
documentation from source files. To set the location of the Javadoc command, enter the absolute path
(e.g. C:\Java\14\jdk1.4\bin\javadoc.exe).

•

In the tree control, select the elements for which you want to generate Javadoc.•
Select the visibility using the radio buttons listed under Create Javadoc for members with visibility•
Leave the Use Standard Doclet radio button selected•
Specify the location for the generated Javadoc using the Destination field.•
Press Finish to create generate Javadoc for the elements you selected or press Next to specify more
options.

•

Creating Javadoc documentation
Configuring Javadoc arguments for standard doclet

Selecting types for Javadoc generation 310

Javadoc Generation wizard
Javadoc Location property page

 Basic tutorial

Selecting types for Javadoc generation 311

Configuring Javadoc arguments for standard
doclet

Use the checkboxes listed under Basic Options to specify Javadoc options.•
You can change the tags that will be documented by using the checkboxes in the Document these tags
group.

•

If you want references to classes from a library to be linked to the library's Javadoc, select the library
in the list and press Configure to specify the location of the library's Javadoc.

•

Press Finish to generate Javadoc or press Next to specify additional Javadoc generation options.•

Creating Javadoc documentation
Selecting types for Javadoc generation
Configuring Javadoc arguments

Configuring Javadoc arguments for standard doclet 312

Javadoc Generation wizard
Javadoc Location property page

 Basic tutorial

Configuring Javadoc arguments for standard doclet 313

Configuring Javadoc arguments

You can specify more specific options for the Javadoc command by entering them in the text area.•
Select the JRE source compatibility level.•
Select the Save the settings of this Javadoc export as an Ant script checkbox.•
Specify the location for the Ant Script.•
Select the Open generated index file in browser checkbox.•
Press Finish to generate Javadoc.•

Note: The output produced by the Javadoc command (including errors and warning) is shown in the Console
view.

Creating Javadoc documentation
Selecting types for Javadoc generation

Configuring Javadoc arguments 314

Configuring Javadoc arguments for standard doclet

Javadoc Generation wizard
Javadoc Location property page

 Basic tutorial

Configuring Javadoc arguments 315

Showing and hiding empty packages
To show empty packages:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Empty packages.2.

To hide empty packages:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Empty packages.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding empty packages 316

Showing and hiding empty parent packages
To show empty parent packages:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Empty parent packages.2.

To hide empty parent packages:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Empty parent packages.2.

Note: As an example, the parent packages created for package org.eclipse.ui, would be:

(default package)
org
org.eclipse

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding empty parent packages 317

Showing and hiding Java files
To show Java files:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Java files.2.

To hide Java files:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Java files.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding Java files 318

Showing and hiding non−Java elements
To show non−Java elements:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Non−Java elements.2.

To hide non−Java elements:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Non−Java elements.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding non−Java elements 319

Showing and hiding non−Java projects
To show non−Java projects:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Non−Java projects.2.

To hide non−Java elements:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Non−Java projects.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding non−Java projects 320

Showing and hiding import declarations
To show import declarations:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Import declarations.2.

To hide non−Java elements:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Import declarations.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding import declarations 321

Showing and hiding package declarations
To show package declarations:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list clear the checkbox for Package declarations.2.

To hide package declarations:

Select the Filters command from the Package Explorer's drop−down menu.1.
In the exclude list select the checkbox for Package declarations.2.

Showing and hiding elements
Filtering elements

Java Element Filters
Package Explorer

Showing and hiding package declarations 322

Finding overridden methods
You can discover which methods override a selected method.

Open the type hierarchy for the selected method's declaring type. Toggle on the Show the Subtype
Hierarchy toolbar button.

1.

In the list pane of the Hierarchy view, make sure that the Lock View and Show Members in
Hierarchy button is toggled on. This option locks the current class in the method pane and shows only
those classes in the upper view that implement the currently selected method of the locked class.

The methods of interest are shown in the upper pane. You can select any method and open it in an
editor.

2.

Note: The selection might not show all members if a filter (such as Hide Fields or Hide Static Members) is
active.

Java development tools (JDT)

Using the Hierarchy view
Filtering elements

 Finding overridden methods 323

Opening an editor for a selected element
Opening a type hierarchy on a Java element

Override methods
Type Hierarchy view

 Basic tutorial

 Finding overridden methods 324

Display view
This view displays the result of evaluating an expression in the context of the current stack frame. You can
evaluate and display a selection either from the editor or directly from the Display view.

Java views
Java perspectives

Evaluating expressions

Views and editors

 Display view 325

Variables view
This view displays information about the variables in the currently−selected stack frame.

Java views
Java perspectives

Suspending threads
Evaluating expressions

Views and editors

 Variables view 326

Show detail pane
This command toggles showing the detail pane for the Expressions view. The details pane shows the toString
for selected objects. For primitive variables, it shows the value.
Code completion in the context of selected variable or the current stack frame is available as well. Evaluation
can occur on expressions using Inspect and Display

Evaluating expressions

 Show detail pane 327

Show detail pane
This command toggles showing the detail pane for the Variables view. The details pane shows the toString for
selected objects. For primitive variables, it shows the value.
Code completion in the context of selected variable or the current stack frame is available as well. Evaluation
can occur on expressions using Inspect and Display

Evaluating expressions

 Show detail pane 328

Re−launching a program
The workbench keeps a history of each launched and debugged program. To relaunch a program, do one of
the following:

Select a previous launch from Run or Debug button pull−down menus.•
From the menu bar, select Run > Run History or Run > Debug History and select a previous launch
from these sub−menus.

•

In the Debug view, select a process that you want to relaunch, and select Relaunch from the process's
pop−up menu.

•

To relaunch the most recent launch, do one of the following:

Click the Run or Debug buttons (without using the button pull−down menu).•
Select Run > Run Last Launched (Ctrl+F11), or Run > Debug Last Launched (F11) from the
workbench menu bar.

•

Launching a Java program
Running and debugging

Debug view

 Re−launching a program 329

Console preferences
The following preferences can be set using the Console Preferences page. The console displays output from
running applications, and allows keyboard input to be read by running applications.

Option Description Default
Fixed width
console

This preference controls whether the console has a fixed character width.
When on, a maximum character width must also be specified. Some
applications write long lines to the console which require horizontal scrolling
to read. This can be avoided by setting the console to use a fixed width,
automatically wrapping console output.

Off

Limit console
output

This preference limits the number of characters buffered in the console. When
on, a maximum buffer size must also be specified. When console output
surpasses the specified maximum, output is truncated from the beginning of
the buffer.

On

Standard Out
Text Color

This preference controls the color of text written to the standard output stream
by an application.

Blue

Standard Error
Text Color

This preference controls the color of text written to the standard error stream
by an application.

Red

Standard In Text
Color

This preference controls the color of text typed into the console to be read by
an application.

Green

Show when
program writes
to standard out

Often, the Console view is hidden or inactive when you begin running or
debugging a program that creates output. If this option is turned on, then when
you run a program that produces output, the Console view is automatically
opened (if necessary) and is made the active view.

On

Show when
program writes
to standard error

Often, the Console view is hidden or inactive when you begin running or
debugging a program that creates error output. If this option is turned on, then
when you run a program that produces error output, the Console view is
automatically opened (if necessary) and is made the active view.

On

You can also click the Change button to set the font for the Console.

 Console preferences 330

JRE installations
Classpath Variable Preferences

Option Description
Add... Adds a new JRE definition to the workbench. In the resulting dialog, specify the following:

JRE type: (select a VM type from the drop−down list)•
JRE name: Type a name for this JRE definition•
JRE home directory: Type or browse to select the root directory for this JRE installation•
Javadoc URL: Type or browse to select the URL location. The location is used by the
Javadoc export wizard as a default value and by the 'Open External Javadoc' action.
Debugger timeout: Type the default timeout for this JRE's debugger (in ms)

•

Either check the box to use the default library locations for this JRE or clear the
checkbox and type or browse to select library locations for the following:

JAR file (e.g., classes.zip)♦
Source file (e.g., source.zip)♦

•

You can click the Browse buttons to browse for paths.

Edit... Allows you to edit the selected JRE.

Remove Removes the selected JRE from the workbench.

Search... Automatically searches for JREs installed in the local file system and creates corresponding JRE
definitions in the workspace.

Classpath variables

Working with JREs

Source Attachment

 JRE installations 331

Source attachments
To browse the source of a type contained in library you can attach a source archive or source folder to this
library. The editor will then show the source instead of a the decompiled code. Having the source attachment
set the debugger can offer source level stepping in this type.

The Source Attachment dialog can be reached in several ways:

Select a JAR in the Package Explorer and choose Properties > Java Source Attachment from the
context menu or the Project menu

•

Open the Java Build Path page of a project (Projects > Properties > Java Build Path). On the
Libraries page expand the library's node and select the Source attachment attribute and press Edit

•

Open an editor on a class file. If the source attachment has not already been configured for this JAR,
the editor contains a button Attach Source

•

Depending of how a JAR was contributed to the classpath, you can see different types of Source attachment
dialogs:

JAR

In the Location path field, enter the path of an archive or a folder containing the source. Use either the
Workspace, External File or the External Folder button to browse for a location.

Variable

In the Location Variable Path field enter a variable path that points to the source attachment's location. A
variable path has as first segment a variable (which will resolve to a folder or file), the rest is an optional path
extension (e.g.MYVARIABLE/src.jar). Use either the Variable button to select an existing variable and the
Extension button to select the extension path. The Extension button is only enabled when the variable can be
extended (resolves to a folder)

JRE_SRC is a reserved variable that points to a JRE selected in the Installed JREs preference page (Window
> Preferences > Java > Installed JREs). Go to this preference page to configure the source attachment for the
JRE's library..

Build classpath

Working with build paths
Attaching source to variables
Attaching source to a JAR file

Source attachments 332

Installed JREs preferences
Java Build Path properties

 Basic tutorial

Variable 333

Editing a JRE definition

You can modify all settings for a JRE definition except its JRE type.

From the menu bar, select Window > Preferences.1.
In the left pane, expend the Java category, and select Installed JREs.2.
Select the JRE definition that you want to edit and click Edit.... The Edit JRE page opens.3.
In the JRE name field, edit the name for the JRE definition. All JREs of the same type must have a
unique name.

4.

In the JRE home directory field, edit or click Browse... to select the path to the root directory of the
JRE installation (usually the directory containing the bin and lib directories for the JRE). This location
is checked automatically to make sure it is a valid path.

5.

In the Javadoc URL field, edit or click Browse... to select the URL location. The location is used by
the Javadoc export wizard as a default value and by the 'Open External Javadoc' action.

6.

If you want to use the default libraries and source files for this JRE, select the Use default system
libraries checkbox. Otherwise, clear it and customize as desired. Source can be attached for the
referenced jars as well.

7.

Click OK when you are done.8.

Java development tools (JDT)

Adding a new JRE definition
Deleting a JRE definition
Overriding the default system libraries for a JRE definition
Working with JREs

Installed JREs preference page

 Editing a JRE definition 334

Deleting a JRE definition

You can delete Java runtime environment definitions that are available for executing Java programs in the
workbench.

Select Window > Preferences from the main menu bar.1.
From the left pane, expand the Java category and select Installed JREs.2.
Select the definition you want to delete and click Remove.3.
Check the box for the definition that you want to use as the default JRE for the workbench.4.

Java development tools (JDT)

Working with JREs
Adding a new JRE definition
Editing a JRE definition

Installed JREs preference page

 Deleting a JRE definition 335

Overriding the default system libraries for a JRE
definition

You can override the system libraries and the corresponding source attachments when adding a JRE.

Begin adding a new JRE definition.1.
In the Create JRE dialog, clear the Use default system libraries checkbox.
If the system was able to determine the set of system libraries, these libraries will already be
displayed.

2.

Order and/or remove the system libraries that were determined. Add external JARs to the list of
system libraries.

3.

Associate source with the system libraries using the Attach source button.4.
When you are finished with this dialog, click OK to create the new JRE definition. The new JRE
definition will use the customized system libraries (and attached source).

5.

Java development tools (JDT)

Working with JREs
Adding a new JRE definition
Editing a JRE definition

Installed JREs preference page

 Overriding the default system libraries for a JRE definition 336

Installed JREs
Check the box for the JRE that you want to act as your default for running and debugging Java programs in
the workbench.

This JRE defines the values for the three reserved classpath variables (JRE_LIB, JRE_SRC,
JRE_SRCROOT).

 Installed JREs 337

Defining the JAR file's manifest
You can either define the important parts of the JAR file manifest directly in the wizard or choose to use a
manifest file that already exists in your workbench.

Creating a new manifest

Follow the procedure for creating a JAR file, but click Next in the last step to go to the JAR
Packaging Options page.

1.

Set any advanced options that you want to set, and then click Next again to go to the JAR Manifest
Specification page.

2.

If it is not already selected, click the Generate the manifest file button.3.
You can now choose to save the manifest in the workbench. This will save the manifest for later use.
Click Save the manifest in the workspace, then click Browse next to the Manifest file field to specify
a path and file name for the manifest.

4.

If you decided to save the manifest file in the previous step and you chose to save the JAR description
on the previous wizard page, then you can choose to reuse it in the JAR description (by selecting the
Reuse and save the manifest in the workspace checkbox). This means that the saved file will be used
when the JAR file is recreated from the JAR description.This option is useful if you want to modify or
replace the manifest file before recreating the JAR file from the description.

5.

You can choose to seal the JAR and optionally exclude some packages from being sealed or specify a
list with sealed packages. By default, nothing is sealed.

6.

Click the Browse button next to the Main class field to specify the entry point for your applications.
Note: If your class is not in the list, then you forgot to select it at the beginning.

7.

Click Finish. This will create the JAR, and optionally a JAR description and a manifest file.8.

Using an existing manifest

You can use an existing manifest file that already exists in your workbench.

Follow the procedure for creating a JAR file, but click Next in the last step to go to the JAR
Packaging Options page.

1.

Set any advanced options that you want to set, and the click Next again to go to the JAR Manifest
Specification page.

2.

Click the Use existing manifest from workspace radio button.3.
Click the Browse button to choose a manifest file from the workbench.4.
Click Finish. This will create the JAR and optionally a JAR description.5.

Java development tools (JDT)

Creating a new JAR file
Setting advanced options

 Defining the JAR file's manifest 338

JAR file exporter

 Basic tutorial

Using an existing manifest 339

Setting advanced options
Follow the procedure for creating a JAR file, but click Next in the last step to go to the JAR
Packaging Options page.

1.

If you want to save the JAR file description, select the Save the description of this JAR in the
workspace checkbox.

2.

The compiler is able to generate CLASS files even when source contains errors. You have the option
to exclude CLASS (but not source) files with compile errors. These files will be reported at the end, if
reporting is enabled.

3.

You can choose to exclude CLASS (but not source) files that have compile warnings. These files will
be reported at the end.
Note: This option does not automatically exclude class files with compile errors.

4.

You can choose to include the source folder path by selecting the Create source folder structure
checkbox.

5.

Select the Build projects if not built automatically checkbox if you want the export to perform a
build before creating the JAR file.

6.

Click Finish to create the JAR file immediately or Next if you want to change the default manifest.7.

Java development tools (JDT)

Creating a new JAR file
Defining the JAR file's manifest

JAR file exporter

 Setting advanced options 340

JAR file exporter
This wizard allows you to create a JAR file.

JAR package specification

JAR Specification Options:

Option Description

Select the resources to
export

In the list, check or clear the boxes to specify exactly the files that you want to
export to the JAR file. This list is initialized by the workbench selection.

Export generated class
files and resources

If you want to export generated CLASS files and resources, select this option.

Export Java source
files and resources

If you want to export JAVA source files and resources, select this option.

Select the export
destination

Enter an external file system path and name for a JAR file (either new or existing).
Either type a valid file path in the field or click Browse to select a file via a dialog.

Options You can select any of the following options:

Compress the contents of the JAR file : to create a compressed JAR file•
Overwrite existing files without warning : if an existing file might be
overwritten, you are prompted for confirmation. This option is applied to
the JAR file, the JAR description, and the manifest file.

•

JAR packaging options

JAR Options:

Option Description

Select options for handling
problems

Choose whether to export classes with certain problems:

Export class files with compile errors•
Export class files with compile warnings•

Create source folder structure
Selected this option if you want the source folder structure to be
rebuilt in the JAR. This option is only enabled when source files but
no class files are exported.

Build projects if not build
automatically

Select this option to force a rebuild before exporting. It is
recommended to build be before exporting so the exported class files
are up to date.

Save the description of this JAR in
the workspace

If you select this option, you can create a file in the workbench
describing the JAR file you are creating. Either type and/or browse to
select a path and name for this new file.

 JAR file exporter 341

JAR manifest specification

JAR Manifest Specification Options (Available when class file are exported):

Option Description

Specify the manifest Choose the source of the manifest file for this JAR file:

Generate the manifest file (you can also choose either to save
or reuse and save the new manifest file)

•

Use existing manifest from workspace•

Seal contents Choose which packages in the JAR file must be sealed:

Seal the JAR: to seal the entire JAR file; click Details to
exclude selectively

•

Seal some packages; click Details to choose selectively•

Note: This option is only available if the manifest is generated.

Select the class of the application
entry point

Type or click Browse to select the main class for the JAR file, if
desired.

Note: This option is only available if the manifest is generated.

Creating JAR Files

File actions

 Basic tutorial

 JAR manifest specification 342

Creating JAR files
You can create and regenerate JAR files in the workbench.

Creating a new JAR file
Regenerating a JAR file

JAR file exporter

 Creating JAR files 343

Regenerating a JAR file
You can use a JAR file description to regenerate a previously created JAR file.

Select one or more JAR file descriptions in your workbench.1.
From the selection's pop−up menu, select Create JAR. The JAR file(s) are regenerated.2.

Java development tools (JDT)

Creating a new JAR file
Defining the JAR file's manifest

JAR file exporter

 Regenerating a JAR file 344

Adding source code as individual files

From a ZIP or JAR file

In the Navigator or Package Explorer, you can optionally select the source folder into which you wish
to import the source. Note: It is important to choose a source container; otherwise, the imported files
will not be on the build path.

1.

From the workbench menu bar, select File > Import.2.
In the Import wizard, select Zip file, then click Next.3.
In the Zip file field, type or browse to select the file from which you would like to add the resources.
In the import selection panes, use the following methods to select exactly the resources you want to
add:

Expand the hierarchies in the left pane and check or clear the boxes representing the
containers in the selected directory. Then in the right pane, select or clear boxes for individual
files.

♦

Click Select Types to select specific file types to add.♦
Click Select All to select all files in the directory, then go through and deselect the ones that
you don't want to add.

♦

Click Deselect All to deselect all files in the directory, then go through and choose individual
files to add.

♦

4.

In the Select the destination for imported resources field, type or browse to select a workbench
container for the added resources (if it was not already selected when you activated the Import
command).

5.

In the Options area, you can choose whether or not to overwrite existing resources without warning.6.
Click Finish when you are done.7.

From a directory

In the Navigator or Package Explorer, select the source folder into which you wish to import the
source. Note: It is important to choose a source container; otherwise, the imported files will not be on
the build path.

1.

From the workbench menu bar, select File > Import.2.
In the import wizard, select File System, then click Next.3.
In the Directory field, type or browse to select the directories from which you would like to add the
resources.

4.

In the import selection panes, use the following methods to select exactly the resources you want to
add:

Expand the hierarchies in the left pane and check or clear the boxes representing the
containers in the selected directory. Then in the right pane, select or clear boxes for individual
files.

♦

Click Select Types to select specific file types to add.♦
Click Select All to select all files in the directory, then go through and deselect the ones that
you don't want to add.

♦

Click Deselect All to deselect all files in the directory, then go through and choose individual
files to add.

♦

5.

In the Select the destination for imported resources field, type or browse to select a workbench
container for the added resources (if it was not already selected when you activated the Import
command).

6.

In the Options area, you can choose whether you want to:7.

 Adding source code as individual files 345

overwrite existing resources without warning♦
create a complete file structure for the imported files♦

Click Finish when you are done.8.

Java development tools (JDT)
Build classpath

Adding a JAR file as a library
Working with build paths

Java Build Path
Package Explorer

 Basic tutorial

From a directory 346

Adding a JAR file as a library
To add a JAR file as a library, you can either drag and drop the JAR file into the workbench from the file
system or you can use the Import wizard to import the file.

From the workbench menu bar, select File > Import. The Import wizard opens1.
Select File System, then click Next.2.
In the From directory field, type or browse to select the directory where the JAR file resides.3.
In the import selection panes, expand the hierarchy and use the buttons to select the JAR file you want
to import.

4.

In the Into folder field, type or browse to select a workbench container for the JAR file.5.
Click Finish when you are done.6.
You now must add the JAR file to the build class path of any projects that need this library.7.

Java builder
Build classpath

Adding a JAR file to the build path
Attaching source to a JAR file
Working with build paths
Adding source code as individual files

Java Build Path

 Adding a JAR file as a library 347

Java Compiler page
The options in this page indicate the compiler settings for a Java project.
You can reach this page through the

Java Compiler property page (File > Properties > Java Compiler) from the context menu on a created
project or the File menu

•

A project can either reuse workspace default settings or use its own custom settings.

Option Description

Enable project specific
settings

Once selected, compiler settings can be configured for this project. All Java
compiler preferences can be customized. At any time, it is possible to revert to
workspace defaults, by using the button Restore Defaults.

Build classpath

Java compiler preferences
Java Build Path properties
Frequently asked questions on JDT

Java Compiler page 348

Converting line delimiters
The Java editor can handle Java files with heterogeneous line delimiters. However other external editors or
tools may not be able to handle them correctly.

If you want to change line delimiters used by your Java files:

Open a Java file in the Java editor1.
Select File > Convert Line Delimiters To from the menu bar2.
Select the delimiters to which you want to convert the file to (one of Windows: CRLF, Unix: LF,
MacOS 9: CR)

3.

Notes:

You can also apply these conversions to multiple files, whole folders or project that are selected in the
Package Explorer or in the Navigator.

•

To change the line delimiters used for new files,
set the workspace default (Window > Preferences > General > Editors > New text file line
delimiter), or

♦

set the project−specific default (Context menu > Properties > Info > New text file line
delimiter)

♦

•

Java editor

Using the Java editor

Source menu

 Converting line delimiters 349

Finding and replacing

Using the Java editor
Using the Find/Replace dialog
Using Incremental Find
Finding Next or Previous Match

 Finding and replacing 350

Using the Find/Replace dialog
To open the Find / Replace dialog:

Optionally, select some text in a text (or Java) editor1.
Press Ctrl+F or2.
From the menu bar, select Edit > Find / Replace3.

To use the Find / Replace dialog:

In the Find field, enter the text you want to replace1.
Optionally, in the Replace With field, enter the next text2.
Use the radio buttons in the Direction group to select the direction of finding occurrences (relative to
the current caret position)

3.

In the Scope radio button group:
Select the Selected Lines button if you want to limit find / replace to the lines you selected
when opening the dialog

♦

Select the All button otherwise♦

4.

In the Options group:
Select the Case Sensitive checkbox if you want finding to be case sensitive.♦
Select the Whole Word checkbox if you want to find / replace only those occurrences in
which the text you entered in the Find field is a whole word

♦

Select the Wrap Search checkbox if you want the dialog to continue from the top of the file
once the bottom is reached (if you find / replace in Selected Lines only, then this option
applies to those lines only)

♦

Select the Incremental checkbox if you want to perform incremental find (e.g. the dialog will
find matching occurrences while you are typing in the Find field)

♦

Select the Regular Expressions checkbox if you want to perform regex search. When Regular
Expressions are enabled, you can use content assist (Ctrl+Space) in the Find and Replace
fields to get support for regex syntax.

♦

5.

Press:
Find if you want to find the next matching occurrence♦
Replace, if you want to replace the currently selected occurrence with the new text♦
Replace / Find, if you want to replace the currently selected occurrence with the new text and
find the next matching occurrence

♦

Replace All, if you want to replace all matching occurrences with the new text♦

6.

Press Close.7.

Java editor

Using the Java editor
Finding and replacing

Edit menu

Using the Find/Replace dialog 351

Using Incremental Find
To use Incremental Find:

In the text (or Java) editor, press Ctrl+J or select Edit > Incremental Find Next from the menu bar.1.
The workbench status line displays "Incremental Find:". The editor is now in the Incremental Find
mode.

2.

As you type, the editor finds the next occurrence of the text and updates the selection after each
character typed.

3.

Navigate to the next or previous match by pressing Arrow Down or Arrow Up.4.
Undo the last action within the Incremental Find mode by pressing Backspace.5.
You can leave the Incremental Find mode by pressing Esc.6.

Java editor

Using the Java editor
Finding and Replacing
Finding Next or Previous Match

Edit menu

Using Incremental Find 352

Finding next or previous match
To find the next match:

In the text (or Java) editor, press Ctrl+K or select Edit > Find Next from the menu bar.1.
The next occurrence of the text selected in the editor will be found.2.

To find the previous match:

In the text (or Java) editor, press Ctrl+Shift+K or select Edit > Find Previous from the menu bar.1.
The next occurrence of the text selected in the editor will be found.2.

Java editor

Using the Java editor
Finding and Replacing
Using Incremental Find

Edit menu

Finding next or previous match 353

Changing the encoding used to show the source
To change the encoding used by the Java editor to display source files:

With the Java editor open and the file saved, select Edit > Set Encoding... from the menu bar•
Select Other and then select an encoding from the menu or type in the encoding's name.•

Notes:

This setting affects only the way the source is presented−−it does not change the file's contents.•
To change the default encoding used for interpreting text files,

set the workspace default (Window > Preferences > General > Editors > Text file encoding),
or

♦

set the project− or folder−specific default (Context menu > Properties > Info > Text file
encoding)

♦

This will change the encoding of all contained files that don't have an explicit encoding set.

•

Java editor

Using the Java editor

Edit menu

 Changing the encoding used to show the source 354

Commenting and uncommenting lines of code
To toggle line comments (// comment) in the Java editor:

Select the lines you wish to comment or uncomment, or set the caret into a line•
Do one of the following:

Press Ctrl+/ or♦
Select Source > Toggle Comment from the menu bar♦

•

To insert a block comment (/*comment*/) in the Java editor:

Select the text range you wish to comment•
Do one of the following

Press Ctrl+Shift+/ or♦
Select Source > Add Block Comment from the menu bar♦

•

To remove a block comment (/*comment*/) in the Java editor:

Select the text range you wish to uncomment or set the caret into a block comment•
Do one of the following

Press Ctrl+Shift+\ or♦
Select Source > Remove Block Comment from the menu bar♦

•

Java editor

Using the Java editor

Source menu

 Commenting and uncommenting lines of code 355

Shifting lines of code left and right
To shift lines of code to the right (i.e. indent):

Select the lines you wish to shift right•
Do one of the following:

Press Tab or♦
Select Source > Shift Right from the menu bar♦

•

To shift lines of code to the left (i.e. outdent):

Select the lines you wish to shift left•
Do one of the following:

Press Shift+Tab or♦
Select Source > Shift Left from the menu bar♦

•

Java editor

Using the Java editor

Source menu

 Shifting lines of code left and right 356

Exclusion and inclusion filters
Exclusion and inclusion filters are Ant file patterns that further define the set of source files to be considered
by the Java builder and other JDT tools. To allow nesting of source folders inside each other, or simply to
exclude parts of a source tree, one can associate exclusion filters to a source folder. Symmetrically inclusion
filters can be used to inlude another part of a source tree. The Java builder will ignore source files that are
excluded, and the ones that are not included.

Java builder
Access rules

Building a Java program
Viewing and editing a project's build path
Working with build paths
Creating a new source folder with exclusion filter

Java Build Path properties

Exclusion and inclusion filters 357

Access rules
Access rules are Ant patterns defined on build classpath entries that tells the compiler to signal the use of
types matching the patterns.

Non−accessible rules define types that must not be referenced.•
Discouraged rules define types that should not be referenced.•
Accessible rules define types that can be referenced.•

Java builder
Exclusion and inclusion filters

Adding a JAR file to the build path
Adding a library folder to the build path
Building a Java program
Viewing and editing a project's build path
Working with build paths

Java Build Path properties

Access rules 358

Creating a new source folder with exclusion filter
In a project that uses source folders, you can create a new folder to contain Java source code with exclusion
patterns. Exclusion patterns are useful if you have nested source folders. There are two ways to do it:

You don't already have an existing Java project in which you want to create a source folder with
exclusion pattern.

1.

You already have an existing Java project.2.

Starting from scratch

First follow the steps of the task "Creating a new source folder".1.
Once a first source folder is created, if you want to create another source folder that is nested inside
the first one, you need to use the exclusion pattern.

2.

Open the Java Build Path page (Project > Properties > Java Build Path) and click the Source tab.3.
Click Add Folder, select an existing source folder, and click Create New Folder to create a folder that
is nested inside the first one.

4.

You will get a dialog saying that exclusion filter has been added to the first source folder.

NOTE: The trailing '/' at the end of the exclusion pattern is required to exclude the
children of this folder. The exclusion pattern follows the ant exclusion pattern syntax.

5.

Click OK and Finish when you are done.6.

From an existing Java Project

Before you start, make sure that your project properties are enabled to handle exclusion filters in
source folders.

1.

In the Package Explorer, select the project where you want the new source folder to reside.2.
From the project's pop−up menu, select New > Source Folder. The New Source Folder wizard opens.3.
In the Project Name field, the name of the selected project appears. If you need to edit this field, you
can either type a path or click Browse to choose a project that uses source folders.

4.

In the Folder Name field, type a name for the new source folder. If you choose a path that is nested
inside an existing source folder, you will see an error saying that you have nested source folders.

5.

Check Update exclusion filters in other source folders to solve nesting.6.
Click Finish when you are done.7.

Java projects

Creating Java elements
Creating a new Java project
Creating a new Java package
Creating a Java project as its own source container
Creating a Java project with source folders
Creating a new source folder

 Creating a new source folder with exclusion filter 359

New Source Folder wizard
Java Toolbar actions
Package Explorer

 Basic tutorial

From an existing Java Project 360

Creating a new source folder with specific output
folder
Any source folder can use either the default project output folder or its specific output folder.

First follow the steps of the task "Creating a new source folder".1.
Once a first source folder is created, you might want to change its default output folder.2.
Click on Allow output folders for source folders. This adds a new entry to the source folder tree.3.
Expand the source folder tree.4.
Double−click on the Output folder entry.5.
A dialog asks you if you want to use the project's default output folder or a specific output folder.
Choose the second option and click Browse....

6.

Select the folder you want and click OK and then Finish.7.

Java projects

Creating Java elements
Creating a new Java project
Creating a new Java package
Creating a Java project as its own source container
Creating a Java project with source folders
Creating a new source folder

Java Build Path
New Source Folder wizard
Java Toolbar actions
Package Explorer

 Creating a new source folder with specific output folder 361

Creating your first Java project
In this section, you will create a new Java project. You will be using JUnit as your example project. JUnit is
an open source unit testing framework for Java.

Getting the Sample Code (JUnit)

First you need to download the JUnit source code.

Go to the http://www.eclipse.org/downloads/ page1.
Select the Downloads link under Java Development Tools.2.
Select the link for the release that you are working with.3.
Scroll down to the Example Plug−ins section and download the examples archive.4.
Extract the contents of the Zip file to a directory from now on referenced as <Downloads> (e.g.
c:\myDownloads).

5.

Creating the project

Inside Eclipse select the menu item File > New > Project.... to open the New Project wizard1.
Select Java Project then click Next to start the New Java Project wizard:2.

 Creating your first Java project 362

http://www.eclipse.org/downloads/

On this page, type "JUnit" in the Project name field. Make sure the JDK compliance is set to 1.4, and
click Finish. (If you are interested in the new features in Eclipse supporting J2SE 5.0 development,
see the companion guide "Getting Started with Java 5.0 development in Eclipse").
In the Package Explorer, make sure that the JUnit project is selected. Select the menu item File >
Import....

3.

Select Archive file, then click Next.4.
Click the Browse button next to the Archive file field and browse to select
<Downloads>eclipse/plugins/org.eclipse.jdt.ui.examples.projects_3.0.0/archive/junit/junit381src.jar.
Note: This step assumes that you followed steps 1−3 in the Getting the Sample Code section above.

5.

In the Import wizard, below the file tree click Select All. You can expand and select elements within
the junit directory on the left pane to view the individual resources that you are importing on the right
pane. Note: Do not deselect any of the resources in the junit directory at this time. You will need all
of these resources in the tutorial.

6.

 Basic tutorial

Creating the project 363

Make sure that the JUnit project appears in the destination Folder field. Then click Finish. In the
import progress indicator, notice that the imported resources are compiled as they are imported into
the workbench. This is because the Build automatically option is checked on the Workbench
preferences page. You will be prompted to overwrite the .classpath and .project files in the JUnit
project. This is because the .classpath resource was created for you when you created the JUnit
project. It is safe to overwrite these files.

7.

In the Package Explorer view, expand the JUnit project to view the JUnit packages.8.

 Basic tutorial

Creating the project 364

Java projects
Java views

Working with build paths
Creating a new Java project
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Creating the project 365

Browsing Java elements using the package
explorer
In this section, you will browse Java elements within the JUnit project.

In the Package Explorer view, make sure the JUnit project is expanded so you can see its packages.1.
Expand the package junit.framework to see the Java files contained in the package.2.
Expand the Java file TestCase.java. Note that the Package Explorer shows Java−specific
sub−elements of the source code file. The public type and its members (fields and methods) appear in
the tree.

3.

 Browsing Java elements using the package explorer 366

Java views

Using the Package Explorer

Package Explorer View

 Basic tutorial

 Browsing Java elements using the package explorer 367

Opening a Java editor
In this section, you will learn how to open an editor for Java files. You will also learn about some of the basic
Java editor features.

Expand the package junit.samples and select the file VectorTest.java. You can open VectorTest.java
in the Java editor by double clicking on it. In general you can open a Java editor for Java files, types,
methods and fields by simply double clicking on them. For example, to open the editor directly on the
method testClone defined in VectorTest.java, expand the file in the Package Explorer and double click
on the method.

1.

Notice the syntax highlighting. Different kinds of elements in the Java source are rendered in unique
colors. Examples of Java source elements that are rendered differently are:

Regular comments♦
Javadoc comments♦
Keywords♦
Strings.♦

2.

Look at the Outline view. It displays an outline of the Java file including the package declaration,
import declarations, fields, types and methods. The Outline view uses icons to annotate Java
elements. For example, icons indicate whether a Java element is static (), abstract (), or final ().
Different icons show you whether a method overrides a method from a base class () or when it
implements a method from an interface ().

3.

 Opening a Java editor 368

Toggle the Hide Fields, Hide Static Members, and Hide Non−Public Members buttons in the
Outline view toolbar to filter the view's display. Before going to the next step make sure that Hide
Non−Public Members button is not pressed.

4.

You can edit source code by viewing the whole Java file, or you can narrow the view to a single Java
element. The toolbar includes a button, Show Source of Selected Element Only, that will cause only
the source code of the selected outline element to be displayed in the Java editor. In the example
below, only the setUp() method is displayed.

5.

 Basic tutorial

 Opening a Java editor 369

Press the Show Source of Selected Element Only button again to see the whole Java file again. In the
Outline view, select different elements and note that they are again displayed in a whole file view in
the editor. The Outline view selection now contains a range indicator on the vertical ruler on the left
border of the Java editor that indicates the range of the selected element.

6.

Java views
Java editor

Using the Java editor
Showing and hiding elements
Showing single elements or whole Java files
Sorting elements in Java views

Java Outline View
Java Editor Preferences

 Basic tutorial

 Opening a Java editor 370

Adding new methods
Start adding a method by typing the following at the end of the VectorTest.java file (but before the
closing brackets of the type) in the Java editor:
public void testSizeIsThree()
As soon as you type the method name in the editor area, the new method appears at the bottom of the
Outline view.

In addition, error annotations (red boxes) appear in the overview ruler positioned on the right hand
side of the editor. These error annotations indicate that the compilation unit is currently not correct. If
you hover over the second red box, a tool tip appears: Unmatched bracket; Syntax error on token ")",
{ expected after this token, which is correct since the method doesn't have a body yet. Note that error
annotations in the editor's rulers are updated as you type. This behavior can be controlled via the
Report problems as you type option located on the preference page Java > Editor.

1.

 Adding new methods 371

Click the Save button. The compilation unit is compiled automatically and errors appear in the
Package Explorer view, in the Problems view and on the vertical ruler (left hand side of the editor). In
the Package Explorer view, the errors are propagated up to the project of the compilation unit
containing the error.

2.

Complete the new method by typing the following:

{
 assertTrue(fFull.size() == 3);

Note that the closing curly bracket has been auto inserted.

3.

Save the file. Notice that the error indicators disappear since the missing bracket has been added.4.

 Basic tutorial

 Adding new methods 372

Java editor

Using the Java editor

Java Editor Preferences

 Basic tutorial

 Adding new methods 373

Using content assist
In this section you will use content assist to finish writing a new method. Open junit.samples.VectorTest.java
file in the Java editor if you do not already have it open and select the testSizeIsThree() method in the
Outline view. If the file doesn't contain such a method see Adding new methods for instructions on how to
add this method.

Add the following lines to the end of the method. When you type the . after v, Eclipse will show a
list of possible completions. Notice how the options are narrowed down as you continue to type.

Vector v = new Vector();
for (int i=0; i<3; i++)
 v.addElement(new Object());
assert

1.

With your cursor at the end of the word assert, press Ctrl+Space to activate content assist. The
content assist window with a list of proposals will appear. Scroll the list to see the available choices.

2.

With the content assist window still active, type the letter 't' in the source code after assert (with no
space in between). The list is narrowed and only shows entries starting with 'assert'. Single−click
various items in the list to view any available Javadoc help for each item.

3.

Select assertTrue(boolean) from the list and press Enter. The code for the
assertTrue(boolean) method is inserted.

4.

Complete the line so that it reads as follows:5.

 Using content assist 374

assertTrue(v.size() == fFull.size());
Save the file.6.

Java editor

Using the Java editor
Using content assist

Java Content Assist
Java Editor Preferences

 Basic tutorial

 Using content assist 375

Identifying problems in your code
In this section, you will review the different indicators for identifying problems in your code.

Build problems are displayed in the Problems view and annotated in the vertical ruler of your source code.

Open junit.framework.TestCase.java in the editor from the Package Explorer view.1.
Add a syntax error by deleting the semicolon at the end of the package declaration in the source code.2.

Click the Save button. The project is rebuilt and the problem is indicated in several ways:
In the Problems view, the problems are listed,♦
In the Package Explorer view, the Type Hierarchy or the Outline view, problem ticks appear
on the affected Java elements and their parent elements,

♦

In the editor's vertical ruler, a problem marker is displayed near the affected line,♦
Squiggly lines appear under the word which might have caused the error, and♦
The editor tab is annotated with a problem marker.♦

3.

You can hover over the problem marker in the vertical ruler to view a description of the problem.4.

 Identifying problems in your code 376

Click the Close ("X") button on the editor's tab to close the editor.5.
In the Problems view, select a problem in the list. Open its context menu and select Go To. The file is
opened in the editor at the location of the problem.

6.

Correct the problem in the editor by adding the semicolon. Click the Save button. The project is
rebuilt and the problem indicators disappear.

7.

In the Outline view, select the method getName(). The editor will scroll to this method.8.
On the first line of the method change the returned variable fName to fTestName. While you type,
a problem highlight underline appears on fTestName, to indicate a problem. Hovering over the
highlighted problem will display a description of the problem.

9.

On the marker bar a light bulb marker appears. The light bulb signals that correction proposals are
available for this problem.

10.

Click to place the cursor onto the highlighted error, and choose Quick Fix from the Edit menu bar.
You can also press Ctrl+1 or left click the light bulb. A selection dialog appears with possible
corrections.

11.

 Basic tutorial

 Identifying problems in your code 377

Select 'Change to fName' to fix the problem. The problem highlight line will disappear as the
correction is applied.

12.

Close the file without saving.13.
You can configure how problems are indicated on the Window > Preferences > General > Editors >
Text Editors > Annotations page.

14.

Java editor
Java views
Java builder

Using the Java editor
Viewing documentation and information
Using quick fix

Editor preference page
Quick Fix

 Basic tutorial

 Identifying problems in your code 378

Using code templates
In this section you will use content assist to fill in a template for a common loop structure. Open
junit.samples.VectorTest.java file in the Java editor if you do not already have it open.

Start adding a new method by typing the following:

public void testValues() {
 Integer[] expected= new Integer[3];
 for

1.

With the cursor at the end of for, press Ctrl+Space to enable content assist. You will see a list of
common templates for "for" loops. When you single−click a template, you'll see the code for the
template in its help message. Note that the local array name is guessed automatically.

2.

Choose the for − iterate over array entry and press Enter to confirm the template. The
template will be inserted in your source code.

3.

Next we change the name of the index variable from i to e. To do so simply press e, as the index
variable is automatically selected. Observe that the name of the index variable changes at all places.
When inserting a template all references to the same variable are connected to each other. So
changing one changes all the other values as well.

4.

Pressing the tab key moves the cursor to the next variable of the code template. This is the array
expected.

5.

 Using code templates 379

Since we don't want to change the name (it was guessed right by the template) we press tab again,
which leaves the template since there aren't any variables left to edit.
Complete the for loop as follows:

for (int e= 0; e < expected.length; e++) {
 expected[e]= new Integer(e + 1);
}
Integer[] actual= to

6.

With the cursor at the end of to, press Ctrl+Space to enable content assist. Pick toarray −
convert collection to array and press Enter to confirm the selection (or double−click
the selection).

The template is inserted in the editor and type is highlighted and selected.

7.

Overwrite the selection by typing Integer. The type of array constructor changes when you change
the selection.

8.

Press Tab to move the selection to collection and overwrite it by typing fFull.9.

 Basic tutorial

 Using code templates 380

Add the following lines of code to complete the method:

assertEquals(expected.length, actual.length);
for (int i= 0; i < actual.length; i++)
 assertEquals(expected[i], actual[i]);

10.

Save the file.11.

Java editor
Templates

Using the Java editor
Using templates

Templates Preferences
Java Editor Preferences

 Basic tutorial

 Using code templates 381

Organizing import statements
In this section you will organize the import declarations in your source code. Open
junit.samples.VectorTest.java file in the Java editor if you do not already have it open.

Delete the import declarations by selecting them in the Outline view and selecting Delete from the
context menu. Confirm the resulting dialog with Yes. You will see numerous compiler warnings in the
vertical ruler since the types used in the method are no longer imported.

1.

From the context menu in the editor, select Source > Organize Imports. The required import
statements are added to the beginning of your code below the package declaration.

You can also choose Organize Imports from the context menu of the import declarations in the
Outline view.
Note: You can specify the order of the import declarations in preferences Window > Preferences >
Java > Code Style > Organize Imports.

2.

Save the file.3.

 Organizing import statements 382

Java editor

Managing import statements

Organize Imports Preferences

 Basic tutorial

 Organizing import statements 383

Using the local history
In this section, you will use the local history feature to switch to a previously saved version of an individual
Java element.

Open junit.samples.VectorTest.java file in the Java editor and select the method testCapacity() in the
Outline view.

1.

Change the content of the method so that the 'for' statements reads as:

for (int i= 0; i < 99; i++)

Save the file by pressing Ctrl+S.

2.

In the Outline view, select the method testCapacity(), and from its context menu, select
Replace With > Element from Local History.

3.

In the Replace Java Element from Local History dialog, the Local History list shows the various
saved states of the method. The Java Source Compare pane shows details of the differences between
the selected history resource and the existing workbench resource.

4.

In the top pane, select the previous version, and click the Replace button. In the Java editor, the
method is replaced with the selected history version.

5.

Save the file.6.
Beside replacing a method's version with a previous one you can also restore Java elements that were
deleted. Again, select the method testCapacity() in the Outline view, and from its context menu, select
Delete. Confirm the resulting dialog with Yes and save the file.

7.

Now select the type VectorTest in the Outline view, and from its context menu, select Restore from
Local History.... Select and check the method testCapacity() in the Available Java Elements pane. As

8.

 Using the local history 384

before, the Local History pane shows the versions saved in the local history.

In the Local History pane, select the earlier working version and then click Restore.9.
Press Ctrl+S to save the file.10.

Java editor

Using the Java editor
Using the local history

 Basic tutorial

 Using the local history 385

Extracting a new method
In this section, you will improve the code of the constructor of junit.framework.TestSuite. To make the intent
of the code clearer, you will extract the code that collects test cases from base classes into a new method
called collectTestMethods.

In the junit.framework.TestSuite.java file, select the following range of code inside the
TestSuite(Class) constructor:

Class superClass= theClass;
Vector names= new Vector();
while(Test.class.isAssignableFrom(superClass)) {
 Method[] methods= superClass.getDeclaredMethods();
 for (int i= 0; i < methods.length; i++) {
 addTestMethod(methods[i],names, constructor);
 }
 superClass= superClass.getSuperclass();
}

1.

From the selection's context menu in the editor, select Refactor > Extract Method....2.

In the Method Name field, type collectInheritedTests.3.

 Extracting a new method 386

To preview the changes, press Preview>.The preview page displays the changes that will be made.
Press OK to extract the method.

4.

 Basic tutorial

 Extracting a new method 387

Go to the extracted method by selecting it in the Outline view.5.

 Basic tutorial

 Extracting a new method 388

Java editor
Refactoring support

Using the Java editor
Refactoring
Refactoring with preview

Extract Method Errors
Java Preferences

 Basic tutorial

 Extracting a new method 389

Creating a Java class
In this section, you will create a new Java class and add methods using code generation actions.

In the Package Explorer view, select the JUnit project. Click the New Java Package button in the
toolbar, or select New > Package from the project's context menu .

1.

In the Name field, type test as the name for the new package. Then click Finish.2.
In the Package Explorer view, select the new test package and click the New Java Class button in the
toolbar.

3.

Make sure that JUnit appears in the Source Folder field and that test appears in the Package field. In
the Name field, type MyTestCase.

4.

Click the Browse button next to the Superclass field.5.
In the Choose a type field in the Superclass Selection dialog, type Test to narrow the list of available
superclasses.

6.

 Creating a Java class 390

Select the TestCase class and click OK.7.
Select the checkbox for Constructors from superclass.8.
Click Finish to create the new class.9.

 Basic tutorial

 Creating a Java class 391

The new file is opened in the editor. It contains the new class, the constructor and comments. You
can select options for the creation and configuration of generated comments in the Java preferences
(Window > Preferences > Java > Code Style > Code Templates).

10.

In the Outline view select the new class MyTestCase. Open the context menu and select Source >
Override/Implement Methods....

11.

 Basic tutorial

 Creating a Java class 392

In the Override Methods dialog, check setUp() and tearDown() and click OK. Two methods are added
to the class.

12.

 Basic tutorial

 Creating a Java class 393

Change the body of setUp() to container= new Vector();13.
container and Vector are underlined with a problem highlight line as they cannot be resolved. A light
bulb appears on the marker bar. Set the cursor inside Vector and press Ctrl+1 (or use Edit > Quick
Fix from the menu bar). Choose Import 'Vector' (java.util).This adds the missing import declaration.

Set the cursor inside container and press Ctrl+1. Choose Create field 'container' to add the new
field.

14.

 Basic tutorial

 Creating a Java class 394

In the Outline view, select the class MyTestCase. Open the context menu and select Source >
Generate Getters and Setters....

15.

The Generate Getter and Setter dialog suggests that you create the methods getContainer and
setContainer. Select both and click OK. A getter and setter method for the field container are added.

16.

 Basic tutorial

 Creating a Java class 395

Save the file.17.
The formatting of generated code can be configured in Window > Preferences > Java > Code Style >
Formatter. If you use a prefix or suffix for field names (e.g. fContainer), you can specify this
in Window > Preferences > Java > Code Style so that generated getters and setters will suggest
method names without the prefix or suffix.

18.

Java views
Java editor

Using quick fix
Creating Java elements
Generating getters and setters

 Basic tutorial

 Creating a Java class 396

New Java Class wizard
Source actions
Quick Fix
Override Methods dialog
Generate Getter and Setter dialog
Code formatter preference page
Code style preference page
Code templates preference page

 Basic tutorial

 Creating a Java class 397

Renaming Java elements
In this section, you will rename a Java element using refactoring. Refactoring actions change the structure of
your code without changing its semantic behavior.

In the Package Explorer view, select junit.framework.TestCase.java.1.
From its context menu, select Refactor > Rename.2.
In the New Name field on the Rename Compilation Unit page, type "TestCase2".3.

To preview the changes that will be made as a result of renaming the class, press Preview >.4.
The workbench analyzes the proposed change and presents you with a preview of the changes that
would take place if you rename this resource.

Since renaming a compilation unit will affect the import statements in other compilation units, there
are other compilation units affected by the change. These are shown in a list of changes in the
preview pane.

5.

 Renaming Java elements 398

On the Refactoring preview page, you can scroll through the proposed changes and select or deselect
changes, if necessary. You will typically accept all of the proposed changes.

6.

Click OK to accept all proposed changes.7.

You have seen that a refactoring action can cause many changes in different compilation units. These changes
can be undone as a group.

In the menu bar, select Edit > Undo Rename TestCase.java to TestCase2.java.1.

 Basic tutorial

 Renaming Java elements 399

The refactoring changes are undone, and the workbench returns to its previous state. You can undo
refactoring actions right up until you change and save a compilation unit, at which time the
refactoring undo buffer is cleared.

2.

Refactoring support

Refactoring
Renaming a compilation unit
Refactoring without preview
Refactoring with preview
Previewing refactoring changes
Undoing a refactoring operation

Refactoring actions
Refactoring wizard
Java preferences

 Basic tutorial

 Renaming Java elements 400

Moving and copying Java elements
In this section, you will use refactoring to move a resource between Java packages. Refactoring actions
change the structure of your code without changing its semantic behavior.

In the Package Explorer view, select the MyTestCase.java file from the test package and drag it into
the junit.samples package. Dragging and dropping the file is similar to selecting the file and choosing
Refactor > Move from the context menu.

1.

You will be prompted to select whether or not to update references to the file you are moving.
Typically, you will want to do this to avoid compile errors. You can press the Preview button to see
the list of changes that will be made as a result of the move.

2.

Press OK. The file is moved, and its package declaration changes to reflect the new location.3.

Use Edit > Undo to undo the move.4.

The context menu is an alternative to using drag and drop. When using the menu, you must specify a target
package in the Move dialog, in addition to selecting the update references options you've already seen.

Select the MyTestCase.java file and from its context menu, select Refactor > Move.1.
In the Move dialog, expand the hierarchy to browse the possible new locations for the resource. Select
the junit.samples package, then click OK. The class is moved, and its package declaration is updated
to the new location.

2.

Moving and copying Java elements 401

Java views
Refactoring support

Refactoring
Copying and moving Java elements
Moving folders, packages and files

Refactoring actions
Refactoring wizard
Java preferences

 Basic tutorial

Moving and copying Java elements 402

Navigate to a Java element's declaration
Open the junit.samples.money.MoneyTest.java file in the Java editor.1.
On the first line of the MoneyTest class declaration, select the superclass TestCase and either

from the menu bar select Navigate > Open Declaration or♦
press F3.♦

The TestCase class opens in the editor area and is also represented in the Outline view.
Note: This command also works on methods and fields.

2.

 Navigate to a Java element's declaration 403

With the TestCase.java editor open and the class declaration selected:
from the menu bar select Navigate > Open Type Hierarchy or♦
press F4.♦

3.

The Hierarchy view opens with the TestCase class displayed.4.

 Basic tutorial

 Navigate to a Java element's declaration 404

Note: You can also open editors on types and methods in the Hierarchy view.

Using the Hierarchy view
Opening a type hierarchy on a Java element
Opening a type hierarchy on the current text selection
Opening an editor for a selected element

Type Hierarchy View

 Basic tutorial

 Navigate to a Java element's declaration 405

Viewing the type hierarchy
In this section, you will learn about using the Hierarchy view by viewing classes and members in a variety of
different ways.

In the Package Explorer view, find junit.framework.TestCase.java. From its context menu, select
Open Type Hierarchy. You can also open type hierarchy view:

from the menu bar by selecting Navigate > Open Type Hierarchy.♦
from the keyboard by pressing F4 after selecting TestCase.java.♦

1.

The buttons in the view tool bar control which part of the hierarchy is shown. Click the Show the
Type Hierarchy button to see the class hierarchy, including the base classes and subclasses. The small
arrow on the left side of the type icon of TestCase indicates that the hierarchy was opened on this
type.

2.

Click the Show the Supertype Hierarchy button to see a hierarchy showing the type's parent elements
including implemented interfaces. This view shows the results of going up the type hierarchy.

3.

Viewing the type hierarchy 406

In this "reversed hierarchy" view, you can see that TestCase implements the Test interface.
Click the Show the Subtype Hierarchy button in the view toolbar.4.

Click the Lock View and Show Members in Hierarchy button in the toolbar of the member pane,
then select the runTest() method in the member pane. The view will now show all the types
implementing runTest().

5.

 Basic tutorial

Viewing the type hierarchy 407

In the Hierarchy view, click the Show the Supertype Hierarchy button. Then on the member pane,
select countTestCases() to display the places where this method is declared.

6.

 Basic tutorial

Viewing the type hierarchy 408

In the Hierarchy view select the Test element and select Focus On 'Test' from its context menu. Test
is presented in the Hierarchy view.

7.

Activate the Package Explorer view and select the package junit.framework. Use Open Type
Hierarchy from its context menu. A hierarchy is opened containing all classes of the package. For
completion of the tree, the hierarchy also shows some classes from other packages. These types are
shown by a type icon with a white fill.

8.

 Basic tutorial

Viewing the type hierarchy 409

Use Previous Type Hierarchies to go back to a previously opened element. Click on the arrow next to
the button to see a list of elements or click on the button to edit the history list.

9.

From the menu bar, select Window > Preferences. Go to Java and select Open a new Type
Hierarchy Perspective. Then click OK.

10.

In the Hierarchy view, select the Test element again, and activate Open Type Hierarchy from the
Navigate menu bar. The resource containing the selected type is shown in a new perspective (the
Hierarchy perspective), and its source is shown in the Java editor. By setting the preference option
for viewing type hierarchy perspectives, you can have more than one type hierarchy in your
workbench and switch between them as needed. Close the Hierarchy perspective before proceeding to
the next step.

11.

Java views

Using the Hierarchy view

 Basic tutorial

Viewing the type hierarchy 410

Type Hierarchy view
Java Base preference page

 Basic tutorial

Viewing the type hierarchy 411

Searching the workbench
In this section, you will search the workbench for Java elements.

In the Search dialog, you can perform file, text or Java searches. Java searches operate on the structure of the
code. File searches operate on the files by name and/or text content. Java searches are faster, since there is an
underlying indexing structure for the code structure. Text searches allow you to find matches inside comments
and strings.

Performing a Java search from the workbench

In the Java perspective, click the Search () button in the workbench toolbar or use Search > Java
from the menu bar.

1.

If it is not already selected, select the Java Search tab.2.
In the Search string field, type runTest. In the Search For area, select Method, and in the Limit To
area, select References.
Verify that the Scope is set to Workspace.

Then click Search. While searching you may click Cancel at any time to stop the search. Partial
results will be shown.

3.

In the Java perspective, the Search view shows the search results.4.

 Searching the workbench 412

Use the Show Next Match () and Show Previous Match () buttons to navigate to each match. If
the file in which the match was found is not currently open, it is opened in an editor.
When you navigate to a search match using the Search view buttons, the file opens in the editor at the
position of the match. Search matches are tagged with a search marker in the vertical ruler.

5.

 Basic tutorial

Performing a Java search from the workbench 413

Searching from a Java view

Java searches can also be performed from specific views, including the Outline, Hierarchy view and the
Package Explorer view.

In the Package Explorer view, double−click junit.framework.Assert.java to open it in an editor.1.
In the Outline view, select the fail(String) method, and from its context menu, select References >
Workspace.

2.

Searching from an editor

From the Package Explorer view, open junit.framework.TestCase.java. In the editor, select the class name
TestCase and from the context menu, select References > Workspace.

 Basic tutorial

 Searching from a Java view 414

Continuing a search from the search view

The Search Results view shows the results for the TestCase search. Select a search result and open the context
menu. You can continue searching the selected element's references and declarations.

 Basic tutorial

Searching from an editor 415

Performing a file search

In the Java perspective, click the Search button in the workbench toolbar or select Search > File from
the menu bar.

1.

If it is not already selected, select the File Search tab.2.
In the Containing text field, type TestCase. Make sure that the File name patterns field is set to
*.java. The Scope should be set to Workspace. Then click Search.

3.

 Basic tutorial

Continuing a search from the search view 416

To find all files of a given file name pattern, leave the Containing Text field empty.4.

Viewing previous search results

In the Search Results view, click the arrow next to the Previous Search Results toolbar button to see a menu
containing the list of the most recent searches. You can choose items from this menu to view previous
searches. The list can be cleared by choosing Clear History.

The Previous Search Results button will display a dialog with the list of all previous searches from the
current session.

 Basic tutorial

Performing a file search 417

Selecting a previous search from this dialog will let you view that search.

Java search

Conducting a Java search using the search dialog
Conducting a Java search using pop−up menus

Refactoring actions
Refactoring wizard
Java preferences

 Basic tutorial

Viewing previous search results 418

Running your programs
In this section, you will learn more about running Java programs in the workbench.

In the Package Explorer view, find junit.textui.TestRunner.java and double−click it to open it in an
editor.

1.

In the Outline view, notice that the TestRunner class has an icon which indicates that the class defines
a main method.

2.

Right click on TestRunner.java in the Package Explorer and select Run As > Java Application. This
will launch the selected class as a local Java application. The Run As context menu item is also
available in other places, such as the Outline view.

3.

Notice that the program has finished running and the following message appears in the Console view
telling you that the program needs an execution argument. Running class from the Package Explorer
as a Java Application uses the default settings for launching the selected class and does not allow you
to specify any arguments.

4.

 Running your programs 419

To specify arguments, use the drop−down Run menu in the toolbar and select Run....5.

This time, the Launch Configurations dialog opens with the TestRunner launch configuration
selected. A launch configuration allows you to configure how a program is launched, including its
arguments, classpath, and other options. (A default launch configuration was created for you when
you chose Run > Java Application).

6.

 Basic tutorial

 Running your programs 420

Select the Arguments tab and type junit.samples.VectorTest in the Program arguments area.7.

Click Run. This time the program runs correctly, indicating the number of tests that were run.8.

Switch to the Debug perspective. In the Debug view, notice that a process for the last program launch
was registered when the program was run.

By default, the Debug view automatically removes any terminated launches when a new launch is
created. This preference can be configured on the Launching preference page located under the
Run/Debug preference page.

9.

 Basic tutorial

 Running your programs 421

Note: You can relaunch a terminated process by selecting Relaunch from its context menu.
Select the drop−down menu from the Run button in the workbench toolbar. This list contains the
previously launched programs. These programs can be relaunched by selecting them in the history
list.

10.

From the context menu in the Debug view (or the equivalent toolbar button), select Remove All
Terminated to clear the view of terminated launch processes.

11.

Changing debugger launch options
Connecting to a remote VM with the Remote Java application launch configuration
Disconnecting from a VM
Launching a Java program
Running and debugging

 Basic tutorial

 Running your programs 422

Debug view
Run and debug actions

 Basic tutorial

 Running your programs 423

Debugging your programs
In this section, you will debug a Java program.

In the Package Explorer view in the Java perspective, double−click junit.samples.VectorTest.java to
open it in an editor.

1.

Place your cursor on the vertical ruler along the left edge of the editor area on the following line in the
setUp() method:

fFull.addElement (new Integer(1));

and double−click on the ruler to set a breakpoint.

The breakpoint icon indicates the status of the breakpoint. The plain blue breakpoint icon indicates
that the breakpoint has been set, but not yet installed.

Note: Once the class is loaded by the Java VM, the breakpoint will be installed and a checkmark
overlay will be displayed on the breakpoint icon.

2.

In the Package Explorer view, select the junit.samples package and select Debug As, and then Java
Application. When you run a program from a package, you will be prompted to choose a type from
all classes in the package that define a main method.

3.

Select the VectorTest item in the dialog, then click OK.4.

 Debugging your programs 424

The program will run until the breakpoint is reached. When the breakpoint is hit, execution is
suspended, and you are asked whether to open the Debug perspective. Click Yes. Notice that the
process is still active (not terminated) in the Debug view. Other threads might still be running.

5.

 Basic tutorial

 Debugging your programs 425

Note: The breakpoint now has a checkmark overlay since the class VectorTest was loaded in the Java
VM.
In the editor in the Debug perspective, select new Vector() from the line above where the
breakpoint is set, and from its context menu, select Inspect.

6.

 Basic tutorial

 Debugging your programs 426

The expression is evaluated in the context of the current stack frame, and a pop−up appears which
displays the results. You can send a result to the Expressions view by pressing the key binding
displayed in the pop−up.

7.

Expressions that you evaluate while debugging a program will be listed in this view. To delete an
expression after working with it, select the expression and choose Remove from its context menu.

8.

The Variables view (available on a tab along with the Expressions view) displays the values of the
variables in the selected stack frame. Expand the this.fFull tree in the Variables view until you can see
elementCount.

9.

The variables (e.g., elementCount) in the Variables view will change when you step through
VectorTest in the Debug view. To step through the code, click the Step Over () button. Execution
will continue at the next line in the same method (or, if you are at the end of a method, it will continue
in the method from which the current method was called).

10.

Try some other step buttons (Step Into , Step Return) to step through the code. Note the
differences in stepping techniques.

11.

You can end a debugging session by allowing the program to run to completion or by terminating it.
You can continue to step over the code with the Step buttons until the program completes.♦
You can click the Resume () button to allow the program to run until the next breakpoint
is encountered or until the program is completed.

♦

You can select Terminate from the context menu of the program's process in the Debug view
to terminate the program.

♦

12.

 Basic tutorial

 Debugging your programs 427

Breakpoints
Remote debugging
Local debugging

Adding breakpoints
Resuming the execution of suspended threads
Running and debugging
Suspending threads

Debug preferences
Debug view
Run and debug actions
Breakpoints view
Console view
Display view
Expressions view
Variables view

 Basic tutorial

 Debugging your programs 428

Evaluating expressions
In this section, you will evaluate expressions in the context of your running Java program.

Debug junit.samples.VectorTest.java to the breakpoint in the setUp() method and select Step Over
twice to populate fFull. (See the Debugging your Programs section for full details.)

1.

Open the Display view by selecting Window > Show View > Display and type the following line in
the view:

fFull.size()

2.

Select the text you just typed, and from its context menu, select Display. (You can also choose
Display Result of Evaluating Selected Text () from the Display view toolbar.)

3.

The expression is evaluated and the result is displayed in the Display view.4.

On a new line in the Display view, type the following line:

fFull.toArray()

5.

Select this line, and select Inspect from the context menu. (You can also choose Inspect Result of
Evaluating Selected Text () from the Display view toolbar.)

6.

A lightweight window opens with the value of the evaluated expression.7.

 Evaluating expressions 429

Debugger

Evaluating expressions
Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Viewing compilation errors and warnings

Expressions view

 Basic tutorial

 Evaluating expressions 430

Evaluating snippets
In this section, you will evaluate Java expressions using the Java scrapbook. Java scrapbook pages allow you
to experiment with Java code fragments before putting them in your program.

In the File menu select New > Other > Java > Java Run/Debug > Scrapbook Page. You will be
prompted for a folder destination for the page.

1.

In the Enter or select the folder field, type or browse below to select the JUnit project root directory.2.
In the File name field, type MyScrap. 3.
Click Finish when you are done. A scrapbook page resource is created for you with the jpage file
extension. (The jpage file extension will be added automatically if you do not enter it yourself.) The
scrapbook page opens automatically in an editor.

4.

 Evaluating snippets 431

In the editor, type System.get and then use content assist (Ctrl+Space) to complete the snippet as
System.getProperties().

5.

Select the entire line you just typed and select Display from the context menu. You can also select
Display Result of Evaluating Selected Text from the toolbar.

6.

 Basic tutorial

 Evaluating snippets 432

When the evaluation completes, the result of the evaluation is displayed and highlighted in the
scrapbook page.

7.

You can inspect the result of an evaluation by selecting text and choosing Inspect from the context
menu (or selecting Inspect Result of Evaluating Selected Text from the toolbar.)

8.

When you are finished evaluating code snippets in the scrapbook page, you can close the editor. Save
the changes in the page if you want to keep the snippets for future use.

9.

Debugger

Creating a Java scrapbook page
Displaying the result of evaluating an expression
Inspecting the result of evaluating an expression
Viewing compilation errors and warnings

New Java Scrapbook Page wizard
Java scrapbook page
Expressions view

Notices

The material in this guide is Copyright (c) IBM Corporation and others 2000, 2005.

Terms and conditions regarding the use of this guide.

About This Content

February 24, 2005

 Basic tutorial

 Notices 433

License

The Eclipse Foundation makes available all content in this plug−in ("Content"). Unless otherwise indicated
below, the Content is provided to you under the terms and conditions of the Eclipse Public License Version
1.0 ("EPL"). A copy of the EPL is available at http://www.eclipse.org/legal/epl−v10.html. For purposes of the
EPL, "Program" will mean the Content.

If you did not receive this Content directly from the Eclipse Foundation, the Content is being redistributed by
another party ("Redistributor") and different terms and conditions may apply to your use of any object code in
the Content. Check the Redistributor's license that was provided with the Content. If no such license exists,
contact the Redistributor. Unless otherwise indicated below, the terms and conditions of the EPL still apply to
any source code in the Content.

 Basic tutorial

License 434

http://www.eclipse.org/legal/epl-v10.html

Using the Java browsing perspective
In this section you will use the Java browsing perspective to browse and manipulate your code. Browsing Java
elements with the Package Explorer gives an overview of using the Package Explorer to browse elements. In
contrast to the Package Explorer, which organizes all Java elements in a tree, consisting of projects, packages,
compilation units, types, etc., the browsing perspective uses distinct views to present the same information.
Selecting an element in one view, will show its content in another view.

To open a browsing perspective activate Window > Open Perspective > Java Browsing from within the Java
perspective or use the context menu of the Open a Perspective toolbar button.

The views of the perspective are connected to each other in the following ways:

Selecting an element in the Projects views shows its packages in the Packages view.•
The Types view shows the types contained in the package selected in the Packages view.•
The Members view shows the members of a selected type. Functionally, the Members view is
comparable to the Outline view used in the normal Java perspective.

•

 Using the Java browsing perspective 435

Selecting an element in the Members view reveals the element in the editor. If there isn't an editor
open for the element, double−clicking on the element will open a corresponding editor.

•

All four views are by default linked to the active editor. This means that the views will adjust their content
and their selection according to the file presented in the active editor. The following steps illustrate this
behavior:

Select junit.extensions in the Packages view.1.
Open type TestSetup in the editor by double−clicking it in the Types view.2.
Now give back focus to the editor opened on file TestCase.java by clicking on the editor tab. The
Packages, Types and Members view adjust their content and selections to reflect the active editor.
The Packages view's selection is set to junit.framework and the Types view shows the content of the
junit.framework packages. In addition, the type TestCase is selected.

3.

Functionally, the Java browsing perspective is fully comparable to the Java perspective. The context menus
for projects, packages, types, etc. and the global menu and tool bar are the same. Therefore activating these
functions is analogous to activating them in the Java perspective.

 Basic tutorial

 Using the Java browsing perspective 436

Writing and running JUnit tests
In this section, you will be using the JUnit testing framework to write and run tests. To get started with JUnit
you can refer to the JUnit Cookbook.

Writing Tests

Create a project "JUnitTest". Now you can write your first test. You implement the test in a subclass of
TestCase. You can do so either using the standard Class wizard or the specialized Test Case wizard:

Open the New wizard (File > New > JUnit Test Case).1.
A dialog will open asking to add the junit library to the class path. Select Yes.2.
Enter "TestFailure" as the name of your test class:3.

Click Finish to create the test class.4.

Add a test method that fails to the class TestFailure. A quick way to enter a test method is with the test
template. To do so, place the cursor inside the class declaration. Type "test" followed by Ctrl+Space to
activate code assist and select the "test" template. Change the name of the created method to testFailure and
invoke the fail() method.

 Writing and running JUnit tests 437

http://www.junit.org

http://junit.sourceforge.net/doc/cookbook/cookbook.htm

public void testFailure() throws Exception {
 fail();
}

Now you are ready to run your first test.

Running Tests

To run TestFailure, and activate the Run drop−down menu in the toolbar and select Run as > JUnit Test. You
can inspect the test results in the JUnit view. This view shows you the test run progress and status:

The view is shown in the current perspective whenever you start a test run. A convenient arrangement for the
JUnit view is to dock it as a fast view. The JUnit view has two tabs: one shows you a list of failures and the
other shows you the full test suite as a tree. You can navigate from a failure to the corresponding source by
double clicking the corresponding line in the failure trace.

Dock the JUnit view as a fast view, remove the fail() statement in the method testFailure() so that the test
passes and rerun the test again. You can rerun a test either by clicking the Rerun button in the view's tool bar
or you can re−run the program that was last launched by activating the Run drop down. This time the test
should succeed. Because the test was successful, the JUnit view doesn't pop up, but the success indicator
shows on the JUnit view icon and the status line shows the test result. As a reminder to rerun your tests the
view icon is decorated by a "*" whenever you change the workspace contents after the run.

 Basic tutorial

Writing Tests 438

 − A successful test run
 − A successful test run, but the workspace contents have changed since the last test run.

In addition to running a test case as described above you can also:

Run all tests inside a project, source folder, or package −
Select a project, package or source folder and run all the included tests with Run as > JUnit Test.
This command finds all tests inside a project, source folder or package and executes them.

•

Run a single test method −
Select a test method in the Outline or Package Explorer and with Run as > JUnit Test the selected
test method will be run.

•

Rerun a single test −
Select a test in the JUnit view and execute Run from the context menu.

•

Customizing a Test Configuration

When you want to pass parameters or customize the settings for a test run you open the Launch Configuration
Dialog. Select Run....in the Run drop−down menu in the toolbar:

 Basic tutorial

Running Tests 439

In this dialog you can specify the test to be run, its arguments, its run−time class path, and the Java run−time
environment.

Debugging a Test Failure

In the case of a test failure you can follow these steps to debug it:

Double click the failure entry from the Failures tab in the JUnit view to open the corresponding file in
the editor.

1.

Set a breakpoint at the beginning of the test method.2.
Select the test case and execute Debug As>JUnit Test from the Debug drop down.3.

A JUnit launch configuration has a "keep alive" option. If your Java virtual machine supports "hot code
replacement" you can fix the code and rerun the test without restarting the full test run. To enable this option
select the Keep JUnit running after a test run when debugging checkbox in the JUnit launch configuration.

Creating a Test Suite

The JUnit TestSuite wizard helps you with the creation of a test suite. You can select the set of classes that
should belong to a suite.

Open the New wizard1.
Select Java > JUnit > JUnit Test Suite and click Next.2.
Enter a name for your test suite class (the convention is to use "AllTests" which appears by default).3.

 Basic tutorial

Customizing a Test Configuration 440

Select the classes that should be included in the suite. We currently have a single test class only, but
you can add to the suite later.

4.

You can add or remove test classes from the test suite in two ways:

Manually by editing the test suite file•
By re−running the wizard and selecting the new set of test classes.•

Note: the wizard puts 2 markers, //$JUnit−BEGIN$ and //$JUnit−END$, into the created Test suite
class, which allows the wizard to update existing test suite classes. Editing code between the markers is not
recommended.

 Basic tutorial

Creating a Test Suite 441

Project configuration tutorial
In this section, you will create and configure a new Java project to use source folders and to match some
existing layout on the file system. Some typical layouts have been identified. Choose the sub−section that
matches your layout.

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Project configuration tutorial 442

Detecting existing layout
Layout on file system

The source files for a product are laid out in one directory "src".•
The class files are in another directory "bin".•

Steps for defining a corresponding project

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product" in the Project name field.3.
In Project layout group, change selection to Create separate source and output folders.

In Contents group, change selection to Create project from existing source.

Click Browse... and choose the Product directory on drive D:.

4.

 Detecting existing layout 443

Click Next.

Ensure that the source and output folders are detected.

5.

 Basic tutorial

Steps for defining a corresponding project 444

Warning: If the preference Window > Preferences > Java > Compiler > Building > Output Folder >
Scrub output folders when cleaning projects is checked, clicking Finish will scrub the "bin"
directory in the file system before generating the class files.
Click Finish.6.
You now have a Java project with a "src" folder which contains the sources of the "Product"
directory.

7.

 Basic tutorial

Steps for defining a corresponding project 445

Note: This solution creates a ".project" file and a ".classpath" file in the "Product" directory. If you do not
wish to have these files in the "Product" directory, you should use linked folders as shown in the Sibling
products in a common source tree section.

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining a corresponding project 446

Sibling products in a common source tree
Layout on file system

The source files for products are laid out in one big directory that is version and configuration
managed outside Eclipse.

•

The source directory contains two siblings directories Product1 and Product2.•

Steps for defining corresponding projects

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product1" in the Project name field. Click Next.3.

 Sibling products in a common source tree 447

On the next page, Select "Product1" source folder.

Click Link Additional Source to Project button in view bar.

4.

 Basic tutorial

Steps for defining corresponding projects 448

In Link Additional Source click Browse.... and choose the D:\Product1\JavaSourceFiles
directory.

5.

Click OK to close the dialog.6.
Click OK in confirmation dialog to have "/Product1/bin" as default output folder.7.

 Basic tutorial

Steps for defining corresponding projects 449

Your project source setup now looks as follows:8.

Click Finish.9.
Repeat these steps for "Product2".10.
You now have two Java projects which respectively contain the sources of "Product1" and
"Product2".

11.

 Basic tutorial

Steps for defining corresponding projects 450

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining corresponding projects 451

Organizing sources
Layout on file system

In this section, you will create a new Java project and organize your sources in separate folders. This
will prepare you for handling more complex layouts.

•

Let's assume you want to put your sources in one folder and your tests in another folder:•

Steps for defining a corresponding project

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "MyProject" in the Project name field.3.
In Project layout group, change selection to Create separate source and output folders and edit
Configure default... to modify Source folder name from "src" to "sources".

4.

 Organizing sources 452

Click OK to return on New Java Project wizard and then click Next.5.

 Basic tutorial

Steps for defining a corresponding project 453

Click Finish6.
Edit project "MyProject"properties and select Java Builder Path page.

On Source tab, click Add Folder....

7.

 Basic tutorial

Steps for defining a corresponding project 454

On Source Folder Selection click Create New Folder....8.

 Basic tutorial

Steps for defining a corresponding project 455

In New Folder dialog, type "tests" in the Folder name field.9.

Click OK to close the dialog.10.
Your project setup now looks as follows:11.

 Basic tutorial

Steps for defining a corresponding project 456

Click OK12.
You now have a Java project with a sources and a tests folders. You can start adding classes to
these folders or you can copy them using drag and drop.

13.

 Basic tutorial

Steps for defining a corresponding project 457

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining a corresponding project 458

Overlapping products in a common source tree
Layout on file system

The Java source files for products are all held in a single main directory.•
Products are separated into four siblings packages Product1, Product2, Product3 and
Product4.

•

Steps for defining corresponding "Product1" and "Product2" projects

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product1" in the Project name field. Click Next.3.

 Overlapping products in a common source tree 459

On the next page, Select "Product1" source folder.

Click Link Additional Source to Project button in view bar.

4.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 460

In Link Additional Source click Browse.... and choose the D:\AllJavaSourceFiles directory.

Type "src" in Folder name.

5.

Click OK to close the dialog.6.
Click OK in confirmation dialog to have "Product1/bin" as default output folder.7.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 461

Expand the "src" source folder. Select all packages you want to exclude and exclude them using
popup−menu.

8.

Your project source setup now looks as follows:9.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 462

Click Finish.10.
Copy "Product1" project and paste it as "Product2".

Edit "Product2" project properties and go on Java Build Path page.

Select Excluded and click Edit....

11.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 463

In Inclusion and Exclusion Patterns, select "com/xyz/product2" and click Edit....12.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 464

Change "com/xyz/product2" to "com/xyz/product1" instead.13.

Click OK three times to valid and close all dialogs.14.
You now have two Java projects which respectively contain the sources of "product1", "product2".15.

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 465

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining corresponding "Product1" and "Product2" projects 466

Product with nested tests
Layout on file system

The Java source files for a product are laid out in a package directory.•
Source files of tests are laid out in a nested package directory.•

Steps for defining a corresponding project

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product1" in the Project name field. Click Next.3.

 Product with nested tests 467

On the next page, Select "Product1" source folder.

Click Link Additional Source to Project button in view bar.

4.

 Basic tutorial

Steps for defining a corresponding project 468

In Link Additional Source click Browse.... and choose the D:\Product1\JavaSourceFiles
directory.

Type "src" in the Folder name field.

5.

Click OK to close the dialog.6.

 Basic tutorial

Steps for defining a corresponding project 469

Click OK in confirmation dialog to have "Product1/bin" as default output folder.7.

Your project source setup now looks as follows:8.

Click Finish.9.
Edit project "Product1"properties and select Java Builder Path page.

On Source tab, click Add Folder....

10.

 Basic tutorial

Steps for defining a corresponding project 470

Expand "Product1", then "src" and select "tests".11.

 Basic tutorial

Steps for defining a corresponding project 471

Click OK to close the dialog. You get an information dialog saying that exclusion filters have been
added. Click OK.

12.

Your project setup now looks as follows:13.

 Basic tutorial

Steps for defining a corresponding project 472

Click OK.14.
You now have a Java project with a "src" folder and a "tests" folder which contain respectively the
D:\Product1\JavaSourceFiles directory and the
D:\Product1\JavaSourceFiles\tests directory.

15.

 Basic tutorial

Steps for defining a corresponding project 473

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining a corresponding project 474

Products sharing a common source framework
Layout on file system

The Java source files for two products require a common framework.•
Projects and common framework are in separate directories which have their own source and output
folders.

•

Steps for defining corresponding projects

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product1" in the Project name field. Click Next.3.

 Products sharing a common source framework 475

On the next page, Select "Product1" source folder.

Click Link Additional Source to Project button in view bar.

4.

 Basic tutorial

Steps for defining corresponding projects 476

In Link Additional Source click Browse.... and choose the D:\Product1\JavaSourceFiles
directory.

Type "src" in the Folder name field.

5.

Click OK to close the dialog.6.

 Basic tutorial

Steps for defining corresponding projects 477

Click OK in confirmation dialog to have "Product1/bin" as default output folder.7.

Your project source setup now looks as follows:8.

Click Finish.9.
Edit project "Product1"properties and select Java Builder Path page.

On Source tab, click Add Folder....

10.

 Basic tutorial

Steps for defining corresponding projects 478

On Source Folder Selection click Create New Folder....11.

 Basic tutorial

Steps for defining corresponding projects 479

In New Folder, type "src−common" in the Folder name field.

Click Advanced>> and check Link to folder in the file system.

Then click Browse.... and choose the D:\Framework\JavaSourceFiles directory.

12.

Click OK twice to close dialogs.13.
Your project setup now looks as follows:14.

 Basic tutorial

Steps for defining corresponding projects 480

Click OK.15.
Repeat these steps for "Product2".16.
You now have two Java projects which respectively contain the sources of "Product1" and "Product2"
and which are using the sources of "Framework".

17.

 Basic tutorial

Steps for defining corresponding projects 481

Note: Files in "src−common" are shared. So editing "Common.java" in "Product1" will modify
"Common.java" in "Product2". However they are compiled in the context of their respective projects. Two
"Common.class" files will be generated; one for each project. If the two projects have different compiler
options, then different errors could be reported on each "Common.java" file.

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining corresponding projects 482

Nesting resources in output directory
Layout on file system

The Java source files for a product are laid out both in sources and deliverables directories.•
All Java class files are laid out in deliverables directory.•
Project needs to use some libraries located in deliverables/libraries directory:•

Steps for defining a corresponding project

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Product" in the Project name field. Click Next.3.

 Nesting resources in output directory 483

On the next page, Type "Product/deliverables" in Default output folder field.

Select "Product1" source folder.

Click Link Additional Source to Project button in view bar.

4.

 Basic tutorial

Steps for defining a corresponding project 484

In Link Additional Source click Browse.... and choose the D:\Product\sources directory.5.

Click OK to close the dialog.6.
Click OK in confirmation dialog to remove the project as source folder.7.

 Basic tutorial

Steps for defining a corresponding project 485

Repeat previous steps to create source folder "deliverables" linked to
D:\Product\deliverables directory.

Click Finish.

8.

Edit project "Product1"properties and select Java Builder Path page.

Expand "Product/deliverables", select Excluded and click Edit....

9.

 Basic tutorial

Steps for defining a corresponding project 486

Click Add... in Exclusion patterns part of the Inclusion and Exclusion Patterns dialog.10.

 Basic tutorial

Steps for defining a corresponding project 487

Type "libraries/" in Add Exclusion Pattern dialog and click OK to validate and close the dialog.11.

Click OK twice to close dialogs.12.
Your project source setup now looks as follows:13.

 Basic tutorial

Steps for defining a corresponding project 488

Select Libraries tab.

Click on Add JARs....

14.

 Basic tutorial

Steps for defining a corresponding project 489

Expand "Product" hierarchy to select jar files in "libraries" directory

Click OK.

15.

 Basic tutorial

Steps for defining a corresponding project 490

You now have a Java project with a "sources" folder and an output folder which contains nested
library resources.

16.

Java projects
Java views

 Basic tutorial

Steps for defining a corresponding project 491

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining a corresponding project 492

Project using a source framework with restricted
access
Layout on file system

The Java source files for a product requires a source framework.•
"Product" and "Framework" are in separate directories which have their own source and output
folders.

•

Steps for defining corresponding projects

Open a Java perspective, select the menu item File > New > Project.... to open the New Project
wizard.

1.

Select Java project in the list of wizards and click Next.2.
On the next page, type "Framework" in the Project name field.3.
In Contents group, change selection to Create project from existing source.

Click Browse... and choose the D:\Framework directory.

4.

 Project using a source framework with restricted access 493

Click Next.
On the next page, verify that directory JavaSourceFiles has been automatically added as source
folder.

Expand it to preview your project source folder contents:

5.

 Basic tutorial

Steps for defining corresponding projects 494

Click Finish.6.
In Java perspective, type Ctrl+N to open New wizards dialog.

Select Java project in the list of wizards and click Next.

7.

On the next page, type "Product" in the Project name field.8.
In Contents group, change selection to Create project from existing source.

Click Browse... and choose the D:\Product directory.

9.

 Basic tutorial

Steps for defining corresponding projects 495

Click Next.
Let's add a dependency to source framework project...10.
On the next page, verify that directory JavaSourceFiles has been automatically added as source
folder.

Select Projects tab.

11.

 Basic tutorial

Steps for defining corresponding projects 496

Click Add....
In Required Project Selection, check "Framework".12.

 Basic tutorial

Steps for defining corresponding projects 497

Click OK.
Now, let's put access rules on source framework content to authorize, discourage or forbid access to
"Framework" source folders, package and classes...

13.

In Projects tab, select "Access rules" of "Framework" depending project.14.

 Basic tutorial

Steps for defining corresponding projects 498

Click Edit....
In Type Access Rules, click Add....15.

 Basic tutorial

Steps for defining corresponding projects 499

In Edit Access Rule, select "Forbidden" for Resolution.

Type "**/forbidden/**" in Rule Pattern field.

Click OK.

16.

Add another access rule:

Resolution: "Discouraged" and Rule Pattern: "**/internal/**".

17.

Your access rules now look as follows:18.

 Basic tutorial

Steps for defining corresponding projects 500

Click OK.
Dependent project has now 2 access rules set.19.

 Basic tutorial

Steps for defining corresponding projects 501

Click Finish.
You now have a Java project which contains the source of "Product" and which is using the source of
"Framework".

Some packages of the project "Framework" are restricted and if you try to import them, compiler
displays either warnings or errors depending on your restriction level:

20.

 Basic tutorial

Steps for defining corresponding projects 502

Java projects
Java views

Working with build paths
Creating a new Java project
Creating a Java project with source folders
Creating a new source folder
Using the Package Explorer

New Java Project Wizard
Package Explorer View

 Basic tutorial

Steps for defining corresponding projects 503

Getting Started with Eclipse 3.1 and J2SE 5.0
Eclipse 3.1 includes full support for the new features of J2SE 5.0 (codenamed "Tiger"). One of the most
important consequences of this support is that you may not notice it at all−−everything you expect to work for
J2SE 1.4, including editing, compiling, debugging, quick fixes, refactorings, source actions, searching, etc.,
will work seamlessly with J2SE 5.0's new types and syntax. In this document, we will introduce some of the
more interesting capabilities Eclipse users will find when working with J2SE 5.0.

Prerequisites

In order to develop code compliant with J2SE 5.0, you will need a J2SE 5.0 Java Runtime Environment
(JRE). If you start Eclipse for the first time using a J2SE 5.0 JRE, then it will use it by default. Otherwise, you
will need to use the Installed JRE's dialog (Windows > Preferences > Java > Installed JRE's) to register it
with Eclipse.

This document introduces some of the new language features in J2SE 5.0 very briefly, but it is not a proper
tutorial for these features.

Compiler Compliance Level

To use the new J2SE 5.0 features, you must be working on a project that has a 5.0 compliance level enabled.
New projects can easily be marked as 5.0−compliant on the first page of the New > Project wizard:

Getting Started with Eclipse 3.1 and J2SE 5.0 504

http://java.sun.com/developer/technicalArticles/releases/j2se15/

To convert an existing J2SE 1.4 project to J2SE 5.0, you can simply:

Make sure you have a J2SE 5.0 JRE installed.1.
Start using the 5.0 features in your code.2.
When a compiler error is flagged, use Quick Fix to update the project's compliance level:3.

 Basic tutorial

Compiler Compliance Level 505

For more fine−tuned control, the compiler compliance level can be set globally for a workspace (Windows >
Preferences > Java > Compiler) or individually for each project (from the project's context menu, choose
Properties > Java Compiler). Projects with different compliance levels can co−exist in the workspace, and
depend on each other. You can also fine−tune the kinds of compiler warnings and errors produced for each
project using Properties > Java Compiler > Errors/Warnings > J2SE 5.0 Options

Generic Types

Generic types allow objects of the same class to safely operate on objects of different types. For example, they
allow compile−time assurances that a List<String> always contains Strings, and a List<Integer>
always contains Integers.

Anywhere that Eclipse handles a non−generic type, it can handle a generic type:

Generic types can be safely renamed.•
Type variables can be safely renamed.•
Generic methods can be safely extracted from / inlined into generic code.•
Code assist can automatically insert appropriate type parameters in parameterized types.•

In addition, a new refactoring has been added: Infer Generic Type Arguments can infer type parameters for
every type reference in a class, a package, or an entire project:

Invoking the refactoring produces:

Eclipse 3.1 provides new options when searching for references to generic types. Consider this example:

 Basic tutorial

Generic Types 506

Selecting the reference to List<Integer> and using Search > References > Project will highlight the List
types on all four lines:

Using the Search View menu, the results can be filtered:

Filter Incompatible leaves only references to types that are assignment−compatible with the selected type:

 Basic tutorial

Generic Types 507

Filter Inexact leaves only type references with the exact same signature:

Annotations

Annotations attach metadata about how Java types and methods are used and documented to the Java source
and can then affect compilation or be queried at run−time. For example, @Override will trigger a compiler
warning if the annotated method does not override a method in a superclass:

Everything you can do with a Java type, you can do with an annotation:

Create new annotations using New > Annotation•
Refactor: rename, move, change signatures of members, etc.•
Search for occurrences•
Use code assist to fill in names and values•

A very useful annotation with full support in Eclipse is @SuppressWarnings. For example, consider a
private method that is currently unused, but you'd rather not delete:

 Basic tutorial

Annotations 508

Invoking quick fix on the warning proposes adding a @SuppressWarnings annotation:

Selecting the quick fix adds the annotation. The Eclipse compiler honors the annotation by removing the
warning on foo:

Enumerations

Enumerations are types that are instantiated at runtime by a known, finite set of objects:

Again, anything you can do to a Java class can be done to an enumeration:

Create new enumerations using New > Enum•
Refactor: rename, move, rename constants, etc.•
Search for occurrences•
Use code assist to fill in constants•

Autoboxing

Autoboxing and auto unboxing allow for elegant syntax when primitive types are assigned to or retrieved
from Object references:

Eclipse's source manipulation features handle autoboxing seamlessly, giving the correct types to new local
variables and correct code assists. For code understanding, it is also possible to flag instances of autoboxing or
autounboxing as compile warnings (Window > Preferences > Java > Compiler > Errors/Warnings > J2SE
5.0 Options > Boxing and unboxing conversions), or highlight them using syntax coloring (Window >
Preferences > Java > Editor > Syntax Coloring > Java > Auto(un)boxed expressions):

 Basic tutorial

Enumerations 509

Enhanced for loop

For the common case of operating on each element of an array or collection in turn, J2SE 5.0 allows a new,
cleaner syntax. Eclipse 3.1 provides a "foreach" code template that can automatically guess the collection to
be iterated:

Choosing the template produces:

Eclipse 3.1 also provides a "Convert to enhanced for loop" quick−assist to upgrade 1.4−style for loops
where possible.

Other

All other features of J2SE 5.0 are handled flexibly by Eclipse's editing, searching, and code manipulation
tools:

Static imports•

 Basic tutorial

Autoboxing 510

Varargs•
Covariant return types•

Happy coding!

 Basic tutorial

Other 511

Creating a new Java Scrapbook Page
You can create a new Java scrapbook page using any one of several different approaches. See Creating a
Scrapbook Page

 Creating a new Java Scrapbook Page 512

Parameters page

Extract Method Parameters Page

In the Method name field, type a name for the new method that will be extracted.•
In the Access Modifier list, specify the method's visibility (public, default, protected, or private).•
You can Add thrown runtime exceptions to method signature by selecting the corresponding
checkbox.

•

You can Generate method comment by selecting the corresponding checkbox.•
You can rearrange and rename the parameters for the new method.•
Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

 Parameters page 513

Problems page
The most common mistakes when extracting a method are:

The selection does not cover statements or an expression from a method body.•
The selection does not cover a whole set of statements or an expression.•

You can use the Edit > Expand Selection To actions to expand an selection to a valid expression or set of
statements.

On the problems pages, you can press F1 to link to a detailed description of errors.

 Problems page 514

Parameters page

Rename Package Parameters Page

In the Enter new name field, type a new name for the package.•
If you do not want to update references to the renamed package, deselect the Update references
checkbox.

•

If you want to update references to the renamed package and strings in code, select the Update textual
matches in comments and strings checkbox.

•

If you want to update references in non−Java files (like XML configuration files), select the Update
fully−qualified name in non−Java files checkbox.

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Note: References in Javadoc comments, regular comments and string literals are updated based on textual
matching. It is recommended that you perform a controlled refactoring and review the suggested changes if
you select one of these options.

See Refactoring without Preview
See Refactoring with Preview

 Parameters page 515

Parameters page

Rename Compilation Unit Parameters Page

In the Enter new name field, type a new name for the compilation unit.•
If you do not want to update references to the renamed compilation unit, deselect the Update
references checkbox.

•

If you want to update references to the renamed compilation unit and strings in code, select the
Update textual matches in comments and strings checkbox.

•

If you want to update references in non−Java files (like XML configuration files), select the Update
fully−qualified name in non−Java files checkbox.

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Note: References in Javadoc comments, regular comments and string literals are updated based on textual
matching. It is recommended that you perform a controlled refactoring and review the suggested changes if
you select one of these options.

See Refactoring without Preview
See Refactoring with Preview

 Parameters page 516

Parameters page

Rename Type Wizard Page

In the Enter new name field, type a new name for the type.•
If you do not want to update references to the renamed type, deselect the Update references to the
renamed element checkbox.

•

If you want to update textual references in strings and comments which are referring to the renamed
type, select the Update textual matches in comments and strings checkbox.

•

If you want to update fully qualified names in non−Java files, select the Update fully qualified name
in non−Java files checkbox.

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Note: References in comments and strings are updated based on textual matching. It is recommended that you
perform a controlled refactoring and review the suggested changes if you select one of these options.

Refactoring without Preview
Refactoring with Preview

 Parameters page 517

Parameters page

Parameters Page for the Rename Method Refactoring Command

In the Enter new name field, type a new name for the method.•
If you do not want to update references to the renamed method, deselect the Update references to the
renamed element checkbox.

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

See Refactoring without Preview
See Refactoring with Preview
See Showing a Type's Compilation Unit in the Packages View

 Parameters page 518

Parameters page

Parameters Page for the Rename Field Refactoring Command

In the Enter new name text field, type a new name for the field that you're renaming.•
If you do not want to update references to the renamed field, deselect the Update references to the
renamed element checkbox.

•

If you want to update textual references in strings and comments which are referring to the renamed
field, select the Update textual matches in comments and strings checkbox.

•

If the refactoring finds accessor (getter/setter) methods to the field you're renaming, it offers you to
rename them as well (and update all references to them):

If you want to rename the getter, select the Rename Getter checkbox♦
If you want to rename the setter, select the Rename Setter checkbox♦

•

Click OK to perform a quick refactoring, or click Preview to perform a controlled refactoring.•

Note: The refactoring detects getters / setters using preferences set on Window > Preferences > Java > Code
Style preference page.
Note: References in Javadoc comments, regular comments and string literals are updated based on textual
matching. It is recommended that you perform a controlled refactoring and review the suggested changes if
you select one of these options.

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

 Parameters page 519

Parameters page

Parameters Page for the Change Method Signature Refactoring Command

Click in the Name column on the row containing the parameter you want to change or select the row
and press Edit and type a new name for the parameter.

•

See Refactoring without Preview
See Refactoring with Preview
See Showing a Type's Compilation Unit in the Packages View

 Parameters page 520

Parameters page

 Parameters page 521

Parameters Page for the Change Method Signature Refactoring Command

Use the Access Modifier drop−down to control the method's visibility•
Change the method's return type or name by editing the provided text fields•
Select one or more parameters and use the Up and Down buttons to reorder the parameters (you can
see a signature preview below the parameter list)

•

Use the Add button to add a parameter; you can then edit its type, name and default value in the table•
Switch to the Exceptions tab to add or remove thrown exceptions•
Press Preview to see the preview or OK to perform the refactoring without seeing the preview•

This refactoring changes the signature of the selected method and all methods that override it.
Also, all references will be updated to use the signature.

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

522

Parameters page

 Parameters page 523

Parameters Page for the Extracting Local Variable Refactoring Command

In the Variable name field, enter a name for the extracted variable•
Optionally, clear the Replace all occurrences of the selected expression with references to the local
variable checkbox if you want to replace only the expression you selected when invoking the
refactoring.

•

Optionally, select Define the local variable as 'final'•
Press Preview to see the preview of the changes or OK to perform the refactoring without preview•

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

524

Parameters page

 Parameters page 525

Parameters Page for the Self Encapsulate Field Refactoring Command

In the Getter name field, enter the name for the getter.•
In the Setter name field, enter the name for the setter.•
Use the Insert new method after combo−box to indicate the location for the getter and/or setter
methods.

•

Select one radio button from the Access modifier group to specify the new method's visibility.•
In the class in which the field is declared, read and write accesses can be direct or you can use getter
and setter.

Select the use getter and setter radio button if you want the refactoring to convert all these
accesses to use getter and setter.

♦

Select the keep field reference radio button if you do not want the refactoring to modify the
current field accesses in the class in which the field is declared.

♦

•

Press Preview to perform refactoring with preview or press OK to perform refactoring without
preview.

•

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

526

Parameters page

 Parameters page 527

528

Parameters Page for the Pulling members up to superclass Refactoring Command

Select the destination class•
In the list, select the members that you want to pull up or declare abstract•
Press the Edit button to specify the action that you want to perform for the selected members (you can
also edit the table cells in−place.)

•

Press Next to see the next page or press Finish to perform the refactoring•

529

In the left pane, select the methods that you want to be deleted after pull up (so that the superclass
implementation can be used instead).
Note: the methods originally selected when invoking the refactoring are pre−selected in the left pane

•

Press Next to see the preview or press Finish to perform the refactoring•

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

 Basic tutorial

530

Parameters page

 Parameters page 531

Parameters Page for the Moving static members between types Refactoring Command

Use the text field to enter the destination type name or press the Browse button to see a list of types.•
Press Preview to see a preview or press OK to perform the refactoring without preview.•

Related Topics:

See Refactoring without Preview•
See Refactoring with Preview•

532

Building circular projects
To enable building circular projects:

Select the Window > Preferences > Java > Compiler > Building page.
Then set the option Circular dependencies to Warning.

To disable building circular projects:

Select the Window > Preferences > Java > Compiler > Building page.
Then set the option Circular dependencies to Error.

To enable building a single project involved in a cycle:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Compiler > Building page.
Then set the option Circular dependencies to Warning.

To disable building a single project involved in a cycle:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Compiler > Building page.
Then set the option Circular dependencies to Error.

Java builder
Build class path

Building a Java program
Building manually
Viewing compilation errors and warnings
Working with build paths
Adding a JAR file to the build path
Adding a library folder to the build path
Viewing and editing a project's build path

Java Build path

 Building circular projects 533

Building without cleaning the output location
To build projects without cleaning the output location:

Select the Window > Preferences > Java > Compiler > Building page.
Then set the Scrub output folders on full build checkbox.

To build projects after cleaning the output location:

Select the Window > Preferences > Java > Compiler > Building page.
Then clear the Scrub output folders on full build checkbox.

To build a single project without cleaning the output location:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Compiler > Building page.
Then set the Scrub output folders on full build checkbox.

To build a single project after cleaning the output location:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Compiler > Building page.
Then clear the Scrub output folders on full build checkbox.

Java builder
Build class path

Building a Java program
Building manually
Viewing compilation errors and warnings
Working with build paths
Adding a JAR file to the build path
Adding a library folder to the build path
Viewing and editing a project's build path

Java Build path

 Building without cleaning the output location 534

Attaching source to a library folder
You can attach source to a library folder to enable source−level stepping and browsing of classes contained in
a library folder. Unless its source code is attached to a library folder in the workbench, you will not be able to
view the source for the library folder.

To attach source to a library folder:

Select the project, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Build Path page.

1.

On the Libraries tab, select the library folder to which you want to attach source.
Expand the node by clicking on the plus and select the node Source Attachment. Click the Edit button
to bring up the source attachment dialog.

2.

Fill in the Location path field depending on the location, choose between the workspace, an external
file or external folder.

3.

Click OK.4.

or

Select the library folder in the Package Explorer, and from its pop−up menu, select Properties.
In the Properties dialog, select the Java Source Attachment page.

1.

Fill in the Location path field depending on the location, choose between the workspace, an external
file or external folder.

2.

Click OK .3.

Java development tools (JDT)

Attaching source to variables
Creating a new JAR file
Stepping through the execution of a program

Java Build Path
Source Attachment dialog

 Attaching source to a library folder 535

Launching a Java applet
If your Java program is structured as an applet, you can use the Java Applet launch configuration. This
launch configuration uses information derived from the workbench preferences and your program's Java
project to launch the program.

In the Package Explorer, select the Java compilation unit or class file you want to launch.1.
From the pop−up menu, select Run > Java Applet. Alternatively, select Run > Run As > Java Applet
in the workbench menu bar, or select Run As > Java Applet in the drop−down menu on the Run tool
bar button.

2.

Your program is now launched.3.

You can also launch a Java applet by selecting a project instead of the compilation unit or class file. You will
be prompted to select a class from those classes that extend Applet. (If only one applet class is found in the
project, that class is launched as if you selected it.)

Debugger

Re−launching a program
Running and debugging
Stepping through the execution of a program

Debug view
Package Explorer

 Launching a Java applet 536

Launching a Java program in debug mode
Launching a program in debug mode allows you to suspend and resume the program, inspect variables, and
evaluate expressions using the debugger.

To launch a Java program in debug mode,

In the Package Explorer, select the Java compilation unit or class file you want to launch.1.
Select Run > Debug As > Java Application.
or Select Debug As > Java Application in the drop−down menu on the Debug tool bar button.

2.

Your program is now launched and the launched process appears in the Debug view. 3.

If you want your program to stop in the main method so that you can step through its complete execution,
create a Java Application launch configuration and check the Stop in main checkbox on the Main tab.

You can also debug a Java program by selecting a project instead of the compilation unit or class file. You
will be prompted to select a class from those classes that define a main method. (If only one class with a main
method is found in the project, that class is launched as if you selected it.)

Java views
Java editor
Debugger

Connecting to a remote VM with the Java Remote Application launcher
Re−launching a program
Running and debugging
Setting execution arguments
Stepping through the execution of a program

Debug view
Package Explorer

 Launching a Java program in debug mode 537

Inspecting values
When stack frame is selected, you can see the visible variables in that stack frame in the Variables view.

The Variables view shows the value of primitive types. Complex variables can be examined by expanding
them to show their members.

 Inspecting values 538

Using code assist
The scrapbook editor supports code assist similarly to the regular Java editor.

For example, type TestCase in the scrapbook editor and press Ctrl+Space. Code assist prompts you with
possible completions.

Java Content Assist

 Using code assist 539

Scrapbook error reporting
Java scrapbook errors are reported in the scrapbook page editor.

Viewing compilation errors
Viewing runtime exceptions

 Scrapbook error reporting 540

Viewing compilation errors
If you try to evaluate an expression containing a compilation error, it will be reported in the scrapbook editor.

For example, type and select the (invalid) expression System.println("hi") in the editor and click
Execute in the toolbar.

The error message The method println(java.lang.String) is undefined for the type java.lang.System appears in
the editor at the point of the error.

 Viewing compilation errors 541

Go to file for breakpoint
If the resource containing the selected breakpoint is not open and/or active, this command causes the file to be
opened and made active, focusing on the line with which the breakpoint is associated.

Breakpoints

Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Go to file for breakpoint 542

Add Java exception breakpoint
This command allows you to add a Java exception breakpoint. In the resulting dialog:

In the Choose an Exception field, type a string that is contained in the name of the exception you
want to add. You can use wildcards as needed ("* " for any string and "? " for any character).

•

In the exceptions list, select the exception you want to add.•
Check or clear the Caught and Uncaught checkboxes as needed to indicate on which exception type
you want to suspend the program.

•

Breakpoints

Catching Java exceptions
Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Add Java exception breakpoint 543

Suspend policy
This action toggles the suspend policy of a breakpoint between suspending all of the threads in the VM and
the thread in which the breakpoint occurred.

Breakpoints

Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Suspend policy 544

Hit count
This option sets the hit count for the selected breakpoint. The hit count keeps track of the number of times that
the breakpoint is hit. When the breakpoint is hit for the nth time, the thread that hit the breakpoint suspends.
The breakpoint is disabled until either it is re−enabled or its hit count is changed.

Breakpoints

Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Hit count 545

Uncaught
When this option is turned on, execution stops when the exception is thrown and is not caught in the program.

Breakpoints

Catching exceptions
Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

Add Java exception breakpoint

 Uncaught 546

Caught
When this option is turned on, execution stops when the exception is thrown and is caught in the program.

Breakpoints

Catching exceptions
Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

Add Java exception breakpoint

 Caught 547

Modification
When this option is turned on, the watchpoint causes execution to suspend on modification of a field.

Breakpoints

Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Modification 548

Access
When this option is turned on, the watchpoint causes execution to suspend on access of a field.

Breakpoints

Adding breakpoints
Removing breakpoints
Launching a Java program
Running and debugging

 Access 549

Exit
When this option is turned on, the breakpoint causes execution to suspend on exit of the method.

Setting method breakpoints

 Exit 550

Entry
When this option is turned on, the breakpoint causes execution to suspend on entry of the method.

Setting method breakpoints

 Entry 551

Select all
This command selects all breakpoints in the Breakpoints view

 Select all 552

Enable
This command enables the selected breakpoints.

 Enable 553

Disable
This command disables the selected breakpoints. A disabled breakpoint does not cause the execution of a
program to be suspended.

 Disable 554

Remove selected breakpoint
This command removes the selected breakpoint(s).

 Remove selected breakpoint 555

Remove all breakpoints
This command removes all breakpoints in the workbench.

 Remove all breakpoints 556

Show qualified names
This option can be toggled to show or hide qualified names.

 Show qualified names 557

Show supported breakpoints
When this action is toggled on, the breakpoints view only displays breakpoints applicable to the selected
debug target.

 Show supported breakpoints 558

Properties
This action realizes a breakpoint properties dialog for the currently selected breakpoint

Adding breakpoints
Applying hit counts
Catching Java exceptions
Removing breakpoints
Enabling and disabling breakpoints
Managing conditional breakpoints
Setting method breakpoints

 Properties 559

Copy
This command copies all selected text from the Console view onto the clipboard.

 Copy 560

Select all
This command selects all text in the current pane of the Console view.

 Select all 561

Find/Replace
This command allows you to search for an expression and replace it with another expression.

 Find/Replace 562

Go to line
This command allows you to go to the specified line in the console. The line is specified in the resulting
dialog.

 Go to line 563

Clear
This command clears all content in the Console view.

 Clear 564

Terminate
This command terminates the process that is currently associated with the console

 Terminate 565

Inspect
You can type an expression in the Display view and then use the Inspect command to evaluate the expression
and inspect the result in the Expressions view.

 Inspect 566

Display
You can type an expression in the Display view and then use the Display command to display its value.

 Display 567

Clear the display
This command clears the display view.

 Clear the display 568

Select all
This command selects all expressions in the Expressions view

 Select all 569

Copy variables
This command copies a text representation of all selected expressions and variables onto the clipboard.

 Copy variables 570

Remove selected expressions
This command removes the selected expressions from the Expressions view.

 Remove selected expressions 571

Remove all expressions
This command removes all expressions from the Expressions view.

 Remove all expressions 572

Change variable value
This command allows you to change the value of the selected variable.

 Change variable value 573

Show constants
This option can be toggled to show or hide constants (static final fields).

 Show constants 574

Show static fields
This option can be toggled to show or hide static fields.

 Show static fields 575

Show qualified names
This option can be toggled to show or hide qualified names.

 Show qualified names 576

Show type names
This option can be toggled to show or hide type names.

 Show type names 577

Add/Remove watchpoint
This command allows you to add or remove a field watchpoint for the current selected variable in the
Expressions view.

 Add/Remove watchpoint 578

Inspect
This command causes the selected variables to be inspected.

 Inspect 579

Open declared type
This command allows you open an editor on the declared type of the currently selected variable in the
Expressions view

 Open declared type 580

Show qualified names
This option can be toggled to show or hide qualified names.

 Show qualified names 581

Show type names
This option can be toggled to show or hide type names.

 Show type names 582

Add/Remove watchpoint
This command allows you to add or remove a field watchpoint for the current selected variable in the
Variables view.

 Add/Remove watchpoint 583

Change variable value
This command allows you to change the value of the selected variable.

 Change variable value 584

Inspect
This command causes the selected variable(s) to be inspected.

 Inspect 585

Step commands
Many of the commands in this menu allow you to step through code being debugged. See Debug View

 Step commands 586

JUnit
This page lets you configure the stack trace filter patterns for JUnit. The patterns are used in the JUnit view to
control which entries are visible in stack traces.

Action Description

Add Filter... Allows to add a custom filter pattern. This action inserts an empty
pattern which can be edited.

Add Class... Allows to add classes to be filtered. This action opens the Open Type
dialog to choose a type to be filtered in the stack traces.

Add Packages... Allows to add packages to be filtered. This action opens a package
selection dialog to choose the packages to be filtered in the stack
traces.

Remove Removes the currently selected stack trace filter pattern.

Enable All Enables all stack trace filter patterns.

Disable All Disables all stack trace filter patterns.

Using JUnit

Open type

 JUnit 587

Java Task Tags page
The options in this page indicate the task tags for a Java project.
You can reach this page through the

Java task tags property page (File > Properties > Java Compiler > Task Tags) from the context menu
on a created project or the File menu

•

A project can either reuse workspace default settings or use its own custom settings.

Option Description

Enable project specific
settings

Once selected, task tags can be configured for this project as in the Task tags
preference page. At any time, it is possible to revert to workspace defaults, by
using the button Restore Defaults.

Task tag preferences

Java Task Tags page 588

Java Build Path page
The options in this page indicate the build path settings for a Java project. You can reach this page through the
New Java Project wizard.

The build class path is a list of paths visible to the compiler when building the project.

Source tab

Source folders are the root of packages containing .java files. The compiler will translate the contained files to
.class files that will be written to the output folder. The output folder is defined per project except if a source
folder specifies an own output folder. Each source folder can define an exclusion filter to specify which
resources inside the folder should not be visible to the compiler.
Resources existing in source folders are also copied to the output folder unless the setting in the Compiler
preference page (Window > Preferences > Java > Compiler > Building) specifies that the resource is filtered.

The tree shows the project as it will look like when switching to the package explorer. Several operations can
be executed on this tree to change the structure of the project.

Icon Option Description

Add to build path

Allows to add a folder or package to the Java build path and change it to a source
folder. A source folder is a top−level folder in the project hierarchy that is used as
the root of packages. Entries on the build path like source folders are visible to
the compiler and all contained resources like .java files are used to build the
project. Source folders allow to structure the project, for example to separate test
from the application in two source folders. Within a source folder, a more
detailed structuring can be done by using packages.

Remove from
buildpath

Allows to remove a source folder from the Java build path and change it into a
normal folder. All contained resources in this folder (like .java files) are no
longer visible to the compiler and will not be included when building the project.

Exclude

Allows to add a resource to the exclusion filter of it's parent source folder. The
consequence is that all children of this resource are no longer visible to the
compiler. This operation can be useful if for example, some packages are not
needed in the project and can therefore be hidden from the compiler.

Include This action is available on files or folders that have been excluded. In this
situation, include allows to make this resources again visible to the compiler.

Configure source
folder properties

Editing can be used in two situations:

Customize the inclusion and exclusion filters by defining string patterns.
This can be useful if including or excluding every single resource would
take too long and just some simple patterns can do the job. A very
practical operator is the wildcard operator to define more sophisticated
patterns (for example exclude all resources that start with "Test*.java").

1.

Change the output folder for a source folder. The consequence is that all
generated .class files from the .java files in this source folder are will be

2.

Java Build Path page 589

generated in the separate output folder instead of the project's output
folder.

Note that this advanced action is only available on single selected objects.

Undo all changes All changes that have been applied to the project in this wizard will be withdrawn
and the original state of the project is reconstructed.

Link additional
source to project

When creating a project, there are might already exist some pieces of code or
other resources somewhere in the file system that could also be used for this new
project. To add this sources to the project, it is possible to create a linked source
folder to the folder in the file system and make its content visible to the compiler.
Note that only a link to the folder is created. This means that any modifications
on resources in that folder will also have an impact on other projects also using
this resources.

No
icon

Allow output folders
for source folders

Shows/Hides the 'output folder' attribute of the source folders. If no output folders
are shown, this means that the project's default output folder is used for the
generated .class files.

Note that a shorter description of all operations is visible in the area at the bottom of the project tree (labeled
with 'Description'). Only the descriptions which are valid for the current selection on the project are shown.
For experienced users it is also possible to close the description area to view the projects structure enlarged.

Projects tab

In the Required projects on the build path list, you can add project dependencies by selecting other
workbench projects to add to the build path for this new project. The Select All and Deselect All buttons can
be used to add or remove all other projects to or from the build path.

Adding a required project indirectly adds all its classpath entries marked as 'exported'. Setting a classpath
entry as exported is done in the Order and Export tab.

The projects selected here are automatically added to the referenced projects list. The referenced project list is
used to determine the build order. A project is always build after all its referenced projects are built.

Libraries tab

On this page, you can add libraries to the build path. You can add:

Workbench−managed (internal) JAR files•
File system (external) JAR files•
Folders containing CLASS files•
Predefined libraries like the JRE System Library•

JAR files can also be added indirectly as class path variables.

By default, the library list contains an entry representing the Java runtime library. This entry points to the JRE
selected as the default JRE. The default JRE is configured in the Installed JREs preferences page (Window >
Preferences > Java > Installed JREs)

 Basic tutorial

Source tab 590

Libraries tab options

Option Description

Add JARs Allows you to navigate the workbench hierarchy and select JAR files to add to the build
path.

Add External JARs Allows you to navigate the file system (outside the workbench) and select JAR files to
add to the build path.

Add Variable Allows you to add classpath variables to the build path. Classpath variables are an
indirection to JARs with the benefit of avoiding local file system paths in a classpath.
This is needed when projects are shared in a team.
Variables can be created and edited in the Classpath Variable preference page (Window
> Preferences > Java > Build Path > Classpath Variables)

Add Library Allows to add a predefined libraries like the JRE System Library. Such libraries can
stand for an arbitrary number of entries (visible as children node of the library node)

Add Class Folder Allows to navigate the workbench hierarchy and select a class folder for the build path.
The selection dialog also allows you to create a new folder.

Edit Allows you to modify the currently selected library entry or entry attribute

Remove Removes the selected element from the build path. This does not delete the resource.

 Libraries have the following attributes (presented as library entry children nodes):

Library entry attributes

Attribute Description

Javadoc location Specifies where the library's Javadoc documentation can be found. If specified you can use
Shift+F2 on an element of this library to open its documentation.

Source attachment Specifies where the library's source can be found.

Order and Export tab

In the Build class path order list, you can click the Up and Down buttons to move the selected path entry up
or down in the build path order for this new project.

Checked list entries are marked as exported. Exported entries are visible to projects that require the project.
Use the Select All and Deselect All to change the checked state of all entries. Source folders are always
exported, and can not be deselected.

Default output folder

At the bottom of this page, the Default output folder field allows you to enter a path to a folder path where
the compilation output for this project will reside. The default output is used for source folders that do not
specify an own output folder. Use Browse to select an existing location from the current project.

 Basic tutorial

Libraries tab 591

Build classpath
Classpath variables

Working with build paths
Attaching source to variables
Attaching source to a JAR file

Frequently asked questions on JDT
Classpath Variables preferences
Java Compiler properties

 Basic tutorial

Default output folder 592

Refactoring
The goal of refactoring support is to allow for improving your code without changing its behavior. When you
refactor your code, your goal is to make a system−wide coding change without affecting the semantic
behavior of the system. The JDT automatically manages refactorings for you.

The workbench optionally allows you to preview all the impending results of a refactoring action before you
finally choose to carry it out.

Refactoring commands are available from the context menus in many views and editors and the Refactor
menu in the menu bar.

Refactoring support

Refactoring actions
Refactoring wizard

Tips and Tricks

Editing Searching Navigation Views Debugging Miscellaneous

Editing source

Content assist Content assist provides you with a list of suggested completions for
partially entered strings. In the Java editor press Ctrl+Space or invoke
Edit > Content Assist.

 Refactoring 593

Content assist
in Javadoc
comments

Content assist is also available in Javadoc comments.

Suppress types
in code assist

To exclude certain types from appearing in content assist, use the type
filter feature configured on the Window > Preferences > Java >
Appearance > Type Filters preference page. Types matching one of these
filter patterns will not appear in the Open Type dialog and will not be
available to code assist, quick fix and organize imports. These filter
patterns do not affect the Package Explorer and Type Hierarchy views.

Content assist
for variable,
method
parameter and
field name
completions

You can use content assist to speed up the creation of fields, method
parameters and local variables. With the cursor positioned after the type
name of the declaration, invoke Edit > Content Assist or press
Ctrl+Space.

If you use a name prefix or suffix for fields, local variables or method
parameters, be sure to specify this in the Code Style preference page
(Window > Preferences > Java > Code Style).

 Basic tutorial

Editing source 594

Parameter
Hints

With the cursor in a method argument, you can see a list of parameter
hints. In the Java Editor press Ctrl+Shift+Space or invoke Edit >
Parameter Hints.

Content assist
on anonymous
classes

Content assist also provides help when creating an anonymous class. With
the cursor positioned after the opening bracket of a class instance creation,
invoke Edit > Content Assist or press Ctrl+Space.

This will create the body of the anonymous inner class including all
methods that need to be implemented.

Toggle between
inserting and
replacing code
assist

When code assist is invoked on an existing identifier, code assist can either
replace the identifier with the chosen completion or do an insert. The
default behavior (overwrite or insert) is defined in Window > Preferences
> Java > Editor > Code Assist.
You can temporarily toggle the behavior while inside the content assist
selection dialog by pressing and holding the Ctrl key while selecting the
completion.

Incremental
content assist

Per default, content assist will now Insert common prefixes
automatically, similar to Unix shell expansion. To change that behavior
uncheck the setting on the Window > Preferences > Java > Editor >
Code Assist preference page.

Create Getter
and Setters
dialog

To create getter and setter methods for a field, select the field's declaration
and invoke Source > Generate Getter and Setter.

 Basic tutorial

Editing source 595

If you use a name prefix or suffix be sure to specify this in the Code Style
preference page (Window > Preferences > Java > Code Style).

Use content
assist to create
Getter and
Setters

Another way to create getters and setters is using content assist. Set the
cursor in the type body between members and press Ctrl+Space to get the
proposals that create a getter or setter method stub.

Delete Getters
and Setters
together with a
field

When you delete a field from within a view, Eclipse can propose deleting
its Getter and Setter methods. If you use a name prefix or suffix for fields,
be sure to specify this in the Code Style preference page (Window >
Preferences > Java > Code Style).

Create delegate
methods

To create a delegate method for a field select the field's declaration and
invoke Source > Generate Delegate Methods. This adds the selected
methods to the type that contains a forward call to delegated methods. This
is an example of a delegate method:

Use Drag &
Drop for
refactoring

You can move Java compilation units between packages by Drag & Drop
− all missing imports will be added and references updated.

Use Drag &
Drop to move
and copy Java
code elements

You can move and copy Java elements such as methods and fields by Drag
& Drop. This will not trigger refactoring − only the code will be copied or
moved.

 Basic tutorial

Editing source 596

Use Templates
to create a
method

You can define a new template (Window > Preferences > Java > Editor
> Templates) that contains a method stub. Templates are shown together
with the Content Assist (Ctrl+Space) proposals.
There are also existing templates, such as 'private_method',
'public_method', 'protected_method' and more.
Use the Tab key to navigate between the values to enter (return type, name
and arguments).

Use Quick Fix
to create a new
method

Start with the method invocation and use Quick Fix (Ctrl+1) to create the
method.

Use Quick Fix
to change a
method
signature

Add an argument to a method invocation at a call site. Then use Quick Fix
(Ctrl+1) to add the required parameter in the method declaration.

Use Content
Assist to create
a constructor
stub

At the location where you want to add the new constructor, use code assist
after typing the first letters of the constructor name.

Create new
fields from
parameters

Do you need to create new fields to store the arguments passed in the
constructor? Use Quick Assist (Ctrl+1) on a parameter to create the
assignment and the field declaration and let Eclipse propose a name
according to your Code Style preferences.

 Basic tutorial

Editing source 597

Use Content
Assist to
override a
method

Invoke Content Assist (Ctrl+Space) in the type body at the location
where the method should be added. Content assist will offer all methods
that can be overridden. A method body for the chosen method will be
created.

Use Quick Fix
to add
unimplemented
methods

To implement a new interface, add the 'implements' declaration first to the
type. Even without saving or building, the Java editor will underline the
type to signal that methods are missing and will show the Quick Fix light
bulb. Click on the light bulb or press Ctrl+1 (Edit > Quick Fix) to choose
between adding the unimplemented methods or making your class abstract.

Override a
method from a
base class

To create a method that overrides a method from a base class:
Select the type where the methods should be added and invoke Source >
Override / Implement Methods. This opens a dialog that lets you choose
which methods to override.

 Basic tutorial

Editing source 598

Rename in File To quickly do a rename that doesn't require full analysis of dependencies
in other files, use the 'rename in file' Quick Assist. In the Java Editor,
position the cursor in an identifier of a variable, method or type and press
Ctrl+1 (Edit > Quick Fix)
The editor is switched to the linked edit mode (like templates) and
changing the identifier simultaneously changes all other references to that
variable, method or type.

Use Quick Fix
to handle
exceptions

Dealing with thrown exceptions is easy. Unhandled exceptions are
detected while typing and marked with a red line in the editor.

Click on the light bulb or press Ctrl+1 to surround the call with a
try catch block. If you want to include more statements in the try
block, select the statements and use Source > Surround With
try/catch Block. You can also select individual statements by
using Edit > Expand Selection to and selecting Enclosing, Next
or Previous.

•

If the call is already surrounded with a try block, Quick Fix will
suggest adding the catch block to the existing block.

•

If you don't want to handle the exception, let Quick Fix add a new
thrown exception to the enclosing method declaration

•

At any time you can convert a catch block to a thrown exception. Use
Ctrl+1 (Edit > Quick Fix) on a catch block.

 Basic tutorial

Editing source 599

Less typing for
assignments

Instead of typing an assignment, start with the expression that will be
assigned.

Now use Ctrl+1 (Edit > Quick Fix) and choose 'Assign statement to new
local variable' and Quick Assist will guess a variable name for you.

Less work with
cast expressions

Don't spend too much time with typing casts. Ignore them first and use
quick assist to add them after finishing the statement.
For example on assignments:

Or in for method arguments:

Or for method call targets

Assign a casted
expression

After an 'instanceof' check, it is very common to cast the expression and
assign it to a new local variable. Invoke Quick Assist (Ctrl+1) on the
'instanceof' keyword to save yourself some typing:

More quick
assists

Check out the quick assist page for a complete list of available code
transformations. Amongst them are

Invert if statements•

 Basic tutorial

Editing source 600

Convert 'switch' into 'if−else'•
Replace 'if−else' with conditional
...and many more

•

A list of quick fixes can be found here.

Shortcuts for
Quick Fixes and
Assists

Some of the popular quick assists like Rename In File and Assign To
Local can be invoked directly with Ctrl+2 R and Ctrl+2 L. Check the
keys preference page for more quick fixes that support direct invocation.

Surround lines To surround statements with an if / while / for statement or a block, select
the lines to surround and press Ctrl+1 (Edit > Quick Fix). This lists all
templates that contain the variable ${line_selection}.

Templates can be configured on Window > Preferences > Java > Editor
> Templates. Edit the corresponding templates or define your own
templates to customize the resulting code.

Create your
own templates

To create your own templates, go to the Window > Preferences > Java >
Editor > Templates preference page and press the New button to create a
template. For example, a template to iterate backwards in an array would
look like this:

 Basic tutorial

Editing source 601

Code assist can
insert argument
names
automatically

You can have code assist insert argument names automatically on method
completion. This behavior can be customized on the Window >
Preferences > Java > Editor > Code Assist preference page (see the Fill
argument names on completion checkbox.) For example, when you
select the second entry here,

code assist will automatically insert argument names:

you can then use the Tab key to navigate between the inserted names.

Code assist can also guess argument names − based on their declared
types. This can be configured by the Guess filled argument names
checkbox on the Window > Preferences > Java > Editor > Code Assist
preference page.

Automatically
insert type
arguments

Enabling Fill argument names on completion on the Window >
Preferences > Java > Editor > Code Assist preference page is also useful
when working with parameterized types in J2SE 5.0.

results in

Remove
surrounding
statement

To remove a surrounding statement or block, position the cursor at the
opening bracket and press Ctrl+1 (Edit > Quick Fix).

 Basic tutorial

Editing source 602

How was that
word spelled
again?

You can enable spell−checking support in the Java editor on the General >
Editors > Text Editors > Spelling preference page. Spelling errors are
displayed in the Java editor and corresponding Quick Fixes are available:

You can make the dictionary also available to the content assist. However,
there is currently no dictionary included in Eclipse. The required format is
just a list of words separated by new lines and the Quick Fixes allow you
to add new words to the dictionary on−the−fly. Contributions of
dictionaries would be welcome.

Structured
selections

You can quickly select Java code syntactically using the Structured
Selection feature.
Highlight the text and press Alt+Shift+Arrow Up or select Edit >
Expands Selection To > Enclosing Element from the menu bar − the
selection will be expanded to the smallest Java−syntax element that
contains the selection. You can then further expand the selection by
invoking the action again.

Find the
matching
bracket

To find a matching bracket select an opening or closing bracket and press
Ctrl+Shift+P (Navigate > Go To > Matching Bracket). You can also
double click before an opening or after a closing bracket − this selects the
text between the two brackets.

Smart Javadoc Type '/**' and press Enter. This automatically adds a Javadoc comment
stub containing the standard @param, @return and @exception tags.

The templates for the new comment can be configured in Window >
Preferences > Java > Code Style > Code Templates

 Basic tutorial

Editing source 603

Use the local
history to revert
back to a
previous edition
of a method

Whenever you edit a file, its previous contents are kept in the local history.
Java tooling makes the local history available for Java elements, so you
can revert back to a previous edition of a single method instead of the full
file.

Select an element and use Replace With > Local History to revert back to
a previous edition of the element.

Use the local
history to
restore removed
methods

Whenever you edit a file, its previous contents are kept in the local history.
Java tooling makes the local history available for Java elements, so you
can restore deleted methods selectively.

Select a container and use Restore from Local History to restore any
removed members.

Customizable
code generation

The Window > Preferences > Java > Code Style > Code Templates
preference page allows you to customize generated code and comments in
a similar way to normal templates. These code templates are used
whenever code is generated.

 Basic tutorial

Editing source 604

Since 3.1, it is possible to project specific Code templates, that will also be
shared in the team if your project is shared. Open the Properties on project
to enable project specific settings.

Create
comments in
your code

Comments can be added explicitly with Source > Add Comment
(Ctrl+Shift+J) or automatically by various wizards, refactorings or quick
fixes.
Configure the comment templates on the Window > Preferences > Java >
Code Style > Code Templates preference page.
Enable or disable the automatic generation of comments either directly on
the wizard (e.g. using 'Generate Comment' checkbox on the new Java
type wizards) or by the 'Automatically add new comments for new
methods and types' checkbox of the Window > Preferences > Java >
Code Style page.
All these settings can also be configured on a per project basis. Open the
Properties on project to enable project specific settings.

Sort members You can Sort Members of a Java compilation unit according to a category
order defined in the Window > Preferences > Java > Appearance >
Members Sort Order preference page.
You'll find the action under Source > Sort Members

Wrap Strings You can have String literals wrapped when you edit them. For example, if
you have code like this:

String message= "This is a very long message.";

position your caret after the word "very" and press Enter. The code will be
automatically changed to:

String message= "This is a very" +
 " long message.";

 Basic tutorial

Editing source 605

This behavior can be customized in the Window > Preferences > Java >
Editor > Typing preference page.

Smart Typing
and how to
control it

The Java editor's Smart Typing features ease your daily work. You can
configure them on the Java > Editor > Typing preference page.

When you enable Automatically insert Semicolons at correct position,
typing a semicolon automatically positions the cursor at the end of the
statement before inserting the semicolon. This safes you some additional
cursor navigation.
You can undo this automatic positioning by pressing backspace right
afterwards.

Fix your code
indentation
with one key
stroke

A useful feature is Source > Correct Indentation or Ctrl+I. Select the
code where the indents are incorrect and invoke the action.

 Basic tutorial

Editing source 606

Quick menus
for source and
refactoring
actions

The refactoring and source actions can be accessed via a quick menu.
Select the element to be manipulated in the Java editor or in a Java view
and press Alt+Shift+S for the quick source menu or Alt+Shift+T for the
quick refactoring menu.

Find unused
code

The Java compiler detects unreachable code, unused variables, parameters,
imports and unused private types, methods and fields. The setting is on the
Window > Preferences > Java > Compiler > Error/Warnings
preference page (or set for an individual project using Project >
Properties > Java Compiler > Error/Warnings).

These settings are also detected as you type and a quick fix is offered to
remove the unneeded code.

 Basic tutorial

Editing source 607

Javadoc
comment
handling

The Eclipse Java compiler can process Javadoc comments. Search reports
references in doc comments, and refactoring updates these references as
well. This feature is controlled from the Window > Preferences > Java >
Compiler > Javadoc preference page (or set for an individual project
using Project > Properties > Java Compiler > Javadoc).

When turned on, malformed Javadoc comments are marked in the Java
editor and can be fixed using Edit > Quick Fix (Ctrl+1):

Suppress
warnings

In J2SE 5.0 you can suppress all optional compiler warnings using the
'SuppressWarnings' annotation.
In this example 'addAll()' is marked as an unused method. Quick Fix
(Ctrl+1) is used to add a SuppressWarnings annotation so that the warning
will not be shown for this method.

Searching

 Basic tutorial

Searching 608

Locate
variables and
their
read/write
access

You can locate variables and see their read/write status by selecting an
identifier (variable, method or type reference or declaration) and invoking
Search > Occurrences in File. This marks all references of this identifier
in the same file. The results are also shown in the search view, along with
icons showing the variable's read or write access.

Alternatively, use the Mark Occurrences feature to dynamically
highlight occurrences. You can search over several files by using the
general search features (Search > References).

Search for
methods with
a specific
return type

To search for methods with a specific return type, use "* <return type>"
as follows:

Open the search dialog and click on the Java Search tab.•
Type '*' and the return type, separated by a space, in the Search
string.

•

Select the Case sensitive checkbox.•
Select Method and Declarations and then click Search.•

Remove
Javadoc

By default Java Search finds references inside Java code and Javadoc. If
you don't want to find references inside Javadoc, you can filter these

 Basic tutorial

Searching 609

results from
Java search

matches by enabling 'Filter Javadoc' in the view menu (triangle symbol)
of the search view

Trace method
call chains
with the Call
Hierarchy

Have you ever found yourself searching for references to methods again
and again? Use the new Call Hierarchy to follow long or complex call
chains without losing the original context: Just select a method and invoke
Navigate > Open Call Hierarchy (Ctrl+Alt+H).

Code navigation and reading

Open on a
selection in the
Java editor

There are two ways that you can open an element from its reference in the
Java editor.

Select the reference in the code and press F3 (Navigate > Open
Declaration)

•

Hold Ctrl and move the mouse pointer over the reference•

The hyperlink style navigation can be configured in Preferences >
General > Editors > Text Editors > Support hyperlink style navigation.

In−place
outlines

Press Ctrl+F3 in the Java editor to pop up an in−place outline of the
element at the current cursor position. Or press Ctrl+O (Navigate > Quick
Outline) to pop up an in−place outline of the current source file.

 Basic tutorial

Code navigation and reading 610

In−place
outlines show
inherited
members

Press Ctrl+O or Ctrl+F3 again to add inherited members to an open
In−place outline. Inherited members have a gray label. Filter and sort the
outline with the menu in the upper right corner.

In−place
hierarchy

Find out which are the possible receivers of a virtual call using the 'quick
hierarchy'. Place the cursor inside the method call and press Ctrl+T
(Navigate > Quick Hierarchy). The view shows all types that implement
the method with a full icon.

Press Ctrl+T again to switch to the Supertype hierarchy.

Advanced
highlighting

The Java editor can highlight source code according to its semantics (for
example: static fields, local variables, static method invocations). Have a
look at the various options on the Window > Preferences > Java > Editor
> Syntax Coloring preference page.

 Basic tutorial

Code navigation and reading 611

Initially folded
regions

You can specify which regions are folded by default when an editor is
opened. Have a look ate the Window > Preferences > Java > Editor >
Folding preference page to customize this.

Mark
occurrences

When working in the editor, turn on Mark Occurrences in the toolbar (
) or press Alt+Shift+O. You'll see within a file, where a variable, method
or type is referenced.

Selecting a return type shows you the method's exit points. Select an
exception to see where it is thrown.

 Basic tutorial

Code navigation and reading 612

Select a super class or interface to see the methods override or implement a
method from the selected super type.
Fine tune 'mark occurrences' on Window > Preferences > Java > Editor
> Mark Occurrences..

Go to next /
previous
method

To quickly navigate to the next or previous method or field, use
Ctrl+Shift+Arrow Up (Navigate > Go To > Previous Member) or
Ctrl+Shift+Arrow Down (Navigate > Go To > Next Member)

Control your
navigation
between
annotations

Use the Next / Previous Annotation toolbar buttons or Navigate > Next
Annotation (Ctrl+.) and Navigate > Previous Annotation (Ctrl+,) to
navigate between annotations in a Java source file. With the button
drop−down menus, you can configure on which annotations you want to
stop:

Reminders in
your Java code

When you tag a comment in Java source code with "TODO" the Java
compiler automatically creates a corresponding task as a reminder.
Opening the task navigates you back to the "TODO" in the code. Use the
Window > Preferences > Java Compiler > Task Tags preference page to
configure any other special tags (like "FIXME") that you'd like to track in
the task list.

 Basic tutorial

Code navigation and reading 613

Tricks in the
Open Type
dialog

To find types quickly, only type the capital letters of the type
name: IOOBE finds IndexOutOfBoundsException

•

To see all types ending with a given suffix, e.g. all Tests, use
'*Test<' to not see all types containing 'Test' somewhere else in the
type name.

•

Make hovers
sticky

You can open the text from a hover in a scrollable window by pressing F2
(Edit > Show Tooltip Description). You can select and copy content from
this window.

Hovers in the
Java editor

You can see different hovers in the Java editor by using the modifier keys
(Shift, Ctrl, Alt).
When you move the mouse over an identifier in the Java editor, by default
a hover with the Javadoc extracted from the corresponding source of this
element is shown. Holding down the Ctrl key shows you the source code.

 Basic tutorial

Code navigation and reading 614

You can change this behavior and define the hovers for other modifier keys
in Window > Preferences > Java > Editor > Hovers.

Generic
method
inferred
signature

You can use hover to show the generic method inferred signature.

Open and
configure
external
Javadoc
documentation

If you want to open the Javadoc documentation for a type, method or field
with Shift+F2 (Navigate > Open External Javadoc), you first have to
specify the documentation locations to the elements parent library (JAR,
class folder) or project (source folder).
For libraries open the build path page (Project > Properties > Java Build
Path), go to the Libraries, expand the node of the library where you can
edit the 'Javadoc location' node. The documentation can be local on your
file system in a folder or archive or on a web server.

For types, methods or fields in source folders, go to the (Project >
Properties > Javadoc Location).

 Basic tutorial

Code navigation and reading 615

Java views

Organizing
workspace with
many projects

Use Show > Working Sets in the Package Explorer's view menu to enable
a new mode that shows working sets as top level elements. This mode
makes it much easier to manage workspaces containing lots of projects.

Use Select Working Sets from the Package Explorer's view menu to
configure which working sets get shown. The dialog lets you create new
Java working sets, define which working sets are shown and in what order.
Working sets can also be rearranged directly in the Package Explorer using
drag and drop and copy/paste.

Declaration view The Declaration view (Window > Show View > Other > Java >
Declaration) shows the source of the element selected in the Java editor or
in a Java view.

 Basic tutorial

Java views 616

Javadoc view There is a Javadoc view (Window > Show View > Other > Java >
Javadoc) which shows the Javadoc of the element selected in the Java
editor or in a Java view. The Javadoc view uses the SWT Browser widget
to display HTML on platforms which support it.

Type Hierarchy
view and method
implementations
/ definitions

To find out which types in a hierarchy override a method, use the 'Show
Members in Hierarchy' feature.

Select the method to look at and press F4 (Navigate > Open Type
Hierarchy). This opens the type hierarchy view on the method's
declaring type.

•

With the method selected in the Hierarchy view, press the 'Lock
View and Show Members in Hierarchy' tool bar button.

•

The hierarchy view now shows only types that implement or define
the 'locked' method. You can for example see that 'isEmpty()' is
defined in 'List' and implemented in 'ArrayList' and 'Vector' but not
in 'AbstractList'.

•

 Basic tutorial

Java views 617

Type hierarchy
view supports
grouping by
defining type

The type hierarchy method view lets you sort the selected type's methods
by its defining types. For example, for AbstractList you can see that it
contains methods that were defined in Object, Collection and List:

Tricks in the
type hierarchy Focus the type hierarchy on a new type by pressing F4 (Navigate >

Open Type Hierarchy) on an element or a selected name.
•

You can open the Hierarchy view not only on types but also on
packages, source folders, JAR archives and Java projects.

•

You can Drag & Drop an element onto the Hierarchy view to focus
it on that element.

•

You can change the orientation (from the default vertical to
horizontal) of the Hierarchy view from the view's toolbar menu.

•

Structural
compare of Java
source

A structural comparison of Java source ignores the textual order of Java
elements like methods and fields and shows more clearly which elements
were changed, added, or removed.
For initiating a structural comparison of Java files you have two options:

Select two Java compilation units and choose Compare With >
Each Other from the view's context menu. If the files have
differences, they are opened into a Compare Editor. The top pane
shows the differing Java elements; double clicking on one of them

•

 Basic tutorial

Java views 618

shows the source of the element in the bottom pane.
In any context where a file comparison is involved (e.g. a CVS
Synchronization) a double click on a Java file not only shows the
content of the file in a text compare viewer, but it also performs a
structural compare and opens a new pane showing the results.

•

You can even ignore comments and formatting changes when performing
the structural compare: turn on the Ignore Whitespace option via the
Compare Editor's toolbar button, or the CVS Synchronization View's drop
down menu.

Structural
compare of
property files

A structural comparison of Java property files (extension: .properties)
ignores the textual order of properties and shows which properties were
changed, added, or removed.
For initiating a structural comparison of property files you have two
options:

Select two files in the Package Explorer or Navigator and choose
Compare With > Each Other from the view's context menu.

•

In any context where a file comparison is involved (e.g. a CVS
Synchronization) a double click on a property file not only shows
the content of the file in a text compare viewer, but it also performs
a structural compare and opens a new pane showing the results.

•

 Basic tutorial

Java views 619

Hierarchical vs.
flat layout of
packages

An option on the Java Packages view (and Package Explorer view) allows
you to change the way packages are displayed. Hierarchical displays
packages in a tree, with sub−packages below packages; Flat displays them
in the standard arrangement, as a flat list with all packages and
sub−packages as siblings.

Logical packages The Java Packages view (Java Browsing perspective) coalesces packages
of the same name across source folders within a project. This shows the
Packages view containing a logical package.

 Basic tutorial

Java views 620

Compress
package names

If your package names are very long you can configure a compressed name
that appears in the viewers. Configuration of the compression pattern is
done in > Window > Preferences > Java > Appearance

Using this example, packages are rendered the following way:

Manipulating the
Java build path
directly in the
package explorer

Instead of manipulating the Java Build path on Project > Properties >
Java Build Path, use the actions in the package explorer's context menu.
You can for example add new source folders, archives and libraries to the
build path or in− and exclude file and folders from a source folder.

Miscellaneous

Project specific
preferences

All code style and compiler options can now be defined per project.
Open the project property pages with Project > Properties on a project or
use the link on the workspace preferences (e.g. Window > Preferences >
Java > Code Style) to open a project property page and enable project
specific settings.

The project specific settings are stored in a configuration file inside the
project (in the '.settings' folder). When you share a project in a team, team

 Basic tutorial

Miscellaneous 621

members will also get these project specific settings.

Access Rules Access rules give you the possibility to enforce API rules for types from
referenced libraries. On the Java build path page (Project > Properties >
Java Build Path) edit the 'Access Rules' node available on referenced
projects, archives, class folders and libraries.
Packages or types in these references can be classified as:

Accessible•
Discouraged•
Forbidden•

According to the settings on Window > Preferences > Java > Compiler >
Errors/Warnings, the compiler will mark discouraged and forbidden
references with warning or errors.

JUnit Select a JUnit test method in a view and choose Run > JUnit Test from
the context menu or Run > Run As > JUnit Test from the main menu.
This creates a launch configuration to run the selected test.

Hide JUnit
view until
errors or
failures occur

You can make the JUnit view open only when there are errors or failures.
That way, you can have the view set as a fast view and never look at it
when there are no failing tests. While there are no problems in your tests
you will see this icon (the number of small green squares will grow,
indicating progress) while running them and this icon after they are
finished. If, however, errors or failures occur, the icon will change to (or

 Basic tutorial

Miscellaneous 622

 if tests are finished) and the JUnit view will appear. This behavior can
be configured via the Window > Preferences > Java > JUnit preference
page.

Content assist
in dialog fields

Content Assist (Ctrl+Space) is now also available in input fields of various
Java dialogs. Look for small light bulb icon beside the field when it has
focus.

Content Assist is e.g. implemented in the New Java Class, New Java
Interface, and New JUnit Test wizards, as well as in the refactoring dialogs
for Change Method Signature and moving static members.

The Extract Local Variable, Convert Local Variable to Field, and Introduce
Parameter refactorings offer content assist proposals for the new element
name.

Define prefixes
or suffixes for
fields,
parameters
and local
variables

In addition to configuring the prefix or suffix for fields, you can also
specify the prefix or suffix for static fields, parameters, and local variables.
These settings on the Window > Preferences > Java > Code Style
preference page are used in content assist, quick fix, and refactoring
whenever a variable name is computed.

 Basic tutorial

Miscellaneous 623

Organize
Imports works
on more than
single files

You can invoke Organize Imports on sets of compilation units, packages,
source folders or Java projects.

Format more
than one file

Select all Java files to format and choose Source > Format to format them
all. The format action is also available on packages, source folders or Java
projects.

Use project
specific
compiler
settings

Each project can use the global compiler settings or you can define project
specific settings. Select the project and open the Java compiler page in the
project properties (Project > Properties > Java Compiler)

 Basic tutorial

Miscellaneous 624

Use a specific
JRE for a
project

When creating new projects the JRE that is added by default is the one
selected in Window > Preferences > Java > Installed JRE's. To set a
project specific JRE, open the project's Java Build path property page
(Project > Properties > Java Build Path), then the Libraries page, select
'JRE System Library' and press Edit. In the 'Edit Library' dialog you can
select either the default JRE or a project specific JRE to add to new
projects.

Propagating
deprecation
tag

The Java compiler can be configured to diagnose deprecation using options
on the Window > Preferences > Java > Compiler > Advanced page.

Using this configuration, the result is:

If you're unable to fix a usage of a deprecated construct, we recommend
that you tag the enclosing method, field or type as deprecated. This way,
you acknowledge that you did override a deprecated construct, and the
deprecation flag is propagated to further dependents.

 Basic tutorial

Miscellaneous 625

Recovering
from abnormal
inconsistencies

In the rare event of a dysfunction, JDT could reveal some inconsistencies
such as:

missing results in a Java Search or Open Type•
invalid items in package explorer•

To make it consistent again, the following actions need to be performed in
this exact order:

Close all projects using navigator Close Project menu action1.
Exit and restart Eclipse2.
Open all projects using navigator Open Project menu action3.
Manually trigger a clean build of entire workspace (Project >
Clean...)

4.

Debugging

Launching
from the
Context Menu

You can run and debug Java applications from the context menu. You can
launch a source file, package, method, type, etc. by choosing Run As (or
Debug As) > Java Application from the context menu in a view or editor.
Alternatively, you can use the Java application launch shortcut key binding
(Alt−Shift−D, J). The top level Run As (or Debug As) actions are also
sensitive to the current selection or active editor.

 Basic tutorial

Debugging 626

Evaluations in
the debugger

Snippet evaluation is available from a number of places in the debugger.
Choosing Display or Inspect from the context menu of the editor or
Variables view will show the result in a pop−up whose result can be sent
to the Display or Expressions views.

View
Management
in Non−Debug
perspectives

The Debug view automatically manages debug related views based on the
view selection (displaying Java views for Java stack frames and C views
for C stack frames, for example). By default, this automatic view
management only occurs in the Debug perspective, but you can enable it
for other perspectives via the View Management preference page
available from the Debug view toolbar pulldown.

Environment
Variables

You can now specify the environment used to launch Java applications via
the Environment tab.

 Basic tutorial

Debugging 627

String
Substitutions

Variables are now supported for many parameters of Java Application
launch configurations. Most fields that support variables have a
Variables... button next to them, such as the program and VM arguments
fields. The Main Type field supports variables as well; the
${java_type_name} variable allows you to create a configuration that will
run the selected type.

Logical
Structures

The Logical Structures toggle on the Variables view toolbar presents
alternate structures for common types. JDT provides logical views for
Maps, Collections, and SWT Composites. You can define logical
structures for other types from the Logical Structures preference page.

 Basic tutorial

Debugging 628

Default VM
Arguments

If you specify the same arguments to a certain VM frequently, you can
configure Default VM Arguments in the Installed JREs preference page.
This is more convenient than specifying them for each launch
configuration.

Stop in Main You can use Stop in main in a Java Application launch configuration to
cause your program to stop at the first executable line of the main method
when you run it under debug mode.

Conditional
breakpoints

You can use conditional breakpoints in Breakpoint Properties... to
control when a breakpoint actually halts execution. You can specify
whether you want the breakpoint to suspend execution only when the
condition is true, or when the condition value changes.

 Basic tutorial

Debugging 629

Disabling
breakpoints

If you find yourself frequently adding and removing a breakpoint in the
same place, consider disabling the breakpoint when you don't need it and
enabling it when needed again. This can be done using Disable
Breakpoint in the breakpoint context menu or by unchecking the
breakpoint in the Breakpoints view.

You can also temporarily disable all breakpoints using the Skip All
Breakpoints action in the Breakpoints view toolbar. This will tell the
debugger to skip all breakpoints while maintaining their current enabled
state.

Changing
variable values

When a thread is suspended in the debugger, you can change the values of
Java primitives and Strings in the Variables view. From the variable's
context menu, choose Change Variable Value. You can also change the
value by typing a new value into the Details pane and using the Assign
Value action in the context menu (CTRL−S key binding).

 Basic tutorial

Debugging 630

Variable
values in hover
help

When a thread is suspended and the cursor is placed over a variable in the
Java editor, the value of that variable is displayed as hover help.

Drop to Frame When stepping through your code, you might occasionally step too far, or
step over a line you meant to step into. Rather than restarting your debug
session, you can use the Drop to Frame action to quickly go back to the
beginning of a method. Select the stack frame corresponding to the Java
method you wish to restart, and select Drop to Frame from Debug view
toolbar or the stack frame's context menu. The current instruction pointer
will be reset to the first executable statement in the method. This works for
non−top stack frames as well.

Note that Drop to frame is only available when debugging with a 1.4 or
higher VM, or the J9 VM. There are some situations where a JVM may be
unable to pop the desired frames from the stack. For example, it is
generally impossible to drop to the bottom frame of the stack or to any
frame below a native method.

Hot code
replace

The debugger supports Hot Code Replace when debugging with a 1.4 or
higher VM, or the J9 VM. This lets you make changes to code you are
currently debugging. Note that some changes such as new or deleted
methods, class variables or inner classes cannot be hot swapped, depending
on the support provided by a particular VM.

 Basic tutorial

Debugging 631

Stepping into
selections

The Java debugger allows you to step into a single method within a series
of chained or nested method calls. Simply highlight the method you wish
to step into and select Step into Selection from the Java editor context
menu.

This feature works in places other than the currently executing line. Try
debugging to a breakpoint and stepping into a method a few lines below
the currently instruction pointer.

Controlling
your console

Output displayed in the console can be locked to a specific process via the
Pin Console action in the Console view toolbar. There's also a Scroll Lock
action that stops the console from automatically scrolling as new output is
appended.

Creating
watch items

A watch item is an expression in the Expressions view whose value is
updated as you debug. You can create watch items from the Java editor by
selecting an expression or variable and choosing Watch from its context
menu or the top−level Run menu.

Watch points A watch point is a breakpoint that suspends execution whenever a specified
variable is accessed or modified. To set a watchpoint, select a variable in
the Outline view and choose Toggle Watchpoint from its context menu.
To configure a watchpoint, select the watchpoint in the Breakpoints view
and choose Properties... from its context menu. The most important
properties for this type of breakpoint are the Access and Modification
checkboxes which control when the breakpoint can suspend execution.

 Basic tutorial

Debugging 632

Threads and
Monitors

The Java debugger optionally displays monitor information in the Debug
view. Use the Show Monitors action in the Debug view drop down menu
to show which threads are holding locks and which are waiting to acquire
locks. Threads involved in a deadlock are rendered in red.

Step filters Step filters prevent the debugger from suspending in specified classes and
packages when stepping into code. Step filters are established in Window
> Preferences > Java > Debug > Step Filtering. When the Use Step
Filters toggle (on the debug toolbar and menu) is on, step filters are

 Basic tutorial

Debugging 633

applied to all step actions. In the Debug view, the selected stack frame's
package or declaring type can be quickly added to the list of filters by
selecting Filter Type or Filter Package from the stack frame's context
menu.

Using the
scrapbook

If you want to experiment with API or test out a new algorithm, it's
frequently easier to use a Java scrapbook page than create a new class. A
scrapbook page is a container for random snippets of code that you can
execute at any time without a context. To create a scrapbook page, create a
new file with a .jpage extension (or use the New wizard − Java > Java
Run/Debug > Scrapbook Page). Enter whatever code you wish to execute,
then select it. There are three ways to execute your code:

Execute the selected code and place the returned result in the
Expressions view

•

Execute the selected code and place the String result right in the
scrapbook page

•

Execute the selected code (and ignore any returned result)•

These actions are in the workbench toolbar and also in the scrapbook
page's context menu.

Editing
launch
configurations

Holding down the Ctrl key and making a selection from the Run or Debug
drop−down menu opens the associated launch configuration for editing.
The launch configuration can also be opened from the context menu
associated with any item in the Debug view.

Favorite
launch
configurations

Launch configurations appear in the Run/Debug drop−down menus in most
recently launched order. However it is possible to force a launch
configuration to always appear at the top of the drop−downs by making the
configuration a 'favorite'. Use the Organize Favorites... action from the
appropriate drop down menu to configure your favorite launch
configurations.

Detail
formatters

In the Variables & Expressions views, the detail pane shows an expanded
representation of the currently selected variable. By default, this expanded
representation is the result of calling toString() on the selected object, but
you can create a custom detail formatter that will be used instead by
choosing New Detail Formatter from the variable's context menu. This
detail formatter will be used for all objects of the same type. You can view
and edit all detail formatters in the Window > Preferences > Java >
Debug > Detail Formatters preference page.

 Basic tutorial

Debugging 634

Running code
with compile
errors

You can run and debug code that did not compile cleanly. The only
difference between running code with and without compile errors is that if
a line of code with a compile error is executed, one of two things will
happen:

If the 'Suspend execution on compilation errors' preference on the
Window > Preferences > Java > Debug preference page is set
and you are debugging, the debug session will suspend as if a
breakpoint had been hit. Note that if your VM supports Hot Code
Replace, you could then fix the compilation error and resume
debugging

•

Otherwise, execution will terminate with a 'unresolved
compilation' error

•

It is important to emphasize that as long as your execution path avoids
lines of code with compile errors, you can run and debug just as you
normally do.

Word wrap in
Variables view

The details area of the debugger's Variables and Expressions views
supports word wrap, available from the view drop−down menu.

 Basic tutorial

Debugging 635

Code assist in
the debugger

Code assist is available in many contexts beyond writing code in the Java
editor:

When entering a breakpoint condition•
In the Details pane of the Variables & Expressions view•
When entering a Detail Formatter code snippet•
When entering a Logical Structure code snippet•
When entering code in a Scrapbook page•
In the Display view•

Command line
details

You can always see the exact command line used to launch a program in
run or debug mode by selecting Properties from the context menu of a
process or debug target, even if the launch has terminated.

 Basic tutorial

Debugging 636

Stack trace
hyperlinks

Java stack traces in the console appear with hyperlinks. When you place
the mouse over a line in a stack trace the pointer changes to the hand.
Pressing the mouse button opens the associated Java source file and
positions the cursor at the corresponding line. Pressing the mouse button
on the exception name at the top of the stack trace will create an exception
breakpoint.

What's New in 3.1

This document contains descriptions of some of the more interesting or significant changes made to the Java
development tools for the 3.1 release of Eclipse since 3.0. It is broken into several sections:

J2SE 5.0•
Java Debugger•
Java Compiler•
Java Editor•
General Java Tools•

J2SE 5.0

J2SE 5.0 Eclipse 3.1 includes full support for the new features of J2SE 5.0 (aka "Tiger").
One of the most important consequences of this support is that you may not
notice it at all −− everything that you expect to work with J2SE 1.4, including
editing, code assist, compiling, debugging, quick fixes, refactorings, source
actions, searching, etc. will work seamlessly with J2SE 5.0's new types and
syntax.

In order to develop code compliant with J2SE 5.0, you will need a 5.0 Java
Runtime Environment (JRE). If you start Eclipse for the first time using a 5.0
JRE, then it will use it by default. Otherwise, you will need to use the Installed
JREs dialog to register one with Eclipse. You can reach this dialog either via
the preference Java > Installed JREs or by following the Configure default...
link on the New Java Project wizard.

 Basic tutorial

What's New in 3.1 637

Quick Fix to
update JRE and

compiler compliance
to 5.0

A new quick fix helps you change the compliance settings when you try to
enter 5.0 constructs in a 1.4 project. Note that a 1.5 JRE is required, which can
be added in the 'Installed JRE's' preference page.

 Basic tutorial

J2SE 5.0 638

New Type wizards
support generics

The New Type wizards support J2SE 5.0 generic types in various fields:

The Name field can include type parameter declarations.•
The Superclass and the implemented Interfaces can include generic
type arguments.

•

Creating
Enumerations and

Annotations

Enumerations and Annotations can be created with the new Enum or
Annotation wizard:

Guessing for type
arguments

Code Assist inserts the correct type arguments when completing a type in the
Java editor. Type arguments that cannot be disambiguated will be selected, and
the Tab key will move from one argument to the next.

In this example String is inserted as the first type argument, while Number
is proposed for the second:

 Basic tutorial

J2SE 5.0 639

To try out this feature, you need to enable Fill argument names on the Java >
Editor > Code Assist preference page.

Type parameter
declaration hiding

another type
diagnosis

The Java compiler can optionally flag a type parameter declaration hiding
another type.

Rename refactoring The Rename refactoring has been extended to handle renaming of type
parameters.

Infer Generic Type
Arguments
refactoring

With J2SE 5.0, your code can use generics to enhance readability and static
type safety. Refactor > Infer Generic Type Arguments is a new refactoring
that helps clients of generic class libraries, like the Java Collections
Framework, to migrate their code.

 Basic tutorial

J2SE 5.0 640

The refactoring infers type parameters for generic types, and will remove any
unnecessary casts. It works on single compilation units as well as on whole
packages and Java projects.

Quick fixes for
Generics

For unresolved Java types, you now also get a proposal to create a new type
parameter:

Support for Javadoc tags for type parameters has been added. In J2SE 5.0, you
document type parameters using the existing @param tag but with the name
enclosed in angle brackets.

 Basic tutorial

J2SE 5.0 641

New search result
filters for reference

search for
parameterized types

When searching for references to a parameterized type such as
List<Integer>, the search result will contain references to all occurrences
of List as well. The search result view now offers two additional filters to hide
matches:

Filter incompatible matches: this filter hides all results that are not
assignment compatible with the search pattern. For example when
searching for List<Integer> filtering incompatible matches will
hide List<String>, but not List<? extends Number>.

•

Filter inexact matches: this filter hides all results that don't exactly
match the pattern. For the example above the filter will also hide
List<? extends Number>.

•

Completion on
annotations

Code completion inside a single member annotation or annotation attribute
value is supported.

 Basic tutorial

J2SE 5.0 642

Usage of annotation
type as super

interface diagnosis

In J2SE 5.0, the Java language allows a class to implement an annotation type.
However this should be discouraged. The Java compiler optionally flags such
usage.

Support for
@SuppressWarnings

annotation

The J2SE 5.0 @SuppressWarnings annotation is supported. Recognized
warning token names are: "all", "boxing", "dep−ann", "deprecation",
"incomplete−switch", "hiding", "finally", "static−access", "nls", "serial",
"synthetic−access", "unqualified−field−access", "unchecked", "unused" and
"warningToken". In the example below, the first field is tagged with the
@SuppressWarnings("deprecation") annotation and no deprecation warning is
reported. The second field is not tagged and a deprecation warning is reported.

 Basic tutorial

J2SE 5.0 643

Note that a compiler option controls whether @SuppressWarnings annotations
are active or not. See the preference Java > Compiler > Errors/Warnings >
J2SE 5.0 options > Enable '@SuppressWarnings' annotations

By default, unhandled warning tokens are signaled by a warning. This warning
can also be suppressed using the @SuppressWarnings("warningToken")
annotation.

 Basic tutorial

J2SE 5.0 644

Quick fix
support for

@SuppressWarnings

Warnings that can be suppressed using a @SuppressWarning annotation offer a
quick fix to do so. Applying quick fix to the unused local warning below

results in:

Missing @Override
annotation diagnosis

The Java compiler can optionally flag a method overriding a superclass
method, but missing a proper @Override annotation. Missing @Override
annotations can be added using Quick Fix.

See the preference Java > Compiler > Errors/Warnings > J2SE 5.0 options
> Missing '@Override annotation

Missing
@Deprecated

annotation diagnosis

The Java compiler recognizes the @Deprecated annotations, and treats them
equivalent to the doc comment /** @deprecated */. It can optionally flag
deprecated constructs missing a proper @Deprecated annotation (to encourage
using annotations instead of doc comment tag).

 Basic tutorial

J2SE 5.0 645

See preference under Java > Compiler > Errors/Warnings > J2SE 5.0
options > Missing '@Deprecated' annotation

Incomplete enum
switch statement

diagnosis

The Java compiler can optionally flag incomplete enum switch statements.

See preference under Java > Compiler > Errors/Warnings > J2SE 5.0
options > Not all enum constants covered on 'switch'

Compiler diagnosis
for 'enum' identifier

The Java compiler can find and flag where 'enum' is used as an identifier.
While 'enum' is a legal identifier up to source level 1.4, but a reserved keyword
in 5.0 source. Enabling this warning helps to anticipate source migration issues.
See the preference Java > Compiler > JDK Compliance > Disallow
identifier called 'enum'.

 Basic tutorial

J2SE 5.0 646

Quick Fix to
create enum

constants

Quick Fix supports creation of enumeration constants. In the example below
the constant BLUE is missing from the enumeration Colors

Autoboxing
parameter
proposals

Proposed parameters include auto(un−)boxing proposals:

Note: The Java > Editor > Code Assist > Fill argument names on
completion preference has to be enabled.

Boxing/
unboxing diagnosis

The J2SE 5.0 autoboxing capability is powerful but it can lead to unexpected
behavior especially when passing arguments. The compiler introduces an
optional diagnosis that indicates when autoboxing or autounboxing is
performed. In the following example, one might think that foo(Integer)
would be called, but since autounboxing is performed, foo(int) is called.

 Basic tutorial

J2SE 5.0 647

See preference under Java > Compiler > Errors/Warnings > J2SE 5.0
options > Boxing and unboxing conversions.

Support for J2SE 5.0
in Java editor

The Java editor provides syntax coloring for the new J2SE 5.0 language
features. Go to the Java > Editor > Syntax Coloring preference page to
change the colors or to enable semantic coloring of type variables, annotation
elements and auto(un−)boxed expressions:

 Basic tutorial

J2SE 5.0 648

New for loop
template

The foreach template inserts a new 'for' loop into the code, proposing local
Iterable instances you may want to iterate over:

Convert to enhanced
for loop

A new Quick Assist (Ctrl+1) offers to convert old−style for loops over arrays
and collections to J2SE 5.0 enhanced for loops:

The Quick Fix simplifies the loop to:

Varargs argument
needing a cast

The Java compiler can optionally flag suspicious varargs method invocations.
A null last argument is not wrapped as a 1−element array as one might expect;
adding an explicit cast makes the intention of the code clear.

The preference setting can be found at Java > Compiler > Errors/Warnings
> J2SE 5.0 Options > Inexact type match for vararg arguments.

 Basic tutorial

J2SE 5.0 649

Completion uses
static imports

Code completion in the Java editor is able to process static imports when
inferring context−sensitive completions.

Static import
groups

To organize your static imports, create groups for the static imports and place
them where you prefer. You can define an 'others' group to collect up all
imports not matched by any other group:

The 'others' group feature is also available for non−static imports.

Support for
package−info.java

Support has been added for the special source file package−info.java, which
allows annotating and documenting packages. All JDT tools (code assist, code
select, search, outline, type hierarchies, etc.) can be used in this special
compilation unit.

Doc comments inside the package−info.java are processed, and the syntax and
references in standard comment tags are verified.

 Basic tutorial

J2SE 5.0 650

Code formatter for
J2SE 5.0 constructs

The code formatter supports all the new J2SE 5.0 language constructs. Control
over how the formatter handles them are found on the Java > Code Style >
Code Formatter preference page:

Debugging 5.0 source
code

You can run and debug 5.0 source code with a 1.5 JRE. Java debug evaluations
support J2SE 5.0 constructs such as generics and enhanced for loops.

Class file naming
change for local inner

types

In 5.0 compliance mode, the Java compiler generates class files that follow the
naming convention specified in JLS 13.1 (3rd edition) for local inner types. As
a consequence, in the below example, instead of generating a file named
X1A.class, it will simply be X$1A.class.

 Basic tutorial

J2SE 5.0 651

Java Debugger

Watchpoints
and

method
entry

breakpoints

Double clicking in the Java editor ruler creates watchpoints on fields and
method entry breakpoints on method declarations.

Locks and
deadlocks

The locks owned by a thread as well as the lock a thread is waiting for can
both be displayed inline in the Debug view by toggling the Show Monitors
menu item in the Debug view drop−down menu. Threads and locks involved
in a deadlock are highlighted in red.

Navigating
stack traces

Copy and paste a stack trace into the Java Stack Trace Console and use
hyperlinks to navigate the trace. The Java Stack Trace Console can be opened
from the Open Console drop−down menu in the Console view. Pasted stack
traces can be formatted via the standard Format key binding.

 Basic tutorial

Java Debugger 652

'toString()'
inline

The toString()−computed value of a variable can be displayed inline in the
Variables view tree, as well as in the details area. The Java Detail
Formatters... command in the view drop−down menu is used for configuring
how this feature works.

 Basic tutorial

Java Debugger 653

User−defined
logical

structures

The Java debugger now lets you control what gets shown in the variables
view for different types of objects. For example, collections can be displayed
as a simple array of values, instead of the gory details on how that particular
collection object is implemented.

This is done from the Java > Debug> Logical Structures preference page,
where you associate with a specific class or interface either a single
expression (for example, this.toArray()) or a series of named
expressions. When the object is to be shown in the variables view, the
expressions are evaluated to produce the values to display.

 Basic tutorial

Java Debugger 654

Enhanced
variable

value
modification

The Java debugger now lets you change the value of variables by entering an
expression into either the Change Value dialog or into the details area of the
variables view and pressing Save.

Find
variable

The Find Variable action in the Variables view allows you to type in the name
of a variable you are looking for. As you type, the Variables view selects the
next visible variable matching the entered text. As well, the Find variable
dialog shows variables matching the text entered so far.

Javadoc
attachments

You can now associate a different Javadoc location with each JAR in a JRE's
libraries.

 Basic tutorial

Java Debugger 655

Java Compiler

New Javadoc
compiler settings

When Javadoc checking is enabled, you can configure it to

warn when @see and @link tags reference deprecated
elements

•

warn when @see and @link tags reference elements that
are not visible

•

The settings are on the Java > Compiler > Javadoc preference page.

 Basic tutorial

Java Compiler 656

Assignment with
no effect diagnosis

for postfix
expression

The optional diagnosis for assignment with no effect detects the case
where a postfix expression is assigned to the same variable, e.g. i =
i++;

Serial Version
UID

There is a new optional compiler diagnosis for serializable classes
missing a declaration of a serialVersionUID field.

The preference setting can be found at Java > Compiler >
Errors/Warnings > Potential programming problems

Early detection of
references to

internal classes

You can annotate library (and project) entries on the Java build path
(Properties > Java Build Path > Libraries) to identify any internal
packages that you want to avoid referencing directly from your code.
For example, it's generally a bad idea to depend on any of the
vendor−specific packages, like com.ibm.* or com.sun.*,
commonly found in the J2SE libraries. Access restrictions are
expressed with a combination of inclusion and exclusion rules on
build path entries. The pattern syntax follows Ant fileset notation, and
matches against the path to the class file. For example, using the
pattern com/ibm/** as an exclusion rule would restrict access to all
classes in the com.ibm package and its subpackages; using the
pattern org/eclipse/**/internal/** as an exclusion rule
would catch all classes to internal Eclipse packages. When you
provide inclusion rules, everything matched by these rules is ok, and
everything else is considered out of bounds.

The Java > Compiler > Errors/Warnings > Deprecated and
restricted API preference setting lets you control whether errant
references are flagged as errors or warnings (they are errors by
default for forbidden reference and warnings for discouraged
references).

 Basic tutorial

Java Compiler 657

Access rules on
libraries and

projects

Access rules can be defined on referenced libraries and projects to
explicitly allow/disallow/discourage access to specific types.

 Basic tutorial

Java Compiler 658

Java Editor

Improved
folding icons
and captions

When folding a Java element, the remaining line in the Java editor is the
one containing the element's name. The first comment line is displayed for
folded Javadoc comments. The new lightweight folding icons shown in the
Java editor now differ from the override and implements indicators:

 Basic tutorial

Java Editor 659

Header
comment

folding

Header comments and copyright statements in Java source files can be
folded:

Mark
occurrences
of inherited

methods

The Java editor can highlight all method declarations that implement or
override methods inherited from the selected supertype. See the Java >
Editor > Mark Occurrences > Method implementing an interface
preference setting.

New
Occurrences
Quick Menu

A context menu with occurrences searches can be opened in the Java editor
by pressing Ctrl+Shift+U.

 Basic tutorial

Java Editor 660

Note: Those who prefer the old behavior can reassign the above key
sequence to the "Search All Occurrences in File" command.

Highlighting
of deprecated

class
members in

the Java
editor

Deprecated class members are marked by advanced highlighting:

This is configurable on the Java > Editor > Syntax Coloring preference
page.

References in
Javadoc

Eclipse now recognizes references to Java elements inside doc comments
(i.e., @see, @link, @linkplain, @throws, @exception, @param or @value
tags). This enables hover help and linking to the referenced Java element.

Improved
completion

on empty
word

Java code completion on an empty word no longer automatically proposes
all types visible at the completion location. You have to type the first
character of the type to get a completion proposal.

 Basic tutorial

Java Editor 661

Tool tip
description
for Javadoc

The Javadoc which is shown via Edit > Show Tooltip Description (F2)
shows up in the SWT Browser widget.

Move Lines
adjusts

indentation

The Move Lines (Alt+Up/Down) and Copy Lines (Ctrl+Alt+Up/Down)
commands automatically adjust the indentation of the selected lines as you
move them inside the Java editor.

Improved
Java

properties
file editor

The editors for Java property files have been greatly improved. They offer
syntax highlighting, improved double−clicking behavior, and a separate
font preference. The syntax highlighting colors are adjusted from the Java
> Properties File Editor preference page. Spell checking is also available,
and Quick Fix (Ctrl+1) can be used to fix spelling problems.

 Basic tutorial

Java Editor 662

Working
with

externalized
strings

When you linger over a key for an externalized string in the Java editor, the
associated externalized value is shown in a hover:

Ctrl+Click on it to navigate directly to the entry in the corresponding Java
properties file:

 Basic tutorial

Java Editor 663

Navigate
from

property key
in Properties
File editor to
its references

Use Navigate > Open (F3) or Ctrl+click to navigate from a property key
in the Properties File editor back to places in the code where the key is
referenced.

Externalize
Strings
wizard

supports new
message
bundles

The Externalize Strings wizard supports Eclipse's string externalization
mechanism which is new with this release:

 Basic tutorial

Java Editor 664

New API to
create code

proposals
like in the

Java editor

Implementing an editor for a Java−like language? Create your own code
assist proposals similar to the ones proposed in the Java editor. Instantiate
CompletionProposalCollector to get the same proposals as the
Java editor, or subclass it to mix in your own proposals. Use
CompletionProposalLabelProvider to get the images and labels
right, and sort the proposals using
CompletionProposalComparator.

Package: org.eclipse.jdt.ui.text.java in the
org.eclipse.jdt.ui plug−in.

General Java Tools

New Open Type
dialog

The Java Open Type dialog has been improved in a number of ways:

There is now only a single list to select from.•
A history of recently opened types shows up first in the dialog;
workspace types matching the pattern appear below the
separator line.

•

CamelCase pattern matching takes you to a type with fewer
keystrokes. For example TZ matches TimeZone or IOOBE
matches IndexOutOfBoundsException.

•

The content of the dialog can further be constrained to a
working set. The working set can be selected from the dialog's
drop down menu.

•

 Basic tutorial

General Java Tools 665

There are major architectural changes under the hood as well. The
types shown in the dialog are now found with a Java search engine
query. This nets a saving of 4−6MB on a normal Eclipse development
workspace over the memory−hungry approach used previously.

Organizing
workspace with

many projects

Use Show > Working Sets in the Package Explorer's view menu to
enable a new mode that shows working sets as top level elements. This
mode makes it much easier to manage workspaces containing lots of
projects.

 Basic tutorial

General Java Tools 666

Use Select Working Sets from the Package Explorer's view menu to
configure which working sets get shown. The dialog lets you create
new Java working sets, define which working sets are shown and in
what order. Working sets can also be rearranged directly in the
Package Explorer using drag and drop and copy/paste.

Improved source
folder page for

new Java project
wizard

An improved source folder configuration page in the Java project
creation wizard assists you in creating projects from existing source.
You can define source folder entries, include/exclude folders directly
on the tree, and test the results of your action right away.

 Basic tutorial

General Java Tools 667

Sharing Java
project settings

Each Java project can carry custom settings for compiler options and
code style. These settings are stored in the project itself, and
automatically applied when the project is loaded (or updated) from the
repository.

Modifying the settings of a Java project via the UI automatically
writes the settings to a file in the .settings directory. (The contents of
the setting file are auto−generated, and not intended to be edited
directly).

 Basic tutorial

General Java Tools 668

Navigate to
project−specific

settings

The preference pages for settings that are also configurable on a
per−project basis offer a link to the project specific preference page.

Javadoc locations
stored in the

.classpath file

The Javadoc locations that are attached to JAR files and class folders
are stored in the .classpath file so they can be shared with the team.
When 3.1 starts up, a background job will migrate all the previously
internally stored locations to the .classpath file.

The Javadoc locations are used by 'Open External Javadoc' (CTRL +
F2) and by the Javadoc wizard.

Shortcuts for
quick assists and

quick fixes

Some of the popular quick assists like Rename In File and Assign To
Local can be invoked directly with Ctrl+2 R and Ctrl+2 L. Check the
keys preference page for more quick fixes that support direct
invocation.

New Quick Fixes New Quick Fixes have been added for several Java compiler options,
for example:

Missing serial version ID:•

 Basic tutorial

General Java Tools 669

New Quick
Assists

Several Quick Assists (Ctrl+1) have been added to the Java Editor:

Invert boolean expressions:•

Invert a conditional expression:

results in:

•

Convert conditional expression (? operator) to if−else
statement, or vice versa

•

Introduce a new local variable after an instanceof check:

results in:

•

Break out single substring literal:

results in:

•

Refactoring
Undo/Redo

available from
Edit menu

Refactoring Undo/Redo is now available from the Edit menu, and the
separate Refactor Undo/Redo actions have been removed from the
global menu bar. Additionally, refactoring Undo/Redo operations are
now integrated with Java editor Undo/Redo, resulting in a more
transparent undo story in the editor. For example, a refactoring
triggered from within the editor is now undoable in the editor by
simply pressing Ctrl+Z.

 Basic tutorial

General Java Tools 670

Member visibility
adjustment

The refactoring commands Move method, Move Member Type to
New File, Move Static member, Pull Up and Push Down automatically
change the visibility of referenced fields, methods and types wherever
necessary.

Move method
refactoring

The Refactor > Move command has been extended to better support
moving instance methods. New features include:

The option to create a delegate method for compatibility•
Unreferenced fields can now also be method targets•

 Basic tutorial

General Java Tools 671

Use Supertype
Where Possible

refactoring

The Use Supertype Where Possible refactoring has been extended with
a preference that specifies whether type occurrences in instanceof
expressions should be updated:

Build path menu
in the Package

Explorer

The context menu of the Java Package Explorer has a new 'Build Path'
menu entry, offering context−sensitive actions to modify the build path
of a Java project. You can add/remove new source folders, archives
and libraries, and include/exclude folders and files from a source
folder:

New Eclipse
default built−in

Although Eclipse's default 3.0 code formatter profile is named Java
Conventions, formatting a file using this profile uses tabs for

 Basic tutorial

General Java Tools 672

formatter profile indentation instead of spaces. A new profile named Eclipse has been
added which reflects what the default formatter options have been all
along, which uses tabs for indentation. To use true Java Convention
settings, simply switch the formatter profile to Java Conventions using
Java > Code Style > Formatter preference page.

Changing
multiple

line−wrap
settings at once

The Java code formatter page lets you change multiple line−wrap
settings at once by multi−selecting in the tree and then changing
settings:

Code formatter settings are on the Java > Code Style > Formatter
preference page.

Mixed
indentation

settings

The Java formatter preferences allows the tab size to be configured
independently from the indentation size (see the Indentation tab in
your formatter profile):

For example, set Tab size to 8 and Indentation size to 4 to indent
your source with four spaces. If you set the Tab policy to Mixed,
every two indentation units will be replaced by a tab character.

 Basic tutorial

General Java Tools 673

Formatter profiles can be configured on the Java > Code Style >
Formatter preference page.

Rerun failed tests
first

There's a new action in the JUnit view that allows you to rerun failing
tests before any of the ones that were passing.

 Basic tutorial

General Java Tools 674

		Table of Contents

		 Basic tutorial

		 Preparing Eclipse

		 Verifying JRE installation and classpath variables

		Java projects

		Java builder

		Build classpath

		Classpath variables

		Java development tools (JDT)

		Debugger

		Breakpoints

		 Adding breakpoints

		Java perspectives

		Java

		Java Browsing

		Java Type Hierarchy

		Debug

		Java views

		Package Explorer view

		Hierarchy view

		Projects view

		Packages view

		Types view

		Members view

		 Changing the appearance of the console view

		 Console view

		 Stepping through the execution of a Java program

		 Step over

		 Step into

		 Step into Selection

		 Step with filters

		 Run to return

		 Run to line

		 Launching a Java program

		Java editor

		 Opening an editor for a selected element

		 Using the Java editor

		 Generating getters and setters

		 Creating a new class in an existing compilation unit

		 Creating a new Java class

		 Creating Java elements

		 Creating a new Java project

		 Creating a Java project as its own source container

		 Creating a Java project with source folders

		 Creating a new source folder

		Java Build Path page

		Source tab

		Projects tab

		Libraries tab

		Order and Export tab

		Default output folder

		 File actions

		New Java Project Wizard

		Project name page

		Java settings page

		 Java Compiler

		 General

		JDK Compliance

		Classfile generation

		 Building

		General

		Build path problems

		Output folder

		 Errors/Warnings

		Code style

		Potential programming problems

		Name shadowing and conflicts

		Name shadowing and conflicts

		Unnecessary code

		J2SE 5.0 options

		 Building a Java program

		 Building automatically

		 Building manually

		 Incremental build

		 Incremental project build

		 Clean and rebuild from scratch (full build)

		 Clean and rebuild selected projects

		 Working with build paths

		 Viewing and editing a project's Java build path

		 Adding a JAR file to the build path

		 Adding a library folder to the build path

		 Creating a new JAR file

		 Attaching source to a JAR file

		 Attaching source to a class path variable

		 Adding a classpath variable to the build path

		 Defining a classpath variable

		 Deleting a classpath variable

		 Classpath variables

		 Configurable variables

		 Reserved class path variables

		 Working with JREs

		 Adding a new JRE definition

		 Assigning the default JRE for the workbench

		 Choosing a JRE for a launch configuration

		 Running and debugging

		Remote debugging

		 Using the remote Java application launch configuration

		 Disconnecting from a VM

		 Debug view

		Local debugging

		 Resuming the execution of suspended threads

		 Evaluating expressions

		 Suspending threads

		 Catching Java exceptions

		 Removing breakpoints

		 Enabling and disabling breakpoints

		 Applying hit counts

		 Setting method breakpoints

		 Breakpoints view

		 Managing conditional breakpoints

		 Views and editors

		 Changing the appearance of the Hierarchy view

		 Using the Hierarchy view

		 Opening a type hierarchy on a Java element

		 Changing new type hierarchy defaults

		 Opening a type hierarchy on the current text selection

		 Opening a type hierarchy in the workbench

		 Opening a type hierarchy in its own perspective

		 Type Hierarchy view

		 Type Hierarchy tree pane toolbar buttons

		 Member list pane toolbar buttons

		 Java

		 Navigate actions

		 Package Explorer view

		 Toolbar buttons

		 Java element filters dialog

		 Filtering elements

		 Using the Package Explorer view

		 Showing and hiding elements

		 Showing and hiding system files

		 Showing and hiding CLASS files generated for inner types

		 Showing and hiding libraries

		 Showing single element or whole Java file

		 Java editor

		 Toolbar actions

		 Key binding actions

		 Viewing documentation and information

		 Viewing Javadoc information

		 Using content/code assist

		Scrapbook

		 Creating a Java scrapbook page

		 Java scrapbook page

		 Displaying the result of evaluating an expression

		 Executing an expression

		 Inspecting the result of evaluating an expression

		 Viewing runtime exceptions

		 Expressions view

		New Java Scrapbook Page Wizard

		 Viewing compilation errors and warnings

		 Setting execution arguments

		 Creating a Java application launch configuration

		 Changing the active perspective when launching

		 Debug preferences

		 Preparing to debug

		 Run and debug actions

		Java search tab

		Search string

		Search For

		Limit To

		Scope

		Java search

		 Searching Java code

		 Conducting a Java search using pop-up menus

		 Search actions

		 Conducting a Java search using the Search dialog

		 Formatting Java code

		 Setting code formatting preferences

		 Formatting files or portions of code

		 Source actions

		 Code Formatter

		 Java editor

		 Appearance and Navigation

		 Code assist

		 Syntax Coloring

		List of Quick Assists

		Quick Fix

		 JDT actions

		 Frequently asked questions on JDT

		 Can I use a Java compiler other than the built-in one (javac for example) with the workbench?

		 Where do Java packages come from?

		 When do I use an internal vs. an external JAR library file?

		 When should I use source folders within a Java project?

		 What are source attachments, How do I define one?

		 Why are all my resources duplicated in the output folder (bin, for example)?

		 How do I prevent having my documentation files from being copied to the project's output folder?

		 How do I create a default package?

		 What is refactoring?

		 When do I use code select/code resolve (F3)?

		 Is the Java program information (type hierarchy, declarations, references, for example) produced by the Java builder? Is it still updated when auto-build is off?

		 After reopening a workbench, the first build that happens after editing a Java source file seems to take a long time. Why is that?

		 I can't see a type hierarchy for my class. What can I do?

		 How do I turn off "auto compile" and do it manually when I want?

		When I select a method or a field in the Outline view, only the source for that element is shown in the editor. What do I do to see the source of the whole file?

		Can I nest source folders?

		Can I have separate output folders for each source folder?

		Can I have an output or source folder that is located outside of the workspace?

		 JDT glossary

		 Edit actions

		 Using Quick Fix

		 Using Quick Assist

		 Quick fix

		 Java outline

		 Toolbar buttons

		 Restoring a deleted workbench element

		 Using the local history

		 Replacing a Java element with a local history edition

		 Comparing a Java element with a local history edition

		Showing and hiding members

		 Appearance

		Showing full or compressed package names

		Showing and hiding override indicators

		Showing and hiding method return types

		Sorting elements in Java views

		 Java toolbar actions

		New Java Package Wizard

		 Creating a new Java package

		 Moving folders, packages, and files

		Refactoring support

		 Refactoring

		 Refactoring without preview

		 Refactoring with preview

		 Previewing refactoring changes

		 Undoing a refactoring operation

		 Redoing a refactoring operation

		 Refactor actions

		 Using Structured Selection

		 Using Surround with Try/Catch

		 Extracting a method

		 Renaming a method

		 Renaming method parameters

		 Changing method signature

		 Refactoring Dialog

		 Wizard based refactoring user interface

		 Parameter pages

		 Preview page

		 Problem page

		 JDT icons

		 Objects

		 Object adornments

		 Build path

		 Code assist

		 Compare

		 Debugger

		 Editor

		 JUnit

		 NLS tools

		 Quick fix

		 Refactoring

		 Search

		 Search - Occurrences in File

		 Type hierarchy view

		 Dialog based refactoring user interface

		 Input dialog

		 Preview dialog

		 Problem dialog

		 Override methods

		 Extract method errors

		 Extracting a local variable

		 Inlining a local variable

		 Replacing a local variable with a query

		 Copying and moving Java elements

		 Extracting a constant

		 Renaming a package

		 Opening a package

		 Showing an element in the Package Explorer view

		 Renaming a compilation unit

		 Creating a new interface in an existing compilation unit

		 Creating a new Java interface

		 Creating a top-level interface

		 Creating a nested interface

		 Renaming a type

		 Creating a new Java enum

		New Java Enum Wizard

		 Creating a new Java annotation

		New Java Annotation Wizard

		 Creating a top-level class

		 Creating a nested class

		New Java Class Wizard

		New Source Folder Wizard

		New Java Interface Wizard

		 Opening a type in the Package Explorer view

		 Organizing existing import statements

		 Adding required import statements

		 Managing import statements

		 Setting the order of import statements

		 Organize Imports

		 Renaming a field

		Renaming a local variable

		Parameters page

		 Inlining a method

		 Inlining a constant

		 Self encapsulating a field

		 Pulling members up to superclass

		 Pushing members down to subclasses

		 Moving static members between types

		 Moving an instance method to a component

		 Converting a local variable to a field

		 Converting an anonymous inner class to a nested class

		 Converting a nested type to a top level type

		 Extracting an interface from a type

		 Replacing references to a type with references to one of its supertypes

		 Replacing a single reference to a type with a reference to one of its supertypes

		 Replacing an expression with a method parameter

		 Replacing constructor calls with factory method invocations

		 Inferring type parameters for generic type references

		 Opening an editor on a type

		 Open Type

		 Project actions

		 Run menu

		 Content/Code Assist

		 Templates

		 Template dialog

		 Template variables

		Templates

		 Using templates

		Writing your own templates

		 Task Tags

		 Code templates

		Code and Comments

		Comment templates

		New Java files template

		Catch block body template

		Method body template

		Constructor body template

		Getter body template

		Setter body template

		Code Template dialog

		 Code style

		Naming Conventions

		Code Conventions

		 Create Getters and Setters

		String externalization

		Finding strings to externalize

		Externalizing Strings

		Finding unused and incorrectly used keys in property files

		 Using the Externalize Strings Wizard

		Key/value page

		

		Property File page

		 Externalize Strings Wizard

		 String selection page

		 Translation settings page

		 Error page

		 Preview page

		 Viewing marker help

		 Javadoc location page

		 Javadoc generation

		 First page

		 Standard doclet arguments

		 General arguments

		Creating Javadoc documentation

		Selecting types for Javadoc generation

		Configuring Javadoc arguments for standard doclet

		Configuring Javadoc arguments

		Showing and hiding empty packages

		Showing and hiding empty parent packages

		Showing and hiding Java files

		Showing and hiding non-Java elements

		Showing and hiding non-Java projects

		Showing and hiding import declarations

		Showing and hiding package declarations

		 Finding overridden methods

		 Display view

		 Variables view

		 Show detail pane

		 Show detail pane

		 Re-launching a program

		 Console preferences

		 JRE installations

		Source attachments

		JAR

		Variable

		 Editing a JRE definition

		 Deleting a JRE definition

		 Overriding the default system libraries for a JRE definition

		 Installed JREs

		 Defining the JAR file's manifest

		 Creating a new manifest

		 Using an existing manifest

		 Setting advanced options

		 JAR file exporter

		 JAR package specification

		 JAR packaging options

		 JAR manifest specification

		 Creating JAR files

		 Regenerating a JAR file

		 Adding source code as individual files

		 From a ZIP or JAR file

		 From a directory

		 Adding a JAR file as a library

		Java Compiler page

		 Converting line delimiters

		 Finding and replacing

		Using the Find/Replace dialog

		Using Incremental Find

		Finding next or previous match

		 Changing the encoding used to show the source

		 Commenting and uncommenting lines of code

		 Shifting lines of code left and right

		Exclusion and inclusion filters

		Access rules

		 Creating a new source folder with exclusion filter

		Starting from scratch

		From an existing Java Project

		 Creating a new source folder with specific output folder

		 Creating your first Java project

		Getting the Sample Code (JUnit)

		Creating the project

		 Browsing Java elements using the package explorer

		 Opening a Java editor

		 Adding new methods

		 Using content assist

		 Identifying problems in your code

		 Using code templates

		 Organizing import statements

		 Using the local history

		 Extracting a new method

		 Creating a Java class

		 Renaming Java elements

		Moving and copying Java elements

		 Navigate to a Java element's declaration

		Viewing the type hierarchy

		 Searching the workbench

		 Performing a Java search from the workbench

		 Searching from a Java view

		 Searching from an editor

		 Continuing a search from the search view

		 Performing a file search

		 Viewing previous search results

		 Running your programs

		 Debugging your programs

		 Evaluating expressions

		 Evaluating snippets

		 Notices

		About This Content

		License

		 Using the Java browsing perspective

		 Writing and running JUnit tests

		 Writing Tests

		 Running Tests

		 Customizing a Test Configuration

		 Debugging a Test Failure

		 Creating a Test Suite

		 Project configuration tutorial

		 Detecting existing layout

		Layout on file system

		Steps for defining a corresponding project

		 Sibling products in a common source tree

		Layout on file system

		Steps for defining corresponding projects

		 Organizing sources

		Layout on file system

		Steps for defining a corresponding project

		 Overlapping products in a common source tree

		Layout on file system

		Steps for defining corresponding "Product1" and "Product2" projects

		 Product with nested tests

		Layout on file system

		Steps for defining a corresponding project

		 Products sharing a common source framework

		Layout on file system

		Steps for defining corresponding projects

		 Nesting resources in output directory

		Layout on file system

		Steps for defining a corresponding project

		 Project using a source framework with restricted access

		Layout on file system

		Steps for defining corresponding projects

		Getting Started with Eclipse 3.1 and J2SE 5.0

		Prerequisites

		Compiler Compliance Level

		Generic Types

		Annotations

		Enumerations

		Autoboxing

		Enhanced for loop

		Other

		 Creating a new Java Scrapbook Page

		 Parameters page

		 Problems page

		 Parameters page

		 Parameters page

		 Parameters page

		 Parameters page

		 Parameters page

		 Parameters page

		 Parameters page

		

		 Parameters page

		

		 Parameters page

		

		 Parameters page

		

		

		 Parameters page

		

		 Building circular projects

		 Building without cleaning the output location

		 Attaching source to a library folder

		 Launching a Java applet

		 Launching a Java program in debug mode

		 Inspecting values

		 Using code assist

		 Scrapbook error reporting

		 Viewing compilation errors

		 Go to file for breakpoint

		 Add Java exception breakpoint

		 Suspend policy

		 Hit count

		 Uncaught

		 Caught

		 Modification

		 Access

		 Exit

		 Entry

		 Select all

		 Enable

		 Disable

		 Remove selected breakpoint

		 Remove all breakpoints

		 Show qualified names

		 Show supported breakpoints

		 Properties

		 Copy

		 Select all

		 Find/Replace

		 Go to line

		 Clear

		 Terminate

		 Inspect

		 Display

		 Clear the display

		 Select all

		 Copy variables

		 Remove selected expressions

		 Remove all expressions

		 Change variable value

		 Show constants

		 Show static fields

		 Show qualified names

		 Show type names

		 Add/Remove watchpoint

		 Inspect

		 Open declared type

		 Show qualified names

		 Show type names

		 Add/Remove watchpoint

		 Change variable value

		 Inspect

		 Step commands

		 JUnit

		Java Task Tags page

		Java Build Path page

		Source tab

		Projects tab

		Libraries tab

		Order and Export tab

		Default output folder

		 Refactoring

		Tips and Tricks

		Editing source

		Searching

		Code navigation and reading

		Java views

		Miscellaneous

		Debugging

		What's New in 3.1

		J2SE 5.0

		Java Debugger

		Java Compiler

		Java Editor

		General Java Tools

