TCK User’s Guide for Technology
Implementors

Table of Contents

Eclipse Foundation
Preface
Who Should Use This Book
Before You Read This Book
Typographic Conventions
Shell Prompts in Command Examples
1 Introduction
1.1 Compatibility Testing
1.2 About the TCK
2 Procedure for Certification
2.1 Certification Overview
2.2 Compatibility Requirements
2.3 Test Appeals Process
2.4 Specifications for Jakarta Debugging Support for Other Languages
2.5 Libraries for Jakarta Debugging Support for Other Languages
3 Installation
3.1 Obtaining a Compatible Implementation
3.2 Installing the Software
4 Setup and Configuration
4.1 Generating the SMAPs to be Tested
4.2 Using the Debugging Support for Other Languages TCK to Test a Product
5 Assertions
5.1 Assertions Tested with the Debugging Support for Other Languages 2.0 TCK

N 9 9 O R 0NN DN e

e SO
0 0 O O O U1 1 Ul o DN

Eclipse Foundation

Eclipse Foundation

Technology Compatibility Kit User’s Guide for Jakarta Debugging Support for Other Languages
Release 2.0 for Jakarta EE

September 2020

Technology Compatibility Kit User’s Guide for Jakarta Debugging Support for Other Languages, Release
2.0 for Jakarta EE

Copyright ?? 2017, 2020??0racle and/or its affiliates and others. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Eclipse is a registered trademark of the Eclipse Foundation. Jakarta is a trademark of the Eclipse
Foundation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

References in this document to DSOL refer to the Jakarta Debugging Support for Other Languages
unless otherwise noted.

TCK User’s Guide for Technology Implementors 1

http://www.eclipse.org/legal/epl-2.0

Who Should Use This Book

Preface

This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that is
used to test the Jakarta Debugging Support for Other Languages (Debugging Support for Other
Languages 2.0) technology.

The Debugging Support for Other Languages TCK is a portable, configurable automated test suite for
verifying the compatibility of a vendor’s implementation of the Debugging Support for Other
Languages 2.0 Specification (hereafter referred to as the vendor implementation or VI).

Note All references to specific Web URLs are given for the sake of your convenience in
o locating the resources quickly. These references are always subject to changes that are
in many cases beyond the control of the authors of this guide.

Jakarta EE is a community sponsored and community run program. Organizations contribute, along
side individual contributors who use, evolve and assist others. Commercial support is not available
through the Eclipse Foundation resources. Please refer to the Eclipse EE4] project site
(https://projects.eclipse.org/projects/ee4j). There, you will find additional details as well as a list of all
the associated sub-projects (Implementations and APIs), that make up Jakarta EE and define these
specifications. If you have questions about this Specification you may send inquiries to jsp-
dev@eclipse.org. If you have questions about this TCK, you may send inquiries to jakartaee-tck-
dev@eclipse.org.

Who Should Use This Book

This guide is for vendors that implement the Debugging Support for Other Languages 2.0 technology to
assist them in running the test suite that verifies compatibility of their implementation of the
Debugging Support for Other Languages 2.0 Specification.

Before You Read This Book

You should be familiar with the Debugging Support for Other Languages 2.0, version 2.0 Specification,
which can be found at https://jakarta.ee/specifications/debugging/2.0/.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

2 TCK User’s Guide for Technology Implementors

https://projects.eclipse.org/projects/ee4j
mailto:jsp-dev@eclipse.org
mailto:jsp-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
https://jakarta.ee/specifications/debugging/2.0/

Shell Prompts in Command Examples

Convention Meaning Example

Boldface Boldface type indicates graphical user From the File menu, select Open Project.
interface elements associated with an
action, terms defined in text, or what A cache is a copy that is stored locally.
you type, contrasted with onscreen

machine_name% *su*
computer output.

Password:

Monospace Monospace type indicates the names of Edit your .login file.
files and directories, commands within
a paragraph, URLSs, code in examples,
text that appears on the screen, or text
that you enter.

Use 1s -a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles, Read Chapter 6 in the User’s Guide.
emphasis, or placeholder variables for

which you supply particular values. Do not save the file.

The command to remove a file is rm filename.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$
Bash shell for superuser shell_name-shell_version#

TCK User’s Guide for Technology Implementors 3

1.1 Compatibility Testing

1 Introduction

This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Jakarta Debugging Support for Other Languages TCK
(Debugging Support for Other Languages 2.0 TCK). It also includes a high level listing of what is needed
to get up and running with the Debugging Support for Other Languages TCK.

This chapter includes the following topics:

» Compatibility Testing
* About the TCK
» Getting Started With the TCK

1.1 Compatibility Testing

Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

* Rely on hardware or operating system-specific behavior
* Are difficult to port
* Mask or abstract hardware or operating system behavior
Compatibility test development for a given feature relies on a complete specification and compatible

implementation (CI) for that feature. Compatibility testing is not primarily concerned with robustness,
performance, nor ease of use.

1.1.1 Why Compatibility Testing is Important

Jakarta platform compatibility is important to different groups involved with Jakarta technologies for
different reasons:

» Compatibility testing ensures that the Jakarta platform does not become fragmented as it is ported
to different operating systems and hardware environments.

» Compatibility testing benefits developers working in the Jakarta programming language, allowing
them to write applications once and then to deploy them across heterogeneous computing
environments without porting.

* Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

4 TCK User’s Guide for Technology Implementors

#GBFTK
#GBFQR
#GBFQW

1.1 Compatibility Testing

* Conformance testing benefits Jakarta platform implementors by ensuring a level playing field for
all Jakarta platform ports.

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility Rules
that apply to a specified technology. Each TCK tests for adherence to these Rules as described in
Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a vendor’s compatible implementation of a Jakarta
EE technology conforms to the applicable specification. All tests in the TCK are based on the written
specifications for the Jakarta EE platform. A TCK tests compatibility of a vendor’s compatible
implementation of the technology to the applicable specification of the technology. Compatibility
testing is a means of ensuring correctness, completeness, and consistency across all implementations
developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are self-
checking, but some tests may require tester interaction. Most tests return either a Pass or Fail status.
For a given platform to be certified, all of the required tests must pass. The definition of required tests
may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be sure
to download the latest version of this TCK.

1.1.4 Jakarta EE Specification Process (JESP) Program and Compatibility
Testing

The Jakarta EE Specification Process (JESP) program is the formalization of the open process that has
been used since 2019 to develop and revise Jakarta EE technology specifications in cooperation with
the international Jakarta EE community. The JESP program specifies that the following three major
components must be included as deliverables in a final Jakarta EE technology release under the
direction of the responsible Expert Group:

* Technology Specification

* Compatible Implementation (CI)

* Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE Specification Process community

TCK User’s Guide for Technology Implementors 5

rules.html#GBFSN

1.2 About the TCK

page https://jakarta.ee/specifications.

1.2 About the TCK

The Debugging Support for Other Languages TCK 2.0 is designed as a portable, configurable,
automated test suite for verifying the compatibility of a vendor’s implementation of the Debugging
Support for Other Languages 2.0 Specification.

The Debugging Support for Other Languages does not define APIs, but instead defines a data format
and process. As a result, the TCK is different than most, it verifies the data format, and thus indirectly
the process. The input to the process is source code in an arbitrary language, and thus the process
cannot be directly tested by the TCK.

1.2.1 TCK Specifications and Requirements
This section lists the applicable requirements and specifications.

 Specification Requirements: Software requirements for a Debugging Support for Other Languages
implementation are described in detail in the Debugging Support for Other Languages 2.0
Specification. Links to the Debugging Support for Other Languages specification and other product
information can be found at https://jakarta.ee/specifications/debugging/2.0/.

* Debugging Support for Other Languages Version: The Debugging Support for Other Languages 2.0
TCK is based on the Debugging Support for Other Languages Specification, Version 2.0.

* Compatible Implementation: One Debugging Support for Other Languages 2.0 Compatible
Implementation, Eclipse Glassfish 6.0 is available from the Eclipse EE4] project
(https://projects.eclipse.org/projects/ee4j). See the CI documentation page at http://javaee.github.io/
glassfish for more information.

See the Debugging Support for Other Languages TCK Release Notes for more specific information
about Java SE version requirements, supported platforms, restrictions, and so on.

6 TCK User’s Guide for Technology Implementors

https://jakarta.ee/specifications
https://jakarta.ee/specifications/debugging/2.0/
https://projects.eclipse.org/projects/ee4j
http://javaee.github.io/glassfish
http://javaee.github.io/glassfish

2.1 Certification Overview

2 Procedure for Certification

This chapter describes the compatibility testing procedure and compatibility requirements for Jakarta
Debugging Support for Other Languages. This chapter contains the following sections:

* Certification Overview

» Compatibility Requirements

» Test Appeals Process

Specifications for Jakarta Debugging Support for Other Languages

Libraries for Jakarta Debugging Support for Other Languages

2.1 Certification Overview

The certification process for Debugging Support for Other Languages 2.0 consists of the following
activities:

 Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

* Ensure that you meet the requirements outlined in Compatibility Requirements below.

* Certify to the Eclipse Foundation that you have finished testing and that you meet all of the
compatibility requirements, as required by the Eclipse Foundation TCK License.

2.2 Compatibility Requirements

The compatibility requirements for Debugging Support for Other Languages 2.0 consist of meeting the
requirements set forth by the rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for any
other purpose.

Table 2-1 Definitions??

TCK User’s Guide for Technology Implementors 7

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI
#CJAFGIGG

2.2 Compatibility Requirements

Term

API Definition Product

Computational Resource

Configuration
Descriptor

Conformance Tests

Container

Documented

Exclude List

Definition

A Product for which the only Java class files contained in the product are
those corresponding to the application programming interfaces defined by
the Specifications, and which is intended only as a means for formally
specifying the application programming interfaces defined by the
Specifications.

A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at a
specific or minimum revision level so as to satisfy the requirements of the
Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Any file whose format is well defined by a specification and which contains
configuration information for a set of Java classes, archive, or other feature
defined in the specification.

All tests in the Test Suite for an indicated Technology Under Test, as released
and distributed by the Eclipse Foundation, excluding those tests on the
published Exclude List for the Technology Under Test.

An implementation of the associated Libraries, as specified in the
Specifications, and a version of a Java Platform, Standard Edition Runtime
Product, as specified in the Specifications, or a later version of a Java
Platform, Standard Edition Runtime Product that also meets these
compatibility requirements.

Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

The most current list of tests, released and distributed by the Eclipse
Foundation, that are not required to be passed to certify conformance. The
Jakarta EE Specification Committee may add to the Exclude List for that Test
Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

8 TCK User’s Guide for Technology Implementors

Term

Libraries

Location Resource

Maintenance Lead

Operating Mode

Product

Product Configuration

Rebuildable Tests

2.2 Compatibility Requirements

Definition

The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta Debugging Support for Other Languages are listed
at the end of this chapter.

A location of classes or native libraries that are components of the test tools
or tests, such that these classes or libraries may be required to exist in a
certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

The corresponding Jakarta EE Specification Project is responsible for
maintaining the Specification, and the TCK for the Technology. The
Specification Project Team will propose revisions and updates to the Jakarta
EE Specification Committee which will approve and release new versions of
the specification and TCK.

Any Documented option of a Product that can be changed by a user in order
to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

A vendor’s product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

Tests that must be built using an implementation-specific mechanism. This
mechanism must produce specification-defined artifacts. Rebuilding and
running these tests against a known compatible implementation verifies
that the mechanism generates compatible artifacts.

TCK User’s Guide for Technology Implementors 9

2.2 Compatibility Requirements

Term Definition
Resource A Computational Resource, a Location Resource, or a Security Resource.
Rules These definitions and rules in this Compatibility Requirements section of

this User’s Guide.

Runtime The Containers specified in the Specifications.
Security Resource A security privilege or policy necessary for the proper execution of the Test
Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE Specification Process
(JESP) that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in this
chapter.

Technology Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

Technology Under Test Specifications and a compatible implementation for Jakarta Debugging
Support for Other Languages Version 2.0.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Jakarta EE
Specification Process (JESP).

Unresolved directive in rules.adoc - include::defns.inc|[]

2.2.2 Rules for Jakarta Debugging Support for Other Languages Products

The following rules apply for each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

DSOL1 The Product must be able to satisfy all applicable compatibility requirements, including passing
all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

10 TCK User’s Guide for Technology Implementors

2.2 Compatibility Requirements

DSOL1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test Suite,
testing may always use a Product Configuration of that Operating Mode providing that Resource, even
if other Product Configurations do not provide that Resource. Notwithstanding such exceptions, each
Product must have at least one set of Product Configurations of such Operating Modes that is able to
pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security Resource)
which has one or more Product Configurations that cause Conformance Tests to fail may be tested
using a Product Configuration that allows all Conformance Tests to pass.

DSOL1.2 A Product Configuration of an Operating Mode that causes the Product to report only version,
usage, or diagnostic information is exempted from these compatibility rules.

DSOL1.3 An API Definition Product is exempt from all functional testing requirements defined here,
except the signature tests.

DSOL2 Some Conformance Tests may have properties that may be changed. Properties that can be
changed are identified in the configuration interview. Properties that can be changed are identified in
the JavaTest Environment (.jte) files in the Test Suite installation. Apart from changing such properties
and other allowed modifications described in this User’s Guide (if any), no source or binary code for a
Conformance Test may be altered in any way without prior written permission. Any such allowed
alterations to the Conformance Tests will be provided via the Jakarta EE Specification Project website
and apply to all vendor compatible implementations.

DSOL3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead must
be used to certify compliance.

DSOL4 The Exclude List associated with the Test Suite cannot be modified.

DSOLS The Maintenance Lead can define exceptions to these Rules. Such exceptions would be made
available as above, and will apply to all vendor implementations.

DSOL6 All hardware and software component additions, deletions, and modifications to a Documented
supporting hardware/software platform, that are not part of the Product but required for the Product
to satisfy the compatibility requirements, must be Documented and available to users of the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of the
Product.

DSOL7 The Product must contain the full set of public and protected classes and interfaces for all the
Libraries. Those classes and interfaces must contain exactly the set of public and protected methods,
constructors, and fields defined by the Specifications for those Libraries. No subsetting, supersetting,
or modifications of the public and protected API of the Libraries are allowed except only as specifically
exempted by these Rules.

DSOL7.1 If a Product includes Technologies in addition to the Technology Under Test, then it must

TCK User’s Guide for Technology Implementors 11

2.3 Test Appeals Process

contain the full set of combined public and protected classes and interfaces. The API of the Product
must contain the union of the included Technologies. No further modifications to the APIs of the
included Technologies are allowed.

DSOLS8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary Conformance
Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must be used to certify
compliance.

DSOL9 The functional programmatic behavior of any binary class or interface must be that defined by
the Specifications.

2.3 Test Appeals Process

Jakarta has a well established process for managing challenges to its TCKs. Any implementor may
submit a challenge to one or more tests in the Debugging Support for Other Languages TCK as it relates
to their implementation. Implementor means the entity as a whole in charge of producing the final
certified release. Challenges filed should represent the consensus of that entity.

2.3.1 Valid Challenges

Any test case (e.g., test class, @Test method), test case configuration (e.g., deployment descriptor), test
beans, annotations, and other resources considered part of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

* Claims that a test assertion conflicts with the specification.
* Claims that a test asserts requirements over and above that of the specification.
* Claims that an assertion of the specification is not sufficiently implementable.

* Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges

The following scenarios are considered out of scope for test challenges and will be immediately closed
if filed:

* Challenging an implementation???s claim of passing a test. Certification is an honor system and
these issues must be raised directly with the implementation.

* Challenging the usefulness of a specification requirement. The challenge process cannot be used to
bypass the specification process and raise in question the need or relevance of a specification
requirement.

* Claims the TCK is inadequate or missing assertions required by the specification. See the
Improvement section, which is outside the scope of test challenges.

12 TCK User’s Guide for Technology Implementors

2.3 Test Appeals Process

* Challenges that do not represent a consensus of the implementing community will be closed until
such time that the community does agree or agreement cannot be made. The test challenge process
is not the place for implementations to initiate their own internal discussions.

* Challenges to tests that are already excluded for any reason.
* Challenges that an excluded test should not have been excluded and should be re-added should be

opened as a new enhancement request

Test challenges must be made in writing via the Debugging Support for Other Languages specification
project issue tracker as described in Section 2.3.3, "TCK Test Appeals Steps.”

All tests found to be invalid will be placed on the Exclude List for that version of the Debugging
Support for Other Languages TCK.

2.3.3 TCK Test Appeals Steps

1. Challenges should be filed via the Jakarta Debugging Support for Other Languages specification
project???s issue tracker using the label challenge and include the following information:

o The relevant specification version and section number(s)

> The coordinates of the challenged test(s)

o The exact TCK and exclude list versions

o The implementation being tested, including name and company

o The full test name

o A full description of why the test is invalid and what the correct behavior is believed to be
> Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge.

Challenges can be resolved by a specification project lead, or a project challenge triage team, after a
consensus of the specification project committers is reached or attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that follows the
principles of Eclipse Foundation Development Process. The expected timeframe for a response is
two weeks or less. If consensus cannot be reached by the specification project for a prolonged
period of time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3. Accepted Challenges.
A consensus that a test produces invalid results will result in the exclusion of that test from
certification requirements, and an immediate update and release of an official distribution of the
TCK including the new exclude list. The associated challenge issue must be closed with an accepted
label to indicate it has been resolved.

4. Rejected Challenges and Remedy.
When achallenge " issue is rejected, it must be closed with a label of invalid to indicate it has been

TCK User’s Guide for Technology Implementors 13

#CJAJEAEI

2.4 Specifications for Jakarta Debugging Support for Other Languages

rejected. There appeal process for challenges rejected on technical terms is outlined in Escalation
Appeal. If, however, an implementer feels the TCK challenge process was not followed, an appeal
issue should be filed with specification project???s TCK issue tracker using the label challenge-
appeal. A project lead should escalate the issue with the Jakarta EE Specification Committee via
email (jakarta.ee-spec@eclipse.org). The committee will evaluate the matter purely in terms of due
process. If the appeal is accepted, the original TCK challenge issue will be reopened and a label of
appealed-challenge added, along with a discussion of the appeal decision, and the challenge-appeal
issue with be closed. If the appeal is rejected, the challenge-appeal issue should closed with a label
of invalid.

5. Escalation Appeal.
If there is a concern that a TCK process issue has not been resolved satisfactorily, the Eclipse
Development Process Grievance Handling procedure should be followed to escalate the resolution.
Note that this is not a mechanism to attempt to handle implementation specific issues.

2.4 Specifications for Jakarta Debugging Support for
Other Languages

The Jakarta Debugging Support for Other Languages specification is available from the specification
project web-site: https://jakarta.ee/specifications/debugging/2.0/.

2.5 Libraries for Jakarta Debugging Support for Other
Languages

The following is a list of the packages comprising the required class libraries for Debugging Support
for Other Languages 2.0:

* None
For the latest list of packages, also see:

https://jakarta.ee/specifications/debugging/2.0/

14 TCK User’s Guide for Technology Implementors

mailto:jakarta.ee-spec@eclipse.org
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://jakarta.ee/specifications/debugging/2.0/
https://jakarta.ee/specifications/debugging/2.0/

3.1 Obtaining a Compatible Implementation

3 Installation

This chapter explains how to install the Jakarta Debugging Support for Other Languages TCK software.

After installing the software according to the instructions in this chapter, proceed to Chapter 4, "Setup
and Configuration," for instructions on configuring your test environment.

3.1 Obtaining a Compatible Implementation

Not required.

3.2 Installing the Software

Before you can run the Debugging Support for Other Languages TCK tests, you must install and set up
the following software components:
* Java SE 8
* Debugging Support for Other Languages TCK version 2.0, which includes:
o VerifySMAP
* The Debugging Support for Other Languages 2.0 Vendor Implementation (VI)

Follow these steps:

1. Install the Java SE 8 software, if it is not already installed.
Download and install the Java SE 8 software from http://www.oracle.com/technetwork/java/javase/
downloads/index.html. Refer to the installation instructions that accompany the software for
additional information.

2. Install the Debugging Support for Other Languages TCK 2.0 software.

1. Copy or download the Debugging Support for Other Languages TCK software to your local
system.
You can obtain the Debugging Support for Other Languages TCK software from the Jakarta EE
site https://jakarta.ee/specifications/debugging/2.0/.

2. Use the unzip command to extract the bundle in the directory of your choice:
unzip jakarta-debugging-tck-2.0.0.zip
This creates the TCK directory. The TCK is the test suite home, <TS_HOME>.

3. Install the Debugging Support for Other Languages VI to be tested.
Follow the installation instructions for the particular VI under test.

TCK User’s Guide for Technology Implementors 15

config.html#GBFVV
config.html#GBFVV
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jakarta.ee/specifications/debugging/2.0/

4.1 Generating the SMAPs to be Tested

4 Setup and Configuration

This chapter describes how to set up the Debugging Support for Other Languages TCK. Before
proceeding with the instructions in this chapter, be sure to install all required software, as described in
Chapter 3, "Installation.”

After completing the instructions in this chapter, proceed to Chapter 5, "Executing Tests," for
instructions on running the Debugging Support for Other Languages TCK.

4.1 Generating the SMAPs to be Tested

The input to the test is a set of SMAPs. The testing party must generate these SMAPs and they must be
generated according to the following procedures. There are two forms of SMAP: an unresolved SMAP
in an SMAP file and a resolved SMAP embedded in the SourceDebugExtension attribute of a class file.
If unresolved SMAPs are exposed, this SMAP form must be tested. If SMAPs are embedded into class
files, this SMAP form (class files containing a resolved SMAP) must be tested. If both forms are exposed,
the tests must be repeated with each form.

The Product must be used to create the set of SMAPs to be tested. Generally, the Product is a translator.
In this case, a set of test source programs must first be written — see “Generating the SMAPs from Test
Source” on page 16. If the Product has more than one input language or more than one output
language, the test must be repeated for each combination of input and output langauge. If the Product
has no input language, an SMAP for each type of output must be used.

4.1.1 Generating the SMAPs from Test Source
Let us call the input language of the translator LI. A set of test source programs in LI must be written.

The set of test source programs in LI must exercise all control structures in LI, all subroutine
invocation mechanisms in LI and all source inclusion mechanisms in LI.. Any of these which do not
exist in LI are, of course, excepted.

For each test source program, the Product must be used to generate the output program and its
corresponding SMAP. These SMAPs will then be submitted to the TCK test.

4.2 Using the Debugging Support for Other Languages
TCK to Test a Product

The following test is applied, one SMAP at a time, to each SMAP generated by the procedures above.
The test is executed by launching the Java programming language class VerifySMAP (in dsol-tck.jar)

16 TCK User’s Guide for Technology Implementors

install.html#GBFTP
using.html#GBFWO

4.2 Using the Debugging Support for Other Languages TCK to Test a Product

with the SMAP as an argument:
java VerifySMAP -classpath TCK_DIRECTORY/dsol-tck.jar path_to_the_smap

For example, to test an unresolved SMAP file pass it to the test:
java VerifySMAP my.smap For example, to test a class file with an embedded SMAP pass it to the test:
java VerifySMAP my.class

If a test fails an exception will be thrown. If the test of any SMAP fails, the TCK has failed.

TCK User’s Guide for Technology Implementors 17

5.1 Assertions Tested with the Debugging Support for Other Languages 2.0 TCK

5

Assertions

This chapter includes the following topics:

» Assertions Tested with the Debugging Support for Other Languages 2.0 TCK

5.1 Assertions Tested with the Debugging Support for
Other Languages 2.0 TCK

© ® N o ok w o=

T N S S e Y
_ O © © N o Uk W N Rk O

22.

18

Syntax must be valid, per the grammar in the specification.

A resolved SMAP must specify a DefaultStratumlId.

A specified DefaultStratumId must either be "Java" or be the StratumId of a StratumSection.
No StratumSection may have a StratumId of "Java".

A FileSection may only occur after a StratumSection.

There must be exactly one FileSection after each StratumSection.

In a FileSection, each FileId must be unique within that FileSection.

In a FileSection, the FileName must be non empty.

In a FileSection, the AbsoluteFileName, if specified, must be non empty.

A LineSection may only occur after a StratumSection.

. There must be exactly one LineSection after each StratumSection.
. Ina LineSection, RepeatCount must be greater than or equal to one.

. Ina LineSection, OutputLineIncrement must be greater than or equal to zero.

In a LineSection, InputStartLine must be greater than or equal to one.

. Ina LineSection, QutputStartLine must be greater than or equal to one.

. Ina LineSection, LineFileId must be a FileId in the FileSection after the same StratumSection.
. In a VendorSection, the VENDORID must be well formed, per the specification.

. FutureSection must not be used until defined in the maintenance phase of the JSR.

. There must be at least one StratumSection.

. An embedded SMAP must not occur in a resolved SMAP.

. An OpenEmbeddedSection must be followed by at least one SMAP, and terminated with

CloseEmbeddedSection.

StratumId of CloseEmbeddedSection must match StratumId of OpenEmbeddedSection.

TCK User’s Guide for Technology Implementors

#GBFUZ

	TCK User’s Guide for Technology Implementors
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Jakarta Debugging Support for Other Languages
	2.5 Libraries for Jakarta Debugging Support for Other Languages

	3 Installation
	3.1 Obtaining a Compatible Implementation
	3.2 Installing the Software

	4 Setup and Configuration
	4.1 Generating the SMAPs to be Tested
	4.2 Using the Debugging Support for Other Languages TCK to Test a Product

	5 Assertions
	5.1 Assertions Tested with the Debugging Support for Other Languages 2.0 TCK

