
A Technological Framework to support Model Driven Method
Engineering1

Mario Cervera1, Manoli Albert1, Victoria Torres1, Vicente Pelechano1, Javier Cano2,
Begoña Bonet3

1Centro de Investigación en

Métodos de Producción de Software,
Universidad Politécnica de

Valencia,
46022 Valencia, Spain

{mcervera, malbert, vtorres,
pele}@pros.upv.es

2Prodevelop S.L.
46001 Valencia, Spain
fjcano@prodevelop.es

3Conselleria de Infraestructuras y
Transporte,

Generalitat Valenciana,
46010 Valencia, Spain

bonet_beg@gva.es

Abstract

Over the last two decades many approaches have
contributed to establish a solid theoretical basis in
the area of Method Engineering, but very few
engineering tools have been developed to provide
software support to their research results. This
situation is mainly due to the complexity of
developing Computer-Aided Method Engineering
environments that enable the specification of
Software Production Methods (SPM) and the
construction of CASE tools to support them. In
order to reduce this complexity, we advocate for
the use of the MDD paradigm, which promotes
the use of models as the primary artifact in the
development process. Following this paradigm, in
this paper we present a Model Driven Method
Engineering approach to perform the automatic
construction of tools that support SPMs by means
of model transformations. This work is
contextualized within a more challenging proposal
that provides a methodological framework and a
software infrastructure for the construction of
SPM, covering from their specification to the
construction of the tool support.

Keywords

Method Engineering, Model Driven Development,
CAME environment, CASE tool generation.

1. Introduction

A Software Production Method (SPM) is an
integrated set of activities, roles, products, guides
and tools for providing efficient and effective
support in the software development process. In
the Software Engineering (SE) field, CASE
environments provide software support to SPMs
contributing to improve the software development
process in terms of productivity, maintainability,
reusability and quality of the developed software.
However, despite the benefits that the use of
CASE tools provides, these are not used as widely
as expected. One of the reasons for this is that
CASE tools are implemented to give support to a
single SPM, paying no attention to the flexibility
required by real software projects. As a result,
developers find difficult to work with such tools
as they do not allow them to adapt the SPM to the
requirements of a specific project [21].

One way to overcome this problem is by
reconsidering the way in which these tools are
built. The construction of such tools is one of the
main concerns of the Method Engineering (ME)
discipline. ME is defined as the engineering
discipline to design, construct and adapt methods,
techniques and tools for the development of IS [2].
Within the ME field, Computer Aided Method
Engineering (CAME) environments enable the
construction of SPMs and the software tools that
support them. However, providing such support is

1This work has been cofinanced by the Conselleria de Infraestructuras y Transporte by means of the Fondo Europeo de
Desarrollo Regional (FEDER) and the Programa Operativo de la Comunitat Valenciana 2007-2013.

not an easy task being a clear example the low
implementation degree and deficiencies found in
existing CAME environments [17].

To improve this situation, in this work we
advocate for the use of the MDD paradigm, which
proposes using models as the primary artifact of
the development process [1], in the ME field.
Thus, this work provides a Model Driven Method
Engineering approach to perform the construction
of tools that support SPMs by means of model
transformations. The work is being developed as
part of a more challenging proposal [4]. This
proposal contributes to the ME area by providing
a methodological framework and a software
infrastructure for the construction of SPMs. The
methodological framework covers from the
specification of the SPM to the construction of the
tool support. The present work focuses on the last
phase of this proposal where software tools are
built from SPM specifications.

The remainder of the paper is structured as
follows. In section 2 we briefly present the state of
the art focusing on the limitations of the existing
CAME environments. Then, in section 3 we
provide a brief overview of the ME proposal in
which this work is contextualized. Section 4
presents the strategy designed to automatically
obtain software tools to support specific SPMs.
Finally, section 5 draws some conclusions and
further work.

2. State of the art

The first research work in the ME field was
developed in the early nineties by Kumar and
Welke who established the basis of this area [14].
Later, these foundations have been consolidated
with several proposals such as Brinkemmper’s [2]
and Hofstede’s [12]. Since then, different
proposals try to provide an answer to the existing
problems in this area. This is the case of proposals
such as Ralyté’s [15, 19], Henderson-Sellers’ [10],
Prakash’s [18] or Harmsen’s [9] which tackle the
method construction by assembling pieces or
fragments, proposing techniques for the efficient
selection and assembly of these pieces. These
proposals have contributed to establish a solid
theoretical basis for the ME area. However, the
existing tool support for this basis does not live up
to the expectations due to the complexity of
putting this theory into practice. This problem

becomes evident in [17] where a study of different
CAME environments is presented. This study
concludes that existent environments are
incomplete prototypes that only cover part of the
ME process. This is one of the reasons why these
tools have not achieved the expected industrial
success and just MetaEdit+ [13] has been
commercialized. Examples of these CAME tools
are MERU, which supports Prakash’s and Gupta’s
proposals [7], DECAMERONE, which supports
Brinkkemper’s [3], MENTOR [22], MERET [11]
or KOGGE [21].

These CAME environments, in general,
present important deficiencies. Between these
deficiencies we highlight: (1) lack of support to
the definition of SPMs and (2) lack of support to
the automatic generation of CASE tools from the
SPM definitions. This situation points out that
there is an actual need for tools that provide better
support to ME. The problem is the high
complexity that entails the construction of these
tools as they must provide support both to the
SPM specification and the CASE tool generation.
In order to overcome this problem some
approaches apply the MDD paradigm using
metamodelling languages either to define design
notations [6] or SPM specifications [11].
However, we find that these approaches do not
really take advantage of the possibilities that the
MDD techniques offer. As stated in [1], “the
application of MDD techniques improves
developers’ short-term productivity by increasing
the value of primary software artifacts (e.g. the
models) in terms of how much functionality it
delivers”. Following this statement and contrary to
what current ME approaches do, we want to
leverage models going one step further. Defining
the SPM as a model and considering this model as
a software artifact allows us to face the
implementation of the generation of software
support tools by means of model transformations.
The use of model transformations as the means to
carry out the tool generation is the main concern
of this paper and is thoroughly detailed in section
4.

3. ME proposal overview

In order to put into context the work presented in
this paper, this section briefly introduces the
proposal presented in [4]. This proposal covers

different stages of the ME lifecycle, in particular
from the specification of the SPM to its
implementation (where the tool that supports the
SPM is built). Figure 1 presents a graphical
overview of the proposal. Each of its phases is
detailed in the next subsections.

3.1. Method design

During this phase, the method engineer builds the
Method Model by identifying all the elements
involved in the SPM. The most significant
elements used in the Method Model construction
are the following:
• Task: It represents an activity performed

during the execution of a SPM instance (e.g.
business process analysis, web specification,
etc.).

• Product: It represents an artifact that is either
consumed or generated in a task (e.g. business
process model, structural model, etc.).

• Role: It represents an agent that participates in
a SPM performing different tasks. This can
refer to a human being agent (e.g. analyst,
developer, etc.) or to an automated system.

• Flow Connector: It represents the order in
which two associated tasks (each one in a
different end) are executed.

• Gateways: It represents points within the
SPM where the flow is diverged or converged
depending on the gateway type.

• Guide: It is a document that provides some
assistance to perform a task or to manipulate a
specific product.

We distinguish two parts in the Method Model, the
product part, which represents the artifacts that
developers should construct during the execution
of a SPM project, and the process part, which
consists of the procedures that developers must
follow to construct such products. For the
construction of the Method Model we provide a
Method Base repository. The Method Base
contains method fragments (descriptions of IS
engineering methods, or any coherent part thereof
[8]) that can be reused in the design of new
Method Models. It is important to note that the
Method Model does not contain details about the
languages or technologies that are going to be
used during the execution of the SPM; this is done
in the next phase.

Figure 1. ME proposal overview

Figure 2. Example of method fragment integration

Figure 2 shows an example of integration of a

method fragment into a Method Model, which in
our proposal is created by means of the EPF
Composer Editor, a Software Process Engineering
Meta-Model (SPEM) [23] editor provided in the
EPF Project [5]. The right side of this figure
shows an Eclipse view implementing a repository
client. Its content represents method fragments
that are stored in the Method Base as reusable
assets following the RAS (Reusable Asset
Specification) standard [20]. Through this view,
the method engineer can search for and select
method fragments to integrate them into the
Method Model.

3.2. Method configuration

During this phase, the method engineer associates
the elements included in the Method Model with
metamodels, editors, transformations, etc., which
are stored in the Asset Base repository. These
assets configure the elements of the Method
Model and determine how they will be managed
in the tool built for supporting the SPM. The
assets contained in the Asset Base can be built
either in other SPMs or ad-hoc for the SPM under
construction (the method engineer can use the
tools provided in our CAME environment for this
purpose). Specifically, in our proposal the assets
contained in the Asset Base correspond either to
Eclipse plugin/feature2 projects that implement
editors, metamodels or transformations, or to task
guidelines.

The elements of the Asset Base are specified
following the RAS standard [20]. According to

2 An Eclipse feature is a group of Eclipse plugins.

RAS, reusable assets are represented by zip files
that contain a manifest describing the asset and
one or more artifacts that compose the asset.
Figure 3 shows an example of an asset containing
a BPMN editor. This asset could be associated, for
instance, to a SPM product called “Business
Process Model” to specify that this product will
be managed in the generated tool using a BPMN
editor.

At the end of this phase, the Method Model
has evolved into a new stage where detailed
information about the technological support of
SPM tasks is given. We call Configured Method
Model to the model resulting from this phase.

3.3. Method implementation

During this phase a model transformation is
executed to automatically obtain the tool that
supports the SPM. This transformation takes as
input the Configured Method Model previously
obtained during the Method Configuration phase.
The details of this phase, which are the focus of
this paper, are given in the following subsection.

4. Automatic generation of tools for SPM
support

This section describes the part of the ME
approach that deals with the construction of the
software tool to support the SPM. The
construction process is based on the application of
the MDD paradigm; so, these software tools are
generated from SPM specifications by means of
model transformations. Figure 4 provides a
graphical overview of this process.

Figure 3. Example of reusable asset: a BPMN editor

Figure 4. Overview of the tool generation process

The core of the generation process is a model

transformation that obtains a software tool
supporting the SPM specified in the Configured
Method Model. As shown in the figure, the
transformation uses the product and process parts
of the SPM model to give support to both parts as
follows:
• The support provided for the product part

involves providing all the resources that
enable the manipulation of the SPM products.
This support is given by the software
components that make up the infrastructure of
the tool and correspond to the assets that were
associated to the SPM elements in the Method
Configuration.

• The support provided for the process part
corresponds to a new component that enables
the execution of SPM instances by means of a
process engine. During the SPM execution,
this component invokes the different software
resources that allow the software engineers to
create and manipulate the SPM products.

The generation process of figure 4 has been
implemented in the CAME environment
developed to support the proposal [4]. In this
context, the generated tools are built as Eclipse
applications, in particular based on the MOSKitt
tool [16]. This means that these tools are built as
MOSKitt reconfigurations that only contain the
set of plugins that implement the software support
required by the SPM.

The use of the MOSKitt platform implies that:
(1) the software resources that give support to the
product part of the SPM correspond to Eclipse
plugins and (2) the final tool is obtained from a
Product Configuration File (.product file). This
type of files gathers all the required information to
automatically3 generate an Eclipse-based tool such
as MOSKitt. So, considering that the tool is
obtained from a Product Configuration File, the

3 The Eclipse Product Export Wizard (functionality
provided in org.eclipse.pde) automatically generates an
Eclipse-based application from a .product file.

model transformation is in fact a model-to-text
(M2T) transformation implemented using the
Xpand language [24]. This transformation takes as
input the Configured Method Model and generates
a .product file through which the final tool will be
automatically generated. In order to generate this
file, the M2T transformation must identify the
software resources (Eclipse plugins) in charge of
providing support to the SPM. Once these
resources have been identified, the transformation
includes in the Product Configuration File the list
of features that need to be deployed in the final
tool (MOSKitt construction is based on features).

More insights on this M2T transformation and
the tools obtained for product and process support
in the final tool are presented in the next
subsections.

4.1. Software support for the product part

This section focuses on the part of the M2T
transformation that obtains the tool support for the
product part of the SPM. This product support
refers to the tools (editors, transformations, etc.)
that have to be integrated into the final tool to
enable the manipulation of the SPM products and
tasks. For instance, a SPM that includes a product
such as a “Business Process Model” requires the
inclusion within the tool supporting the SPM of a
proper editor to manage this kind of models.

Furthermore, to obtain a valid product support
it is also necessary to solve the dependencies of
the software components required to support the
SPM product part with other software
components. Therefore, we distinguish two steps
in the M2T transformation that obtains the product

support part: (1) identifying the software
resources necessary to support the tasks and
products of the SPM and (2) solving the
dependences between software resources.

Identifying software resources

The M2T transformation explores the SPM model
and identifies the software resources that are
necessary to support the tasks and products of the
SPM. The software resources are identified by
means of the assets that were associated to these
elements during the Method Configuration phase.
Note that when a task or a product does not have
an associated asset, the generated tool will not
provide support to that element.

It is also important to highlight that the
integration of these resources into the MOSKitt
reconfiguration representing the final tool can be
automatically performed since these resources
correspond to features and plugins created within
the Eclipse/MOSKitt platform itself. Thus, the
integration of tools developed outside of the
context of Eclipse/MOSKitt cannot be guaranteed.

In figure 5 two Xpand rules of the M2T
transformation are shown. In these rules the list of
features of the Product Configuration File is
generated. The first rule is invoked for each
instance of the class ContentElement (i.e. tasks
and products). This rule invokes the second rule,
which produces the output. The second rule
accesses the property “FeatureID” of the content
elements. This property is created during the asset
association and contains the identifier of the
feature (software resource giving support to the
content element) packaged in the asset.

Figure 5. Excerpt of the M2T transformation

Solving dependencies between software
resources

Once the required software resources are
identified, it is necessary to solve the potential
conflicts that can arise when integrating these
resources (plugins) into the same platform
(MOSKitt). To achieve this goal, we specify the
dependencies between software resources within
the assets. This specification allows the
transformation to retrieve the dependencies for
each software resource identified in the previous
step and to include them in the Product
Configuration File.

As an example consider the asset of figure 3
containing the MOSKitt BPMN editor. This asset
defines a dependency with the MOSKitt MDT
component4. Therefore its feature must also be
included in the .product file so that the plugins
implementing this component are also included in
the final tool.

4.2. Software support for the process part

In addition to the support provided for the product
part of the SPM, according to our proposal, the
generated tool also provides support for the
process part. This support guides and assists users
during the execution of SPM instances (projects).

The process support is provided by means of a
software component (the Project Manager
Component) that is common to all SPMs. This
component implements a graphical user interface
(GUI) that enables the execution of SPM
instances. To make this possible, the Project
Manager Component uses the Configured Method
Model at runtime (runtime in this context
corresponds to the SPM instances execution in the
CASE tool).

Considering these aspects of the process
support, the M2T transformation must always
include in the product configuration file a pre-
defined feature that groups the set of plugins that
implement the Project Manager Component.

The Project Manager Component endows the
generated tool with a GUI composed of a set of

4 The MOSKitt MDT component implements the
functionality that is common to all the MOSKitt
graphical editors (such as copy & paste, view creation,
etc.).

Eclipse views (see Figure 65). Each of these views
provides a specific functionality but their common
goal is to facilitate the user participation in a
specific project. The details of these views are the
following:
• Product Explorer: This view shows the set of

products that are handled (consumed,
modified and/or produced) by the ongoing and
finished tasks of the process. This view can
be filtered by roles so that users belonging to a
specific role have only access to the products
they are in charge of. Then, from each
product, the user can open the associated
editor to visualize or edit its content.

• Process: This view shows the tasks that can
be executed within the current state of the
project. The execution of the tasks can be
performed automatically (by launching the
transformation associated to the task as a
software asset) or manually by the software
engineer (by means of the software resource
associated to the output product of the task).
Similarly to the Product Explorer, this view
can be filtered by role, showing just the tasks
in which the role is involved in.

• Guides: This view shows the list of guides
associated to the task selected in the Process
view. The objective of these guides is to assist
the user during the execution of such task,
providing some insights on how the associated
products should be manipulated. These guides
correspond to resources that were associated
to tasks during the configuration step of the
SPM.

• Product Dependencies: This view shows the
dependencies that exist between the products
that are handled in the project. So, it allows
users to identify which products cannot be
created or manipulated because of a dependent
product has not yet been finished. In addition,
these dependencies are organized by roles.
This organization gives to the user the
knowledge of who is responsible of those
products he/she is interested in.

5 Available also at
http://users.dsic.upv.es/~vtorres/moskitt4me/

Figure 6. Project Manager GUI

Regarding the implementation of the Project
Manager Component, it has been divided into four
components of a lower level of granularity. The
M2T transformation that generates the product
configuration file always includes a feature that
groups the Eclipse plugins that implement these
four components. Even though the
implementation of these components is
independent of the SPM, as stated previously, they
need the information stored in the Configured
Method Model to work properly in the generated
tool. Figure 7 depicts graphically these four
components.
• Project Manager. This is the core

component. It implements the GUI of the
Project Manager Component and gives
support to the process part of the final tool. To
do so, this component uses the other three.

• Process Management. This component
implements a light-weight process engine that

keeps the state of the running SPM instances.
Given a SPM instance it provides a set of
methods that return the current tasks and also
allow the method engineer to mark them as
completed in order to enable the progress of
the process. Note that, to make this progress
possible, the component must access the SPM
model and retrieve the distribution of the tasks
along the SPM process.

• Product Management. This component is in
charge of the management of the products and
tasks. Regarding products, the component
identifies the editor that is required to
manipulate such product. Regarding tasks, we
differentiate between automated and manual
tasks. For automated tasks, the component
obtains the transformations that have to be
executed. For manual tasks it obtains the
editor that allows creating and editing the
products manipulated in this task. All this

Figure 7. Structure of the Project Manager Component

information is contained in the SPM model, in
particular in the assets associated to the tasks
and products included in the model.
Therefore, this component also needs to
access the SPM model to get this information.

• Method Specification. This component loads
the different elements of the SPM model
(roles, tasks, products, etc.) to facilitate later
access to them. All these elements are
obtained from the SPM model.

5. Conclusions

The development of CAME tools is a task that has
proven itself as highly complex. When facing this
challenge, the use of techniques that simplify this
process becomes crucial. Considering this, some
ME approaches have used MDD techniques using
metamodelling languages either to define design
notations [6] or SPM specifications [11]. The
problem is that these approaches fall short when
providing a solution to ME as they do not really
take advantage of the possibilities that these
techniques offer.

Considering this lack, we want to leverage
models going one step further. With this purpose
we have presented a MDD approach that not only
uses models for the specification of SPMs but also
uses them as software artifacts, tackling the
generation of tools to support them by means of
model transformations. In particular, this work is
contextualized within a broader proposal [4]. This
proposal presents a methodological framework for
the construction of SPMs, which covers from the
SPM specification to the generation of the tool

support. Specifically, this process is divided into
two phases, being the last one the central focus of
this paper.

Regarding future work, we are working on the
improvement of the CAME environment that
supports our proposal. We are enhancing: (1) the
management of the dependencies between the
resources that have to be included in the final tool
supporting the SPM under construction, and (2)
the workflow engine that enables the execution of
the SPM process and gives support to the process
part of the proposal.

References

[1] Atkinson, C., Kühne, T.: Model-Driven
Development: A Metamodeling Foundation.
IEEE Software, IEEE Computer Society, 20,
36-41 (2003)

[2] Brinkkemper, S.: Method engineering:
engineering of information systems
development methods and tool. Information
and Software Technology 38 (1996)

[3] Brinkkemper, S., Saeki, M., Harmsen, F.:
Meta-Modelling Based Assembly
Techniques for Situational Method
Engineering. Information Systems, (1999).

[4] Cervera, M., Albert, M., Torres, V.,
Pelechano, V.: A Methodological Framework
and Software Infrastructure for the
Construction of Software Production
Methods. International Conference on
Software Processes, (2010)

[5] Eclipse Process Framework Project (EPF),
http://www.eclipse.org/epf/

[6] Grundy, J. C., Venable, J. R.: Towards an
Integrated Environment for Method
Engineering in Proceedings of the IFIP
8.1/8.2 Working Conference on Method
Engineering, Hall, 45-62 (1996)

[7] Gupta, D., Prakash, N.: Engineering Methods
from Method Requirements Specification.
Requirements Engineering, Vol. 6 (2001)

[8] Harmsen, A. F., Arnhem, T., Ernst, M.,
Consultants, Y. M., Gegevens, C.,
Bibliotheek, K., Haag, D., Frank, H. A.:
SITUATIONAL METHOD ENGINEERING
PROEFSCHRIFT 1968.

[9] Harmsen, F., Brinkkemper, S.: Design and
Implementation of a Method Base
Management System for a Situational CASE
Environment. APSEC (1995)

[10] Henderson-Sellers, B.: Method Engineering
for OO Systems Development.
Communications of the ACM Vol. 46. Nº 10,
pp. 73-78, (2003)

[11] Heym, M., Osterle, H.: A Semantic Data
Model for Methodology Engineering. 5th
Workshop on Computer-Aided Software
Engineering, pp. 142-155. IEEE Press, Los
Alamitos (1992).

[12] Hofstede, A., Verhoef, T. F.: On the
Feasibility of Situational Method
Engineering. Information Systems. 6/7 Vol.
22. (1997)

[13] S. Kelly, K. Lyytinene, M.Rossi. MetaEdit+
A Fully Configurable Multi User and
MultiTool CASE and CAME Environment.
CAiSE 1996.

[14] Kumar, K., Welke, R. J.: Methodology
Engineering: A Proposal for Situation-
Specific Methodology Construction.
Challenges and Strategies for Research in
Systems Development, John Wiley & Sons,
Inc., 257-269 (1992).

[15] Mirbel, I., Ralyté, J.: Situational method
engineering: combining assembly-based and
roadmap-driven approaches. Requirements
Engineering V.11, Nº 1, (2006)

[16] MOdeling Software Kitt (MOSKitt),
http://www.moskitt.org

[17] Niknafs, A., Ramsin, R.: Computer-Aided
Method Engineering: An Analysis of
Existing Environments. CAiSE, 525-540
(2008).

[18] Prakash, N.: Towards a Formal Definition of
Methods. Requirements Engineering. 1: Vol.
2. - pp. 23-50 (1997)

[19] Ralyté, J., Rolland, C.: An Assembly Process
Model for Method Engineering. CAiSe. - pp.
267-283 (2001)

[20] Reusable Asset Specification (RAS) OMG
Available Specification version 2.2. OMG
Document Number: formal/2005-11-02

[21] Roger, J. E., Suttenbach, R., Ebert, J.,
Süttenbach, R., Uhe, I., Uhe, I.: Meta-CASE
in Practice: a Case for KOGGE. Springer ,
203-216 (1997)

[22] Si-Said, S., Rolland, C., Grosz, G.:
MENTOR: A Computer Aided Requirements
Engineering Environment CAiSE, 22-43
(1996)

[23] Software Process Engineering Meta-model
(SPEM) OMG Available Specification
version 2.0. OMG Document Number:
formal/2008-04-01

[24] Xpand,
http://www.eclipse.org/modeling/m2t/?projec
t=xpand

