
The MOSKitt4ME Approach: Providing Process
Support in a Method Engineering Context?

Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
{mcervera,malbert,vtorres,pele}@pros.upv.es

Abstract. It is commonly agreed that software developments methods
must be defined (or adapted) in-house in order to meet the particular
needs of the organizations where they are to be applied. To help meet this
challenge, Method Engineering (ME) research aims to provide solutions
to efficiently deal with the definition and adaptation of methods, and the
construction of the supporting software tools. However, while the product
part of methods is fully considered by most ME approaches, the specifica-
tion and enactment of the process part is less well-supported. To fill this
gap, this work presents a methodological ME approach and a Computer-
Aided Method Engineering (CAME) environment (MOSKitt4ME) that
support the design and implementation of the process part of methods in
the context of Model-Driven Engineering. The proposal is illustrated by
means of a real case study that is being used at the Valencian Regional
Ministry of Infrastructure, Territory and Environment.

Keywords: Method Engineering, CAME Environment, Process Sup-
port, Model-Driven Engineering

1 Introduction

The definition of a software development method suitable for all situations is
now considered unfeasible [9, 12]. For this reason, software organizations need to
define (or adapt) their methods in-house in order to meet their specific needs.
To help meet this challenge, Method Engineering (ME) research aims to provide
solutions [5, 14, 19, 21] to efficiently deal with the definition and adaptation of
methods and also with the construction of the supporting software tools.

Similarly to software engineering, which is concerned with all aspects of soft-
ware and its development, ME is concerned with all aspects of methods and
their definition. Thus, most ME approaches define precise engineering solutions
that address the definition of the two interrelated aspects that generally com-
prise methods: product and process [5, 19, 21]. However, while it is commonly

? This work has been developed with the support of MICINN under the project EV-
ERYWARE TIN2010-18011.



2 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

agreed that the product aspect of methods represents the artifacts to be pro-
duced during the method execution, the process aspect is usually understood
in two slightly different ways. Some consider the process aspect as the overall
development process of the method, which encompasses all the activity-related
issues needed for software development [16]. By contrast, most ME approaches
(e.g., [5, 15, 20, 21]) use the term process at a smaller scale, considering a process
as the description of how a single method product must be built.

In this work, we consider processes at the greater scale (hence, we denote
hereafter the overall process of methods simply as the method process part1).
We argue that supporting the specification and the enactment of the process part
of methods brings important benefits. A precise, complete, and well-structured
process specification may be useful to facilitate the understanding of how soft-
ware development is performed within an organization. Furthermore, the enact-
ment of this process specification in a software environment may be useful to
guide software engineers throughout the actual development process and also to
automate it as far as possible. However, to the best of our knowledge there is no
ME approach that supports the specification and the enactment of the process
part of methods, and also provides complete software support to these issues.

In order to fill this gap, this paper describes a methodological approach and
a supporting software environment that support the specification of the process
part of methods and also the construction of the software tools required to enact
this process part. The proof of concept is performed in the context of a ME
approach and a Computer-Aided Method Engineering (CAME) environment,
called MOSKitt4ME2, that have been presented by the authors in [6, 7]. This ME
approach is based on Model-Driven Engineering (MDE) techniques and thereby
it proposes defining methods as method models based on the SPEM 2.0 stan-
dard [17] (method design phase) and semi-automatically building the supporting
CASE environments by means of model transformations (method implementa-
tion phase). This paper focuses on extending both the ME proposal and the
MOSKitt4ME tool to enable process specification (during method design) and
process enactment (during method implementation). Specifically, the proposal
and the CAME environment have been enhanced with an executable process
modeling language (BPMN 2.0 [18]) to properly support the specification of the
process part of methods. Moreover, the proposal and the CAME environment
have also been extended to support the generation of CASE environments that
incorporate process enactment through the use of a process engine.

The proposal and the CAME environment presented in this paper are be-
ing used in a real case study at the Valencian Regional Ministry of Infrastruc-
ture, Territory and Environment, also known as CIT. Specifically, the gvMetrica
method has been specified using MOSKitt4ME and a CASE environment has
been generated from this specification. Moreover, gvMetrica is being executed
in real projects using this CASE environment. The application of the proposal
in a real case study allows us to take valuable feedback for improving it.

1 Likewise, we denote the product aspect of methods as the method product part.
2 MOSKitt4ME is an extension of MOSKitt (http://www.moskitt.org/) for ME.



Title Suppressed Due to Excessive Length 3

The paper is structured as follows. First, section 2 presents a brief state-
of-the-art review that highlights some of the process support limitations that
present current ME approaches. Then, section 3 provides an overview of our
proposal. Section 4 describes how the process specification is performed during
the method design. Section 5 describes how the process enactment is supported
in the method implementation. Finally, section 6 draws some conclusions.

2 State of the Art

The term Method Engineering was first introduced in the mid-eighties by Bergstra
et al. in [3]. Thereafter, many research efforts have attempted to provide solu-
tions to the challenges that ME entails. Some of the most relevant contributions
are those by Brinkkemper [4, 5], Prakash [19, 20], Ralyté [21, 22] and Karlsson
[14, 15]. These works are based on a modular view of methods, whereby meth-
ods are built by assembling different kinds of methods modules, namely method
fragments, method blocks, method chunks and method components respectively.
With regard to the process support, these modules focus on the processes nec-
essary to develop specific method products. The method process part is defined
when these modules are assembled, generally by means of precedence relation-
ships that establish their execution order. Thereby, the resulting process is quite
limited in terms of control flow, since complex behavior (such as the expressed
by branching conditions, events, synchronizations, etc.) cannot be defined.

Another important limitation of these approaches refers to process enact-
ment. The proposals by Ralyté [21, 22] and Karlsson [14, 15] do not consider
process enactment. Prakash [19, 20] defines an enactment algorithm that is ori-
ented towards the construction of specific method products and, therefore, does
not align with process enactment as we intend to support in our ME approach.
The support provided for process enactment in Brinkkemper’s proposal [4, 5]
is more akin to our work. However, since only two types of relationships (i.e.,
precedence and conditional precedence) can be established between process frag-
ments, the resulting processes, and consequently their enactment, may be too
limited for software engineers working on real development projects.

Other important contribution to the ME field is the OPEN Process Frame-
work (OPF) [11]. The OPF provides a repository of method modules (in OPF
called method components) that are defined in terms of a meta-model. This
meta-model has recently been upgraded to fit the ISO/IEC 24744 standard [13].
While this standard does support the specification of the process part of meth-
ods, we still observe some limitations. ISO/IEC 24744 provides limited support
for the definition of processes with a complex control flow. In ISO/IEC 24744
process elements are defined as work units, which are allocated in stages. The
control flow of the process is established by the stages, which can only be asso-
ciated via precedence relationships. Aharoni et al. note this problem in [2] and
suggest enriching processes by means of an extension of the stage concept that
allows work units to be combined within stages in more meaningful ways than
simple inclusion (e.g., concurrently or iteratively). Another important limitation



4 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

refers to the fact that ISO/IEC 24744 does not formalize process execution se-
mantics and therefore process enactment via a process engine is not addressed.
What this standard does support is the definition of specific endeavours (enact-
ments) in a project-plan fashion.

Another recent standard initiative is represented by the SPEM 2.0 standard
[17]. SPEM 2.0 defines a meta-model for development methods that also presents
the problems stated above regarding process (control flow) specification and
process enactment. However, SPEM 2.0 presents an important advantage that
helps overcome these problems, making it a suitable language to be used in our
proposal. Specifically, SPEM 2.0 provides powerful mechanisms for enhancing
process definitions via behavioral modeling formalisms such as BPMN 2.0 [18].
This allows method engineers to easily enhance the process definition both in
terms of process (control flow) specification and process executability.

To sum up, we consider that the main process support limitations of ME
approaches are in terms process control flow specification and enactment. To fill
this gap, this paper extends the work presented by the authors in [6, 7]. Our main
intent is to meet ME needs regarding support to the process part of methods.

3 Overview of the MOSKitt4ME Approach

Figure 1 shows an overview of our ME approach. The proposal is situated within
the context of MDE. Following MDE principles, methods are first defined as mod-
els (method design phase) and these models are then used by model transforma-
tions to generate the supporting CASE environments (method implementation
phase). During the method design, the method engineer defines both the prod-
uct and process parts of the method. This is carried out by assembling method
fragments that are available in a method base repository [7]. We use the SPEM
2.0 standard for the construction of the method model. Once the method design
is finished, a CASE environment that provides support to both the product and
process parts of the method is obtained during the method implementation. This
is done by means of a Model-To-Text (M2T) transformation.

This paper focuses on the process support provided in both phases of our ME
approach. The main goal of the work is to allow method engineers not only to
properly specify the process part of methods (during method design) but also to
bring this specification to execution (during method implementation). In order
to achieve this goal, our proposal has been defined based on a set of needs that
must be met. We consider these needs as a first step towards suitable process
support in ME and CAME technology.

With respect to method design, we need a language to properly specify the
process part of the method. This language must:

– be expressive enough to enable the representation of complete, understand-
able, unambiguous, and well-structured processes.

– fully formalize process execution semantics so that process enactment sup-
port can be provided in the CASE environment supporting the method.



Title Suppressed Due to Excessive Length 5

Fig. 1. Overview of MOSKitt4ME

With respect to method implementation, we need to enhance CASE environ-
ments with mechanisms that provide support to:

– the execution of the process specification. Process engines provide a set of
enactment facilities (such as task orchestration, task automation, constraint
enforcement, etc.) that allow CASE environments to provide guidance to
software engineers throughout the actual development process and also to
partially automate its performance.

– the management of the method products consumed or produced during the
process execution. Process engines must be able to invoke the software tools
that enable the creation and manipulation of the method products. There-
fore, these tools (editors, generators, etc.) must be integrated in the CASE
environment supporting the method.

In order to meet the needs regarding method design, our proposal combines
the use of SPEM 2.0 with BPMN 2.0 for two main reasons. Firstly, BPMN
2.0 provides more expressiveness than SPEM 2.0 with respect to process spec-
ification (e.g., BPMN 2.0 allows defining events and gateways, which are not
supported in SPEM 2.0). Secondly, BPMN 2.0 fully formalizes execution seman-
tics, while SPEM 2.0 is not executable. Thereby, the method is defined in our
proposal by means of SPEM 2.0, and the process part is complemented with
a BPMN 2.0 model that enhances the process definition in terms of process
(control flow) specification and process executability.

In order to meet the needs regarding method implementation, we have de-
veloped a software component that is always integrated in the generated CASE
environments. This component is built upon a process engine that enables the
execution of the process definition by orchestrating method tasks and invoking
tools for the development of the method products. In order for the CASE envi-
ronments to contain the required tools, we make use of reusable assets. These
assets are stored in a repository and are associated to method elements dur-
ing the method design. Then, the M2T transformation takes these assets and
integrates them in the generated CASE environment.



6 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

4 Process Specification during Method Design

Figure 2 shows our proposal for method design. It is composed of three main
steps: method definition, method configuration, and executable process definition.
These steps are described below, focusing on how the process specification is
performed. Then, subsection 4.1 illustrates these steps with an example.

Fig. 2. Method design in MOSKitt4ME

Method Definition. In this step, the method engineer builds the method
model by means of SPEM 2.0. As figure 2 illustrates, the main elements that the
method engineer must define to build the method process part are Tasks, Activ-
ities, Work Sequences, and Roles. Tasks represent basic units of work. Activities
group tasks and other activities, forming breakdown structures. The root activity
of these breakdown structures is named Delivery Process. Work sequences repre-
sent precedence relationships between tasks and activities. Roles are performers
of method tasks. On the other hand, the method product part is composed of
Work Products, which are inputs and outputs of method tasks.

The construction of this model can be performed by assembling reusable
method fragments retrieved from a method base repository. Further details about
how these fragments are managed in our ME approach can be found in [6, 7].

Method Configuration. In this step3, the method engineer defines the tools
that will allow software engineers to perform the method tasks during the process
enactment, and the guides that will assist them during the tasks performance.
To do so, the method engineer links tasks (and work products) with reusable
assets that are retrieved from an asset base repository. These assets can be tool

3 Note that this phase differs from the ME approach of method configuration [14].



Title Suppressed Due to Excessive Length 7

assets, which contain tools (editors, model transformations, etc.) that enable
the creation of products, and guidance assets, which contain guidelines (textual
descriptions, process models, etc.) about the performance of tasks.

The association of reusable assets with tasks and products is performed based
on the following observations: for each task, the method engineer must define
whether the task is automatic or not. If it is automatic, the task must be asso-
ciated with a tool asset containing a model transformation. This transformation
will be executed when the task is invoked during the process enactment. If no
model transformation is associated with the task, then the task is considered as
non-automatic. Both automatic and non-automatic tasks can also be associated
with a guidance asset. The guidelines contained in these assets will be used as
guidance for the user during the process enactment. On the other hand, for each
product, the method engineer must define the notation that will be used during
the process enactment for the creation of the product. To do so, the method en-
gineer associates the products with tool assets containing either a meta-model or
an editor. A meta-model defines the abstract syntax of the notation. An editor
defines both the abstract and concrete syntax. In the first case, MOSKitt4ME
will provide a default tree-based editor for the creation of the product. In the
second case, MOSKitt4ME will provide the full editor contained in the asset.

To summarize, table 1 gathers the associations allowed between method ele-
ments and reusable assets. Further details can be found in [6, 7].

Table 1. Associations allowed between method elements and reusable assets

Method Element Type Reusable Asset Type

Task Guidance Asset
Tool Asset (Model Transformation)

Work Product Tool Asset (Meta-model)
Tool Asset (Editor)

Executable Process Definition. In this step, the method engineer defines
an executable representation of the method process part. We have automated
this step by means of a Model-to-Model (M2M) transformation that takes the
configured SPEM 2.0 model as input and automatically generates a set of BPMN
2.0 processes. Then, these processes can be manually modified to complete the
process specification. This is often needed because BPMN 2.0 provides more
expresiveness than SPEM 2.0 with respect to process elicitation.

In order to provide more insights on how the transformation obtains the
BPMN 2.0 processes, we summarize in table 2 the mappings between the SPEM
2.0 and BPMN 2.0 concepts. The rationale of the mappings is provided below.

1. A SPEM 2.0 DeliveryProcess is mapped into a BPMN 2.0 Process.
2. A SPEM 2.0 Activity is mapped into a BPMN 2.0 CallActivity and a BPMN

2.0 Process. The CallActivity invokes the Process when it is executed.



8 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Table 2. Mappings between SPEM 2.0 and BPMN 2.0

SPEM 2.0 BPMN 2.0

1 DeliveryProcess (root Activity) Process

2 Activity (nested) Process and CallActivity

3 Task (with ReusableAsset) ServiceTask

4 Task (with ReusableAsset associated to
output WorkProduct)

UserTask

5 Task (without ReusableAsset) ManualTask

6 WorkSequence SequenceFlow

7 Role Lane

3. A SPEM 2.0 Task is mapped into a BPMN 2.0 ServiceTask if and only if a
reusable asset containing a model transformation is associated to the Task.

4. A SPEM 2.0 Task is mapped into a BPMN 2.0 UserTask if and only if
the Task is not automatic (no reusable asset containing a model transfor-
mation is associated to it) and a reusable asset is associated to an output
WorkProduct of the Task.

5. A SPEM 2.0 Task is mapped into a BPMN 2.0 ManualTask if and only if
no reusable asset is associated to the Task and its output WorkProducts.

6. A SPEM 2.0 WorkSequence is mapped into a BPMN 2.0 SequenceFlow. The
source of the SequenceFlow is set to the BPMN 2.0 element generated from
the predecessor of the WorkSequence. The target is set to the BPMN 2.0
element generated from the successor of the WorkSequence.

7. A SPEM 2.0 Role is mapped into a BPMN 2.0 Lane if and only if the Lane
has not been previously generated.

4.1 An Example of Process Specification in MOSKitt4ME

In order to illustrate our proposal for process specification, we present a practical
example carried out in MOSKitt4ME. The example process has been modeled in
real settings at the CIT. Specifically, it corresponds to an excerpt of gvMetrica
that deals with the design of information systems.

Method Definition. This step is performed via the EPF Composer [10], an
Eclipse-based editor that has been integrated in MOSKitt4ME to enable the
creation of SPEM 2.0 models. Figure 3 shows the example process after being
defined by means of this editor. As the figure shows, the first steps of the process
are to define the system architecture, the user interface, and the business logic.
Then, a model defining the system database schema is obtained from the models
specifying the business logic. The database model is then used to automatically
obtain the database code. Once all the system artifacts have been created, the
test cases can be defined. Finally, the design validation is carried out to validate
all the work performed during the process.

As depicted in figure 3, the process is represented in SPEM 2.0 as a break-
down structure that is mainly composed of Activities (e.g., Data Persistence



Title Suppressed Due to Excessive Length 9

Design) and Tasks (e.g., Database Model Generation), which reference perform-
ing Roles (e.g., Analyst) as well as input and output Work Products (e.g., UML
Class Model). Moreover, there are Work Sequences that are established between
method elements (e.g., System Architecture Definition is a predecessor of User
Interface Design).

Fig. 3. Example process in SPEM 2.0

Method Configuration. This step is performed via a repository client that
allows method engineers to retrieve reusable assets from the asset base [7]. As an
example, let us consider the task Database Model Generation. The execution of
this task obtains a database model from a UML class model. To specify this be-
havior, the method engineer can associate the task with an asset containing the
Eclipse plug-ins that implement the UML2DB transformation provided by the
MOSKitt tool. On the other hand, the work products of the task can be associ-
ated with assets containing the UML meta-model and the MOSKitt SQLSchema
meta-model respectively.

Executable Process Definition. This step is performed via the M2M trans-
formation described above, which has been implemented in MOSKitt4ME as an
extension of the EPF Composer. Figure 4 shows the BPMN 2.0 processes result-
ing from applying this transformation to the example process. These processes
are represented in terms of the Activiti Designer [1], an Eclipse-based graphical
editor that has been integrated in MOSKitt4ME to support BPMN 2.0.

To illustrate how the processes shown in figure 4 have been generated, we
present below some examples of the application of the mappings of table 2.

1. The SPEM 2.0 Delivery Process “Information System Design” is mapped
into a BPMN 2.0 Process (diagram “A” in figure 4).

2. The SPEM 2.0 Activity “Data Persistence Design” is mapped into a Call
Activity and a BPMN 2.0 Process (diagram “B” in figure 4).



10 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Fig. 4. Generated BPMN 2.0 processes

3. The SPEM 2.0 Task “Database Model Generation” is mapped into a Service
Task since it has a M2M transformation associated to it as a reusable asset.

4. The SPEM 2.0 Task “Database Model Revision” is mapped into a User Task
since it is not automatic but has an output product with a reusable asset
associated to it (not shown in the example).

5. The SPEM 2.0 Task “Design Validation” is mapped into a Manual Task
since it does not have any reusable asset associated to it.

6. The SPEM 2.0 Work Sequences are mapped into the Sequence Flows that
connect the BPMN 2.0 elements in both diagrams.

After the generation of the BPMN 2.0 processes, the method engineer can
manually modify them to specify more complex control flows. For instance, the
method engineer can add a Gateway to specify that the Call Activity “Tests
Design” must not be executable until all its predecessors are finished.

5 Process Enactment during Method Implementation

The method implementation phase is in charge of the construction of the CASE
tool support for the method specified during the method design. In MOSKitt4ME,
CASE environments are semi-automatically built by means of a M2T transfor-
mation. We provide details about this transformation in [8].

In this section we focus on how CASE environments are structured to support
the process enactment. This structure is depicted in figure 5. As this figure shows,
CASE environments are divided into three main parts: the components that pro-
vide method product support, the components that provide method process sup-
port, and the Project Manager Component (PMC). These parts are introduced
below. Subsection 5.1 illustrates them with an example of process enactment.

Method Product Support. The software components that provide product
support must enable the creation and manipulation of the method products. In



Title Suppressed Due to Excessive Length 11

Fig. 5. Method implementation in MOSKitt4ME

MOSKitt4ME, these components correspond to the reusable assets associated
to the method elements during the method configuration. Specifically, Tool as-
sets allow software engineers to create the method products by means of model
transformations or software applications such as graphical or textual editors.
Guidance assets do not allow software engineers to directly create the method
products, but they do provide guidance on how the method tasks must be per-
formed to properly develop these products.

Method Process Support. The software components that provide process
support must enable the execution of the BPMN 2.0 model. In MOSKitt4ME,
this functionality is provided by the Activiti Engine [1]. A significant feature
of this engine is that it supports a lot of different task types. Specifically, the
behavior of the engine is the following:

– Service tasks: when a service task becomes active, it is automatically exe-
cuted. The execution of a service task invokes the model transformation that
is associated to the task as a reusable asset.

– User tasks: when a user task becomes active, the engine invokes the software
tools that enable the creation of the output products of the task. These tools
are associated to the products as reusable assets.

– Manual tasks: when a manual task becomes active, the engine does not
perform any action.

– Call activities: when a call activity becomes active, the engine automatically
starts a new instance of the BPMN 2.0 process referenced by the call activity.

Project Manager Component. The PMC provides a graphical user interface
for the CASE environment and assists software engineers during the process
enactment (i.e., during the course of the development projects). To achieve this



12 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

goal, it makes use of the Activiti engine to execute BPMN 2.0 process instances
and also makes use of the SPEM 2.0 model to extract information about the
method that is not represented in the BPMN 2.0 model (since this model only
contains the process part). The PMC is divided into the following Eclipse views:

– Project Explorer : This view is provided as part of the Eclipse platform and
has been integrated in the PMC to show the projects that have been cre-
ated and the resources they contain (files, folders, etc.). From this view, the
software engineer can create new projects, delete existing projects, etc.

– Process: This view shows the current state of the process instance associ-
ated to the project that is selected in the Project Explorer view. From this
view, the software engineer can invoke the execution of the tasks that are
executable. Once a task is finished, the PMC invokes the engine API to set
the task as executed and proceed to the next state of the process. This view
also offers the possibility to filter the tasks based on the role of the users so
that they only see the tasks that they are assigned to.

– Product Explorer : This view shows a hierarchical picture of the artifacts that
have been produced during the course of the project that is selected in the
Project Explorer view. This hierarchy is based on domains, subdomains, and
work product elements, which are read from the SPEM 2.0 model. This view
also offers the possibility to filter the information based on the role of the
users so that they only see the artifacts that they are responsible for.

– Help: This view is provided as part of Eclipse and has been integrated in the
PMC to provide guidance to software engineers during the performance of
the method tasks. This view is dynamically updated based on the task that
is selected in the Process view. The guides to show are known by the PMC
because they were associated to the selected task as a reusable asset.

5.1 An Example of Process Enactment in MOSKitt4ME

In order to illustrate how processes are enacted in MOSKitt4ME, we continue
with the example introduced in subsection 4.1. Let us consider that a new project
has been created by means of the Project Explorer view. When this project is
selected, the Process and Product Explorer views are updated accordingly. At
this point, the Process view shows the initial state of the process and the Product
Explorer view is empty. Now, let us consider the System Architecture Definition,
User Interface Design, and Business Logic Design activities have been executed,
and the next executable task is Database Model Generation. Since this task
is automatic, the PMC automatically invokes the associated transformation.
Once the transformation is finished, the task is set as executed and the process
proceeds to the next state. This state is illustrated in figure 6.

The Process view (left)4 depicts the current state of the process instance.
Specifically, this view shows the tasks and activities in different colors depending

4 Additional screenshots of the tool can be found in [6–8] and also in
https://users.dsic.upv.es/∼vtorres/moskitt4me/



Title Suppressed Due to Excessive Length 13

Fig. 6. Process and Product Explorer views

on whether they have already been executed (blue), are executable (green), or are
not executable (red) in the current state of the process. Note that, even though
the Process view shows the process in terms of SPEM 2.0, the process instance
corresponds to an instance of a BPMN 2.0 process. This is possible because there
is a one-to-one correspondence between SPEM 2.0 tasks and BPMN 2.0 tasks.

The Product Explorer view (right) depicts some artifacts that have been
produced during the execution of the process. In this case, it is showing the
input and output work product elements of the last executed task (i.e., Database
Model Generation). As the figure shows, work product elements are categorized
by domain and contain the actual products, that is, the files.

Now, let us consider that the user wants to proceed with the process execu-
tion. To do this, the user selects the task Database Model Revision in the Process
view. This action has a twofold effect. The Help view is updated to show textual
guidance about the task and, since the task is a user task, the PMC opens the
software tool that allows the software engineer to carry out the task.

Once all the tasks have been executed, the process engine deletes the process
instance and, therefore, the project can be considered as concluded.

6 Conclusions

In this paper we present an extension of our ME approach and CAME envi-
ronment (MOSKitt4ME) [6, 7] so as to provide adequate support to process
specification during method design and process enactment during method im-
plementation. This extension builds on the idea of combining the use of SPEM
2.0 and BPMN 2.0. This is based on the fact that BPMN 2.0 can resolve SPEM
2.0 limitations with respect to process elicitation and process executability.

To validate of the proposal, MOSKitt4ME is currently being used in real
settings at the CIT. This is providing us initial feedback that is allowing us
to identify limitations of our work. For instance, MOSKitt4ME does not yet
properly deal with the dynamic nature of projects. Therefore, we are concerned
with supporting variability and evolution of methods at runtime. So, we will be
soon working on providing mechanisms to meet these challenges. Specifically,
we propose the introduction in MOSKitt4ME of a reconfiguration engine that
enables the CASE tool reconfiguration at runtime based on context changes.



14 Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

References

1. Activiti: http://www.activiti.org/
2. Aharoni, A., Reinhartz-Berger, I.: A domain engineering approach for situational

method engineering. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008,
LNCS, vol. 5231, pp. 455–468. Springer Berlin / Heidelberg (2008)

3. Bergstra, J., Jonkers, H., Obbink, J.: A software development model for method
engineering. In: Esprit 1984: Status Report of Ongoing Work (1985)

4. Brinkkemper, S.: Method engineering: Engineering of information systems develop-
ment methods and tools. Information and Software Technology 38, 275–280 (1996)

5. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Inf. Syst. 24, 209–228 (1999)

6. Cervera, M., Albert, M., Torres, V., Pelechano, V.: A methodological framework
and software infrastructure for the construction of software production methods.
In: Yang, Y., Münch, J., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 112–
125. Springer-Verlag, Berlin, Heidelberg (2010)

7. Cervera, M., Albert, M., Torres, V., Pelechano, V.: Turning method engineering
support into reality. In: Ralyté, J., Mirbel, I., Deneckère, R. (eds.) ME 2011, IFIP
AICT, vol. 351, pp. 138–152. Springer Boston (2011)

8. Cervera, M., Albert, M., Torres, V., Pelechano, V., Bonet, B., Cano, J.: A techno-
logical framework to support model driven method engineering. In: Actas de los
Talleres de las JISBD. pp. 47–56 (2010)

9. Cockburn, A.: Selecting a project’s methodology. IEEE Software 17, 64–71 (2000)
10. Eclipse Process Framework: http://www.eclipse.org/epf/
11. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-

duction. Addison-Wesley (2002)
12. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: State-of-the-art

review. J. UCS. 16, 424–478 (2010)
13. ISO/IEC: Software Engineering: Metamodel for Development Methodologies.

ISO/IEC 24744 (2007)
14. Karlsson, F., Ågerfalk, P.J.: Method configuration: adapting to situational charac-

teristics while creating reusable assets. Information and Software Technology 46,
619–633 (2004)

15. Karlsson, F., Ågerfalk, P.J.: Towards structured flexibility in information systems
development: Devising a method for method configuration. J. Database Manag.
20, 51–75 (2009)

16. Niknafs, A., Asadi, M.: Towards a process modeling language for method engineer-
ing support. In: 2009 WRI World Congress on Computer Science and Information
Engineering. vol. 07, pp. 674–681. IEEE Computer Society (2009)

17. OMG: Software & Systems Process Engineering Metamodel (v2.0) (2007)
18. OMG: Business Process Model and Notation (v2.0) (2011)
19. Prakash, N.: Towards a formal definition of methods. Requir. Eng. 2, 23–50 (1997)
20. Prakash, N.: On method statics and dynamics. Inf. Syst. 24, 613–637 (1999)
21. Ralyté, J., Rolland, C.: An approach for method reengineering. In: S.Kunii, H.,

Jajodia, S., Sølvberg, A. (eds.) ER 2001, LNCS, vol. 2224, pp. 471–484. Springer
Berlin / Heidelberg (2001)

22. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In:
Dittrich, K., Geppert, A., Norrie, M. (eds.) Advanced Information Systems Engi-
neering, LNCS, vol. 2068, pp. 267–283. Springer Berlin / Heidelberg (2001)


