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Abstract 

 

The Method Engineering discipline emerged two decades ago to face up to the 

challenge of defining software production methods, adapting them to fit 

particular project needs and building the supporting CASE tools. Over these 

twenty years many theoretical proposals have contributed to establish a solid 

and wide theoretical basis in this field. However, the existing tool support 

does not live up to the expectations mainly due to the complexity of putting 

this theory into practice. 

In order to improve this situation, this thesis proposes the use of the Model 

Driven Development paradigm as a way to handle this complexity. Thereby, it 

first defines a methodological framework that advocates for the use of meta-

modeling and model transformation techniques to tackle the design and 

implementation of software production methods. Then, this thesis introduces a 

software architecture that establishes the set of components that are required 

to support the methodological framework and gives implementation details of 

this architecture in the context of Eclipse, more specifically on the MOSKitt 

platform. The developed prototype has been called MOSKitt4ME. 

Finally, in order to validate the proposed methodological framework and 

software architecture, the MOSKitt4ME prototype has been used for the 

development of a case study. This case study consists of a software 

production method that defines a Model Driven Development approach for 

the generation of web applications supporting business process specifications. 

The MOSKitt4ME prototype has successfully supported the design of the case 

study and the construction of its supporting CASE tool. 
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Resumen 

 

La Ingeniería de Métodos surgió como disciplina hace dos décadas con el 

objetivo de afrontar el reto de dar soporte a la definición de métodos de 

producción de software, su adaptación a las necesidades de proyectos 

específicos y la construcción de las correspondientes herramientas CASE de 

soporte. Durante estos veinte años muchas propuestas teóricas han contribuido 

a establecer una base teórica amplia y sólida en este campo. Sin embargo, las 

herramientas existentes no están a la altura de las expectativas principalmente 

debido a la complejidad que conlleva poner esta base teórica en práctica. 

Con el objetivo de mejorar esta situación, esta tesis propone el uso del 

paradigma de Desarrollo de Software Dirigido por Modelos como solución 

que permite manejar esta complejidad de forma eficiente. De este modo, 

primero se define un marco metodológico que hace uso de técnicas de meta-

modelado y transformaciones de modelos para abordar el diseño e 

implantación de métodos de producción de software. Además, se presenta a 

continuación una arquitectura software que establece el conjunto de 

componentes que permiten dar soporte al marco metodológico y se 

proporcionan detalles de implementación de la arquitectura propuesta en el 

contexto de Eclipse, más concretamente de la plataforma MOSKitt. El 

prototipo desarrollado se ha llamado MOSKitt4ME. 

Por último, a fin de validar el marco metodológico y la arquitectura 

software propuestas, el prototipo MOSKitt4ME ha sido usado para el 

desarrollo de un caso de estudio. En concreto, este caso de estudio consiste en 

un método de producción de software que define una propuesta basada en el 

Desarrollo de Software Dirigido por Modelos para la generación de 

aplicaciones web de soporte a procesos de negocio. El prototipo 

MOSKitt4ME ha proporcionado un adecuado soporte al diseño del caso de 

estudio y a la construcción de la herramienta CASE de soporte. 
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1. Introduction 

 

Software development projects have proven to be highly diverse in nature due 

to the wide variety of situational elements that come into play. These 

elements, especially those regarding human and organizational factors, have a 

great impact on the development process. Therefore, in order to maximize 

productivity and improve the quality of the developed software, the 

development process must be governed by a software production method that 

is adapted to these situational needs. 

This fact has already been acknowledged in other works such as [25], [26] 

and [41]. For instance, in [26] it is stressed that general-purpose methods1 are 

“weak” in the field of problem solving compared to the solutions adapted to 

the problem at hand. In order to cope with this need for method adaptation, it 

is necessary to find alternatives that not only enable the in-house definition 

(and adaptation) of methods but also the construction of the corresponding 

supporting tools. Up to now, the Situational Method Engineering discipline 

seems to be the most promising solution to supply this need. 

The Situational Method Engineering discipline encompasses all the aspects 

regarding the creation of methods for specific situations [41] and constitutes a 

sub-area of a broader field called Method Engineering. Method Engineering is 

defined in [9] as the engineering discipline to design, construct and adapt 

methods, techniques and tools for the development of information systems. 

During the last two decades, a lot of proposals have tried to provide an 

answer to the existing problems in this area. However, while these proposals 

have contributed to establish a solid theoretical basis, none of them has been 

successfully exploited in industry, being relegated just to educational 

                                                           

1 In this document, the terms “method” and “methodology” are used as synonyms of software 

production method 
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environments. In order to turn Method Engineering into reality, this master‟s 

thesis provides a methodological approach that covers the main phases of the 

Method Engineering lifecycle2 from a Model Driven Development (MDD) 

perspective. In particular, the proposal advocates for the use of meta-modeling 

and model transformation techniques to tackle the design and implementation 

of project-specific software production methods. 

The rest of this chapter is organized as follows: First, section 1.1 presents a 

motivation of the work described in this thesis. Then, section 1.2 states the 

problem that this thesis tackles and section 1.3 briefly presents the solution 

proposed to face this problem. Section 1.4 explains the context of this work 

and, finally, section 1.5 outlines the structure of the thesis. 

1.1. Research Motivation 

Software production methods guide software engineers during the course of 

software development projects by establishing the rules and procedures that 

assist in the orderly project execution. Thereby, methods define what to do, 

how and when, contributing to a better understanding of the problem and, 

therefore, to an improvement in quality of the developed software. 

Even though different attempts have been made to develop universally 

applicable methodologies that fit any situation (e.g. Extreme Programming 

[6], the Rational Unified Process [47], etc.), real software development 

projects have demonstrated that methods must be tailored to fit specific 

context needs [26]. As a result, the “one-size-fits-all” methodology is now 

considered unattainable [22, 24, 26, 41, 88, 91]. In order to face this tailoring 

process, alternatives that support the definition of project-specific 

methodological approaches and the construction of supporting tools need to 

be sought. As stated above, the Situational Method Engineering discipline has 

emerged as the most optimistic solution to supply this need. 

                                                           

2 In general, the Method Engineering lifecycle comprises the specification of the method 

requirements, the method design, the method implementation (i.e. the construction of the tool 

that supports the method) and the method validation [57]. The requirements analysis and 

validation of the method fall out of the scope of this thesis. 
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Within the (Situational) Method Engineering field, method engineers 

mainly focus on designing methods and implementing the tools that support 

such methods similarly to the way Information System Development (ISD) 

groups design and implement information systems. Method engineers can 

therefore be considered as developers of information systems for ISD [89]. 

Thus, the goal of Method Engineering is to improve the ISD process by 

providing better methods and supporting tools. 

Facing the accomplishment of this goal is, however, a complex and error-

prone task that requires automated tool support [57]. Unfortunately, while the 

theoretical basis that lays the foundations of Method Engineering is very solid 

and extensive, the existing tool support for this basis does not live up to the 

expectations due to the complexity of putting this theory into practice. This 

tool support, namely Computed Aided Method Engineering (CAME) 

environments, aims at supporting the method engineering tasks but, 

nowadays, it mostly represents incomplete prototypes that present important 

deficiencies. This problem also becomes evident in [57] where a study of 

different CAME environments is presented. 

In view of this situation, it is apparent that there is a significant need for 

software tools that provide appropriate support to Method Engineering. Since 

the development of this kind of tools is very far from trivial, it is crucial to 

find engineering solutions to properly handle this complexity. The research of 

these solutions has constituted the central focus of this work, and the obtained 

results are presented in this thesis. 

1.2. Problem Statement 

The proper performance of tasks such as the design and implementation of 

software production methods is particularly difficult without the assistance of 

appropriate tools. The discussion presented in the previous section illustrates 

this fact. Nevertheless, tool support still remains the Achilles‟ heel of Method 

Engineering and this handicap is leading to a slow industry adoption of 

Method Engineering approaches [80]. 
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In order to improve this situation, the work presented in this thesis 

contributes to the Method Engineering field by tackling from a MDD 

perspective the following two challenges: 

Challenge 1. Definition of a methodological approach that establishes the 

series of well-defined steps that allow method engineers to systematically 

define methods and build the corresponding supporting tools. To support 

these tasks in an effective manner, the approach must be based on a sound 

infrastructure that formalizes: 

Req. 1.1. The concepts that are available for defining methods and the 

rules governing their use. 

Req. 1.2. How the method specifications are created using the formalized 

concepts. 

Req. 1.3. The mechanisms that enable the definition of mappings from 

method specifications to the CASE tools that support them. 

Challenge 2. Definition of an architecture that establishes the collection of 

components (and the interaction between these components) that must be 

implemented in a software tool in order to support the various phases that 

compose the methodological approach. This architecture must fulfill the 

following non-functional requirements: 

Req. 2.1. Technology-independence. The architecture must be defined in 

a technology-independent fashion in order to make it less 

sensible to technological changes and facilitate its 

implementation in different platforms.   

Req. 2.2. Modularization. The architecture must be based on separate 

components in order to improve its maintainability and 

facilitate its evolution. 

Req. 2.3. Separation of concerns. The architecture must clearly separate 

components that deal with Method Engineering tasks (e.g. 

method specification) from components that deal with ISD 

tasks (e.g. system specification). 
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1.3. Proposed Solution 

This section briefly summarizes the solutions proposed in this master‟s thesis 

to face the challenges stated above. 

First of all, regarding challenge 1, this thesis defines a methodological 

framework that defines the method, languages and techniques that allow 

method engineers to perform in a systematic way the design and 

implementation of project-specific software production methods. This 

methodological framework is built upon an MDD infrastructure [4] that lays 

the foundations of the framework and is based on meta-modeling and model 

transformation techniques. On the one hand, the meta-modeling techniques 

are based on the Software & Systems Process Engineering Meta-model 

(SPEM) [87] (req. 1.1) and are the means that allow the method engineer to 

produce method specifications as machine-processable models (req. 1.2). On 

the other hand, model transformations make use of these models for 

(semi)automating the performance of the method implementation (req. 1.3). 

By applying these ideas, it has been possible to define a methodological 

framework that not only tackles the definition of methods following a widely 

accepted standard, but also proposes to use these definitions for the 

(semi)automatic generation of CASE tools that integrate all the required 

elements to provide rich support to the methods (from simple textual editors 

to more sophisticated tools such as graphical editors, code generators, report 

generators and process engines). 

Furthermore, regarding challenge 2, this thesis also proposes an 

architecture that specifies the technology-independent components (req. 2.1 

and 2.2) that are needed to support the methodological framework. This 

architecture is divided into two parts (req. 2.3): on the one hand, it defines the 

components that must be implemented in a CAME environment so that it 

enables the definition of methods and the (semi)automatic generation of 

CASE tools. On the other hand, it defines the various components that are 

included in the CASE tools that are obtained by means of the CAME 

environment. The definition of these components is necessary in order to 

establish the transformation mappings between the method models and the 

CASE tools. 
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Finally, as a proof of concept of the proposed solution, this thesis provides 

implementation details of a CAME environment that is being developed in the 

context of Eclipse, more specifically in the context of the MOSKitt platform 

[55]. This tool is based on the defined architecture and provides support to the 

methodological framework. 

1.4. Context of the Thesis 

This master's thesis has been developed in the research center Centro de 

Investigación en Métodos de Producción de Software (ProS) of the 

Universidad Politécnica de Valencia. More specifically, the solutions 

proposed in this work have been defined and implemented within the context 

of the MOSKitt project [55]. 

The MOSKitt project constitutes a jointly work developed by the 

Conselleria de Infraestructuras y Transporte (CIT) and the ProS to develop 

an Eclipse-based CASE tool to support the gvMétrica method (an adaptation 

of métrica III to satisfy CIT needs). There is a big community involved in the 

project, ranging from analysts (software and business analysts) to end users, 

which are in charge of validating each new release of the tool. This setting 

constitutes an adequate environment to validate the proposal presented in this 

thesis. In fact, in the near future the results of this work will be included into a 

MOSKitt released version in order to use it for the definition of gvMétrica and 

the construction of the supporting tool. 

1.5. Outline 

The remainder of this thesis is organized as follows: 

 Chapter 2 presents a study about the current state of the art, focusing on 

Method Engineering approaches, languages and tools. Specifically, this 

study stresses the limitations of the works that are presented and details 

how the proposal described in this thesis tackles these limitations. 

http://www.cit.gva.es/cast/informacion-general/
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 Chapter 3 presents in detail the methodological framework that is 

proposed in this thesis for performing the design and implementation of 

software production methods. 

 Chapter 4 defines the architecture that establishes the software 

components that are required to support the methodological framework 

presented in chapter 3. Furthermore, this chapter introduces a prototype 

that has been developed on the MOSKitt platform in order to implement 

the proposed architecture. 

 Chapter 5 describes the case study that has been chosen to validate the 

proposal. Furthermore, it details how this case study has been developed 

on the prototype presented in chapter 4. 

 Chapter 6 presents the conclusions of this thesis and outlines future work 

that can be carried out in order to extend the proposal. Furthermore, this 

chapter lists the research publications that have been produced during the 

course of this work. 
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2. State of the Art 

 

The term Method Engineering was first introduced in the mid-eighties by 

Bergstra et al in [7], and was later used in other works such as [9], [48] and 

[85]. From that moment, Method Engineering emerged as a promising way to 

tackle the adaptation of software production methods and tools to specific 

project needs. 

Since the origin of Method Engineering two decades ago, this discipline 

has had an extensive history. Many works developed both at academia and 

industry have contributed to establish a solid theoretical basis in this field. In 

order to underpin this theory, a survey of the most relevant contributions is 

gathered in [41].  

Specifically, this chapter analyzes some of the most important Method 

Engineering proposals, addressing three topics: (1) Method Engineering 

approaches, (2) languages for building method specifications and (3) software 

tools supporting these approaches and languages. According to these topics, 

section 2.1 first presents different approaches for method definition. Then, in 

section 2.2, some of the most significant languages that have been proposed in 

the literature to perform this definition are described. Section 2.3 surveys 

some tools that have been developed to support the approaches and languages 

previously presented and, finally, section 2.4 draws some conclusions. 

2.1. Method Engineering Approaches 

Many Method Engineering approaches of different nature have been proposed 

during the last two decades. For instance, approaches such as [11] or [63] 

tackle method construction as an assembly of method components. Others, 

however, focus on the spreading and sharing of methodological knowledge 
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rather than the definition and adaptation of methods. This is the case of the 

community based approach proposed in [53], which aims at solving method 

usage problems by improving the practitioners‟ understanding of the method 

to apply. Furthermore, proposals such as [15] propose the use of patterns for 

performing method extensions while others such as [32] and [43] offer a 

service-oriented view of Method Engineering. 

In view of this disparate scenario, this section aims to provide a survey of 

the most extended types of approach. In particular, these types have been 

classified according to the types proposed in [69], which are: (1) the 

assembly-based approach, (2) the paradigm-based approach and (3) the 

extension-based approach. In order to illustrate the steps that must be 

followed to perform each of these approaches, the Map process meta-model 

proposed in [79] is used. This meta-model enables the creation of intuitive 

process models based on the notions of intentions to fulfill and strategies to 

achieve these intentions. 

2.1.1. The assembly-based approach 

 

Fig. 2.1. Assembly-based approach (from [69]) 

The assembly-based approach [67, 69] consists in the construction of software 

production methods by means of the assembly of reusable method chunks (or 

fragments) that are stored in some method base repository [10, 35, 66]. Thus, 

methods are viewed as a collection of chunks that are “glued together” to 
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form a method attuned to specific context needs. In order to show the different 

steps that must be followed to perform the method assembly, Fig. 2.1 shows 

this approach as a process model following the map notation. 

The assembly-based approach is the most common of the three approaches. 

This is mainly due to the fact that this approach advocates for a modular 

vision of methods, which entails important advantages. Between these 

advantages, reusability is of high significance. Specifically, a modular vision 

of methods facilitates the reusability of their different parts, which directly 

leads to a reduction of the time required to define new methods. Furthermore, 

considering a method as an assembly of components also has a positive 

impact on its evolution qualities, such as maintainability and extensibility. 

Some examples of relevant Method Engineering proposals that follow this 

approach are Brinkkemper‟s [9, 10, 11] and Prakash‟s [63]. On the one hand, 

Brinkkemper mainly focuses on method fragment assembly techniques and 

their formalization by means of first-order logical formulas. In [11] he stresses 

the need of imposing constraints in the assembly process in order to obtain 

meaningful methods. Most of the constraints that he proposes are syntactical, 

but he emphasizes the need of defining semantical constraints as well, which 

requires the formalization of the fragment semantics. He carries out this 

formalization by means of an ontology. 

On the other hand, Prakash proposes an approach to formal method 

specification. This approach is based on three levels: the generic view (the 

most abstract view of a method, independent of the underlying paradigm), the 

meta-model and the method (obtained by instantiating the meta-model). These 

three layers represent an attempt to develop a comprehensive framework and 

architecture for methodology domain modeling. Specifically, in this approach 

a method is viewed as a collection of method blocks, which are defined as 

pairs <objective, approach>. The objective of a method block establishes what 

the block tries to achieve and the approach defines the technique that can be 

used to achieve the objective of the block. In addition, he also proposes 

different types of blocks, such as product manipulation and constraint 

enforcement (for atomic methods), and product composition and 

compositional-constraint enforcement (for compound methods). 

The nomenclature problem 
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In the Method Engineering literature, proposals that follow the assembly-

based approach denote the atomic element from which methods can be 

assembled in different ways. For instance, Ralyté uses the term method chunk, 

while Prakash uses the term method block and Brinkkemper the term method 

fragment. In order to reach a consensus on the definition of this atomic 

element, in [39] a study of the different terms that have been proposed is 

presented. In general, the most accepted are method fragment and method 

chunk.  

On the one hand, method fragments can be either product fragments or 

process fragments [9, 35, 65, 76]. In general, a product fragment describes a 

product that is either consumed or produced during the method. A process 

fragment describes activities and procedures that must be executed to 

construct products. On the other hand, method chunks [52, 66, 67] can be 

defined as the combination of a process fragment and a product fragment. 

During the last decade, there has been much debate about the efficacy of a 

method chunk as compared to a method fragment. While method chunks offer 

some advantages, it seems that method fragments are quite more flexible. For 

instance, one advantage of method chunks is argued to be the speed of usage, 

since a smaller number of chunks is usually required to assemble a complete 

method. However, there is a potential disadvantage as a result of the fact that 

the process-product linkage present in method chunks is neither one-to-one 

nor unique in real-life scenarios. Thus, the separation between product and 

process that method fragments provide implies important advantages such as 

the possibility to relate one process fragment with many product fragments 

and the possibility to reuse one product fragment in the definition of many 

process fragments [39]. 

Specifically, in the proposal presented in this thesis the concept of method 

fragment is used. One of the reasons for this is the language used in the 

proposal, i.e. the SPEM standard (see section 2.2.6). In particular, the 

separation of product and process fragments allows method engineers to 

leverage the clear separation between method product and process provided 

by SPEM. 
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2.1.2. The paradigm-based approach 

The paradigm-based approach [69, 71] is based on some initial idea expressed 

as a model or a metamodel that is called the paradigm model and supports the 

evolution of this paradigm model into a new model satisfying another 

engineering objective. In other words, the hypothesis of this approach is that a 

new method is obtained either by abstracting from an existing model or by 

instantiating a meta-model. Thereby, this approach uses meta-modeling as its 

underlying Method Engineering technique. 

One of the results obtained by the meta-modeling community is the 

definition of any method as composed of a product model and a process 

model [64]. A product model defines a set of concepts, their properties and 

relationships that are needed to express the outcome of a process. A process 

model comprises a set of goals, activities and guidelines to support the 

process goal achievement and the action execution. Therefore, method 

construction following the meta-modeling technique is centered on the 

definition of these two models [71]. This is illustrated in Fig. 2.2, wherein a 

map representing the paradigm-based approach is shown. 

 

Fig. 2.2. Paradigm-based approach (from [69]) 

The paradigm-based approach is the most generic of the three approaches 

presented in this survey. Since it is based on meta-modeling, it presents 

important benefits that are inherited from this technique. For instance, since 
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methods are defined at a high level of abstraction, their understandability is 

increased (compared to, e.g, textually defined methods), thus contributing to 

facilitate their application in real ISD projects. 

Some examples of relevant Method Engineering proposals that follow this 

approach are Rolland‟s [75] and Grundy‟s [30]. On the one hand, Rolland 

presents in [75] a proposal for defining ways-of-working in a systematic 

manner. A way-of-working is a process model that takes into account 

heuristic knowledge to guide humans performing systems development. 

Specifically, these process models are created by instantiation from a process 

meta-model that is called NATURE (see section 2.2.5). Furthermore, the 

product meta-model presented in [82] enables the definition of the product 

part of these models. 

On the other hand, Grundy [30] proposes a product-oriented approach from 

defining methods. Specifically, he defines a product meta-model called 

CoCoa that allows method engineers to define the design notations that enable 

the creation and manipulation of the method products. Furthermore, a process 

modeling environment called Serendipity is proposed for supporting the 

definition of process models that coordinate the development of the method 

products. 

2.1.3. The extension-based approach 

The extension-based approach [69] consists in identifying typical extension 

situations and performing the required extension of the method by means of 

extension patterns. A pattern is a component that describes a recurrent 

problem [15], which helps to identify the extension situation, and is defined 

with its associated solution (the guidelines to be followed when the pattern is 

applied). Specifically, this solution embodies the process chunk that is to be 

applied on a particular product [15]. 

In view of this definition of the pattern concept, one may think that the 

process of extending a method is somewhat similar to the assembly of method 

fragments. Actually the main difference lies in the nature of the components 

that participate in the assembly or the extension. In the former case, the 

components (i.e. the method fragments/chunks) can be directly used, whereas 
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in the latter they cannot, that is, they have to be generated from the generic 

patterns. 

 

Fig. 2.3. Extension-based approach (from [69]) 

Fig. 2.3 shows the map representing the process underlying the extension-

based approach. Even though this approach is the less common of the three 

approaches, it also presents important advantages. For instance, it is oriented 

towards guiding the method engineer during the performance of method 

extensions, which means that it is an adequate approach for performing the 

adaptation of methods to context needs, one of the main goals of Method 

Engineering. 

An example of proposal that suggests the use of patterns for performing 

method extensions is [15]. Specifically, this work proposes a set of generic 

patterns for introducing temporal features (such as time constraints) to object 

oriented models. 

2.1.4. General discussion 

Method Engineering has a disparate history since many different approaches 

have been proposed over the past twenty years. However, all these approaches 

share a common goal: assisting the method engineer during the definition of 

methods and their adaptation to the context needs. In order to reach this goal, 

most proposals advocate for the assembly-based approach, but others promote 

other approaches, such as the paradigm-based or the extension-based. 

Together, all these proposals have contributed to establish a solid and wide 

theoretical basis in the area of Method Engineering. However, in spite of this 

sound basis, there still remains a need for a Method Engineering proposal 

that takes all the method dimensions into account together. Currently, 

most of the Method Engineering proposals only focus on the product 
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dimension (the products to be constructed during the method) and the process 

dimension (the process to be followed to obtain the products), but other 

dimensions are also important. These dimensions are basically the tool 

dimension (the software tools that provide support to the product and process 

dimensions) [83], and the people dimension (the agents that make use of the 

tools in order to develop the method products following the method process) 

[41]. 

This problem has already been noted in other works such as [43]. In order 

to fill this gap, the methodological framework presented in this master‟s thesis 

covers all these four dimensions of methods, as will be shown in chapter 3. 

2.2. Method Engineering Languages 

Meta-modeling is considered by the Method Engineering community as “the 

core technique in Method Engineering” [69] as it provides an effective way to 

formalize the abstract syntax of the language that establishes the concepts, 

constraints and rules that are applicable in the construction of the software 

production methods. In particular, this subsection presents a survey of some 

of the most significant languages that have been proposed during the last two 

decades. For each of these languages a brief overview is given, and later in 

section 2.3, tools supporting them are described. 

2.2.1. ASDM 

The semantic data model notation ASDM [42] is a forerunner of current 

Method Engineering languages and yet it provides a powerful means for 

representing ISD knowledge. Furthermore, it represents the first attempt to 

define method semantics, as noted in [56]. An overview of the meta-model is 

presented in Fig. 2.4. 



37 

 

 

Fig. 2.4. ASDM meta-model (from [42]) 

As shown in Fig. 2.4, the MERET Object is the most general object type. A 

MERET object can be either a methodology object or a guideline object. On 

the one hand, methodology objects embrace all description objects for the 

specification of a method: techniques (used to develop products), actors, 

milestones, processes, etc. Processes can be either phases or activities 

(elementary units of work). On the other hand, guideline objects reflect the 

more dynamic part of the method knowledge. For instance, a guideline can be 

a textual notice representing experiences from applying a specific part of the 

method, or an integrity rule represented as a horn clause. 

In general, the ASDM meta-model provides adequate concepts for 

specifying software production methods in a product-oriented fashion. 

Furthermore, it provides a graphical notation that facilitates method 

comprehension. However, it just embodies a first step towards Method 

Engineering since it presents important deficiencies. For instance, it provides 

poor support to the specification of the process part of methods, which 

negatively affects the possibility of building complete CASE environments 

from ASDM method specifications. 
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2.2.2. GOP(P)RR 

The GOPRR conceptual data model [46] is a Method Engineering language 

that has been specially designed to support the definition of techniques that 

can be used for the manipulation of the method products. In other words, it 

supports the definition of modeling languages, such as ER, DFD, UML Class 

Diagram, etc. 

The name GOPRR is an acronym that stands for the metatypes the 

language operates on: Graph, Object, Property, Role and Relationship. This 

metatypes and their relationships are graphically illustrated in Fig. 2.5. 

 

Fig. 2.5. GOPRR meta-model (from [34]) 

In particular, these concepts represent the following: 

 Graph: A graph is a collection of objects and relationships among 

these objects via roles. An example of graph is a UML class diagram. 

 Object: An object is an element that can be placed on its own in a 

graph. An example of object is a Class that belongs to an UML class 

diagram. 

 Relationship: A relationship is an explicit connection between two or 

more objects. Relationships attach to objects via roles. An example of 

a relationship is an Association of a UML class diagram. 
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 Role: A role specifies how an object participates in a relationship. 

 Property: A property is a describing or qualifying characteristic 

associated with the other types. An example of property is an 

Attribute that belongs to an UML class diagram. 

Furthermore, the notion of Port is included in the GOPPRR language [51], 

which represents an evolution of the GOPRR language. Specifically, a port is 

an optional specification of a specific part of an object to which a role can 

connect. Normally, roles connect directly to objects, and the semantics of the 

connection are provided by the role type. If you want a given role type to be 

able to connect to different places on an object with different semantics, you 

can add ports to the object‟s symbol. 

To summarize, the GOPRR and GOPPRR languages represent an adequate 

means for defining modeling notations that can be later used in an integrated 

CASE environment for creating and manipulating method products. However, 

this approach presents important lacks. While the CASE tools obtained from 

GOP(P)RR specifications may provide complete support to the manipulation 

of method products, they overlook important aspects of ISD such as process 

enactment and code generation. 

2.2.3. MEL and MDM 

The Method Engineering Language (MEL) [12] is a formal representation 

language that provides concepts and constructs for the textual description, 

selection and manipulation of method fragments. On the one hand, it provides 

syntactic constructs to compose from activities complex processes such as 

sequential execution, conditional branch, iteration, parallel execution and non-

deterministic choice. On the other hand, it provides constructs for the detailed 

specification of the products that these processes need as input and deliver as 

output. 

Furthermore, the semantic aspects of the product fragments can be 

specified by anchoring the fragment descriptions to an ontology, described by 

means of the Methodology Data Model (MDM) [35]. Anchoring means that a 

method fragment is described in terms of well-defined basic concepts and 

associations between those concepts. In particular, the MDM ontology 

provides the following concepts (CN0) and associations (A0): 
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 CN0 = {Activity, Actor, Association, Attribute, Attribute Type, Benefit, 

Business Area, Channel, Communication Protocol, Condition, Cost, 

Critical Success Factor, Data Flow, Data Collection, Decision, 

Dialogue, Event, External Entity, Field, Function, Goal, Group, 

Location, Node, Object, Object Class, Opportunity, Organizational 

Unit, Problem, Requirement, Role, Rule, Solution, State, Strength, 

System, Threat, Transition, Weakness} 

 A0 = {Abstraction, Aggregation, Alternative, Balance, Base, 

Capability, Change, Choice, Component, Connection, Constraint, 

Consumer, Contents, Dependence, Description, Effect, Employment, 

Expression, ExternalOutput, Imposition, Input, Interaction, 

Involvement, Manipulation, Message, Output, Performance, Place, 

Price, Producer, Product, Request, Resource, Responsibility, Screen, 

Site, Specialisation, Support, TransitionTrigger, Trigger, Usage} 

In summary, MEL can be considered as a complete Method Engineering 

language. It provides constructs for the definition of both products and 

process fragments, and also for their manipulation and assembly. 

Furthermore, it partially covers the method people dimension through 

predefined property types such as “creator” and “responsible”. Unfortunately, 

the high amount of properties and concepts make it hard to learn, and its 

textual nature hinders the understanding of the developed methods. 

2.2.4. MRSL and MVM 

The Method Requirements Specification Language (MRSL) [31] is a textual 

language for specifying method requirements in a technology-independent 

fashion. The main objective of this language is to enable method engineers to 

express method requirements in simple terms, avoiding the need to have 

expert knowledge about meta-models and how to instantiate them. These 

requirements can be later used to (semi)automatically obtain the final method 

specification and the CASE tool support. 

MRSL is based on the Method View Model (MVM) meta-model, which is 

presented in Fig. 2.6. MVM method concepts are called things, and are 

partitioned into product entities, links and constraints. A link is any thing that 

connects two product entities together. Constraints are those things that can be 
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used by software engineers to specify properties of links and product entities. 

Finally, any thing that is not a link or a constraint is a product entity. 

 

Fig. 2.6. MVM meta-model (from [31]) 

In particular, this language is similar to the GOPRR and GOPPRR 

languages, in the sense that it supports the definition of modeling languages 

such as DFD, ER, etc. but not the definition of complete software production 

methods. Therefore, the CASE environments that can be obtained from 

method specifications that follow this language overlook important aspects of 

ISD such as process enactment and code generation. 

2.2.5. NATURE 

The NATURE3 modeling formalism [74, 77] consists of a set of generic 

concepts and their relationships for constructing methods from a process 

perspective, and was designed with a certain philosophy in mind: process 

models must be contextual, that is to say, the process model must allow users 

to switch context in a flexible and easy manner. Specifically, a context is 

composed of the situation that is perceived by the method engineer and the 

specific intention (or decision) he/she has in mind. The NATURE meta-model 

(see Fig. 2.7) addresses these issues by making the notions of situation, 

decision and context explicit. 

                                                           

3 Novel Approaches to Theories Underlying Requirements Engineering 
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Thereby, the notion of context constitutes the basic building block of 

NATURE process models. Contexts are defined as couples <situation, 

decision> that can be linked repeatedly in a hierarchical manner to define 

trees. A tree represents a structured piece of knowledge for supporting 

decision making in the process. In other words, it is a process fragment which 

aims at assisting the method engineer in making the most appropriate decision 

for the situation at hand. Finally, a collection of trees (i.e. hierarchies of 

contexts) is referred to as a forest, which represents the method. 

 

Fig. 2.7. NATURE meta-model (from [77]) 

To summarize, the NATURE approach represents a powerful means for 

specifying modular ISD processes that are easy to adapt to context changes 

and to assemble between each other to compose bigger processes. However, it 

must be used in combination with a product meta-model in order to specify 

complete software production methods. Furthermore, this approach does not 

support the people and tool dimensions of methods. 
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2.2.6. SPEM 2.0 

In view of the diversity of Method Engineering languages that was emerging 

in the literature, the OMG4 proposed the definition of a formal framework for 

the definition of software production methods and their components. The 

result is the standard language SPEM (Software & Systems Process 

Engineering Meta-Model) [87]. Specifically, this section focuses on its 

version 2.0, released on April 2008. 

The SPEM 2.0 meta-model is structured into seven main meta-model 

packages as depicted in Fig. 2.8. In general, meta-model classes are 

introduced in lower packages as simply as possible, and then, they are 

extended in higher packages via the merge mechanism. By means of this 

mechanism additional properties and relationships can be added in order to 

realize more complex process modeling requirements. 

 

Fig. 2.8. Structure of the SPEM 2.0 meta-model (from [87]) 

                                                           

4 Object Management Group, http://www.omg.org/ 
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 Core: This package contains the classes and abstractions that build the 

base for classes in all other meta-model packages. 

 Process Structure: It contains the base classes for all process models. 

Specifically, a SPEM 2.0 process is represented by a breakdown 

structure composed of Activities that reference the performing Role 

classes and the input/output WorkProduct classes. Furthermore, it 

provides mechanisms for process reuse, e.g. process patterns. 

 Process Behavior: This package contains the classes that enable the 

use of behavioral models for extending the static breakdown structures 

built by means of the Process Structure package. However, it does not 

define its own behavior modeling approach, but rather provides „links‟ 

to existing externally-defined behavior models. For example, a process 

defined with the Process Structure concepts can be linked to UML 2 

Activity diagrams that represent the behavior of such process. 

 Managed Content: It contains classes for managing the textual 

documentation of processes (i.e. it enables the association of guidance 

elements with process structure elements). For instance, a SPEM 2.0 

process can be comprised of a combination of instances of the 

Guidance class with a process structure using the relationships defined 

in this package. 

 Method Content: This package defines the core elements of every 

method such as Roles, Tasks, and Work Products. Then, processes 

would reuse these method content elements and relate them into 

partially-ordered sequences that are customized to specific types of 

projects. As a result, SPEM methods provide a clear separation of 

method content definitions and development processes. 

 Process With Methods: This package provides the classes that are 

needed to integrate (i.e. reference) method content into the processes 

defined using the Process Structure package. These classes can store 

the changes made to the method content classes that only apply in the 

specific process. 

 Method Plugin: This package introduces concepts for managing 

maintainable, large scale, reusable and configurable libraries or 

repositories of method content and processes. 

In general, SPEM represents an adequate language for Method Engineering 

since it not only covers the product and process dimensions of methods but 
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also the other two, people and tool (by means of primitives such as Role, 

RoleSet and ToolDefinition.). Furthermore, it is oriented towards the modular 

definition of ISD processes, facilitating their assembly from existing parts (a 

characteristic that is directly related to the Method Engineering principles). 

However, industry adoption is being slow mainly due to the lack of 

supporting tools. 

2.2.7. ISO/IEC International Standard 24744  

The ISO/IEC 24744 [45] is an International Standard that defines a meta-

model for the technology-independent specification of development 

methodologies in any area, although it is weighed towards software 

development methodologies. Its scope covers, inter alia, concepts such as 

work units, work products, producers, stages and model units (see Fig. 2.9). 

In addition to the meta-model, a graphical notation is provided to allow 

method engineers to represent complete methods using graphical constructs. 

 

Fig. 2.9. Overall architecture of ISO/IEC 24744 (from [40]) 

One of the main novelties of the standard is the introduction of the 

powertype pattern concept of Odell [27, 28, 29, 40, 59] as a core element in 

the meta-model. Specifically, a powertype pattern is a pair of elements. The 
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instances of one of them reside in the method domain and the others in the 

enactment domain. The elements in the enactment domain represent actual 

elements in use by the people on a particular project (e.g. actual tasks). On the 

other hand, the elements in the method domain represent method elements as 

they are specified in the model (e.g. instances of the meta-class Task). The 

main advantage of this approach is that it allows some attributes of the 

powertype to be inherited by the element in the method domain with values 

already allocated to them, while others remain “traditional” attribute 

specifications that get their value in the enactment domain. 

In summary, this language embodies another standardization effort in the 

field of method definition. It represents a rather complete language for 

Method Engineering since it covers the process, product and people 

dimensions of methods. One of its distinctive characteristics is that it provides 

primitives for specifying elements that reside either on the instance level (i.e. 

enactment level) or the method level. This approach allows some attributes 

defined in the meta-model to be given values in any of both levels. 

2.2.8. General discussion 

This survey illustrates that there is a wide diversity of languages and all of 

them have their advantages and drawbacks. This conclusion is also drawn in 

several studies, such as [34] and [57]. These studies conclude that there is not 

ultimate Method Engineering language and, therefore, the choice of the 

language depends on the specific purpose and goals that one wants to achieve. 

In order to contribute to improve this situation, standardization efforts are 

being made, e.g. the SPEM [87] and ISO/IEC 24744 [45] initiatives. These 

standards aim to provide languages dedicated to method specification that do 

not present the deficiencies found in previous proposals.  

Unfortunately, while these standards represent adequate means to perform 

the definition of software production methods, Method Engineering 

proposals that make use of these standards are still non-existent. Indeed, 

in [41] it is predicted that one of the likely topics for research initiatives in the 

next years will be a new generation of CAME tools based on internationally 

standardized methodology meta-models. 
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In order to fill this gap, the methodological framework presented in this 

master‟s thesis proposes the use of the SPEM standard for the construction of 

the method specifications. Specifically, chapter 3 describes in detail how these 

specifications are built and how they are later used for the (semi)automatic 

generation of the CASE tool support. Then, chapter 4 gives implementation 

details of a CAME environment that supports these tasks. 

2.3. Method Engineering Tools 

The Method Engineering lifecycle is a complex and error-prone process that 

cannot be properly performed without automated tool support. The first 

Method Engineering supporting tools date back to the early days of Method 

Engineering, when the first academic prototypes were first introduced [57]. 

In general, there are two different types of tools: Computer Aided Method 

Engineering (CAME) environments [3, 35, 48, 78, 81] and MetaCASE tools 

[19, 44, 49, 50, 73]. Specifically this subsection presents, for each of these 

categories, a brief description and a survey of some of the most significant 

tools that have been developed during the last two decades. 

2.3.1. Computer Aided Method Engineering (CAME) 

Computer Aided Method Engineering (CAME) environments aim at 

supporting the definition of software production methods by means of 

languages such as NATURE or ASDM (see section 2.2). Thus, CAME 

environments are mainly focused on the method design phase of the Method 

Engineering lifecycle. 

Fig. 2.10 illustrates the general architecture of CAME environments. As 

shown in the figure, CAME environments are made up of two parts: (1) the 

CAME part and (2) the CASE part. 
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Fig. 2.10. General architecture of CAME environments (from [57]) 

On the one hand, the CAME parts offers facilities for method definition. 

Some examples of the functionalities that must be provided in this part are the 

following: 

 Storage of method fragments/chunks in a repository (typically called 

Method Base). 

 Definition of properties that enable the search and retrieval of method 

fragments/chunks from the repository. 

 A query language for accessing the contents of the repository. 

 Composition of method fragments/chunks. 

 Support and guidance for the method engineer. 

On the other hand, the main goal of the CASE part is to produce CASE 

tools and process support environments that enable the enactment of the 

method specified in the CAME part. For this purpose, the CASE part takes the 

method specification as input and offers means to manually or semi-

automatically produce these tools. 

MERET 
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The Methodology Representation Tool (MERET) [42] can be seen as the first 

approach towards a CAME tool for the specification, storage and further 

development of ISD knowledge. Specifically, it supports the specification of 

methods in a product-oriented fashion by means of the semantic data model 

ASDM, which is detailed in section 2.2.1. In addition, it addresses the 

integration of integrity rules and consistency checks on the method 

specifications. 

One of the main drawbacks of this tool is that it only supports the 

specification of software production methods, lacking CASE tool generation 

capabilities. Furthermore, due to the product-oriented nature of ASDM, it 

provides poor support for defining the process dimension of methods. 

Decamerone 

Decamerone [33] is a CAME tool that provides facilities for specifying, 

storing and selecting method fragments, and for assembling them into a 

method. To perform these tasks, the tool provides the language MEL, 

described in section 2.2.3. 

Fig. 2.11 shows the architecture of decamerone, which is divided into two 

parts: the CAME part and the CASE part. On the one hand, the CAME part is 

dedicated to the method design and contains the following components: 

 The user interface: provides the required tools to perform the 

specification, selection and assembly of method fragments by means of 

the language MEL. 

 Method Base Management System (MBMS): is the kernel of 

Decamerone. It provides the operations that are necessary to interact 

with the Method Base repository. 

 The MEL interpreter: translates MEL specifications into MBMS 

function sequences. 

On the other hand, the CASE part contains the required tools for the 

enactment of the method: a CASE tool repository, a process manager and a 

user interface that provides the editors that enable the system specification. 
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Fig. 2.11. Architecture of Decamerone (from [33]) 

In summary, Decamerone is a rather complete CAME environment. It 

supports the definition of methods by means of the MEL language, which not 

only allows the method engineer to define product and process fragments but 

also offers constructs for their manipulation (selection, storage, assembly, 

etc.). Furthermore, Decamerone supports the definition of the semantics of 

method fragments by means of the MDM ontology, and the generation of 

CASE tools that support both the product and process parts of methods. 

However, it also presents some deficiencies. For instance, it provides a poor 

graphical meta-model, and the textual nature of MEL complicates the 

understanding of the specified methods. In addition, the generated CASE tools 

lack code generation capabilities (i.e. the creation of method products by 

means of automatic tasks). 

MENTOR 

MENTOR [61, 84] is a CAME environment that aims at improving the 

productivity of method engineers by facilitating the construction of project-

specific methods. It is based on the NATURE contextual approach, which is 

described in section 2.2.5. 

Fig. 2.12 illustrates the architecture of MENTOR, which is composed of 

four main components: 
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 The Method Engineering Environment: this component contains 

viewers, editors and a generator. The viewers allow the method 

engineer to browse method fragments. The editors enable the graphical 

description of both product and process parts of methods. Finally, the 

generator aids in the automatic instantiation of predefined generic 

patterns. 

 The Application Engineer Environment: this component represents 

the CASE part of MENTOR and contains the product editors that 

permit the development of the system specification. Furthermore, it 

contains a traceability tool that keeps track of product and process 

traces, and a process change manager that keeps coherent the element 

used during the process enactment when the process is modified. 

 The Guidance Engine: this is the core component of MENTOR. It 

guides the method engineer in the performance of the Method 

Engineering tasks and enables the enactment of the specified process 

model. 

 The repository: is structured in three levels that are interrelated: (1) 

the meta level, (2) the method level and (3) the workspace level. These 

levels contain respectively the product and process meta-models, 

method fragments, and process models and products under 

development. 

 

Fig. 2.12. Architecture of MENTOR (from [84]) 
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To summarize, MENTOR is one of the most complete CAME tools. First 

of all, it supports the specification of method requirements, which is usually 

overlooked in most CAME environments. Furthermore, it supports both the 

assembly-based and paradigm-based approaches for method specification, and 

the construction of CASE tools that support the specified methods. However, 

it also presents some drawbacks. For instance, the generated CASE tools lack 

code generation, since they are only composed of product editors, a 

traceability tool and a process change manager. Furthermore, its graphical 

design is not intuitive, which negatively affects its usability. 

Method Editor 

Method Editor [81] is a CAME environment that uses UML as its meta-

modeling language. In particular, the product part of methods is specified by 

means of the UML Class Diagram and the process part by means of the UML 

Activity Diagram. The specified methods are used by a diagram generator 

and a navigator generator. These tools perform the generation of the CASE 

environment that supports the method. This CASE tool is composed of a 

series of diagram editors that enable the creation and manipulation of the 

method products and browsing pages that guide the software engineer through 

the enactment of the method process. 

In summary, Method Editor is one of the few CAME environments that 

support standard techniques such as UML. It is rather complete since it 

supports the specification of methods and the generation of CASE tools. 

Moreover, it provides a very intuitive graphical design. However, the main 

drawback of Method Editor is that, even though it supports CASE tool 

generation, these CASE tools only contain graphical editors that enable the 

creation/manipulation of the method products, and navigation pages that guide 

through the method process. Other aspects such as code generation or 

consistency checkers should be considered. 

2.3.2. MetaCASE 

Traditional CASE tools provide support to a single software production 

method. However, one fixed method simply cannot work for all software 

development projects and organizations as they differ significantly from one 

another and evolve over time [50]. Therefore, CASE environments should be 



53 

 

adapted to meet the context needs, but this is not possible because the tools 

that support the methods are “hard-coded” in the environment. 

The metaCASE technology aims at solving this problem. To achieve this 

goal, metaCASE tools add an additional level above the method level (see 

Fig. 2.13) in order to provide the ability to specify at a high level of 

abstraction the tools that are required to support the method, and then generate 

the CASE environment from these specifications.  

As a result, unlike CAME environments (which are focused on the method 

design), metaCASE tools concentrate on the CASE tool construction (the 

method implementation phase of the Method Engineering lifecycle). 

 

Fig. 2.13. CASE tool versus metaCASE tool 

MetaEdit+ 

MetaEdit+ [46] is, up to our knowledge, the only Method Engineering tool 

that has been commercialized. It is a metaCASE environment based on the 

conceptual data model GOPPRR, described in section 2.2.2. By means of this 

language, MetaEdit+ enables the specification at a high level of abstraction of 

the modeling languages (in MetaEdit called “methods”) that have to be 

supported by the CASE tool under construction. 

MetaEdit+ consists of several tool families. In particular, the family of 

tools that enable the specification of methods is the Method Management 

Tools family (see Fig. 2.14). This family is composed of the following tools:  
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Fig. 2.14. Method Management Tools in MetaEdit+ (from [46]) 

 The Method Base: this repository stores method fragments and the 

symbols used for representing object types. 

 The Method Assembly System: consists of the specialized tools that 

are needed for method assembly, such as meta-model editors, which 

allow the method engineer to specify methods by means of the 

GOPPRR language. 

 The Environment Generation System: this system consists of the 

generators that take as input the method specifications and deliver the 

CASE tools. 

In general, MetaEdit+ embodies an efficient solution for defining your own 

modeling languages. It is easy to use, well documented and has an intuitive 

graphical design. However, MetaEdit+ (and all metaCASE environments in 

general) falls short in providing adequate support to Method Engineering. 

This is due to the fact that these tools are focused on supporting CASE tool 

construction and overlook one fundamental aspect of Method Engineering: 

the definition of software production methods. 

MERU 

The Method Engineering Using Rules (MERU) metaCASE environment [31] 

offers the method engineer the textual language MRSL, which is built upon 
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the MVM meta-model (see section 2.2.4). This language allows the method 

engineer to specify the method requirements in a technology-independent 

fashion. The document that is produced is called Method Requirements 

Specification (MRS) and is used to (semi)automatically obtain the final 

method specification and finally the CASE tool support. 

MERU, like MetaEdit+, embodies an adequate tool for supporting the 

definition of modeling languages. Specifically, it provides a high number of 

features, such as process enactment support and method requirements 

specification. However, it lacks the possibility to specify software production 

methods that can assist the execution of real ISD projects. 

2.3.3. General discussion 

The survey presented in this section shows that in many Method Engineering 

initiatives CAME and metaCASE tools are developed in order to provide 

software support to their proposals. However, CAME and metaCASE 

technology is still immature, since most of these environments just represent 

incomplete prototypes that have only been used for academic purposes [57]. 

The main problem with these tools is that, in general, CAME and 

metaCASE environments provide inadequate coverage of the Method 

Engineering lifecycle. The main reason for this is that, on the one hand, 

CAME environments generally focus on the method design and, on the other 

hand, metaCASE environments concentrate on the method implementation. 

That is to say, CAME tools usually provide rich ways to specify software 

production methods but offer limited (or non-existent) CASE tool generation 

capabilities. On the other hand, metaCASE tools provide adequate means for 

building CASE environments but lack the possibility to define software 

production methods that can be enacted in real projects. 

In order to fill this gap, the methodological framework presented in this 

thesis equally encompasses the method design and the method 

implementation. Therefore, the CAME environment that has been developed 

to support the proposal not only provides means for performing the definition 

of software production methods, but also for (semi)automatically obtaining 

the CASE tool support. 
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2.4. Conclusions 

The survey presented in this chapter illustrates that the Method Engineering 

literature is very extensive. In particular, some of the most significant Method 

Engineering approaches, languages and tools have been presented and the 

following shortcomings have been identified: 

Shortcoming 1. There still remains a need for a Method Engineering 

proposal that takes all the method dimensions into account together (i.e. 

the product, process, tool and people dimensions). Most of the existing 

proposals cover the product and process parts of methods, but the tool 

and people dimensions are almost completely overlooked. 

Shortcoming 2. Method Engineering proposals that make use of standards 

for method definition (such as SPEM and ISO/IEC 24744) are still non-

existent. 

Shortcoming 3. CAME and metaCASE environments provide inadequate 

coverage of the Method Engineering lifecycle. In general, CAME 

environments focus on the method design and metaCASE 

environments on the method implementation. 

The methodological framework proposed in this master‟s thesis addresses 

these shortcomings. Specifically, it proposes the use of the SPEM standard for 

performing the method design (shortcoming 2). This standard adequately 

supports the definition of methods that cover the product, process and people 

dimensions. The tool dimension is covered by means of the use of technical 

fragments [35] (shortcoming 1). Furthermore, in order to equally encompass 

the method design and implementation (shortcoming 3), the framework is 

founded on an MDD infrastructure that is based on meta-modeling and model 

transformation techniques. The meta-modeling techniques enable the 

definition of methods as models, and the model transformations enable to 

(semi) automatically obtain CASE tools from these models. 
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3. A Methodological Framework 

to support Model Driven Method 

Engineering 

 

Since the advent of Method Engineering many authors have proposed 

different approaches to tackle the design and implementation of software 

production methods. The problem with these approaches is that most of them 

only focus on one of these tasks, making hard the achievement of the Method 

Engineering as a whole. On the one hand, the proposals that mainly 

concentrate on the method design (e.g. [10, 37, 52, 69]) provide rich ways to 

design methods, but limited (or not-existent) CASE tool generation 

capabilities. On the other hand, the proposals that mainly focus on the method 

implementation (e.g. [20, 30, 46, 73]) provide efficient alternatives to 

customize CASE tools, but lack the possibility to design software production 

methods. Unlike these approaches, the methodological framework proposed in 

this chapter equally encompasses the method design and the method 

implementation phases of the Method Engineering lifecycle. In order to 

support these phases in an effective manner, the methodological framework is 

based on an MDD infrastructure [4]. This infrastructure formalizes in a meta-

model the concepts that are available for defining methods and provides 

model transformation techniques to support the definition of mappings from 

method specifications to the CASE tools that support them. 

This chapter has been structured as follows: first, section 3.1 gives an 

overview of the methodological framework. Then, section 3.2 presents the 

framework in detail (the MDD infrastructure the framework is built upon, and 

the framework phases). Finally, section 3.3 concludes the chapter. 
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3.1. Methodological Framework Overview 

This section provides an overview of the various phases that compose the 

methodological framework introduced in this chapter. These phases are the 

method design, the method configuration and the method implementation (see 

Fig. 3.1). In this methodological approach a combination of the assembly and 

paradigm-based approaches presented in chapter 2 (section 2.1) has been 

adopted to face the definition of methods. Specifically, this definition is 

carried out by means of the SPEM standard [87], which is also described in 

chapter 2 (section 2.2.6). 

 

Fig. 3.1. Overview of the methodological framework 

Method design 

During this phase, the method engineer builds the model of the method using 

SPEM. This model is composed of two parts: the product part and the process 

part5. The product part represents the artifacts that developers should 

construct during the execution of a project, and the process part represents the 

procedures that developers must follow to construct such products. The 

construction of the method model can be performed from scratch or reusing 

method fragments stored in a Method Base repository that is implemented 

                                                           

5 The people dimension can be also specified by means of the SPEM primitives: Role and 

RoleSet. 
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following the RAS standard [72]. Specifically, the model resulting from this 

phase constitutes a first version of the method that includes the elements that 

compose the method (tasks, products, roles, guides, subprocesses, etc.) but no 

details about the technologies and notations that will be used during its 

execution are specified. For instance, the method engineer can specify a 

generic product called “Business Process Model”, without stating in which 

notation this product will be created when the method is executed. 

Method configuration 

In this phase, the method model is instantiated with the specific technologies 

and notations that will be used during the method enactment. This 

instantiation is achieved by associating tasks and products with editors, 

transformations, etc. that are stored as reusable assets6 in a repository called 

Asset Base (also implemented following the RAS standard). These assets 

determine how the method elements will be managed in the final tool. For 

instance, the product “Business Process Model” can be associated with a 

“BPMN graphical editor”. Thus, the method engineer is indicating that this 

editor must be included in the generated CASE tool, so that it enables the 

creation and manipulation of this particular product.  

The main benefit of separating the construction of the method model in two 

phases (i.e. the method design and the method configuration) is that it stresses 

the importance of reusability, since generic definitions of methods can be 

stored and then perform different method configurations according to each 

particular target project or team. 

Method implementation 

During this phase, the method model is used as input of a model 

transformation that generates the CASE tool support. This tool provides 

support to both the product and process parts of the method. On the one hand, 

the product support consists of the tools that enable the creation/manipulation 

of the method products (i.e. the reusable assets associated to the method tasks 

and products in the previous phase). On the other hand, the process support 

consists of a process engine that enables the method process execution. 

                                                           

6 These assets represent the tool dimension of the method. 
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3.2. Methodological Framework 

This section presents in detail the methodological framework. First, it details 

the framework MDD infrastructure, and then each of the framework phases. 

3.2.1. Foundations 

This section details the MDD infrastructure that lays the foundations of the 

methodological framework. In particular, this infrastructure is based on meta-

modeling and model transformation techniques that allow method engineers 

to perform the design and implementation of methods. 

Meta-modeling 

Meta-modeling has always played a key role in the Method Engineering field 

as it allows the definition at a high level of abstraction of the concepts, 

constraints and rules that are applicable in the method definition. 

The use of meta-modeling in Method Engineering has already been 

discussed in other works such as [29], [36] and [38]. In general, proposals that 

focus on the method design phase usually use meta-modeling as their 

underlying technique to define the method specifications [11, 42, 52]. On the 

other hand, proposals that focus on the method implementation use these 

techniques to specify the design notations that are to be supported by the 

generated tools [30, 46, 73]. 

In the proposal presented in this thesis, meta-modeling techniques are also 

used for the creation of the method model, in particular following the SPEM 

standard. A study about the applicability of SPEM to Method Engineering is 

presented in [58]. In this work, the authors present some of the SPEM 

advantages and disadvantages for supporting the method design. Among the 

SPEM advantages, in this work are of special interest: (1) wide acceptance in 

the field of process engineering, (2) good Method Engineering process 

coverage, (3) support to both product and process parts of methods, and (4) 

good abstraction and modularization of processes. Regarding its 

disadvantages, [58] points out the lack of executable semantics, but proposes 

to overcome this limitation by using a model transformation to transform the 
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process models into executable representations that can be executed by 

workflow engines. 

In order to provide a more in-depth view on how the SPEM meta-model is 

used in this proposal, below the structure of the method fragments from which 

SPEM models can be assembled is presented in detail. In general, in the 

Method Engineering proposals that suggest the use of method fragments, 

these are obtained by instantiating some class of a meta-model. For instance, 

in the OPEN Process Framework [21] method fragments are generated by 

instantiation from one of the top levels classes: Producer, Work Product and 

Work Unit [41]. Specifically, next subsection details the SPEM classes from 

which method fragments can be created and, furthermore, it presents a 

taxonomy that classifies the different types of fragments that are used in the 

proposal. 

Method fragments 

The term method fragment is used in this work to denote the atomic element 

from which methods can be assembled. Specifically, two different types of 

method fragments are considered: product fragments and process fragments. 

This differentiation offers several advantages, such as (1) leveraging the 

separation between product and process specification provided by SPEM
7
. 

Furthermore, it provides the possibility (2) to relate one process fragment with 

many product fragments and (3) to reuse one product fragment in the 

definition of many process fragments. 

Attending to the different phases identified in the methodological 

framework, a third type of fragment is actually used. This fragment is called 

technical fragment, term that was first proposed in [35]. Specifically, these 

fragments contain the tools that are associated to the products and tasks of the 

method during the method configuration and that make up the infrastructure 

of the generated CASE tools (i.e. they correspond to the reusable assets of the 

Asset Base). 

                                                           

7 In order to use the same terminology as the used in the Method Engineering field, in this work 

the product-process separation of methods and the SPEM separation between method content 

and method process are considered analogous. 
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Fig. 3.2. Relationship between method fragments and SPEM classes 

In order to illustrate the hierarchical organization of the various types of 

fragments, the left side of Fig. 3.2 graphically presents the fragment 

taxonomy. In this taxonomy, the new abstract category conceptual fragment 

(also proposed in [35]) is introduced for grouping product and process 

fragments. Moreover, additional information has been included, e.g. the 

relationship “contains” between process fragments represents the fact that 

SPEM processes can contain nested subprocesses, and the relationship “Uses” 

that one process fragment can reference from one to many product fragments. 

On the other hand, the right side of Fig. 3.2 shows a very simplified view of 

the SPEM meta-model. In SPEM, a method is represented by a MethodPlugin, 

which contains both ContentPackages and ProcessPackages. Within content 

packages, Tasks, Roles and WorkProducts are stored. Within process 

packages processes are stored as instances of the class ProcessComponent. 

Note that some of these SPEM concepts have been associated with 

fragments of the taxonomy. These associations illustrate a containment 

relationship. For instance, process fragments are associated with one 

ProcessComponent. This represents that, when process fragments are stored 

in the repository, they contain a SPEM model that includes one instance of the 

class ProcessComponent. Furthermore, product fragments are associated with 

ContentElements, which represents that these fragments can contain any 

instances of Task, Role, and WorkProduct. 
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Finally, even though it has been omitted in Fig. 3.2, method fragments are 

defined by a series of properties that enable their later retrieval from the 

repository. These properties are stored in the manifest file of the RAS asset 

that embodies the fragment. Specifically, some of the properties defined in 

[68] have been used. According to these properties, our method fragments are 

characterized by: 

 Descriptor: it contains general knowledge about the fragment. For now, 

it is composed of the attributes origin, objective and type. Some 

examples of valid types in our proposal are task, role and work product 

for product fragments that contain atomic elements, or meta-model, 

editor, model transformation and guide for technical fragments. 

 Interface: it describes the context in which the fragment can be reused. 

For now, it is only composed of the attribute situation. 

Model transformations 

In the previous subsection we showed that the application of meta-modeling 

in the Method Engineering field is not new. However, the Method 

Engineering approaches that make use of these techniques do not really take 

advantage of the possibilities that MDD offers. As stated in [4], “the 

application of MDD techniques improves developers‟ short-term productivity 

by increasing the value of primary software artifacts (i.e. the models) in terms 

of how much functionality it delivers”. Following this statement and contrary 

to what current Method Engineering approaches do, the framework presented 

in this chapter leverages models going one step further. Defining the method 

as a model and considering this model as a software artifact permits to face 

the implementation of the generation of CASE tools by means of model 

transformations. 

In particular, these transformations have been implemented in the CAME 

environment that supports the proposal as a single M2T transformation using 

the XPand language [92], which is the language used within the context of the 

MOSKitt project. Further details about this transformation are provided in the 

end of section 3.2.2 (method implementation) and chapter 4. 
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3.2.2. Phases 

This section details the phases in which the methodological framework has 

been divided. As illustrated in section 3.1, these are the method design, 

method configuration and method implementation. 

Method design 

During the method design the method model is built using the SPEM 

standard. The construction of this model is performed by means of a 

combination of two of the approaches proposed in [69]: (1) the paradigm-

based and (2) the assembly-based. In order to illustrate how these approaches 

are applied in the framework, the Map process meta-model proposed in [79] is 

used. 

The paradigm-based approach 

Fig. 3.3 shows how the method model is built following the paradigm-based 

approach. The hypothesis of this approach is that the new method is obtained 

either by abstracting from an existing model or by instantiating a meta-model. 

This starting model is called the paradigm model. Specifically, in this 

proposal method models are built by instantiating a meta-model (i.e. the 

SPEM meta-model). 

 

Fig. 3.3. Paradigm-based approach (adapted from [69]) 

As shown in the figure, the construction of the method model is performed 

in two steps: first, the method engineer builds the product model (i.e. the 

products, roles, etc. that compose the SPEM method content). Secondly, the 

method engineer builds the process model (i.e. the process component that 
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composes the SPEM method process). In addition, backtracking to the 

construction of the product model is possible when building the process 

model thanks to the refinement strategy. 

The assembly-based approach 

Fig. 3.4 shows how the assembly-based approach is carried out. This process 

is followed when the method engineer wants to reuse product or process 

fragments stored in the Method Base during the construction of the method 

model. 

 

Fig. 3.4. Assembly-based approach (adapted from [69]) 

As shown in the figure, the fragment selection is requirements driven. 

Thus, the method engineer starts by specifying the requirements of the 

fragments to be retrieved. These requirements are specified as queries that 

must be formulated by giving values to the method fragment properties (see 

section 3.2.1). As an example, a query for retrieving a product fragment 

containing a task for system specification may include parameters as follows: 

 

Type = „Task‟ AND Objective = „System Specification‟ 
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Once the fragments have been obtained
8
, the intention assemble fragments 

must be achieved by means of the integration strategy. This strategy consists 

of the integration of the selected fragments into the method model (considered 

here as a process fragment of a higher level of granularity). Depending on the 

type of the fragment this integration varies. For product fragments, the tasks, 

roles etc. are directly included in a content package. For process fragments, 

the process elements are included as a subprocess in the method under 

construction. For this purpose, SPEM provides the class CapabilityPattern. 

 

Fig. 3.5. Example of method fragment integration 

Fig. 3.5 shows an example of integration of a method fragment into a 

method model, which has been created by means of the EPF Composer Editor 

(a SPEM editor provided in the EPF Project [18]). The right side of this figure 

shows an Eclipse view implementing a repository client. Its content represents 

method fragments that are stored in the Method Base. Through this view, the 

method engineer can search and select method fragments and integrate them 

into the method model. 

Finally, note that during the method design new fragments can be created 

for their later reuse during the construction of other methods. In order to 

illustrate how product and process fragments are created, Fig. 3.6 shows the 

process that must be followed. 

                                                           

8 Note that if a process fragment is retrieved, then the associated product fragments are 

automatically selected. This is due to the one-to-many cardinality of the relationship between 

product and process fragments in Fig. 3.4. 
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Fig. 3.6. Conceptual fragment creation (adapted from [70]) 

First, the method engineer explores the method model in order to identify 

the elements that must be included in the conceptual fragment to be created. 

These elements will be tasks, roles, etc. (for a product fragment) or a process 

component (for a process fragment). Then, the method engineer defines the 

fragment by giving values to the fragment properties. Once this process is 

completed, a RAS asset is created and stored in the Method Base. 

Method configuration 

In this phase the method model is completed by including details about the 

technologies and notations that will be used during the method execution. Fig. 

3.7 shows how the method configuration is performed. In particular, the 

method engineer specifies the requirements that are used to retrieve a 

technical fragment from the Asset Base. Once this is done, the method 

engineer associates it with a task or product of the method model. 

 

Fig. 3.7. Process model for technical fragment association 

Note that it is possible that no suitable technical fragment is available in the 

repository. In case the method engineer considers that a new technical 

fragment must be created, a process similar to the one defined in Fig. 3.6 is 

followed. First, the required tool is implemented ad-hoc for the method under 

construction. For instance, in the CAME environment that supports this 

proposal (see chapter 4) these tools are implemented as Eclipse plugins 

developed using the CAME environment itself. Once the tool is implemented, 

the method engineer defines the technical fragment by giving values to the 
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fragment properties. Then, a RAS asset is created and stored in the Asset 

Base. 

Below, the various types of technical fragments that can be stored in the 

Asset Base are detailed. Furthermore, for each of these types, it is specified to 

which elements they can be associated and for which purpose: 

 Meta-model: meta-models can be associated to method products to 

specify the notation that will be used in the generated CASE tools for 

their manipulation (e.g. the “BPMN meta-model” can be associated to 

the product “Business Process Model”). 

 Editor: textual/graphical editors can be associated to method products 

to specify the resource that will be used in the generated CASE tools 

for their manipulation (e.g. a “BPMN graphical editor” can be 

associated to the product “Business Process Model”). 

 Transformation: model transformations can be associated to tasks of 

the method. This entails that these tasks will be automatically executed 

in the generated CASE tool by means of the model transformations 

(e.g. a M2T transformation can be associated to the task “Generate 

report”). 

 Guide: guides (i.e. text files, process models, etc.) can be optionally 

associated to manual tasks of the method. These files will be included 

in the generated CASE tool and will assist software engineers in the 

performance of the tasks. For instance, a map can be associated to the 

task “Build Business Process Model” to define as a process model the 

steps that must be followed to perform the task. 

Fig. 3.8 shows an example of a technical fragment containing a BPMN 

graphical editor. This fragment is packaged following the RAS standard. 

According to RAS, reusable assets are represented by zip files that contain a 

manifest describing the asset properties and one or more artifacts that 

compose the asset. Specifically, the asset of Fig. 3.8 is composed of the 

manifest file and the Eclipse plugins that implement the graphical editor. 
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Fig. 3.8. Example of technical fragment: a BPMN editor 

Method implementation 

This section describes the part of the methodological framework that deals 

with the construction of the CASE tool that supports the method resulting 

from the method configuration phase. Specifically, this tool is generated by 

means of model transformations. Fig. 3.9 provides a graphical overview of 

this process and Fig 3.10 a detailed view of the structure of the generated 

CASE tools. 

 

Fig. 3.9. Overview of the tool generation process 
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Fig. 3.10. Structure of the generated CASE tools 

The core of the generation process is a model transformation that obtains a 

software tool supporting the method specified in the configured method 

model. As shown in Fig. 3.9, the transformation uses the product and process 

parts of the method model in order to obtain a CASE tool that gives support to 

both parts as follows: 

 The support provided for the product part involves all the resources 

that enable the manipulation of the method products. This support is 

given by the software components that make up the infrastructure of 

the tool and correspond to the technical fragments that were associated 

to the elements of the method during the method configuration phase. 

 The support provided for the process part corresponds to a software 

component (i.e. the Project Manager Component) that enables the 

execution of method instances by means of a process engine. During 

the method execution, this component invokes the different software 

resources that allow the software engineers to create and manipulate the 

method products. 

Software support for the product part 
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This subsection focuses on the part of the model transformation that obtains 

the tool support for the product part of the method. This product support 

constitutes the dynamic part of the tool, i.e. the part that is obtained from the 

method model and thus it is dependent of the method that has been specified. 

Specifically, it refers to the tools (editors, transformations, etc.) that have to 

be integrated into the final tool to enable the creation and manipulation of the 

method products. For instance, a method that includes a product such as a 

“Business Process Model” requires the inclusion within the CASE tool of a 

proper editor to manage this kind of models. 

Furthermore, to obtain a valid product support it is necessary to solve the 

dependencies of the software components required to support the product part 

with other software components. Therefore, two steps must be performed by 

the model transformation: (1) identifying the software resources necessary to 

support the tasks and products of the method and (2) solving the dependences 

between software resources. 

In a first step, the model transformation explores the method model and 

identifies the software resources that are necessary to support the tasks and 

products of the method. The software resources are identified by means of the 

reusable assets (technical fragments) that were associated to these elements 

during the method configuration. Note that when a task or a product does not 

have an associated asset, the generated tool will not provide support to that 

element. 

Once the required software resources are identified, it is necessary to solve 

the potential conflicts that can arise when integrating these resources into the 

same platform. To achieve this goal, the dependencies between software 

resources are specified within the assets. This specification allows the 

transformation to retrieve the dependencies for each software resource 

identified in the previous step and to include them in the final tool. Note that, 

for this purpose, the resources that represent the dependencies must also be 

stored in the Asset Base repository. 
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As an example consider the asset of Fig. 3.8 containing the MOSKitt 

BPMN editor. This asset defines a dependency with the MOSKitt MDT 

component9. Therefore this component must also be included in the final tool. 

Software support for the process part 

In addition to the support provided for the product part of the method, the 

generated tool also provides support for the process part. The process support 

is provided by means of a software component that is always included in the 

generated tools. This component is called the Project Manager Component 

and constitutes the static part of the tool (i.e. its implementation is 

independent of the method that has been specified). This component 

implements a graphical user interface (GUI) that guides and assists software 

engineers during the execution of method instances (projects). To make this 

possible, the Project Manager Component uses the configured method model 

at runtime10. 

Specifically, the Project Manager Component is divided into four 

components of a lower level of granularity. These components are the 

following (see Fig. 3.11): 

 Project Manager (PM). This is the core component as it centralizes 

the management of the other three subcomponents. In addition, it 

contains the implementation of the GUI.  

 Process Management. This component makes the access to the 

process engine transparent for the PM. Note that SPEM does not 

contain executable semantics. Therefore, up to now the process engine 

is implemented as a light-weight process engine that keeps the state of 

the running method instances. As future work, the integration of the 

Activiti engine [1] into the CAME tool that support the proposal is 

being planned. This will require the definition of a model 

transformation to map SPEM models into BPMN 2.0 models that can 

be executed by Activiti. 

                                                           

9 The MOSKitt MDT component implements the functionality that is common to all the 

MOSKitt graphical editors (such as copy & paste, view creation, etc.) 

10 Runtime in this context corresponds to the method instances execution in the CASE tool 
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 Product Management. This component is in charge of invoking the 

tools that support the product part of the method based on the state of 

the running method instance. In other words, it invokes the editor, 

transformation, etc. that is needed to perform the current task of the 

method. 

 Method Specification. This component loads the different elements of 

the method model (roles, tasks, products, etc.) to facilitate later access 

to them. 

 

Fig. 3.11. Structure of the Project Manager Component 

3.3. Conclusions 

The combination of the MDD paradigm and the technology provided by the 

MOSKitt platform represents an adequate setting to turn Method Engineering 

into reality. Our methodological framework benefits from this combination. 

On the one hand, the application of MDD techniques has enabled the 

coverage of both the design and implementation of software production 

methods. On the other hand, the MOSKitt plug-in based architecture and its 

integrated modeling tools provide a suitable platform to support the 

framework and does not present the deficiencies found in current tools. 
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Specifically, this chapter has focused on the most theoretical part of this 

methodological framework. 

Our framework aims to provide assistance to method engineers during the 

definition of project-specific methods and the construction of the 

corresponding supporting tools. Following the MDD paradigm, meta-

modeling techniques based on the SPEM standard are used for building the 

method specifications as machine-processable models. One of the main 

novelties of the framework is that, unlike current Method Engineering 

approaches, it leverages these models by using them as inputs of model 

transformations that perform the CASE tool generation process. 
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4. A Software Architecture 

 

CAME and metaCASE technology is still immature. Existing environments 

mostly represent incomplete prototypes that present important deficiencies 

[57]. Furthermore, these tools are generally based on rigid architectures that 

hinder their adaptation to new contexts of use. In order to avoid this problem, 

software architectures for Method Engineering supporting tools should be 

defined according to a set of design guidelines. In this work the following are 

proposed: 

 Technology-independence: the software architecture must be defined 

in a technology-independent fashion in order to decouple them from 

technological details. This approach increases the longevity of the 

architecture as its components do not become obsolete on account of 

technology changes. 

 Modularization: the architecture must be defined in terms of loosely-

coupled components. The main benefit of this approach is that tools 

implementing a modular architecture are composed of separate 

components, and thus they are easier to extend, modify and adapt to 

new requirements. 

 Separation of concerns: the software architecture must separate 

components that deal with Method Engineering tasks from components 

that deal with ISD tasks. The former components make up the structure 

of the CAME part, which enables tasks such as method design. On the 

other hand, the latter components form the CASE part, which supports 

ISD tasks such as system specification. 

Taking these guides into account, this chapter defines a modular software 

architecture that identifies the set of technology-independent components (and 

the relationships among them) that are required to support the methodological 
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framework presented in chapter 3. In addition, as a proof of concept of the 

proposal, a vertical prototype has been developed in the context of the 

MOSKitt platform. This prototype, called MOSKitt4ME, implements the 

proposed architecture and its main goal is to set the basis for the eventual 

development of a CAME environment that supports the design and 

implementation of methods, without presenting the deficiencies of current 

CAME and metaCASE technology. 

This chapter is structured as follows: first, section 4.1 describes the 

requirements that the proposed architecture must address in order to provide 

complete support to the methodological framework. Then, section 4.2 presents 

the architecture in detail and also its implementation on the MOSKitt 

platform. Finally, section 4.3 concludes the chapter.  

4.1. Architecture requirements 

This section describes in detail the requirements that the proposed architecture 

must address in order to adequately support the methodological framework 

proposed in chapter 3. Specifically, this section is divided into two 

subsections, dealing respectively with the requirements of the CAME and 

CASE parts of the architecture. 

4.1.1. Requirements for the CAME part 

The CAME part of the architecture must include the required components to 

allow the method engineer to perform the method design and configuration 

phases of the methodological framework, and to invoke the CASE tool 

generation process that obtains the method implementation. Therefore, the 

following requirements have been identified: 

Req. 1. A modeling tool for building method definitions 

A modeling tool (a method editor) must be included in order to support the 

definition of software production methods based on a Method Engineering 

language such as the SPEM standard. Therefore, this tool allows the method 

engineer to perform the method design phase of the methodological 

framework. 
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As described in chapter 3, the method design can be performed from 

scratch or reusing conceptual fragments that are stored in a repository. 

Therefore, the modeling tool must also implement mechanisms that enable the 

integration of conceptual fragments into the method under construction. 

Furthermore, it must allow the method engineer to select parts of the method 

and create new conceptual fragments from these parts. This is done by means 

of a repository client (see req. 2). 

It is also important to emphasize that the lack of a method editor is the 

major shortcoming of the metaCASE approach, since metaCASE tools 

generally focus on the method implementation. In general, metaCASE 

environments provide editors that enable the specification of the design 

notations that will be supported by the CASE tool under construction, but do 

not support the definition of software production methods that can be enacted 

in real software development projects. 

Req. 2. A repository to store method fragments and mechanisms to access 

the repository 

The method engineer must be able to reuse conceptual fragments during the 

method design. In addition, during the method configuration, he/she must be 

able to associate the tasks and products of the method with technical 

fragments that establish how these elements will be managed in the generated 

CASE tool. Therefore, mechanisms to connect the method editor and the 

repository containing these fragments must be provided. These mechanisms 

can be represented by a repository client. A repository client allows the 

method engineer to access the repository and search and select method 

fragments. For this purpose, the repository client must provide mechanisms 

for specifying the requirements of the fragments to retrieve. For instance, 

these requirements can be specified as queries that are formulated by giving 

values to the method fragment properties (i.e. type, origin, objective, etc.). 

Furthermore, the repository client must also allow the method engineer to 

store in the repository fragments that are created during the method design. 

These fragments can be later reused during the specification of other methods. 

Req. 3. Mechanisms for the enactment of the Method Engineering 

process 
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The specification of software production methods is a task that must be 

adequately guided so that the method engineer can perform it properly. For 

this reason, a process that establishes the procedures and activities that must 

be followed during the method definition has to be defined. In order to 

support the execution of this process, a process engine can be included in the 

architecture. However, note that the inclusion of a process engine requires that 

the process is defined by means of an executable Process Modeling Language. 

Another possibility is to avoid the use of a process engine and define this 

process as a wizard or tutorial that textually guides the method engineer 

during the method definition. 

Req. 4. A transformation engine 

In order to automate the CASE tool generation process, a transformation 

engine is needed. The transformation engine is in charge of executing the 

model transformation that takes as input the model of the method (produced 

by means of the method editor) and obtains a CASE tool that supports it. 

4.1.2. Requirements for the CASE part 

The CASE part of the architecture must include the required components to 

allow the software engineer to perform the method enactment. Therefore, the 

following requirements have been identified:  

Req. 5. Software tools that support the product part of the method 

Software tools such as graphical editors, model transformations, etc. must be 

included in the generated CASE tool in order to support the creation and 

manipulation of the method products. These tools constitute the dynamic part 

of the CASE environments, since they depend on the method that has been 

specified. On the other hand, the static part corresponds to the tools that are 

always included in the CASE tools and, therefore, are independent of the 

specified method (see requirements 6 and 7). 

Req. 6. Software tools that support the process part of the method 

Tools such as a process engine must be included in the generated CASE tools 

in order to support the execution of the process part of the specified method. 

Thus, these tools provide a means for conducting the orchestration of the 
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different tools that allow the creation and manipulation of the method 

products (see req. 5). Specifically, these tools are a static part of the generated 

CASE tools, in the sense that they are independent of the specified method. 

It is important to note that, the method must be specified in an executable 

language (such as the BPMN 2.0 standard [13]) so that it can be executed in a 

process engine. In case the method is specified by means of a non-executable 

language (such as SPEM) a model transformation is required to transform the 

process model into an executable representation. 

Req. 7. Project management mechanisms 

The generated CASE tools must be endowed with a graphical user interface 

that allows software engineers to execute method instances (i.e. software 

development projects) by means of the tools that support the process part (see 

req. 6) and to invoke the tools that permit to create the method products (see 

req. 5). Like the tools that support the process part, the implementation of this 

graphical interface is independent of the specified method and, therefore, it is 

always included in the generated CASE tools. 

4.2. The proposed architecture 

This section describes the software architecture that is proposed in this work 

in order to meet the requirements presented in the previous section. 

Specifically, this section is divided into three subsections. First, section 4.2.1 

defines the software architecture. Then, section 4.2.2 briefly presents some 

technological background that is needed in order to better understand how the 

proposed architecture has been implemented in the context of Eclipse (more 

specifically, on the MOSKitt platform). Finally, section 4.2.3 presents the 

implementation of the architecture, that is, the MOSKitt4ME prototype.  

4.2.1. Conceptual definition 

The proposed architecture (see Fig. 4.1) contains the set of loosely-coupled 

and technology-independent components that are required to support the 

methodological framework, i.e. to meet the requirements defined in section 

4.1. These components are mainly divided into CAME components and 
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CASE components, and refer to the components that pertain respectively to 

the CAME and CASE parts of the architecture. 

 

Fig. 4.1. Architecture components overview 

CAME components 

The CAME components make up the infrastructure of the CAME part of the 

architecture and are intended to meet from requirement 1 to requirement 4. 

Specifically, a method editor component (req. 1) has been included to allow 

the method engineer to perform the method design. During the construction of 

the method model, the method engineer can make use of the repository in 

order to reuse method fragments. For this purpose, the repository client (req. 

2) is used. In general, the repository client allows the method engineer to 

connect to the repository, and select, reuse and store method fragments. 

Furthermore, the enactment component (req. 3) assists him/her during the 

whole method definition process. Finally, the resulting method model is fed 

into the transformation engine (req. 4) in order to obtain the method 

implementation (i.e. the CASE tool supporting the method). The method 

implementation is obtained by means of a model transformation that 

automates the generation process. 

CASE components 

The CASE components make up the infrastructure of the CASE part of the 

architecture and are intended to meet from requirement 5 to requirement 7. 

Specifically, the dynamic part (i.e. the components that are dependent on the 
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specified method) is composed of the technical fragments (req. 5). These 

components provide support to the product part of the method. On the other 

hand, the static part is composed of a process engine (req. 6), which provides 

support to the process part of the method, and the project manager component 

(req. 7), which embodies the graphical user interface that allows the software 

engineer to perform the method enactment. 

4.2.2. Technological background 

This subsection provides some technological background that is needed to 

facilitate the understanding of the prototype that has been developed in the 

context of Eclipse in order to implement the proposed architecture. 

The Eclipse platform 

Eclipse is an open source community, whose projects are focused on building 

an open development platform comprised of extensible frameworks, tools and 

runtimes for building, deploying and managing software across the lifecycle. 

Specifically, there are two features of Eclipse that turn it into a very suitable 

platform to support Method Engineering approaches in the field of MDD: 

 The Eclipse plugin-based architecture. Everything in Eclipse is a plugin 

but its runtime kernel. This means that Eclipse employs plugins to 

provide all of its functionality. This architecture allows developers to 

easily build Eclipse-based applications upon the Rich Client Platform 

(RCP)11. The RCP is, roughly speaking, the minimal set of plugins 

required to build an Eclipse application. This approach facilitates the 

development of the prototype, since the different components of the 

architecture can be developed as separate plugins that are easy to 

integrate into the same platform.  

 The modeling technologies and tools. Within the Eclipse community a 

wide range of projects aim at providing as Eclipse plugins new tools 

and technologies for the support of different tasks. Specifically, one of 

these projects is the Eclipse Modeling Project [17] which focuses on 

model-based development technologies. This project contributes to 

                                                           

11 Rich Client Platform , http://www.eclipse.org/home/categories/rcp.php 
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facilitate the development of the prototype, since it provides effective 

solutions for applying MDD techniques.  

Below, the most significant Eclipse technologies that have been used in the 

development of the prototype are described. 

Eclipse Modeling Framework 

The Eclipse Modeling Framework (EMF) [16] is a modeling framework and 

code generation facility for building tools based on a structured data model. 

From a meta-model specification (called the “Ecore model”) described in 

XMI, EMF provides a generator that produces a tree-based editor, together 

with the set of Java classes that implement the meta-model and allow the user 

to create models that conform to the meta-model. Therefore, EMF has been 

used as the underlying technology for the construction of the method models, 

which are stored in XMI format and conform to the SPEM Ecore model (i.e. a 

SPEM meta-model implementation for Eclipse). 

Eclipse Process Framework Project 

The Eclipse Process Framework (EPF) [18] aims to provide an extensible 

framework and exemplary tools for software process engineering. 

Specifically, one of these tools is the EPF Composer editor, which is an 

Eclipse-based editor that supports the construction of SPEM models in XMI 

format (based on EMF). Therefore, this tool has been used as the method 

editor component of the architecture. 

Plug-in Development Environment 

The Plug-in Development Environment (PDE) [62] provides tools to create, 

develop, test, debug, build and deploy Eclipse plug-ins and Eclipse-based 

applications. Therefore, the functionality provided within the PDE has been 

used for facilitating the construction of the CASE tools that are generated 

from the method specifications. Specifically, the developed prototype makes 

use of the Product Configuration Files. These textual files contain all the 

required information (list of plugins, paths of images, etc.) to automatically 

build Eclipse applications from them. Hence, the model transformation that 

obtains the CASE tool support is in fact a M2T transformation that generates 

a product configuration file through which the final tool is obtained. 
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Xpand 

Xpand [92] is a statically-typed template language for implementing M2T 

transformations. Xpand was originally developed as part of the 

openArchitectureWare (oAW) project12 before it became a component under 

Eclipse. Specifically, it is the language that has been used for implementing 

the M2T transformation that obtains product configuration files from method 

specifications. 

4.2.3. MOSKitt4ME: An Eclipse-based CAME environment 

In order to evaluate the proposed architecture, a vertical prototype, called 

MOSKitt4ME, has been developed in the context of Eclipse, more 

specifically, on the MOSKitt platform [55]. In particular, this subsection 

details how the different components of the architecture have been 

implemented in MOSKitt. 

Method editor 

The method editor is the software component that supports the creation of 

method models. In particular, the methodological framework proposes the use 

of the SPEM standard as the Method Engineering language to carry out this 

task. Therefore, MOSKitt4ME must provide a method editor that enables the 

creation of SPEM models. For this purpose, the EPF Composer editor [18] 

has been integrated in MOSKitt. Fig 4.213 shows a snapshot of this editor. 

Repository client 

The repository client component must allow the method engineer (1) to 

connect to the repository, to (2) search and select method fragments for their 

use during the method design and configuration phases, and (3) to store newly 

created fragments. For this purpose, a repository client has been implemented 

as an Eclipse view. This view shows in a tree-based fashion the content of the 

repository it is connected to and provides searching capabilities based on 

fragment properties. In order to illustrate this idea, Fig. 4.3 and Fig. 4.4 show 

                                                           

12 http://www.openarchitectureware.org/ 
13 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/ 

http://www.openarchitectureware.org/
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this Eclipse view connected to the Method Base and Asset Base repositories 

respectively. 

 

Fig. 4.2. EPF Composer editor in MOSKitt 

 

Fig. 4.3. Repository client (Method Base) 
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Fig. 4.4. Repository client (Asset Base) 

Enactment component 

A process engine has not been integrated into the prototype to guide method 

engineers during the method definition. Instead, two eclipse cheatsheets have 

been defined to assist during the method design and configuration phases of 

the methodological framework. 

Transformation engine 

In order to support the execution of the model transformation that generates 

the CASE tool support from method models, Xpand has been installed in the 

prototype. The Xpand plugins implement, among other things, the 

transformation engine that supports the execution of Xpand transformations. 

Specifically, the model transformation has been implemented in the 

prototype as a M2T transformation that takes as input a SPEM model and 

obtains a product configuration file through which a MOSKitt reconfiguration 

supporting the method is obtained. As an example, two Xpand rules of the 

transformation are shown in Fig. 4.5. In these rules the list of features14 of the 

product configuration file is generated. The first rule is invoked for each 

instance of the SPEM class ContentElement (i.e. tasks and products). This rule 

invokes the second rule, which produces the output. The second rule accesses 

the property “FeatureID” of the content elements. This property is created 

                                                           

14 A feature is a group of Eclipse plugins 



86 

 

during the technical fragment association and contains the identifier of the 

feature packaged in the fragment. 

 

Fig. 4.5. Excerpt of the M2T transformation 

Technical fragments 

Technical fragments are editors, transformations, etc. that provide support to 

the product part of the method in the generated CASE tools. These fragments 

are stored in the Asset Base repository as reusable assets that contain the 

Eclipse plugins that implement the encapsulated tool and the feature that 

groups these plugins (see Fig. 4.6). In order to install these plugins in the 

CASE tools, the M2T transformation must include in the product 

configuration file the features encapsulated in the fragments. This is done in 

the rules shown in Fig. 4.5. 

 

Fig. 4.6. Technical fragment 

Process Engine 

The process engine is the component in charge of the execution of method 

instances, that is, it gives support to the process part of the method in the 



87 

 

generated CASE tools. Up to now, the process engine has been implemented 

in MOSKitt4ME as a light-weight process engine that keeps the state of the 

running method instances. As future work, the integration of the Activiti 

engine [1] into MOSKitt4ME is being planned. The use of Activiti will 

require the definition of a model transformation to map SPEM models into 

BPMN 2.0 models that can be executed by the engine. 

Project Manager Component 

The Project Manager Component endows the generated CASE tools with a 

graphical user interface composed of a set of Eclipse views (see Fig. 4.715). 

Each of these views provides a specific functionality but their common goal is 

to facilitate the user participation in a specific project. The details of these 

views are the following: 

 Product Explorer: This view shows the set of products that are handled 

(consumed, modified and/or produced) by the ongoing and finished tasks 

of the process.  This view can be filtered by roles so that users belonging 

to a specific role have only access to the products they are in charge of. 

Then, from each product, the user can open the associated editor to 

visualize or edit its content. 

 Process: This view shows the tasks that can be executed within the 

current state of the project. The execution of the tasks can be performed 

automatically (by launching the transformation associated to the task as a 

technical fragment) or manually by the software engineer (by means of 

the software tool associated to the output product of the task). Similarly to 

the Product Explorer, this view can be filtered by role, showing just the 

tasks in which the role is involved in. 

 Guides: This view shows the list of guides associated to the task selected 

in the Process view. The objective of these guides is to assist the user 

during the execution of such task, providing some insights on how the 

associated products should be manipulated. These guides correspond to 

technical fragments that were associated to tasks during the method 

configuration phase. 

                                                           

15 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/ 
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 Product Dependencies: This view shows the dependencies that exist 

between the products that are handled in the project. So, it allows users to 

identify which products cannot be created or manipulated because of a 

dependent product has not yet been finished. In addition, these 

dependencies are organized by roles. This organization gives to the user 

the knowledge of who is responsible of those products he/she is interested 

in. 

 

Fig. 4.7. Project Manager Component 

4.3. Conclusions 

Developing software systems is a highly complex endeavor and CAME and 

metaCASE environments are no exception. A solution that properly handles 

this complexity is software architecting. One of the main benefits of a 

software architecture is that it provides an abstraction of the system that 

establish how it must be structured and, thus, allow developers to focus only 
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on those elements that are significant. Therefore, in order to reduce the 

complexity that entails the development of tools that support Method 

Engineering, this chapter proposes a software architecture that establishes the 

series of components that are required to support the methodological 

framework presented in chapter 3. 

Furthermore, a vertical prototype called MOSKitt4ME has been developed 

in the context of the MOSKitt platform as an implementation of the 

architecture. The development of this prototype has a threefold benefit. First, 

it helps to evaluate the proposed architecture. Secondly, it sets the basis for 

the eventual development of a complete CAME environment. Finally, 

stakeholders within the MOSKitt community can use the prototype and 

provide feedback that can be used for the refinement of the architecture and 

the methodological framework. 
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5. A Case Study 

 

This chapter presents a case study that has been developed to validate the 

methodological framework and the software architecture proposed in this 

thesis. In this case study MOSKitt4ME has been used for specifying a 

software production method and generating its supporting CASE 

environment. In particular, the software production method comes from [90]. 

This method defines an MDD approach for the generation of web applications 

supporting business process specifications. 

This chapter is structured as follows: first, section 5.1 provides an overview 

of the case study. Then, section 5.2 describes in detail how it has been 

developed in MOSKitt4ME. Finally, section 5.3 outlines some conclusions. 

5.1. The OOWS-BP method 

OOWS-BP [90] is a software production method that results from extending 

the OOWS web engineering approach [23]. This extension introduces and 

modifies some of the existing steps in order to deal with the execution of 

business processes. Thus, OOWS-BP embodies an MDD approach for the 

generation of business process-driven web applications from conceptual 

models. Briefly presented, the OOWS-BP method (see Fig. 5.1) involves the 

participation of three different roles: the analyst and the developer (related to 

human beings), and the bizzy tool (which represents the software system). The 

process is started by the analyst who specifies, by means of the BPMN 

notation, the business processes that have to be supported in the web 

application. This specification constitutes a non-executable version of the 

process models, which require more details to be deployed and run in a 

process engine. Then, in the next step, the developer performs the system 

specification, i.e. the business process is defined in terms of the OO-Method 
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models [60] and the OOWS services model. Once the system specification is 

finished, these models are used by model-to-model (M2M) transformations 

that generate the OOWS navigational and presentation models, and the 

business process in WS-BPEL (an executable representation of the business 

process). Finally, the Tapestry16 files that implement the web application are 

obtained from the OOWS models (which can be manually modified by the 

developer). 

 

Fig. 5.1. The OOWS-BP method 

                                                           

16 Tapestry, http://tapestry.apache.org/ 
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5.2. Development of the case study 

This section details how the case study has been developed in MOSKitt4ME 

following the methodological framework presented in chapter 3. Specifically, 

the section is divided into three subsections (based on the framework phases) 

in order to describe how the model of the method is built and how the 

supporting CASE tool is obtained from this model. 

5.2.1. Method design 

In this phase, the EPF Composer editor is used for the creation of the method 

model. Following the process defined in chapter 3 (paradigm-based 

approach), the method model is created in two steps, (1) the definition of the 

product model and (2) the definition of the process model. 

In this proposal, the product model and the method content part of a SPEM 

method are considered analogous, therefore, the first step has been to create 

by means of the EPF Composer the method content of the OOWS-BP method. 

Since at this stage the method model is specified without detailing the 

techniques, languages and notations that will be used during the method 

enactment, this part of the model is composed of generic products (e.g. 

business process model, services model, etc.), tasks (e.g. business process 

analysis, system specification, etc.) and roles (e.g. analyst, developer, etc.). 

Once the method content is defined, the process model is built. The process 

model corresponds to the method process part of a SPEM method. Therefore, 

the second step has been to create by means of the EPF Composer the Work 

Breakdown Structure that establishes the tasks execution order. 

Furthermore, as described in chapter 3, during the construction of the 

method model it is possible to reuse conceptual fragments stored in the 

Method Base repository (assembly-based approach). Specifically, during the 

definition of the OOWS-BP method model a product fragment containing the 

task system specification has been used. In order to do so, first it has been 

extracted from the repository by means of the repository client, and then, its 

content (i.e. the method task) has been automatically integrated into the 

method content part of the model. 
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Fig. 5.2 shows a snapshot of the EPF Composer containing the OOWS-BP 

method model resulting from the method design phase. On the left part of the 

figure, the Library view shows some method content elements (i.e. tasks, 

roles, etc.) in a tree viewer. On the right part, details of the process are 

depicted as a Work Breakdown Structure. 

 

Fig. 5.2. Case study specification in the EPF Composer 

Moreover, table 5.1 provides further details about all these tasks. 

Specifically, this table contains the tasks predecessors, the performing roles 

and the input/output products. In addition, all the tasks are briefly described 

below. 
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Table 5.1. OOWS-BP tasks 

Business Process Analysis 

The analyst specifies as a non-executable process model the business process 

that will be supported by the generated web application. 

System Specification 

The developer defines the business process in terms of the OO-Method 

models and the services model. 

Business Process Design (subprocess) 

The developer completes the business process model with additional 

information. 

Business Process Model Preprocess 

The developer builds an extension of the business process model in order to 

specify additional information that is not supported by the notation used to 

create the business process model. 

Business Process Design 
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The developer completes the business process model with information that 

was not specified by the analyst. 

Web Specification 

This task automatically generates from the previously built models a 

navigational model and a presentation model, that is, the specification of the 

web application as defined by the OOWS approach [23]. 

Web Application Generation 

This task automatically generates the web application from its specification. 

This application is implemented by means of the framework Tapestry. 

Executable Business Process (subprocess) 

This task embodies a transformation chain that obtains the executable WS-

BPEL specification from the business process model. 

BPMN to Babel 

This automatic task executes a M2M transformation that obtains an 

intermediate representation of the business process model (babel notation). 

Babel to BPEL 

This automatic task executes a M2M transformation that transforms the 

business process model (in babel notation) into an executable WS_BPEL 

model. 

WS-BPEL Completion 

This task executes a M2M transformation that completes the WS-BPEL 

model so that it can be imported by the process engine. 

WSDL and XSD Generation 

This task generates the WSDL and XSD files that complete the WS-BPEL 

model in order to make it deployable. Specifically, the WSDL files define the 

interface associated to the new service defined by the WS-BPEL and the XSD 

files define the data types used by it. 
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5.2.2. Method configuration 

Once the product and process parts of the method model have been specified, 

the method configuration phase can start. Following the process defined in 

chapter 3 for method configuration, in this phase the method engineer must 

make use of the repository client in order to (1) select technical fragments and 

(2) associate them with tasks and products of the method model. This 

association represents that the technical fragments must be included in the 

generated CASE tool in order to provide support to the tasks and products 

they are associated to. 

Fig. 5.3 shows the Eclipse view that implements the repository client in 

MOSKitt4ME. This view is showing the fragments that support the OOWS-

BP tasks and products. Moreover, the right part of Fig. 5.3 shows an example 

of association of a technical fragment (BPMN editor) with a method product 

(business process model). 

 

Fig. 5.3. Technical fragments supporting the case study 

In order to give more information about all these fragments, table 5.2 

shows for each of them the supported method elements and the Eclipse 

plugins it contains. In addition, a brief description of the fragments is given 
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below. Finally, the overall associations between the OOWS-BP elements and 

the technical fragments are summarized in tables 5.3 and 5.4. 

 

Table 5.2. OOWS-BP technical fragments 

BPMN editor (STP) 

This technical fragment contains the Eclipse plugins that implement the 

BPMN graphical editor developed as part of the SOA Tools Platform Project 

(STP) [86]. 

OOWS metamodel 

This fragment contains the plugins that implement the OOWS metamodel. 
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BPMNX metamodel 

This fragment contains the plugins that implement the extension of the BPMN 

metamodel. 

BPMN2OOWS transformation 

This technical fragment encapsulates the M2M transformation implemented in 

ATL [5] that obtains the OOWS navigational and presentation models. 

OOWS2WebApplication transformation 

This fragment encapsulates the M2T transformation implemented in 

MOFScript [54] that obtains the final web application from the conceptual 

models (OOWS, BPMN, etc.). 

Babel metamodel 

This fragment contains the plugins that implement the Babel metamodel. This 

metamodel enables the creation of BPMN models that can be transformed in 

WS-BPEL models by the transformation bpmn2bpel. 

Bpmn2babel transformation 

This fragment contains the plugins that implement the ATL M2M 

transformation that automatically obtains a babel model from a business 

process model specified in BPMN. 

Babel2bpel transformation 

This fragment contains the M2M transformation implemented in ATL that 

obtains the WS-BPEL model from the Babel model. 

BPEL refinement transformation 

This fragment encapsulates the plugins that implement the ATL M2M 

transformation that completes the WS-BPEL model so that it can be imported 

in the process engine. 

OOWS2WSDLandXSD transformation 
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This fragment contains the M2T transformation implemented in MOFScript 

that obtains the WSDL and XSD files associated to the WS-BPEL process. 

Summary 

In order to provide an overview of the products and task of the method and 

which technical fragments provide support to them, table 5.3 shows the 

associations between products and technical fragments and table 5.4 the 

associations between tasks and technical fragments. 

 

Table 5.3. Relationship between products and technical fragments 

 

Table 5.4. Relationship between tasks and technical fragments 
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5.2.3. Method implementation 

In this phase, the method engineer invokes the model transformation that 

obtains from the configured method model the CASE tool that supports the 

method. As described in chapter 4, this transformation has been implemented 

in MOSKitt4ME as a M2T transformation that obtains from the method 

model a product configuration file through which the final tool is obtained. 

This tool is a MOSKitt reconfiguration that only contains the required plugins 

to support the method (i.e. the plugins contained in the technical fragments, 

the process engine and the Eclipse views that compose the GUI). Specifically, 

the M2T transformation is invoked by means of the MOSKitt transformation 

manager, which is shown in Fig. 5.4. Through this Eclipse view, all the 

transformations registered in MOSKitt can be launched. 

 

Fig. 5.4. MOSKitt transformation manager 

When selecting the SPEM2MOSKittConf transformation, a wizard is 

opened (see Fig. 5.5). Specifically, in this wizard the input and output 

parameters of the transformation can be specified. The input parameter 

corresponds to the SPEM model resulting from the method configuration 

phase. The output parameter corresponds to the product configuration file 

through which the MOSKitt reconfiguration supporting the method will be 

obtained. 
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Fig. 5.5. MOSKitt transformation wizard 

Once the product configuration file is generated, the export wizard is 

automatically launched. This wizard is shown in Fig. 5.6. Specifically, it 

allows the method engineer to generate the final CASE tool from the product 

configuration file. For this purpose, at least the following information must be 

specified: 

 Configuration: The product configuration file. It is automatically set 

when the wizard is opened. 

 Root directory: Name of the folder hosting the generated tool. By 

default this folder is named eclipse. 

 Destination: Path of the file system where the folder Root directory 

will be placed. If selected the option “Archive file” a package (zip file) 

of the tool is obtained.  
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Fig. 5.6. Export wizard 

In order to illustrate the contents of the product configuration file, Fig 5.7 

shows the list of features that establish the plugins that must be included in the 

final CASE tool. Specifically, the features that correspond to the plugins 

contained in the technical fragments have been emphasized. The remaining 

features correspond to software dependencies and to the Project Manager 

Component. 
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Fig. 5.7. Product configuration file 

Once the export process is finished, a MOSKitt reconfiguration supporting 

the method is obtained. As already shown in chapter 4, these generated tools 

include (aside from the Eclipse plugins that support the method) a software 

component called the Project Manager Component. This component provides 

a series of Eclipse views that assist the software engineer during the method 

enactment. As an example, Fig. 5.8 and Fig. 5.9 show snapshots of the 

Product Explorer and Process views respectively. Specifically, in the 

example, the state of the running method instance is on the system 

specification task. Therefore, the Product Explorer view only shows the 

product business process model, and the Process view only shows as 

executable the task system specification. 
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Fig. 5.8. Product Explorer view 

 

Fig. 5.9. Process view 

5.3. Conclusions 

The methodological framework and software architecture proposed in this 

thesis have proven successful in supporting the design and implementation of 

the OOWS-BP method [90]. This chapter illustrates how the three phases that 

compose the framework have been followed to build the method specification 

and to obtain a CASE tool that supports the method. 
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It is worth noting that the CASE tool that has been obtained provides rich 

support to the method, since it integrates in a seamless way all the tools that 

are required to support its execution and also provides guidance to the 

software engineer in the performance of the method tasks. For a more in-

depth view on how the case study has been developed, snapshots and 

screencasts are available at http://users.dsic.upv.es/~vtorres/moskitt4me/. 

http://users.dsic.upv.es/~vtorres/moskitt4me/
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6. Conclusions 

 

This chapter presents the conclusions of the work introduced in this 

master‟s thesis. Specifically, section 6.1 outlines the main contributions made 

by the proposal. Then, section 6.2 describes how the proposal has been 

validated, and section 6.3 presents future work that can be carried out to 

extend it. Finally, the publications that have been obtained during the course 

of the work are listed and detailed in section 6.4. 

6.1. Contributions 

This section summarizes the main contributions of the present work. 

Specifically, this section is divided into two subsections. Section 6.1.1 

describes the contributions related to the methodological framework presented 

in chapter 3 and section 6.1.2 the contributions related to the software 

architecture defined in chapter 4. 

6.1.1. The methodological framework 

The main contributions that the methodological framework presented in this 

thesis makes to the Method Engineering field are outlined below. 

Model Driven Development 

The methodological framework faces from a MDD perspective the design and 

implementation of methods. Specifically, meta-modeling and model 

transformations techniques are used to perform the method definition and the 

(semi)automatic generation of the CASE tool support. 

The use of meta-modeling in the Method Engineering field is not new. 

Many proposals have made use of meta-models as a way of formalizing the 
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concepts that are available during the method definition. Thereby, methods 

are defined as instances of a meta-model, i.e. as machine-processable models. 

However, these proposals do not take advantage of the possibilities offered by 

the MDD. The main innovation of the framework is that, contrary to current 

Method Engineering proposals, it leverages these models going one step 

further. Specifically, these models are used as input of model transformations 

that carry out the (semi)automatic construction of CASE tools that support the 

specified methods. 

Method Engineering language 

The methodological framework proposes the use of a standard language (i.e. 

the SPEM standard [87]) for the definition of software production methods. 

As illustrated in chapter 2, Method Engineering proposals that make use of 

standard languages for method specification are still non-existent. Indeed, in 

[41] it is predicted that one of the likely topics for research initiatives in the 

next years will be a new generation of CAME tools based on internationally 

standardized methodology meta-models. 

Method dimensions 

The software production methods that are defined by means of the 

methodological framework cover the four dimensions of methods, i.e. the 

product, process, people and tool dimensions. 

As illustrated in chapter 2, most of the Method Engineering proposals only 

cover the product and process dimensions, being the people and tool 

dimensions almost completely overlooked. As a result, proposals that take 

into account all the method dimensions together are still non-existent. 

Method Engineering lifecycle 

The methodological framework proposed in this thesis equally encompasses 

the method design and method implementation phases of the Method 

Engineering lifecycle. 

In general, Method Engineering proposals either focus on the method 

design or the method implementation. The former provide adequate means for 

defining software production methods but very limited CASE tool generation 
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capabilities. The latter focus on facilitating the construction of CASE tools 

suited to context needs, but do not provide means for defining software 

production methods. 

6.1.2. Software architecture 

Another important contribution of this work is the definition of a software 

architecture that proposes a series of technology-independent components that 

aim to support the methodological framework. Therefore, the main goal of 

this architecture is to propose a solution that establishes how CAME tools 

must be structured in order to adequately support the design and 

implementation of software production methods. 

Furthermore, this master‟s thesis provides implementation details of the 

proposed architecture on the MOSKitt platform, whose plug-in based 

architecture turns it into a very suitable platform to face the Method 

Engineering challenges. Specifically, the MOSKitt4ME prototype has been 

developed. The main goal of this prototype is to eventually become a 

complete CAME environment that does not present the deficiencies of current 

CAME/metaCASE technology. 

6.2. Validation of the proposal 

The proposal presented in this thesis has been put into practice in order to 

validate it. Specifically, a case study (i.e. the OOWS-BP method [90]) has 

been developed in the MOSKitt4ME prototype. This prototype has 

successfully supported the specification of the method and the generation of 

the supporting CASE tool. However, this project is ambitious and, therefore, 

the prototype will be enhanced in the near future in order to include the 

obtained results in a MOSKitt released version. Thereby, the MOSKitt 

community (ranging from analysts to end users) will be able to test each new 

release of the tool and provide valuable feedback that will contribute to the 

improvement of the tool and the proposal presented in this thesis. Specifically, 

as soon as the first version of the tool is included in MOSKitt, CIT‟s users 

will make use of it in order to specify the gvMétrica method and build its 

corresponding supporting tool. This setting constitutes an adequate 
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environment to validate the proposal since gvMétrica is a method that is 

currently being used in real projects within the context of the CIT. 

6.3. Future work 

The work presented in this thesis is not closed research. Different topics will 

be tackled in the near future in order to improve some limitations. These 

topics are briefly described below. 

Megamodeling 

During the execution of software production methods based on MDD (e.g. 

OOWS-BP [90]) a high number of MDD artefacts (transformations, meta-

models, models, etc.) come into play. Therefore, CASE environments 

supporting these methods must provide mechanisms that facilitate the 

management of these artefacts. This hinders the already complicated task of 

(semi)automatically obtaining CASE tools from method specifications, one of 

the main goals of Method Engineering. 

Megamodeling [8] is proposed as a possible solution to facilitate this task. 

By means of a megamodeling tool, CASE environments can manage their 

MDD artefacts centrally and at a high level of abstraction. Thereby, the 

complexity of the CASE tool generation process is significantly reduced. The 

main reason for this is that the implementation of this megamodeling tool is 

independent of the supported method and, therefore, it can be integrated into 

the CASE tool transparently for the generation process. 

 

Method variability 

One of the big challenges of Method Engineering takes into account the 

variability of methods both at modeling level and runtime [2]. Variability 

appears as a relevant challenge in Method Engineering, since it is very 

common that context changes entailing method adaptation during the progress 

of a project. So, mechanisms must be included in the methodological 

framework in order to deal with this variability. At modeling level, the use of 

techniques based on fragment substitution to specify this variability is 
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proposed. These techniques permit to keep separately the common and 

variable parts of the method, which makes the models more legible and easier 

to specify and maintain. At implementation level, the introduction in 

MOSKitt4ME of a reconfiguration engine (e.g. MoRE [14]) is proposed. This 

would enable the CASE tool reconfiguration at runtime based on context 

changes. 

Prototype enhancement 

The MOSKitt4ME prototype must be enhanced so that it overcomes some 

limitations. For instance, the integration of a process engine such as Activiti 

[1] is being planned. This would provide better support to the execution of 

method instances.  

Furthermore, a very important issue that needs to be improved is the 

management of the technical fragments dependencies. That is, when the 

method model is finished, it contains a set of technical fragments that aim at 

providing support to the product and tasks in the generated CASE tool. In 

order to adequately install the plugins contained in the fragments into the final 

CASE tool, their software dependencies must be resolved. For this purpose, 

the software dependencies must be specified within the fragments, and these 

dependencies must also be stored in the repository. 

6.4. Publications 

During the development of the work presented in this thesis, the following 

publications have been produced: 

1. Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Methodological 

Framework and Software Infrastructure for the Construction of Software 

Production Methods. International Conference on Software Processes 

(2010) 

2. Cervera, M., Albert, M., Torres, V., Pelechano, V., Cano, J., Bonet, B.: 

A Technological Framework to support Model Driven Method 

Engineering. 7
th
 Taller sobre Desarrollo de Software Dirigido por 

Modelos (2010) 
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3. Cervera, M., Albert, M., Torres, V., Pelechano, V.: Turning Method 

Engineering Support into Reality. To be published in: the 4
th
 IFIP WG8.1 

Working Conference on Method Engineering (2011) 

First of all, the first publication was presented at ICSP, an International 

Conference ranked A by the Computing Research and Education (CORE) 

association. Specifically, this publication provides an overview of the phases 

that compose the methodological framework, illustrating their application by 

means of the OOWS-BP case study.  

Then, in order to provide a more in-depth view on the method 

implementation phase of the framework, a second publication was elaborated 

and presented at DSDM, a workshop hosted at the 3
rd

 Congreso Español de 

Informática (CEDI), which took place in Valencia. Specifically, this 

publication focuses on the application of model transformations for 

(semi)automating the construction of CASE tools that support software 

production methods, a part of the work that is of big interest for the MDD 

community. 

Finally, the paper “Turning Method Engineering Support into Reality” has 

been recently accepted for presentation and publication in the proceedings of 

the IFIP WG 8.1 Working Conference on Method Engineering. This paper 

describes the methodological framework in more detail, focusing on the MDD 

infrastructure that supports its different phases. 
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