
Mario Cervera Úbeda

Model Driven Method Engineering.

A Supporting Infrastructure

Master’s Thesis

Máster en Ingeniería del Software, Métodos Formales y

Sistemas de Información - December 2010

Supervisor

Vicente Pelechano Ferragud

Co-directors

Manuela Albert Albiol, Victoria Torres Bosch

2

3

To my family

4

5

Abstract

The Method Engineering discipline emerged two decades ago to face up to the

challenge of defining software production methods, adapting them to fit

particular project needs and building the supporting CASE tools. Over these

twenty years many theoretical proposals have contributed to establish a solid

and wide theoretical basis in this field. However, the existing tool support

does not live up to the expectations mainly due to the complexity of putting

this theory into practice.

In order to improve this situation, this thesis proposes the use of the Model

Driven Development paradigm as a way to handle this complexity. Thereby, it

first defines a methodological framework that advocates for the use of meta-

modeling and model transformation techniques to tackle the design and

implementation of software production methods. Then, this thesis introduces a

software architecture that establishes the set of components that are required

to support the methodological framework and gives implementation details of

this architecture in the context of Eclipse, more specifically on the MOSKitt

platform. The developed prototype has been called MOSKitt4ME.

Finally, in order to validate the proposed methodological framework and

software architecture, the MOSKitt4ME prototype has been used for the

development of a case study. This case study consists of a software

production method that defines a Model Driven Development approach for

the generation of web applications supporting business process specifications.

The MOSKitt4ME prototype has successfully supported the design of the case

study and the construction of its supporting CASE tool.

6

7

Resumen

La Ingeniería de Métodos surgió como disciplina hace dos décadas con el

objetivo de afrontar el reto de dar soporte a la definición de métodos de

producción de software, su adaptación a las necesidades de proyectos

específicos y la construcción de las correspondientes herramientas CASE de

soporte. Durante estos veinte años muchas propuestas teóricas han contribuido

a establecer una base teórica amplia y sólida en este campo. Sin embargo, las

herramientas existentes no están a la altura de las expectativas principalmente

debido a la complejidad que conlleva poner esta base teórica en práctica.

Con el objetivo de mejorar esta situación, esta tesis propone el uso del

paradigma de Desarrollo de Software Dirigido por Modelos como solución

que permite manejar esta complejidad de forma eficiente. De este modo,

primero se define un marco metodológico que hace uso de técnicas de meta-

modelado y transformaciones de modelos para abordar el diseño e

implantación de métodos de producción de software. Además, se presenta a

continuación una arquitectura software que establece el conjunto de

componentes que permiten dar soporte al marco metodológico y se

proporcionan detalles de implementación de la arquitectura propuesta en el

contexto de Eclipse, más concretamente de la plataforma MOSKitt. El

prototipo desarrollado se ha llamado MOSKitt4ME.

Por último, a fin de validar el marco metodológico y la arquitectura

software propuestas, el prototipo MOSKitt4ME ha sido usado para el

desarrollo de un caso de estudio. En concreto, este caso de estudio consiste en

un método de producción de software que define una propuesta basada en el

Desarrollo de Software Dirigido por Modelos para la generación de

aplicaciones web de soporte a procesos de negocio. El prototipo

MOSKitt4ME ha proporcionado un adecuado soporte al diseño del caso de

estudio y a la construcción de la herramienta CASE de soporte.

8

9

Acknowledgements

First and foremost, I want to express my most sincere gratitude to my

supervisors Vicente, Manoli and Victoria, for giving me the opportunity to

undertake this fascinating work. Without your deep research expertise and

continuous support, this work would not have been possible. This thesis is as

much yours as it is mine.

A big gratitude is also due to Isma, Miriam, Nacho, Pablo, María, Clara,

Pau, Arthur, Ainoha and the rest of colleagues from the ProS research center

for all the good moments we have shared together. These moments have been

of incalculable help.

I also want to give special thanks to Laura, because behind every researcher

there is always someone with unlimited patience. Thanks for all the love and

motivation you have given me.

Finally, I want to thank the Conselleria de Infraestructuras y Transporte

for the research fellowship that has provided all the economic resources

needed to make possible the development of this work.

10

11

Contents

1. Introduction .. 21

1.1. Research Motivation .. 22

1.2. Problem Statement .. 23

1.3. Proposed Solution .. 25

1.4. Context of the Thesis ... 26

1.5. Outline ... 26

2. State of the Art.. 29

2.1. Method Engineering Approaches .. 29

2.1.1. The assembly-based approach ... 30

2.1.2. The paradigm-based approach ... 33

2.1.3. The extension-based approach ... 34

2.1.4. General discussion .. 35

2.2. Method Engineering Languages .. 36

2.2.1. ASDM .. 36

2.2.2. GOP(P)RR .. 38

2.2.3. MEL and MDM .. 39

12

2.2.4. MRSL and MVM .. 40

2.2.5. NATURE ... 41

2.2.6. SPEM 2.0 ... 43

2.2.7. ISO/IEC International Standard 24744 .. 45

2.2.8. General discussion .. 46

2.3. Method Engineering Tools ... 47

2.3.1. Computer Aided Method Engineering (CAME) 47

2.3.2. MetaCASE.. 52

2.3.3. General discussion .. 55

2.4. Conclusions .. 56

3. A Methodological Framework to support Model Driven Method

Engineering ... 57

3.1. Methodological Framework Overview .. 58

3.2. Methodological Framework... 60

3.2.1. Foundations .. 60

3.2.2. Phases ... 64

3.3. Conclusions .. 73

4. A Software Architecture ... 75

4.1. Architecture requirements .. 76

4.1.1. Requirements for the CAME part ... 76

4.1.2. Requirements for the CASE part ... 78

4.2. The proposed architecture .. 79

13

4.2.1. Conceptual definition ... 79

4.2.2. Technological background .. 81

4.2.3. MOSKitt4ME: An Eclipse-based CAME environment 83

4.3. Conclusions .. 88

5. A Case Study.. 91

5.1. The OOWS-BP method ... 91

5.2. Development of the case study ... 93

5.2.1. Method design .. 93

5.2.2. Method configuration ... 97

5.2.3. Method implementation .. 101

5.3. Conclusions .. 105

6. Conclusions ... 107

6.1. Contributions ... 107

6.1.1. The methodological framework.. 107

6.1.2. Software architecture ... 109

6.2. Validation of the proposal ... 109

6.3. Future work .. 110

6.4. Publications .. 111

References .. 113

14

15

List of Figures

Fig. 2.1. Assembly-based approach ... 30

Fig. 2.2. Paradigm-based approach .. 33

Fig. 2.3. Extension-based approach ... 35

Fig. 2.4. ASDM meta-model ... 37

Fig. 2.5. GOPRR meta-model ... 38

Fig. 2.6. MVM meta-model ... 41

Fig. 2.7. NATURE meta-model ... 42

Fig. 2.8. Structure of the SPEM 2.0 meta-model ... 43

Fig. 2.9. Overall architecture of ISO/IEC 24744 ... 45

Fig. 2.10. General architecture of CAME environments 48

Fig. 2.11. Architecture of Decamerone ... 50

Fig. 2.12. Architecture of MENTOR ... 51

Fig. 2.13. CASE tool versus metaCASE tool ... 53

Fig. 2.14. Method Management Tools in MetaEdit+ 54

Fig. 3.1. Overview of the methodological framework 58

Fig. 3.2. Relationship between method fragments and SPEM classes 62

Fig. 3.3. Paradigm-based approach (adapted from [69]) 64

16

Fig. 3.4. Assembly-based approach (adapted from [69]) 65

Fig. 3.5. Example of method fragment integration ... 66

Fig. 3.6. Conceptual fragment creation .. 67

Fig. 3.7. Process model for technical fragment association 67

Fig. 3.8. Example of technical fragment: a BPMN editor 69

Fig. 3.9. Overview of the tool generation process .. 69

Fig. 3.10. Structure of the generated CASE tools ... 70

Fig. 3.11. Structure of the Project Manager Component 73

Fig. 4.1. Architecture components overview .. 80

Fig. 4.2. EPF Composer editor in MOSKitt ... 84

Fig. 4.3. Repository client (Method Base) .. 84

Fig. 4.4. Repository client (Asset Base) ... 85

Fig. 4.5. Excerpt of the M2T transformation .. 86

Fig. 4.6. Technical fragment ... 86

Fig. 4.7. Project Manager Component .. 88

Fig. 5.1. The OOWS-BP method .. 92

Fig. 5.2. Case study specification in the EPF Composer 94

Fig. 5.3. Technical fragments supporting the case study 97

Fig. 5.4. MOSKitt transformation manager .. 101

Fig. 5.5. MOSKitt transformation wizard ... 102

17

Fig. 5.6. Export wizard ... 103

Fig. 5.7. Product configuration file ... 104

Fig. 5.8. Product Explorer view .. 105

Fig. 5.9. Process view ... 105

18

19

List of Tables

Table 5.1. OOWS-BP tasks .. 95

Table 5.2. OOWS-BP technical fragments .. 98

Table 5.3. Relationship between products and technical fragments 100

Table 5.4. Relationship between tasks and technical fragments 100

20

21

1. Introduction

Software development projects have proven to be highly diverse in nature due

to the wide variety of situational elements that come into play. These

elements, especially those regarding human and organizational factors, have a

great impact on the development process. Therefore, in order to maximize

productivity and improve the quality of the developed software, the

development process must be governed by a software production method that

is adapted to these situational needs.

This fact has already been acknowledged in other works such as [25], [26]

and [41]. For instance, in [26] it is stressed that general-purpose methods1 are

“weak” in the field of problem solving compared to the solutions adapted to

the problem at hand. In order to cope with this need for method adaptation, it

is necessary to find alternatives that not only enable the in-house definition

(and adaptation) of methods but also the construction of the corresponding

supporting tools. Up to now, the Situational Method Engineering discipline

seems to be the most promising solution to supply this need.

The Situational Method Engineering discipline encompasses all the aspects

regarding the creation of methods for specific situations [41] and constitutes a

sub-area of a broader field called Method Engineering. Method Engineering is

defined in [9] as the engineering discipline to design, construct and adapt

methods, techniques and tools for the development of information systems.

During the last two decades, a lot of proposals have tried to provide an

answer to the existing problems in this area. However, while these proposals

have contributed to establish a solid theoretical basis, none of them has been

successfully exploited in industry, being relegated just to educational

1 In this document, the terms “method” and “methodology” are used as synonyms of software

production method

22

environments. In order to turn Method Engineering into reality, this master‟s

thesis provides a methodological approach that covers the main phases of the

Method Engineering lifecycle2 from a Model Driven Development (MDD)

perspective. In particular, the proposal advocates for the use of meta-modeling

and model transformation techniques to tackle the design and implementation

of project-specific software production methods.

The rest of this chapter is organized as follows: First, section 1.1 presents a

motivation of the work described in this thesis. Then, section 1.2 states the

problem that this thesis tackles and section 1.3 briefly presents the solution

proposed to face this problem. Section 1.4 explains the context of this work

and, finally, section 1.5 outlines the structure of the thesis.

1.1. Research Motivation

Software production methods guide software engineers during the course of

software development projects by establishing the rules and procedures that

assist in the orderly project execution. Thereby, methods define what to do,

how and when, contributing to a better understanding of the problem and,

therefore, to an improvement in quality of the developed software.

Even though different attempts have been made to develop universally

applicable methodologies that fit any situation (e.g. Extreme Programming

[6], the Rational Unified Process [47], etc.), real software development

projects have demonstrated that methods must be tailored to fit specific

context needs [26]. As a result, the “one-size-fits-all” methodology is now

considered unattainable [22, 24, 26, 41, 88, 91]. In order to face this tailoring

process, alternatives that support the definition of project-specific

methodological approaches and the construction of supporting tools need to

be sought. As stated above, the Situational Method Engineering discipline has

emerged as the most optimistic solution to supply this need.

2 In general, the Method Engineering lifecycle comprises the specification of the method

requirements, the method design, the method implementation (i.e. the construction of the tool

that supports the method) and the method validation [57]. The requirements analysis and

validation of the method fall out of the scope of this thesis.

23

Within the (Situational) Method Engineering field, method engineers

mainly focus on designing methods and implementing the tools that support

such methods similarly to the way Information System Development (ISD)

groups design and implement information systems. Method engineers can

therefore be considered as developers of information systems for ISD [89].

Thus, the goal of Method Engineering is to improve the ISD process by

providing better methods and supporting tools.

Facing the accomplishment of this goal is, however, a complex and error-

prone task that requires automated tool support [57]. Unfortunately, while the

theoretical basis that lays the foundations of Method Engineering is very solid

and extensive, the existing tool support for this basis does not live up to the

expectations due to the complexity of putting this theory into practice. This

tool support, namely Computed Aided Method Engineering (CAME)

environments, aims at supporting the method engineering tasks but,

nowadays, it mostly represents incomplete prototypes that present important

deficiencies. This problem also becomes evident in [57] where a study of

different CAME environments is presented.

In view of this situation, it is apparent that there is a significant need for

software tools that provide appropriate support to Method Engineering. Since

the development of this kind of tools is very far from trivial, it is crucial to

find engineering solutions to properly handle this complexity. The research of

these solutions has constituted the central focus of this work, and the obtained

results are presented in this thesis.

1.2. Problem Statement

The proper performance of tasks such as the design and implementation of

software production methods is particularly difficult without the assistance of

appropriate tools. The discussion presented in the previous section illustrates

this fact. Nevertheless, tool support still remains the Achilles‟ heel of Method

Engineering and this handicap is leading to a slow industry adoption of

Method Engineering approaches [80].

24

In order to improve this situation, the work presented in this thesis

contributes to the Method Engineering field by tackling from a MDD

perspective the following two challenges:

Challenge 1. Definition of a methodological approach that establishes the

series of well-defined steps that allow method engineers to systematically

define methods and build the corresponding supporting tools. To support

these tasks in an effective manner, the approach must be based on a sound

infrastructure that formalizes:

Req. 1.1. The concepts that are available for defining methods and the

rules governing their use.

Req. 1.2. How the method specifications are created using the formalized

concepts.

Req. 1.3. The mechanisms that enable the definition of mappings from

method specifications to the CASE tools that support them.

Challenge 2. Definition of an architecture that establishes the collection of

components (and the interaction between these components) that must be

implemented in a software tool in order to support the various phases that

compose the methodological approach. This architecture must fulfill the

following non-functional requirements:

Req. 2.1. Technology-independence. The architecture must be defined in

a technology-independent fashion in order to make it less

sensible to technological changes and facilitate its

implementation in different platforms.

Req. 2.2. Modularization. The architecture must be based on separate

components in order to improve its maintainability and

facilitate its evolution.

Req. 2.3. Separation of concerns. The architecture must clearly separate

components that deal with Method Engineering tasks (e.g.

method specification) from components that deal with ISD

tasks (e.g. system specification).

25

1.3. Proposed Solution

This section briefly summarizes the solutions proposed in this master‟s thesis

to face the challenges stated above.

First of all, regarding challenge 1, this thesis defines a methodological

framework that defines the method, languages and techniques that allow

method engineers to perform in a systematic way the design and

implementation of project-specific software production methods. This

methodological framework is built upon an MDD infrastructure [4] that lays

the foundations of the framework and is based on meta-modeling and model

transformation techniques. On the one hand, the meta-modeling techniques

are based on the Software & Systems Process Engineering Meta-model

(SPEM) [87] (req. 1.1) and are the means that allow the method engineer to

produce method specifications as machine-processable models (req. 1.2). On

the other hand, model transformations make use of these models for

(semi)automating the performance of the method implementation (req. 1.3).

By applying these ideas, it has been possible to define a methodological

framework that not only tackles the definition of methods following a widely

accepted standard, but also proposes to use these definitions for the

(semi)automatic generation of CASE tools that integrate all the required

elements to provide rich support to the methods (from simple textual editors

to more sophisticated tools such as graphical editors, code generators, report

generators and process engines).

Furthermore, regarding challenge 2, this thesis also proposes an

architecture that specifies the technology-independent components (req. 2.1

and 2.2) that are needed to support the methodological framework. This

architecture is divided into two parts (req. 2.3): on the one hand, it defines the

components that must be implemented in a CAME environment so that it

enables the definition of methods and the (semi)automatic generation of

CASE tools. On the other hand, it defines the various components that are

included in the CASE tools that are obtained by means of the CAME

environment. The definition of these components is necessary in order to

establish the transformation mappings between the method models and the

CASE tools.

26

Finally, as a proof of concept of the proposed solution, this thesis provides

implementation details of a CAME environment that is being developed in the

context of Eclipse, more specifically in the context of the MOSKitt platform

[55]. This tool is based on the defined architecture and provides support to the

methodological framework.

1.4. Context of the Thesis

This master's thesis has been developed in the research center Centro de

Investigación en Métodos de Producción de Software (ProS) of the

Universidad Politécnica de Valencia. More specifically, the solutions

proposed in this work have been defined and implemented within the context

of the MOSKitt project [55].

The MOSKitt project constitutes a jointly work developed by the

Conselleria de Infraestructuras y Transporte (CIT) and the ProS to develop

an Eclipse-based CASE tool to support the gvMétrica method (an adaptation

of métrica III to satisfy CIT needs). There is a big community involved in the

project, ranging from analysts (software and business analysts) to end users,

which are in charge of validating each new release of the tool. This setting

constitutes an adequate environment to validate the proposal presented in this

thesis. In fact, in the near future the results of this work will be included into a

MOSKitt released version in order to use it for the definition of gvMétrica and

the construction of the supporting tool.

1.5. Outline

The remainder of this thesis is organized as follows:

 Chapter 2 presents a study about the current state of the art, focusing on

Method Engineering approaches, languages and tools. Specifically, this

study stresses the limitations of the works that are presented and details

how the proposal described in this thesis tackles these limitations.

http://www.cit.gva.es/cast/informacion-general/

27

 Chapter 3 presents in detail the methodological framework that is

proposed in this thesis for performing the design and implementation of

software production methods.

 Chapter 4 defines the architecture that establishes the software

components that are required to support the methodological framework

presented in chapter 3. Furthermore, this chapter introduces a prototype

that has been developed on the MOSKitt platform in order to implement

the proposed architecture.

 Chapter 5 describes the case study that has been chosen to validate the

proposal. Furthermore, it details how this case study has been developed

on the prototype presented in chapter 4.

 Chapter 6 presents the conclusions of this thesis and outlines future work

that can be carried out in order to extend the proposal. Furthermore, this

chapter lists the research publications that have been produced during the

course of this work.

28

29

2. State of the Art

The term Method Engineering was first introduced in the mid-eighties by

Bergstra et al in [7], and was later used in other works such as [9], [48] and

[85]. From that moment, Method Engineering emerged as a promising way to

tackle the adaptation of software production methods and tools to specific

project needs.

Since the origin of Method Engineering two decades ago, this discipline

has had an extensive history. Many works developed both at academia and

industry have contributed to establish a solid theoretical basis in this field. In

order to underpin this theory, a survey of the most relevant contributions is

gathered in [41].

Specifically, this chapter analyzes some of the most important Method

Engineering proposals, addressing three topics: (1) Method Engineering

approaches, (2) languages for building method specifications and (3) software

tools supporting these approaches and languages. According to these topics,

section 2.1 first presents different approaches for method definition. Then, in

section 2.2, some of the most significant languages that have been proposed in

the literature to perform this definition are described. Section 2.3 surveys

some tools that have been developed to support the approaches and languages

previously presented and, finally, section 2.4 draws some conclusions.

2.1. Method Engineering Approaches

Many Method Engineering approaches of different nature have been proposed

during the last two decades. For instance, approaches such as [11] or [63]

tackle method construction as an assembly of method components. Others,

however, focus on the spreading and sharing of methodological knowledge

30

rather than the definition and adaptation of methods. This is the case of the

community based approach proposed in [53], which aims at solving method

usage problems by improving the practitioners‟ understanding of the method

to apply. Furthermore, proposals such as [15] propose the use of patterns for

performing method extensions while others such as [32] and [43] offer a

service-oriented view of Method Engineering.

In view of this disparate scenario, this section aims to provide a survey of

the most extended types of approach. In particular, these types have been

classified according to the types proposed in [69], which are: (1) the

assembly-based approach, (2) the paradigm-based approach and (3) the

extension-based approach. In order to illustrate the steps that must be

followed to perform each of these approaches, the Map process meta-model

proposed in [79] is used. This meta-model enables the creation of intuitive

process models based on the notions of intentions to fulfill and strategies to

achieve these intentions.

2.1.1. The assembly-based approach

Fig. 2.1. Assembly-based approach (from [69])

The assembly-based approach [67, 69] consists in the construction of software

production methods by means of the assembly of reusable method chunks (or

fragments) that are stored in some method base repository [10, 35, 66]. Thus,

methods are viewed as a collection of chunks that are “glued together” to

31

form a method attuned to specific context needs. In order to show the different

steps that must be followed to perform the method assembly, Fig. 2.1 shows

this approach as a process model following the map notation.

The assembly-based approach is the most common of the three approaches.

This is mainly due to the fact that this approach advocates for a modular

vision of methods, which entails important advantages. Between these

advantages, reusability is of high significance. Specifically, a modular vision

of methods facilitates the reusability of their different parts, which directly

leads to a reduction of the time required to define new methods. Furthermore,

considering a method as an assembly of components also has a positive

impact on its evolution qualities, such as maintainability and extensibility.

Some examples of relevant Method Engineering proposals that follow this

approach are Brinkkemper‟s [9, 10, 11] and Prakash‟s [63]. On the one hand,

Brinkkemper mainly focuses on method fragment assembly techniques and

their formalization by means of first-order logical formulas. In [11] he stresses

the need of imposing constraints in the assembly process in order to obtain

meaningful methods. Most of the constraints that he proposes are syntactical,

but he emphasizes the need of defining semantical constraints as well, which

requires the formalization of the fragment semantics. He carries out this

formalization by means of an ontology.

On the other hand, Prakash proposes an approach to formal method

specification. This approach is based on three levels: the generic view (the

most abstract view of a method, independent of the underlying paradigm), the

meta-model and the method (obtained by instantiating the meta-model). These

three layers represent an attempt to develop a comprehensive framework and

architecture for methodology domain modeling. Specifically, in this approach

a method is viewed as a collection of method blocks, which are defined as

pairs <objective, approach>. The objective of a method block establishes what

the block tries to achieve and the approach defines the technique that can be

used to achieve the objective of the block. In addition, he also proposes

different types of blocks, such as product manipulation and constraint

enforcement (for atomic methods), and product composition and

compositional-constraint enforcement (for compound methods).

The nomenclature problem

32

In the Method Engineering literature, proposals that follow the assembly-

based approach denote the atomic element from which methods can be

assembled in different ways. For instance, Ralyté uses the term method chunk,

while Prakash uses the term method block and Brinkkemper the term method

fragment. In order to reach a consensus on the definition of this atomic

element, in [39] a study of the different terms that have been proposed is

presented. In general, the most accepted are method fragment and method

chunk.

On the one hand, method fragments can be either product fragments or

process fragments [9, 35, 65, 76]. In general, a product fragment describes a

product that is either consumed or produced during the method. A process

fragment describes activities and procedures that must be executed to

construct products. On the other hand, method chunks [52, 66, 67] can be

defined as the combination of a process fragment and a product fragment.

During the last decade, there has been much debate about the efficacy of a

method chunk as compared to a method fragment. While method chunks offer

some advantages, it seems that method fragments are quite more flexible. For

instance, one advantage of method chunks is argued to be the speed of usage,

since a smaller number of chunks is usually required to assemble a complete

method. However, there is a potential disadvantage as a result of the fact that

the process-product linkage present in method chunks is neither one-to-one

nor unique in real-life scenarios. Thus, the separation between product and

process that method fragments provide implies important advantages such as

the possibility to relate one process fragment with many product fragments

and the possibility to reuse one product fragment in the definition of many

process fragments [39].

Specifically, in the proposal presented in this thesis the concept of method

fragment is used. One of the reasons for this is the language used in the

proposal, i.e. the SPEM standard (see section 2.2.6). In particular, the

separation of product and process fragments allows method engineers to

leverage the clear separation between method product and process provided

by SPEM.

33

2.1.2. The paradigm-based approach

The paradigm-based approach [69, 71] is based on some initial idea expressed

as a model or a metamodel that is called the paradigm model and supports the

evolution of this paradigm model into a new model satisfying another

engineering objective. In other words, the hypothesis of this approach is that a

new method is obtained either by abstracting from an existing model or by

instantiating a meta-model. Thereby, this approach uses meta-modeling as its

underlying Method Engineering technique.

One of the results obtained by the meta-modeling community is the

definition of any method as composed of a product model and a process

model [64]. A product model defines a set of concepts, their properties and

relationships that are needed to express the outcome of a process. A process

model comprises a set of goals, activities and guidelines to support the

process goal achievement and the action execution. Therefore, method

construction following the meta-modeling technique is centered on the

definition of these two models [71]. This is illustrated in Fig. 2.2, wherein a

map representing the paradigm-based approach is shown.

Fig. 2.2. Paradigm-based approach (from [69])

The paradigm-based approach is the most generic of the three approaches

presented in this survey. Since it is based on meta-modeling, it presents

important benefits that are inherited from this technique. For instance, since

34

methods are defined at a high level of abstraction, their understandability is

increased (compared to, e.g, textually defined methods), thus contributing to

facilitate their application in real ISD projects.

Some examples of relevant Method Engineering proposals that follow this

approach are Rolland‟s [75] and Grundy‟s [30]. On the one hand, Rolland

presents in [75] a proposal for defining ways-of-working in a systematic

manner. A way-of-working is a process model that takes into account

heuristic knowledge to guide humans performing systems development.

Specifically, these process models are created by instantiation from a process

meta-model that is called NATURE (see section 2.2.5). Furthermore, the

product meta-model presented in [82] enables the definition of the product

part of these models.

On the other hand, Grundy [30] proposes a product-oriented approach from

defining methods. Specifically, he defines a product meta-model called

CoCoa that allows method engineers to define the design notations that enable

the creation and manipulation of the method products. Furthermore, a process

modeling environment called Serendipity is proposed for supporting the

definition of process models that coordinate the development of the method

products.

2.1.3. The extension-based approach

The extension-based approach [69] consists in identifying typical extension

situations and performing the required extension of the method by means of

extension patterns. A pattern is a component that describes a recurrent

problem [15], which helps to identify the extension situation, and is defined

with its associated solution (the guidelines to be followed when the pattern is

applied). Specifically, this solution embodies the process chunk that is to be

applied on a particular product [15].

In view of this definition of the pattern concept, one may think that the

process of extending a method is somewhat similar to the assembly of method

fragments. Actually the main difference lies in the nature of the components

that participate in the assembly or the extension. In the former case, the

components (i.e. the method fragments/chunks) can be directly used, whereas

35

in the latter they cannot, that is, they have to be generated from the generic

patterns.

Fig. 2.3. Extension-based approach (from [69])

Fig. 2.3 shows the map representing the process underlying the extension-

based approach. Even though this approach is the less common of the three

approaches, it also presents important advantages. For instance, it is oriented

towards guiding the method engineer during the performance of method

extensions, which means that it is an adequate approach for performing the

adaptation of methods to context needs, one of the main goals of Method

Engineering.

An example of proposal that suggests the use of patterns for performing

method extensions is [15]. Specifically, this work proposes a set of generic

patterns for introducing temporal features (such as time constraints) to object

oriented models.

2.1.4. General discussion

Method Engineering has a disparate history since many different approaches

have been proposed over the past twenty years. However, all these approaches

share a common goal: assisting the method engineer during the definition of

methods and their adaptation to the context needs. In order to reach this goal,

most proposals advocate for the assembly-based approach, but others promote

other approaches, such as the paradigm-based or the extension-based.

Together, all these proposals have contributed to establish a solid and wide

theoretical basis in the area of Method Engineering. However, in spite of this

sound basis, there still remains a need for a Method Engineering proposal

that takes all the method dimensions into account together. Currently,

most of the Method Engineering proposals only focus on the product

36

dimension (the products to be constructed during the method) and the process

dimension (the process to be followed to obtain the products), but other

dimensions are also important. These dimensions are basically the tool

dimension (the software tools that provide support to the product and process

dimensions) [83], and the people dimension (the agents that make use of the

tools in order to develop the method products following the method process)

[41].

This problem has already been noted in other works such as [43]. In order

to fill this gap, the methodological framework presented in this master‟s thesis

covers all these four dimensions of methods, as will be shown in chapter 3.

2.2. Method Engineering Languages

Meta-modeling is considered by the Method Engineering community as “the

core technique in Method Engineering” [69] as it provides an effective way to

formalize the abstract syntax of the language that establishes the concepts,

constraints and rules that are applicable in the construction of the software

production methods. In particular, this subsection presents a survey of some

of the most significant languages that have been proposed during the last two

decades. For each of these languages a brief overview is given, and later in

section 2.3, tools supporting them are described.

2.2.1. ASDM

The semantic data model notation ASDM [42] is a forerunner of current

Method Engineering languages and yet it provides a powerful means for

representing ISD knowledge. Furthermore, it represents the first attempt to

define method semantics, as noted in [56]. An overview of the meta-model is

presented in Fig. 2.4.

37

Fig. 2.4. ASDM meta-model (from [42])

As shown in Fig. 2.4, the MERET Object is the most general object type. A

MERET object can be either a methodology object or a guideline object. On

the one hand, methodology objects embrace all description objects for the

specification of a method: techniques (used to develop products), actors,

milestones, processes, etc. Processes can be either phases or activities

(elementary units of work). On the other hand, guideline objects reflect the

more dynamic part of the method knowledge. For instance, a guideline can be

a textual notice representing experiences from applying a specific part of the

method, or an integrity rule represented as a horn clause.

In general, the ASDM meta-model provides adequate concepts for

specifying software production methods in a product-oriented fashion.

Furthermore, it provides a graphical notation that facilitates method

comprehension. However, it just embodies a first step towards Method

Engineering since it presents important deficiencies. For instance, it provides

poor support to the specification of the process part of methods, which

negatively affects the possibility of building complete CASE environments

from ASDM method specifications.

38

2.2.2. GOP(P)RR

The GOPRR conceptual data model [46] is a Method Engineering language

that has been specially designed to support the definition of techniques that

can be used for the manipulation of the method products. In other words, it

supports the definition of modeling languages, such as ER, DFD, UML Class

Diagram, etc.

The name GOPRR is an acronym that stands for the metatypes the

language operates on: Graph, Object, Property, Role and Relationship. This

metatypes and their relationships are graphically illustrated in Fig. 2.5.

Fig. 2.5. GOPRR meta-model (from [34])

In particular, these concepts represent the following:

 Graph: A graph is a collection of objects and relationships among

these objects via roles. An example of graph is a UML class diagram.

 Object: An object is an element that can be placed on its own in a

graph. An example of object is a Class that belongs to an UML class

diagram.

 Relationship: A relationship is an explicit connection between two or

more objects. Relationships attach to objects via roles. An example of

a relationship is an Association of a UML class diagram.

39

 Role: A role specifies how an object participates in a relationship.

 Property: A property is a describing or qualifying characteristic

associated with the other types. An example of property is an

Attribute that belongs to an UML class diagram.

Furthermore, the notion of Port is included in the GOPPRR language [51],

which represents an evolution of the GOPRR language. Specifically, a port is

an optional specification of a specific part of an object to which a role can

connect. Normally, roles connect directly to objects, and the semantics of the

connection are provided by the role type. If you want a given role type to be

able to connect to different places on an object with different semantics, you

can add ports to the object‟s symbol.

To summarize, the GOPRR and GOPPRR languages represent an adequate

means for defining modeling notations that can be later used in an integrated

CASE environment for creating and manipulating method products. However,

this approach presents important lacks. While the CASE tools obtained from

GOP(P)RR specifications may provide complete support to the manipulation

of method products, they overlook important aspects of ISD such as process

enactment and code generation.

2.2.3. MEL and MDM

The Method Engineering Language (MEL) [12] is a formal representation

language that provides concepts and constructs for the textual description,

selection and manipulation of method fragments. On the one hand, it provides

syntactic constructs to compose from activities complex processes such as

sequential execution, conditional branch, iteration, parallel execution and non-

deterministic choice. On the other hand, it provides constructs for the detailed

specification of the products that these processes need as input and deliver as

output.

Furthermore, the semantic aspects of the product fragments can be

specified by anchoring the fragment descriptions to an ontology, described by

means of the Methodology Data Model (MDM) [35]. Anchoring means that a

method fragment is described in terms of well-defined basic concepts and

associations between those concepts. In particular, the MDM ontology

provides the following concepts (CN0) and associations (A0):

40

 CN0 = {Activity, Actor, Association, Attribute, Attribute Type, Benefit,

Business Area, Channel, Communication Protocol, Condition, Cost,

Critical Success Factor, Data Flow, Data Collection, Decision,

Dialogue, Event, External Entity, Field, Function, Goal, Group,

Location, Node, Object, Object Class, Opportunity, Organizational

Unit, Problem, Requirement, Role, Rule, Solution, State, Strength,

System, Threat, Transition, Weakness}

 A0 = {Abstraction, Aggregation, Alternative, Balance, Base,

Capability, Change, Choice, Component, Connection, Constraint,

Consumer, Contents, Dependence, Description, Effect, Employment,

Expression, ExternalOutput, Imposition, Input, Interaction,

Involvement, Manipulation, Message, Output, Performance, Place,

Price, Producer, Product, Request, Resource, Responsibility, Screen,

Site, Specialisation, Support, TransitionTrigger, Trigger, Usage}

In summary, MEL can be considered as a complete Method Engineering

language. It provides constructs for the definition of both products and

process fragments, and also for their manipulation and assembly.

Furthermore, it partially covers the method people dimension through

predefined property types such as “creator” and “responsible”. Unfortunately,

the high amount of properties and concepts make it hard to learn, and its

textual nature hinders the understanding of the developed methods.

2.2.4. MRSL and MVM

The Method Requirements Specification Language (MRSL) [31] is a textual

language for specifying method requirements in a technology-independent

fashion. The main objective of this language is to enable method engineers to

express method requirements in simple terms, avoiding the need to have

expert knowledge about meta-models and how to instantiate them. These

requirements can be later used to (semi)automatically obtain the final method

specification and the CASE tool support.

MRSL is based on the Method View Model (MVM) meta-model, which is

presented in Fig. 2.6. MVM method concepts are called things, and are

partitioned into product entities, links and constraints. A link is any thing that

connects two product entities together. Constraints are those things that can be

41

used by software engineers to specify properties of links and product entities.

Finally, any thing that is not a link or a constraint is a product entity.

Fig. 2.6. MVM meta-model (from [31])

In particular, this language is similar to the GOPRR and GOPPRR

languages, in the sense that it supports the definition of modeling languages

such as DFD, ER, etc. but not the definition of complete software production

methods. Therefore, the CASE environments that can be obtained from

method specifications that follow this language overlook important aspects of

ISD such as process enactment and code generation.

2.2.5. NATURE

The NATURE3 modeling formalism [74, 77] consists of a set of generic

concepts and their relationships for constructing methods from a process

perspective, and was designed with a certain philosophy in mind: process

models must be contextual, that is to say, the process model must allow users

to switch context in a flexible and easy manner. Specifically, a context is

composed of the situation that is perceived by the method engineer and the

specific intention (or decision) he/she has in mind. The NATURE meta-model

(see Fig. 2.7) addresses these issues by making the notions of situation,

decision and context explicit.

3 Novel Approaches to Theories Underlying Requirements Engineering

42

Thereby, the notion of context constitutes the basic building block of

NATURE process models. Contexts are defined as couples <situation,

decision> that can be linked repeatedly in a hierarchical manner to define

trees. A tree represents a structured piece of knowledge for supporting

decision making in the process. In other words, it is a process fragment which

aims at assisting the method engineer in making the most appropriate decision

for the situation at hand. Finally, a collection of trees (i.e. hierarchies of

contexts) is referred to as a forest, which represents the method.

Fig. 2.7. NATURE meta-model (from [77])

To summarize, the NATURE approach represents a powerful means for

specifying modular ISD processes that are easy to adapt to context changes

and to assemble between each other to compose bigger processes. However, it

must be used in combination with a product meta-model in order to specify

complete software production methods. Furthermore, this approach does not

support the people and tool dimensions of methods.

43

2.2.6. SPEM 2.0

In view of the diversity of Method Engineering languages that was emerging

in the literature, the OMG4 proposed the definition of a formal framework for

the definition of software production methods and their components. The

result is the standard language SPEM (Software & Systems Process

Engineering Meta-Model) [87]. Specifically, this section focuses on its

version 2.0, released on April 2008.

The SPEM 2.0 meta-model is structured into seven main meta-model

packages as depicted in Fig. 2.8. In general, meta-model classes are

introduced in lower packages as simply as possible, and then, they are

extended in higher packages via the merge mechanism. By means of this

mechanism additional properties and relationships can be added in order to

realize more complex process modeling requirements.

Fig. 2.8. Structure of the SPEM 2.0 meta-model (from [87])

4 Object Management Group, http://www.omg.org/

44

 Core: This package contains the classes and abstractions that build the

base for classes in all other meta-model packages.

 Process Structure: It contains the base classes for all process models.

Specifically, a SPEM 2.0 process is represented by a breakdown

structure composed of Activities that reference the performing Role

classes and the input/output WorkProduct classes. Furthermore, it

provides mechanisms for process reuse, e.g. process patterns.

 Process Behavior: This package contains the classes that enable the

use of behavioral models for extending the static breakdown structures

built by means of the Process Structure package. However, it does not

define its own behavior modeling approach, but rather provides „links‟

to existing externally-defined behavior models. For example, a process

defined with the Process Structure concepts can be linked to UML 2

Activity diagrams that represent the behavior of such process.

 Managed Content: It contains classes for managing the textual

documentation of processes (i.e. it enables the association of guidance

elements with process structure elements). For instance, a SPEM 2.0

process can be comprised of a combination of instances of the

Guidance class with a process structure using the relationships defined

in this package.

 Method Content: This package defines the core elements of every

method such as Roles, Tasks, and Work Products. Then, processes

would reuse these method content elements and relate them into

partially-ordered sequences that are customized to specific types of

projects. As a result, SPEM methods provide a clear separation of

method content definitions and development processes.

 Process With Methods: This package provides the classes that are

needed to integrate (i.e. reference) method content into the processes

defined using the Process Structure package. These classes can store

the changes made to the method content classes that only apply in the

specific process.

 Method Plugin: This package introduces concepts for managing

maintainable, large scale, reusable and configurable libraries or

repositories of method content and processes.

In general, SPEM represents an adequate language for Method Engineering

since it not only covers the product and process dimensions of methods but

45

also the other two, people and tool (by means of primitives such as Role,

RoleSet and ToolDefinition.). Furthermore, it is oriented towards the modular

definition of ISD processes, facilitating their assembly from existing parts (a

characteristic that is directly related to the Method Engineering principles).

However, industry adoption is being slow mainly due to the lack of

supporting tools.

2.2.7. ISO/IEC International Standard 24744

The ISO/IEC 24744 [45] is an International Standard that defines a meta-

model for the technology-independent specification of development

methodologies in any area, although it is weighed towards software

development methodologies. Its scope covers, inter alia, concepts such as

work units, work products, producers, stages and model units (see Fig. 2.9).

In addition to the meta-model, a graphical notation is provided to allow

method engineers to represent complete methods using graphical constructs.

Fig. 2.9. Overall architecture of ISO/IEC 24744 (from [40])

One of the main novelties of the standard is the introduction of the

powertype pattern concept of Odell [27, 28, 29, 40, 59] as a core element in

the meta-model. Specifically, a powertype pattern is a pair of elements. The

46

instances of one of them reside in the method domain and the others in the

enactment domain. The elements in the enactment domain represent actual

elements in use by the people on a particular project (e.g. actual tasks). On the

other hand, the elements in the method domain represent method elements as

they are specified in the model (e.g. instances of the meta-class Task). The

main advantage of this approach is that it allows some attributes of the

powertype to be inherited by the element in the method domain with values

already allocated to them, while others remain “traditional” attribute

specifications that get their value in the enactment domain.

In summary, this language embodies another standardization effort in the

field of method definition. It represents a rather complete language for

Method Engineering since it covers the process, product and people

dimensions of methods. One of its distinctive characteristics is that it provides

primitives for specifying elements that reside either on the instance level (i.e.

enactment level) or the method level. This approach allows some attributes

defined in the meta-model to be given values in any of both levels.

2.2.8. General discussion

This survey illustrates that there is a wide diversity of languages and all of

them have their advantages and drawbacks. This conclusion is also drawn in

several studies, such as [34] and [57]. These studies conclude that there is not

ultimate Method Engineering language and, therefore, the choice of the

language depends on the specific purpose and goals that one wants to achieve.

In order to contribute to improve this situation, standardization efforts are

being made, e.g. the SPEM [87] and ISO/IEC 24744 [45] initiatives. These

standards aim to provide languages dedicated to method specification that do

not present the deficiencies found in previous proposals.

Unfortunately, while these standards represent adequate means to perform

the definition of software production methods, Method Engineering

proposals that make use of these standards are still non-existent. Indeed,

in [41] it is predicted that one of the likely topics for research initiatives in the

next years will be a new generation of CAME tools based on internationally

standardized methodology meta-models.

47

In order to fill this gap, the methodological framework presented in this

master‟s thesis proposes the use of the SPEM standard for the construction of

the method specifications. Specifically, chapter 3 describes in detail how these

specifications are built and how they are later used for the (semi)automatic

generation of the CASE tool support. Then, chapter 4 gives implementation

details of a CAME environment that supports these tasks.

2.3. Method Engineering Tools

The Method Engineering lifecycle is a complex and error-prone process that

cannot be properly performed without automated tool support. The first

Method Engineering supporting tools date back to the early days of Method

Engineering, when the first academic prototypes were first introduced [57].

In general, there are two different types of tools: Computer Aided Method

Engineering (CAME) environments [3, 35, 48, 78, 81] and MetaCASE tools

[19, 44, 49, 50, 73]. Specifically this subsection presents, for each of these

categories, a brief description and a survey of some of the most significant

tools that have been developed during the last two decades.

2.3.1. Computer Aided Method Engineering (CAME)

Computer Aided Method Engineering (CAME) environments aim at

supporting the definition of software production methods by means of

languages such as NATURE or ASDM (see section 2.2). Thus, CAME

environments are mainly focused on the method design phase of the Method

Engineering lifecycle.

Fig. 2.10 illustrates the general architecture of CAME environments. As

shown in the figure, CAME environments are made up of two parts: (1) the

CAME part and (2) the CASE part.

48

Fig. 2.10. General architecture of CAME environments (from [57])

On the one hand, the CAME parts offers facilities for method definition.

Some examples of the functionalities that must be provided in this part are the

following:

 Storage of method fragments/chunks in a repository (typically called

Method Base).

 Definition of properties that enable the search and retrieval of method

fragments/chunks from the repository.

 A query language for accessing the contents of the repository.

 Composition of method fragments/chunks.

 Support and guidance for the method engineer.

On the other hand, the main goal of the CASE part is to produce CASE

tools and process support environments that enable the enactment of the

method specified in the CAME part. For this purpose, the CASE part takes the

method specification as input and offers means to manually or semi-

automatically produce these tools.

MERET

49

The Methodology Representation Tool (MERET) [42] can be seen as the first

approach towards a CAME tool for the specification, storage and further

development of ISD knowledge. Specifically, it supports the specification of

methods in a product-oriented fashion by means of the semantic data model

ASDM, which is detailed in section 2.2.1. In addition, it addresses the

integration of integrity rules and consistency checks on the method

specifications.

One of the main drawbacks of this tool is that it only supports the

specification of software production methods, lacking CASE tool generation

capabilities. Furthermore, due to the product-oriented nature of ASDM, it

provides poor support for defining the process dimension of methods.

Decamerone

Decamerone [33] is a CAME tool that provides facilities for specifying,

storing and selecting method fragments, and for assembling them into a

method. To perform these tasks, the tool provides the language MEL,

described in section 2.2.3.

Fig. 2.11 shows the architecture of decamerone, which is divided into two

parts: the CAME part and the CASE part. On the one hand, the CAME part is

dedicated to the method design and contains the following components:

 The user interface: provides the required tools to perform the

specification, selection and assembly of method fragments by means of

the language MEL.

 Method Base Management System (MBMS): is the kernel of

Decamerone. It provides the operations that are necessary to interact

with the Method Base repository.

 The MEL interpreter: translates MEL specifications into MBMS

function sequences.

On the other hand, the CASE part contains the required tools for the

enactment of the method: a CASE tool repository, a process manager and a

user interface that provides the editors that enable the system specification.

50

Fig. 2.11. Architecture of Decamerone (from [33])

In summary, Decamerone is a rather complete CAME environment. It

supports the definition of methods by means of the MEL language, which not

only allows the method engineer to define product and process fragments but

also offers constructs for their manipulation (selection, storage, assembly,

etc.). Furthermore, Decamerone supports the definition of the semantics of

method fragments by means of the MDM ontology, and the generation of

CASE tools that support both the product and process parts of methods.

However, it also presents some deficiencies. For instance, it provides a poor

graphical meta-model, and the textual nature of MEL complicates the

understanding of the specified methods. In addition, the generated CASE tools

lack code generation capabilities (i.e. the creation of method products by

means of automatic tasks).

MENTOR

MENTOR [61, 84] is a CAME environment that aims at improving the

productivity of method engineers by facilitating the construction of project-

specific methods. It is based on the NATURE contextual approach, which is

described in section 2.2.5.

Fig. 2.12 illustrates the architecture of MENTOR, which is composed of

four main components:

51

 The Method Engineering Environment: this component contains

viewers, editors and a generator. The viewers allow the method

engineer to browse method fragments. The editors enable the graphical

description of both product and process parts of methods. Finally, the

generator aids in the automatic instantiation of predefined generic

patterns.

 The Application Engineer Environment: this component represents

the CASE part of MENTOR and contains the product editors that

permit the development of the system specification. Furthermore, it

contains a traceability tool that keeps track of product and process

traces, and a process change manager that keeps coherent the element

used during the process enactment when the process is modified.

 The Guidance Engine: this is the core component of MENTOR. It

guides the method engineer in the performance of the Method

Engineering tasks and enables the enactment of the specified process

model.

 The repository: is structured in three levels that are interrelated: (1)

the meta level, (2) the method level and (3) the workspace level. These

levels contain respectively the product and process meta-models,

method fragments, and process models and products under

development.

Fig. 2.12. Architecture of MENTOR (from [84])

52

To summarize, MENTOR is one of the most complete CAME tools. First

of all, it supports the specification of method requirements, which is usually

overlooked in most CAME environments. Furthermore, it supports both the

assembly-based and paradigm-based approaches for method specification, and

the construction of CASE tools that support the specified methods. However,

it also presents some drawbacks. For instance, the generated CASE tools lack

code generation, since they are only composed of product editors, a

traceability tool and a process change manager. Furthermore, its graphical

design is not intuitive, which negatively affects its usability.

Method Editor

Method Editor [81] is a CAME environment that uses UML as its meta-

modeling language. In particular, the product part of methods is specified by

means of the UML Class Diagram and the process part by means of the UML

Activity Diagram. The specified methods are used by a diagram generator

and a navigator generator. These tools perform the generation of the CASE

environment that supports the method. This CASE tool is composed of a

series of diagram editors that enable the creation and manipulation of the

method products and browsing pages that guide the software engineer through

the enactment of the method process.

In summary, Method Editor is one of the few CAME environments that

support standard techniques such as UML. It is rather complete since it

supports the specification of methods and the generation of CASE tools.

Moreover, it provides a very intuitive graphical design. However, the main

drawback of Method Editor is that, even though it supports CASE tool

generation, these CASE tools only contain graphical editors that enable the

creation/manipulation of the method products, and navigation pages that guide

through the method process. Other aspects such as code generation or

consistency checkers should be considered.

2.3.2. MetaCASE

Traditional CASE tools provide support to a single software production

method. However, one fixed method simply cannot work for all software

development projects and organizations as they differ significantly from one

another and evolve over time [50]. Therefore, CASE environments should be

53

adapted to meet the context needs, but this is not possible because the tools

that support the methods are “hard-coded” in the environment.

The metaCASE technology aims at solving this problem. To achieve this

goal, metaCASE tools add an additional level above the method level (see

Fig. 2.13) in order to provide the ability to specify at a high level of

abstraction the tools that are required to support the method, and then generate

the CASE environment from these specifications.

As a result, unlike CAME environments (which are focused on the method

design), metaCASE tools concentrate on the CASE tool construction (the

method implementation phase of the Method Engineering lifecycle).

Fig. 2.13. CASE tool versus metaCASE tool

MetaEdit+

MetaEdit+ [46] is, up to our knowledge, the only Method Engineering tool

that has been commercialized. It is a metaCASE environment based on the

conceptual data model GOPPRR, described in section 2.2.2. By means of this

language, MetaEdit+ enables the specification at a high level of abstraction of

the modeling languages (in MetaEdit called “methods”) that have to be

supported by the CASE tool under construction.

MetaEdit+ consists of several tool families. In particular, the family of

tools that enable the specification of methods is the Method Management

Tools family (see Fig. 2.14). This family is composed of the following tools:

54

Fig. 2.14. Method Management Tools in MetaEdit+ (from [46])

 The Method Base: this repository stores method fragments and the

symbols used for representing object types.

 The Method Assembly System: consists of the specialized tools that

are needed for method assembly, such as meta-model editors, which

allow the method engineer to specify methods by means of the

GOPPRR language.

 The Environment Generation System: this system consists of the

generators that take as input the method specifications and deliver the

CASE tools.

In general, MetaEdit+ embodies an efficient solution for defining your own

modeling languages. It is easy to use, well documented and has an intuitive

graphical design. However, MetaEdit+ (and all metaCASE environments in

general) falls short in providing adequate support to Method Engineering.

This is due to the fact that these tools are focused on supporting CASE tool

construction and overlook one fundamental aspect of Method Engineering:

the definition of software production methods.

MERU

The Method Engineering Using Rules (MERU) metaCASE environment [31]

offers the method engineer the textual language MRSL, which is built upon

55

the MVM meta-model (see section 2.2.4). This language allows the method

engineer to specify the method requirements in a technology-independent

fashion. The document that is produced is called Method Requirements

Specification (MRS) and is used to (semi)automatically obtain the final

method specification and finally the CASE tool support.

MERU, like MetaEdit+, embodies an adequate tool for supporting the

definition of modeling languages. Specifically, it provides a high number of

features, such as process enactment support and method requirements

specification. However, it lacks the possibility to specify software production

methods that can assist the execution of real ISD projects.

2.3.3. General discussion

The survey presented in this section shows that in many Method Engineering

initiatives CAME and metaCASE tools are developed in order to provide

software support to their proposals. However, CAME and metaCASE

technology is still immature, since most of these environments just represent

incomplete prototypes that have only been used for academic purposes [57].

The main problem with these tools is that, in general, CAME and

metaCASE environments provide inadequate coverage of the Method

Engineering lifecycle. The main reason for this is that, on the one hand,

CAME environments generally focus on the method design and, on the other

hand, metaCASE environments concentrate on the method implementation.

That is to say, CAME tools usually provide rich ways to specify software

production methods but offer limited (or non-existent) CASE tool generation

capabilities. On the other hand, metaCASE tools provide adequate means for

building CASE environments but lack the possibility to define software

production methods that can be enacted in real projects.

In order to fill this gap, the methodological framework presented in this

thesis equally encompasses the method design and the method

implementation. Therefore, the CAME environment that has been developed

to support the proposal not only provides means for performing the definition

of software production methods, but also for (semi)automatically obtaining

the CASE tool support.

56

2.4. Conclusions

The survey presented in this chapter illustrates that the Method Engineering

literature is very extensive. In particular, some of the most significant Method

Engineering approaches, languages and tools have been presented and the

following shortcomings have been identified:

Shortcoming 1. There still remains a need for a Method Engineering

proposal that takes all the method dimensions into account together (i.e.

the product, process, tool and people dimensions). Most of the existing

proposals cover the product and process parts of methods, but the tool

and people dimensions are almost completely overlooked.

Shortcoming 2. Method Engineering proposals that make use of standards

for method definition (such as SPEM and ISO/IEC 24744) are still non-

existent.

Shortcoming 3. CAME and metaCASE environments provide inadequate

coverage of the Method Engineering lifecycle. In general, CAME

environments focus on the method design and metaCASE

environments on the method implementation.

The methodological framework proposed in this master‟s thesis addresses

these shortcomings. Specifically, it proposes the use of the SPEM standard for

performing the method design (shortcoming 2). This standard adequately

supports the definition of methods that cover the product, process and people

dimensions. The tool dimension is covered by means of the use of technical

fragments [35] (shortcoming 1). Furthermore, in order to equally encompass

the method design and implementation (shortcoming 3), the framework is

founded on an MDD infrastructure that is based on meta-modeling and model

transformation techniques. The meta-modeling techniques enable the

definition of methods as models, and the model transformations enable to

(semi) automatically obtain CASE tools from these models.

57

3. A Methodological Framework

to support Model Driven Method

Engineering

Since the advent of Method Engineering many authors have proposed

different approaches to tackle the design and implementation of software

production methods. The problem with these approaches is that most of them

only focus on one of these tasks, making hard the achievement of the Method

Engineering as a whole. On the one hand, the proposals that mainly

concentrate on the method design (e.g. [10, 37, 52, 69]) provide rich ways to

design methods, but limited (or not-existent) CASE tool generation

capabilities. On the other hand, the proposals that mainly focus on the method

implementation (e.g. [20, 30, 46, 73]) provide efficient alternatives to

customize CASE tools, but lack the possibility to design software production

methods. Unlike these approaches, the methodological framework proposed in

this chapter equally encompasses the method design and the method

implementation phases of the Method Engineering lifecycle. In order to

support these phases in an effective manner, the methodological framework is

based on an MDD infrastructure [4]. This infrastructure formalizes in a meta-

model the concepts that are available for defining methods and provides

model transformation techniques to support the definition of mappings from

method specifications to the CASE tools that support them.

This chapter has been structured as follows: first, section 3.1 gives an

overview of the methodological framework. Then, section 3.2 presents the

framework in detail (the MDD infrastructure the framework is built upon, and

the framework phases). Finally, section 3.3 concludes the chapter.

58

3.1. Methodological Framework Overview

This section provides an overview of the various phases that compose the

methodological framework introduced in this chapter. These phases are the

method design, the method configuration and the method implementation (see

Fig. 3.1). In this methodological approach a combination of the assembly and

paradigm-based approaches presented in chapter 2 (section 2.1) has been

adopted to face the definition of methods. Specifically, this definition is

carried out by means of the SPEM standard [87], which is also described in

chapter 2 (section 2.2.6).

Fig. 3.1. Overview of the methodological framework

Method design

During this phase, the method engineer builds the model of the method using

SPEM. This model is composed of two parts: the product part and the process

part5. The product part represents the artifacts that developers should

construct during the execution of a project, and the process part represents the

procedures that developers must follow to construct such products. The

construction of the method model can be performed from scratch or reusing

method fragments stored in a Method Base repository that is implemented

5 The people dimension can be also specified by means of the SPEM primitives: Role and

RoleSet.

59

following the RAS standard [72]. Specifically, the model resulting from this

phase constitutes a first version of the method that includes the elements that

compose the method (tasks, products, roles, guides, subprocesses, etc.) but no

details about the technologies and notations that will be used during its

execution are specified. For instance, the method engineer can specify a

generic product called “Business Process Model”, without stating in which

notation this product will be created when the method is executed.

Method configuration

In this phase, the method model is instantiated with the specific technologies

and notations that will be used during the method enactment. This

instantiation is achieved by associating tasks and products with editors,

transformations, etc. that are stored as reusable assets6 in a repository called

Asset Base (also implemented following the RAS standard). These assets

determine how the method elements will be managed in the final tool. For

instance, the product “Business Process Model” can be associated with a

“BPMN graphical editor”. Thus, the method engineer is indicating that this

editor must be included in the generated CASE tool, so that it enables the

creation and manipulation of this particular product.

The main benefit of separating the construction of the method model in two

phases (i.e. the method design and the method configuration) is that it stresses

the importance of reusability, since generic definitions of methods can be

stored and then perform different method configurations according to each

particular target project or team.

Method implementation

During this phase, the method model is used as input of a model

transformation that generates the CASE tool support. This tool provides

support to both the product and process parts of the method. On the one hand,

the product support consists of the tools that enable the creation/manipulation

of the method products (i.e. the reusable assets associated to the method tasks

and products in the previous phase). On the other hand, the process support

consists of a process engine that enables the method process execution.

6 These assets represent the tool dimension of the method.

60

3.2. Methodological Framework

This section presents in detail the methodological framework. First, it details

the framework MDD infrastructure, and then each of the framework phases.

3.2.1. Foundations

This section details the MDD infrastructure that lays the foundations of the

methodological framework. In particular, this infrastructure is based on meta-

modeling and model transformation techniques that allow method engineers

to perform the design and implementation of methods.

Meta-modeling

Meta-modeling has always played a key role in the Method Engineering field

as it allows the definition at a high level of abstraction of the concepts,

constraints and rules that are applicable in the method definition.

The use of meta-modeling in Method Engineering has already been

discussed in other works such as [29], [36] and [38]. In general, proposals that

focus on the method design phase usually use meta-modeling as their

underlying technique to define the method specifications [11, 42, 52]. On the

other hand, proposals that focus on the method implementation use these

techniques to specify the design notations that are to be supported by the

generated tools [30, 46, 73].

In the proposal presented in this thesis, meta-modeling techniques are also

used for the creation of the method model, in particular following the SPEM

standard. A study about the applicability of SPEM to Method Engineering is

presented in [58]. In this work, the authors present some of the SPEM

advantages and disadvantages for supporting the method design. Among the

SPEM advantages, in this work are of special interest: (1) wide acceptance in

the field of process engineering, (2) good Method Engineering process

coverage, (3) support to both product and process parts of methods, and (4)

good abstraction and modularization of processes. Regarding its

disadvantages, [58] points out the lack of executable semantics, but proposes

to overcome this limitation by using a model transformation to transform the

61

process models into executable representations that can be executed by

workflow engines.

In order to provide a more in-depth view on how the SPEM meta-model is

used in this proposal, below the structure of the method fragments from which

SPEM models can be assembled is presented in detail. In general, in the

Method Engineering proposals that suggest the use of method fragments,

these are obtained by instantiating some class of a meta-model. For instance,

in the OPEN Process Framework [21] method fragments are generated by

instantiation from one of the top levels classes: Producer, Work Product and

Work Unit [41]. Specifically, next subsection details the SPEM classes from

which method fragments can be created and, furthermore, it presents a

taxonomy that classifies the different types of fragments that are used in the

proposal.

Method fragments

The term method fragment is used in this work to denote the atomic element

from which methods can be assembled. Specifically, two different types of

method fragments are considered: product fragments and process fragments.

This differentiation offers several advantages, such as (1) leveraging the

separation between product and process specification provided by SPEM
7
.

Furthermore, it provides the possibility (2) to relate one process fragment with

many product fragments and (3) to reuse one product fragment in the

definition of many process fragments.

Attending to the different phases identified in the methodological

framework, a third type of fragment is actually used. This fragment is called

technical fragment, term that was first proposed in [35]. Specifically, these

fragments contain the tools that are associated to the products and tasks of the

method during the method configuration and that make up the infrastructure

of the generated CASE tools (i.e. they correspond to the reusable assets of the

Asset Base).

7 In order to use the same terminology as the used in the Method Engineering field, in this work

the product-process separation of methods and the SPEM separation between method content

and method process are considered analogous.

62

Fig. 3.2. Relationship between method fragments and SPEM classes

In order to illustrate the hierarchical organization of the various types of

fragments, the left side of Fig. 3.2 graphically presents the fragment

taxonomy. In this taxonomy, the new abstract category conceptual fragment

(also proposed in [35]) is introduced for grouping product and process

fragments. Moreover, additional information has been included, e.g. the

relationship “contains” between process fragments represents the fact that

SPEM processes can contain nested subprocesses, and the relationship “Uses”

that one process fragment can reference from one to many product fragments.

On the other hand, the right side of Fig. 3.2 shows a very simplified view of

the SPEM meta-model. In SPEM, a method is represented by a MethodPlugin,

which contains both ContentPackages and ProcessPackages. Within content

packages, Tasks, Roles and WorkProducts are stored. Within process

packages processes are stored as instances of the class ProcessComponent.

Note that some of these SPEM concepts have been associated with

fragments of the taxonomy. These associations illustrate a containment

relationship. For instance, process fragments are associated with one

ProcessComponent. This represents that, when process fragments are stored

in the repository, they contain a SPEM model that includes one instance of the

class ProcessComponent. Furthermore, product fragments are associated with

ContentElements, which represents that these fragments can contain any

instances of Task, Role, and WorkProduct.

63

Finally, even though it has been omitted in Fig. 3.2, method fragments are

defined by a series of properties that enable their later retrieval from the

repository. These properties are stored in the manifest file of the RAS asset

that embodies the fragment. Specifically, some of the properties defined in

[68] have been used. According to these properties, our method fragments are

characterized by:

 Descriptor: it contains general knowledge about the fragment. For now,

it is composed of the attributes origin, objective and type. Some

examples of valid types in our proposal are task, role and work product

for product fragments that contain atomic elements, or meta-model,

editor, model transformation and guide for technical fragments.

 Interface: it describes the context in which the fragment can be reused.

For now, it is only composed of the attribute situation.

Model transformations

In the previous subsection we showed that the application of meta-modeling

in the Method Engineering field is not new. However, the Method

Engineering approaches that make use of these techniques do not really take

advantage of the possibilities that MDD offers. As stated in [4], “the

application of MDD techniques improves developers‟ short-term productivity

by increasing the value of primary software artifacts (i.e. the models) in terms

of how much functionality it delivers”. Following this statement and contrary

to what current Method Engineering approaches do, the framework presented

in this chapter leverages models going one step further. Defining the method

as a model and considering this model as a software artifact permits to face

the implementation of the generation of CASE tools by means of model

transformations.

In particular, these transformations have been implemented in the CAME

environment that supports the proposal as a single M2T transformation using

the XPand language [92], which is the language used within the context of the

MOSKitt project. Further details about this transformation are provided in the

end of section 3.2.2 (method implementation) and chapter 4.

64

3.2.2. Phases

This section details the phases in which the methodological framework has

been divided. As illustrated in section 3.1, these are the method design,

method configuration and method implementation.

Method design

During the method design the method model is built using the SPEM

standard. The construction of this model is performed by means of a

combination of two of the approaches proposed in [69]: (1) the paradigm-

based and (2) the assembly-based. In order to illustrate how these approaches

are applied in the framework, the Map process meta-model proposed in [79] is

used.

The paradigm-based approach

Fig. 3.3 shows how the method model is built following the paradigm-based

approach. The hypothesis of this approach is that the new method is obtained

either by abstracting from an existing model or by instantiating a meta-model.

This starting model is called the paradigm model. Specifically, in this

proposal method models are built by instantiating a meta-model (i.e. the

SPEM meta-model).

Fig. 3.3. Paradigm-based approach (adapted from [69])

As shown in the figure, the construction of the method model is performed

in two steps: first, the method engineer builds the product model (i.e. the

products, roles, etc. that compose the SPEM method content). Secondly, the

method engineer builds the process model (i.e. the process component that

65

composes the SPEM method process). In addition, backtracking to the

construction of the product model is possible when building the process

model thanks to the refinement strategy.

The assembly-based approach

Fig. 3.4 shows how the assembly-based approach is carried out. This process

is followed when the method engineer wants to reuse product or process

fragments stored in the Method Base during the construction of the method

model.

Fig. 3.4. Assembly-based approach (adapted from [69])

As shown in the figure, the fragment selection is requirements driven.

Thus, the method engineer starts by specifying the requirements of the

fragments to be retrieved. These requirements are specified as queries that

must be formulated by giving values to the method fragment properties (see

section 3.2.1). As an example, a query for retrieving a product fragment

containing a task for system specification may include parameters as follows:

Type = „Task‟ AND Objective = „System Specification‟

66

Once the fragments have been obtained
8
, the intention assemble fragments

must be achieved by means of the integration strategy. This strategy consists

of the integration of the selected fragments into the method model (considered

here as a process fragment of a higher level of granularity). Depending on the

type of the fragment this integration varies. For product fragments, the tasks,

roles etc. are directly included in a content package. For process fragments,

the process elements are included as a subprocess in the method under

construction. For this purpose, SPEM provides the class CapabilityPattern.

Fig. 3.5. Example of method fragment integration

Fig. 3.5 shows an example of integration of a method fragment into a

method model, which has been created by means of the EPF Composer Editor

(a SPEM editor provided in the EPF Project [18]). The right side of this figure

shows an Eclipse view implementing a repository client. Its content represents

method fragments that are stored in the Method Base. Through this view, the

method engineer can search and select method fragments and integrate them

into the method model.

Finally, note that during the method design new fragments can be created

for their later reuse during the construction of other methods. In order to

illustrate how product and process fragments are created, Fig. 3.6 shows the

process that must be followed.

8 Note that if a process fragment is retrieved, then the associated product fragments are

automatically selected. This is due to the one-to-many cardinality of the relationship between

product and process fragments in Fig. 3.4.

67

Fig. 3.6. Conceptual fragment creation (adapted from [70])

First, the method engineer explores the method model in order to identify

the elements that must be included in the conceptual fragment to be created.

These elements will be tasks, roles, etc. (for a product fragment) or a process

component (for a process fragment). Then, the method engineer defines the

fragment by giving values to the fragment properties. Once this process is

completed, a RAS asset is created and stored in the Method Base.

Method configuration

In this phase the method model is completed by including details about the

technologies and notations that will be used during the method execution. Fig.

3.7 shows how the method configuration is performed. In particular, the

method engineer specifies the requirements that are used to retrieve a

technical fragment from the Asset Base. Once this is done, the method

engineer associates it with a task or product of the method model.

Fig. 3.7. Process model for technical fragment association

Note that it is possible that no suitable technical fragment is available in the

repository. In case the method engineer considers that a new technical

fragment must be created, a process similar to the one defined in Fig. 3.6 is

followed. First, the required tool is implemented ad-hoc for the method under

construction. For instance, in the CAME environment that supports this

proposal (see chapter 4) these tools are implemented as Eclipse plugins

developed using the CAME environment itself. Once the tool is implemented,

the method engineer defines the technical fragment by giving values to the

68

fragment properties. Then, a RAS asset is created and stored in the Asset

Base.

Below, the various types of technical fragments that can be stored in the

Asset Base are detailed. Furthermore, for each of these types, it is specified to

which elements they can be associated and for which purpose:

 Meta-model: meta-models can be associated to method products to

specify the notation that will be used in the generated CASE tools for

their manipulation (e.g. the “BPMN meta-model” can be associated to

the product “Business Process Model”).

 Editor: textual/graphical editors can be associated to method products

to specify the resource that will be used in the generated CASE tools

for their manipulation (e.g. a “BPMN graphical editor” can be

associated to the product “Business Process Model”).

 Transformation: model transformations can be associated to tasks of

the method. This entails that these tasks will be automatically executed

in the generated CASE tool by means of the model transformations

(e.g. a M2T transformation can be associated to the task “Generate

report”).

 Guide: guides (i.e. text files, process models, etc.) can be optionally

associated to manual tasks of the method. These files will be included

in the generated CASE tool and will assist software engineers in the

performance of the tasks. For instance, a map can be associated to the

task “Build Business Process Model” to define as a process model the

steps that must be followed to perform the task.

Fig. 3.8 shows an example of a technical fragment containing a BPMN

graphical editor. This fragment is packaged following the RAS standard.

According to RAS, reusable assets are represented by zip files that contain a

manifest describing the asset properties and one or more artifacts that

compose the asset. Specifically, the asset of Fig. 3.8 is composed of the

manifest file and the Eclipse plugins that implement the graphical editor.

69

Fig. 3.8. Example of technical fragment: a BPMN editor

Method implementation

This section describes the part of the methodological framework that deals

with the construction of the CASE tool that supports the method resulting

from the method configuration phase. Specifically, this tool is generated by

means of model transformations. Fig. 3.9 provides a graphical overview of

this process and Fig 3.10 a detailed view of the structure of the generated

CASE tools.

Fig. 3.9. Overview of the tool generation process

70

Fig. 3.10. Structure of the generated CASE tools

The core of the generation process is a model transformation that obtains a

software tool supporting the method specified in the configured method

model. As shown in Fig. 3.9, the transformation uses the product and process

parts of the method model in order to obtain a CASE tool that gives support to

both parts as follows:

 The support provided for the product part involves all the resources

that enable the manipulation of the method products. This support is

given by the software components that make up the infrastructure of

the tool and correspond to the technical fragments that were associated

to the elements of the method during the method configuration phase.

 The support provided for the process part corresponds to a software

component (i.e. the Project Manager Component) that enables the

execution of method instances by means of a process engine. During

the method execution, this component invokes the different software

resources that allow the software engineers to create and manipulate the

method products.

Software support for the product part

71

This subsection focuses on the part of the model transformation that obtains

the tool support for the product part of the method. This product support

constitutes the dynamic part of the tool, i.e. the part that is obtained from the

method model and thus it is dependent of the method that has been specified.

Specifically, it refers to the tools (editors, transformations, etc.) that have to

be integrated into the final tool to enable the creation and manipulation of the

method products. For instance, a method that includes a product such as a

“Business Process Model” requires the inclusion within the CASE tool of a

proper editor to manage this kind of models.

Furthermore, to obtain a valid product support it is necessary to solve the

dependencies of the software components required to support the product part

with other software components. Therefore, two steps must be performed by

the model transformation: (1) identifying the software resources necessary to

support the tasks and products of the method and (2) solving the dependences

between software resources.

In a first step, the model transformation explores the method model and

identifies the software resources that are necessary to support the tasks and

products of the method. The software resources are identified by means of the

reusable assets (technical fragments) that were associated to these elements

during the method configuration. Note that when a task or a product does not

have an associated asset, the generated tool will not provide support to that

element.

Once the required software resources are identified, it is necessary to solve

the potential conflicts that can arise when integrating these resources into the

same platform. To achieve this goal, the dependencies between software

resources are specified within the assets. This specification allows the

transformation to retrieve the dependencies for each software resource

identified in the previous step and to include them in the final tool. Note that,

for this purpose, the resources that represent the dependencies must also be

stored in the Asset Base repository.

72

As an example consider the asset of Fig. 3.8 containing the MOSKitt

BPMN editor. This asset defines a dependency with the MOSKitt MDT

component9. Therefore this component must also be included in the final tool.

Software support for the process part

In addition to the support provided for the product part of the method, the

generated tool also provides support for the process part. The process support

is provided by means of a software component that is always included in the

generated tools. This component is called the Project Manager Component

and constitutes the static part of the tool (i.e. its implementation is

independent of the method that has been specified). This component

implements a graphical user interface (GUI) that guides and assists software

engineers during the execution of method instances (projects). To make this

possible, the Project Manager Component uses the configured method model

at runtime10.

Specifically, the Project Manager Component is divided into four

components of a lower level of granularity. These components are the

following (see Fig. 3.11):

 Project Manager (PM). This is the core component as it centralizes

the management of the other three subcomponents. In addition, it

contains the implementation of the GUI.

 Process Management. This component makes the access to the

process engine transparent for the PM. Note that SPEM does not

contain executable semantics. Therefore, up to now the process engine

is implemented as a light-weight process engine that keeps the state of

the running method instances. As future work, the integration of the

Activiti engine [1] into the CAME tool that support the proposal is

being planned. This will require the definition of a model

transformation to map SPEM models into BPMN 2.0 models that can

be executed by Activiti.

9 The MOSKitt MDT component implements the functionality that is common to all the

MOSKitt graphical editors (such as copy & paste, view creation, etc.)

10 Runtime in this context corresponds to the method instances execution in the CASE tool

73

 Product Management. This component is in charge of invoking the

tools that support the product part of the method based on the state of

the running method instance. In other words, it invokes the editor,

transformation, etc. that is needed to perform the current task of the

method.

 Method Specification. This component loads the different elements of

the method model (roles, tasks, products, etc.) to facilitate later access

to them.

Fig. 3.11. Structure of the Project Manager Component

3.3. Conclusions

The combination of the MDD paradigm and the technology provided by the

MOSKitt platform represents an adequate setting to turn Method Engineering

into reality. Our methodological framework benefits from this combination.

On the one hand, the application of MDD techniques has enabled the

coverage of both the design and implementation of software production

methods. On the other hand, the MOSKitt plug-in based architecture and its

integrated modeling tools provide a suitable platform to support the

framework and does not present the deficiencies found in current tools.

74

Specifically, this chapter has focused on the most theoretical part of this

methodological framework.

Our framework aims to provide assistance to method engineers during the

definition of project-specific methods and the construction of the

corresponding supporting tools. Following the MDD paradigm, meta-

modeling techniques based on the SPEM standard are used for building the

method specifications as machine-processable models. One of the main

novelties of the framework is that, unlike current Method Engineering

approaches, it leverages these models by using them as inputs of model

transformations that perform the CASE tool generation process.

75

4. A Software Architecture

CAME and metaCASE technology is still immature. Existing environments

mostly represent incomplete prototypes that present important deficiencies

[57]. Furthermore, these tools are generally based on rigid architectures that

hinder their adaptation to new contexts of use. In order to avoid this problem,

software architectures for Method Engineering supporting tools should be

defined according to a set of design guidelines. In this work the following are

proposed:

 Technology-independence: the software architecture must be defined

in a technology-independent fashion in order to decouple them from

technological details. This approach increases the longevity of the

architecture as its components do not become obsolete on account of

technology changes.

 Modularization: the architecture must be defined in terms of loosely-

coupled components. The main benefit of this approach is that tools

implementing a modular architecture are composed of separate

components, and thus they are easier to extend, modify and adapt to

new requirements.

 Separation of concerns: the software architecture must separate

components that deal with Method Engineering tasks from components

that deal with ISD tasks. The former components make up the structure

of the CAME part, which enables tasks such as method design. On the

other hand, the latter components form the CASE part, which supports

ISD tasks such as system specification.

Taking these guides into account, this chapter defines a modular software

architecture that identifies the set of technology-independent components (and

the relationships among them) that are required to support the methodological

76

framework presented in chapter 3. In addition, as a proof of concept of the

proposal, a vertical prototype has been developed in the context of the

MOSKitt platform. This prototype, called MOSKitt4ME, implements the

proposed architecture and its main goal is to set the basis for the eventual

development of a CAME environment that supports the design and

implementation of methods, without presenting the deficiencies of current

CAME and metaCASE technology.

This chapter is structured as follows: first, section 4.1 describes the

requirements that the proposed architecture must address in order to provide

complete support to the methodological framework. Then, section 4.2 presents

the architecture in detail and also its implementation on the MOSKitt

platform. Finally, section 4.3 concludes the chapter.

4.1. Architecture requirements

This section describes in detail the requirements that the proposed architecture

must address in order to adequately support the methodological framework

proposed in chapter 3. Specifically, this section is divided into two

subsections, dealing respectively with the requirements of the CAME and

CASE parts of the architecture.

4.1.1. Requirements for the CAME part

The CAME part of the architecture must include the required components to

allow the method engineer to perform the method design and configuration

phases of the methodological framework, and to invoke the CASE tool

generation process that obtains the method implementation. Therefore, the

following requirements have been identified:

Req. 1. A modeling tool for building method definitions

A modeling tool (a method editor) must be included in order to support the

definition of software production methods based on a Method Engineering

language such as the SPEM standard. Therefore, this tool allows the method

engineer to perform the method design phase of the methodological

framework.

77

As described in chapter 3, the method design can be performed from

scratch or reusing conceptual fragments that are stored in a repository.

Therefore, the modeling tool must also implement mechanisms that enable the

integration of conceptual fragments into the method under construction.

Furthermore, it must allow the method engineer to select parts of the method

and create new conceptual fragments from these parts. This is done by means

of a repository client (see req. 2).

It is also important to emphasize that the lack of a method editor is the

major shortcoming of the metaCASE approach, since metaCASE tools

generally focus on the method implementation. In general, metaCASE

environments provide editors that enable the specification of the design

notations that will be supported by the CASE tool under construction, but do

not support the definition of software production methods that can be enacted

in real software development projects.

Req. 2. A repository to store method fragments and mechanisms to access

the repository

The method engineer must be able to reuse conceptual fragments during the

method design. In addition, during the method configuration, he/she must be

able to associate the tasks and products of the method with technical

fragments that establish how these elements will be managed in the generated

CASE tool. Therefore, mechanisms to connect the method editor and the

repository containing these fragments must be provided. These mechanisms

can be represented by a repository client. A repository client allows the

method engineer to access the repository and search and select method

fragments. For this purpose, the repository client must provide mechanisms

for specifying the requirements of the fragments to retrieve. For instance,

these requirements can be specified as queries that are formulated by giving

values to the method fragment properties (i.e. type, origin, objective, etc.).

Furthermore, the repository client must also allow the method engineer to

store in the repository fragments that are created during the method design.

These fragments can be later reused during the specification of other methods.

Req. 3. Mechanisms for the enactment of the Method Engineering

process

78

The specification of software production methods is a task that must be

adequately guided so that the method engineer can perform it properly. For

this reason, a process that establishes the procedures and activities that must

be followed during the method definition has to be defined. In order to

support the execution of this process, a process engine can be included in the

architecture. However, note that the inclusion of a process engine requires that

the process is defined by means of an executable Process Modeling Language.

Another possibility is to avoid the use of a process engine and define this

process as a wizard or tutorial that textually guides the method engineer

during the method definition.

Req. 4. A transformation engine

In order to automate the CASE tool generation process, a transformation

engine is needed. The transformation engine is in charge of executing the

model transformation that takes as input the model of the method (produced

by means of the method editor) and obtains a CASE tool that supports it.

4.1.2. Requirements for the CASE part

The CASE part of the architecture must include the required components to

allow the software engineer to perform the method enactment. Therefore, the

following requirements have been identified:

Req. 5. Software tools that support the product part of the method

Software tools such as graphical editors, model transformations, etc. must be

included in the generated CASE tool in order to support the creation and

manipulation of the method products. These tools constitute the dynamic part

of the CASE environments, since they depend on the method that has been

specified. On the other hand, the static part corresponds to the tools that are

always included in the CASE tools and, therefore, are independent of the

specified method (see requirements 6 and 7).

Req. 6. Software tools that support the process part of the method

Tools such as a process engine must be included in the generated CASE tools

in order to support the execution of the process part of the specified method.

Thus, these tools provide a means for conducting the orchestration of the

79

different tools that allow the creation and manipulation of the method

products (see req. 5). Specifically, these tools are a static part of the generated

CASE tools, in the sense that they are independent of the specified method.

It is important to note that, the method must be specified in an executable

language (such as the BPMN 2.0 standard [13]) so that it can be executed in a

process engine. In case the method is specified by means of a non-executable

language (such as SPEM) a model transformation is required to transform the

process model into an executable representation.

Req. 7. Project management mechanisms

The generated CASE tools must be endowed with a graphical user interface

that allows software engineers to execute method instances (i.e. software

development projects) by means of the tools that support the process part (see

req. 6) and to invoke the tools that permit to create the method products (see

req. 5). Like the tools that support the process part, the implementation of this

graphical interface is independent of the specified method and, therefore, it is

always included in the generated CASE tools.

4.2. The proposed architecture

This section describes the software architecture that is proposed in this work

in order to meet the requirements presented in the previous section.

Specifically, this section is divided into three subsections. First, section 4.2.1

defines the software architecture. Then, section 4.2.2 briefly presents some

technological background that is needed in order to better understand how the

proposed architecture has been implemented in the context of Eclipse (more

specifically, on the MOSKitt platform). Finally, section 4.2.3 presents the

implementation of the architecture, that is, the MOSKitt4ME prototype.

4.2.1. Conceptual definition

The proposed architecture (see Fig. 4.1) contains the set of loosely-coupled

and technology-independent components that are required to support the

methodological framework, i.e. to meet the requirements defined in section

4.1. These components are mainly divided into CAME components and

80

CASE components, and refer to the components that pertain respectively to

the CAME and CASE parts of the architecture.

Fig. 4.1. Architecture components overview

CAME components

The CAME components make up the infrastructure of the CAME part of the

architecture and are intended to meet from requirement 1 to requirement 4.

Specifically, a method editor component (req. 1) has been included to allow

the method engineer to perform the method design. During the construction of

the method model, the method engineer can make use of the repository in

order to reuse method fragments. For this purpose, the repository client (req.

2) is used. In general, the repository client allows the method engineer to

connect to the repository, and select, reuse and store method fragments.

Furthermore, the enactment component (req. 3) assists him/her during the

whole method definition process. Finally, the resulting method model is fed

into the transformation engine (req. 4) in order to obtain the method

implementation (i.e. the CASE tool supporting the method). The method

implementation is obtained by means of a model transformation that

automates the generation process.

CASE components

The CASE components make up the infrastructure of the CASE part of the

architecture and are intended to meet from requirement 5 to requirement 7.

Specifically, the dynamic part (i.e. the components that are dependent on the

81

specified method) is composed of the technical fragments (req. 5). These

components provide support to the product part of the method. On the other

hand, the static part is composed of a process engine (req. 6), which provides

support to the process part of the method, and the project manager component

(req. 7), which embodies the graphical user interface that allows the software

engineer to perform the method enactment.

4.2.2. Technological background

This subsection provides some technological background that is needed to

facilitate the understanding of the prototype that has been developed in the

context of Eclipse in order to implement the proposed architecture.

The Eclipse platform

Eclipse is an open source community, whose projects are focused on building

an open development platform comprised of extensible frameworks, tools and

runtimes for building, deploying and managing software across the lifecycle.

Specifically, there are two features of Eclipse that turn it into a very suitable

platform to support Method Engineering approaches in the field of MDD:

 The Eclipse plugin-based architecture. Everything in Eclipse is a plugin

but its runtime kernel. This means that Eclipse employs plugins to

provide all of its functionality. This architecture allows developers to

easily build Eclipse-based applications upon the Rich Client Platform

(RCP)11. The RCP is, roughly speaking, the minimal set of plugins

required to build an Eclipse application. This approach facilitates the

development of the prototype, since the different components of the

architecture can be developed as separate plugins that are easy to

integrate into the same platform.

 The modeling technologies and tools. Within the Eclipse community a

wide range of projects aim at providing as Eclipse plugins new tools

and technologies for the support of different tasks. Specifically, one of

these projects is the Eclipse Modeling Project [17] which focuses on

model-based development technologies. This project contributes to

11 Rich Client Platform , http://www.eclipse.org/home/categories/rcp.php

82

facilitate the development of the prototype, since it provides effective

solutions for applying MDD techniques.

Below, the most significant Eclipse technologies that have been used in the

development of the prototype are described.

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [16] is a modeling framework and

code generation facility for building tools based on a structured data model.

From a meta-model specification (called the “Ecore model”) described in

XMI, EMF provides a generator that produces a tree-based editor, together

with the set of Java classes that implement the meta-model and allow the user

to create models that conform to the meta-model. Therefore, EMF has been

used as the underlying technology for the construction of the method models,

which are stored in XMI format and conform to the SPEM Ecore model (i.e. a

SPEM meta-model implementation for Eclipse).

Eclipse Process Framework Project

The Eclipse Process Framework (EPF) [18] aims to provide an extensible

framework and exemplary tools for software process engineering.

Specifically, one of these tools is the EPF Composer editor, which is an

Eclipse-based editor that supports the construction of SPEM models in XMI

format (based on EMF). Therefore, this tool has been used as the method

editor component of the architecture.

Plug-in Development Environment

The Plug-in Development Environment (PDE) [62] provides tools to create,

develop, test, debug, build and deploy Eclipse plug-ins and Eclipse-based

applications. Therefore, the functionality provided within the PDE has been

used for facilitating the construction of the CASE tools that are generated

from the method specifications. Specifically, the developed prototype makes

use of the Product Configuration Files. These textual files contain all the

required information (list of plugins, paths of images, etc.) to automatically

build Eclipse applications from them. Hence, the model transformation that

obtains the CASE tool support is in fact a M2T transformation that generates

a product configuration file through which the final tool is obtained.

83

Xpand

Xpand [92] is a statically-typed template language for implementing M2T

transformations. Xpand was originally developed as part of the

openArchitectureWare (oAW) project12 before it became a component under

Eclipse. Specifically, it is the language that has been used for implementing

the M2T transformation that obtains product configuration files from method

specifications.

4.2.3. MOSKitt4ME: An Eclipse-based CAME environment

In order to evaluate the proposed architecture, a vertical prototype, called

MOSKitt4ME, has been developed in the context of Eclipse, more

specifically, on the MOSKitt platform [55]. In particular, this subsection

details how the different components of the architecture have been

implemented in MOSKitt.

Method editor

The method editor is the software component that supports the creation of

method models. In particular, the methodological framework proposes the use

of the SPEM standard as the Method Engineering language to carry out this

task. Therefore, MOSKitt4ME must provide a method editor that enables the

creation of SPEM models. For this purpose, the EPF Composer editor [18]

has been integrated in MOSKitt. Fig 4.213 shows a snapshot of this editor.

Repository client

The repository client component must allow the method engineer (1) to

connect to the repository, to (2) search and select method fragments for their

use during the method design and configuration phases, and (3) to store newly

created fragments. For this purpose, a repository client has been implemented

as an Eclipse view. This view shows in a tree-based fashion the content of the

repository it is connected to and provides searching capabilities based on

fragment properties. In order to illustrate this idea, Fig. 4.3 and Fig. 4.4 show

12 http://www.openarchitectureware.org/
13 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/

http://www.openarchitectureware.org/

84

this Eclipse view connected to the Method Base and Asset Base repositories

respectively.

Fig. 4.2. EPF Composer editor in MOSKitt

Fig. 4.3. Repository client (Method Base)

85

Fig. 4.4. Repository client (Asset Base)

Enactment component

A process engine has not been integrated into the prototype to guide method

engineers during the method definition. Instead, two eclipse cheatsheets have

been defined to assist during the method design and configuration phases of

the methodological framework.

Transformation engine

In order to support the execution of the model transformation that generates

the CASE tool support from method models, Xpand has been installed in the

prototype. The Xpand plugins implement, among other things, the

transformation engine that supports the execution of Xpand transformations.

Specifically, the model transformation has been implemented in the

prototype as a M2T transformation that takes as input a SPEM model and

obtains a product configuration file through which a MOSKitt reconfiguration

supporting the method is obtained. As an example, two Xpand rules of the

transformation are shown in Fig. 4.5. In these rules the list of features14 of the

product configuration file is generated. The first rule is invoked for each

instance of the SPEM class ContentElement (i.e. tasks and products). This rule

invokes the second rule, which produces the output. The second rule accesses

the property “FeatureID” of the content elements. This property is created

14 A feature is a group of Eclipse plugins

86

during the technical fragment association and contains the identifier of the

feature packaged in the fragment.

Fig. 4.5. Excerpt of the M2T transformation

Technical fragments

Technical fragments are editors, transformations, etc. that provide support to

the product part of the method in the generated CASE tools. These fragments

are stored in the Asset Base repository as reusable assets that contain the

Eclipse plugins that implement the encapsulated tool and the feature that

groups these plugins (see Fig. 4.6). In order to install these plugins in the

CASE tools, the M2T transformation must include in the product

configuration file the features encapsulated in the fragments. This is done in

the rules shown in Fig. 4.5.

Fig. 4.6. Technical fragment

Process Engine

The process engine is the component in charge of the execution of method

instances, that is, it gives support to the process part of the method in the

87

generated CASE tools. Up to now, the process engine has been implemented

in MOSKitt4ME as a light-weight process engine that keeps the state of the

running method instances. As future work, the integration of the Activiti

engine [1] into MOSKitt4ME is being planned. The use of Activiti will

require the definition of a model transformation to map SPEM models into

BPMN 2.0 models that can be executed by the engine.

Project Manager Component

The Project Manager Component endows the generated CASE tools with a

graphical user interface composed of a set of Eclipse views (see Fig. 4.715).

Each of these views provides a specific functionality but their common goal is

to facilitate the user participation in a specific project. The details of these

views are the following:

 Product Explorer: This view shows the set of products that are handled

(consumed, modified and/or produced) by the ongoing and finished tasks

of the process. This view can be filtered by roles so that users belonging

to a specific role have only access to the products they are in charge of.

Then, from each product, the user can open the associated editor to

visualize or edit its content.

 Process: This view shows the tasks that can be executed within the

current state of the project. The execution of the tasks can be performed

automatically (by launching the transformation associated to the task as a

technical fragment) or manually by the software engineer (by means of

the software tool associated to the output product of the task). Similarly to

the Product Explorer, this view can be filtered by role, showing just the

tasks in which the role is involved in.

 Guides: This view shows the list of guides associated to the task selected

in the Process view. The objective of these guides is to assist the user

during the execution of such task, providing some insights on how the

associated products should be manipulated. These guides correspond to

technical fragments that were associated to tasks during the method

configuration phase.

15 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/

88

 Product Dependencies: This view shows the dependencies that exist

between the products that are handled in the project. So, it allows users to

identify which products cannot be created or manipulated because of a

dependent product has not yet been finished. In addition, these

dependencies are organized by roles. This organization gives to the user

the knowledge of who is responsible of those products he/she is interested

in.

Fig. 4.7. Project Manager Component

4.3. Conclusions

Developing software systems is a highly complex endeavor and CAME and

metaCASE environments are no exception. A solution that properly handles

this complexity is software architecting. One of the main benefits of a

software architecture is that it provides an abstraction of the system that

establish how it must be structured and, thus, allow developers to focus only

89

on those elements that are significant. Therefore, in order to reduce the

complexity that entails the development of tools that support Method

Engineering, this chapter proposes a software architecture that establishes the

series of components that are required to support the methodological

framework presented in chapter 3.

Furthermore, a vertical prototype called MOSKitt4ME has been developed

in the context of the MOSKitt platform as an implementation of the

architecture. The development of this prototype has a threefold benefit. First,

it helps to evaluate the proposed architecture. Secondly, it sets the basis for

the eventual development of a complete CAME environment. Finally,

stakeholders within the MOSKitt community can use the prototype and

provide feedback that can be used for the refinement of the architecture and

the methodological framework.

90

91

5. A Case Study

This chapter presents a case study that has been developed to validate the

methodological framework and the software architecture proposed in this

thesis. In this case study MOSKitt4ME has been used for specifying a

software production method and generating its supporting CASE

environment. In particular, the software production method comes from [90].

This method defines an MDD approach for the generation of web applications

supporting business process specifications.

This chapter is structured as follows: first, section 5.1 provides an overview

of the case study. Then, section 5.2 describes in detail how it has been

developed in MOSKitt4ME. Finally, section 5.3 outlines some conclusions.

5.1. The OOWS-BP method

OOWS-BP [90] is a software production method that results from extending

the OOWS web engineering approach [23]. This extension introduces and

modifies some of the existing steps in order to deal with the execution of

business processes. Thus, OOWS-BP embodies an MDD approach for the

generation of business process-driven web applications from conceptual

models. Briefly presented, the OOWS-BP method (see Fig. 5.1) involves the

participation of three different roles: the analyst and the developer (related to

human beings), and the bizzy tool (which represents the software system). The

process is started by the analyst who specifies, by means of the BPMN

notation, the business processes that have to be supported in the web

application. This specification constitutes a non-executable version of the

process models, which require more details to be deployed and run in a

process engine. Then, in the next step, the developer performs the system

specification, i.e. the business process is defined in terms of the OO-Method

92

models [60] and the OOWS services model. Once the system specification is

finished, these models are used by model-to-model (M2M) transformations

that generate the OOWS navigational and presentation models, and the

business process in WS-BPEL (an executable representation of the business

process). Finally, the Tapestry16 files that implement the web application are

obtained from the OOWS models (which can be manually modified by the

developer).

Fig. 5.1. The OOWS-BP method

16 Tapestry, http://tapestry.apache.org/

93

5.2. Development of the case study

This section details how the case study has been developed in MOSKitt4ME

following the methodological framework presented in chapter 3. Specifically,

the section is divided into three subsections (based on the framework phases)

in order to describe how the model of the method is built and how the

supporting CASE tool is obtained from this model.

5.2.1. Method design

In this phase, the EPF Composer editor is used for the creation of the method

model. Following the process defined in chapter 3 (paradigm-based

approach), the method model is created in two steps, (1) the definition of the

product model and (2) the definition of the process model.

In this proposal, the product model and the method content part of a SPEM

method are considered analogous, therefore, the first step has been to create

by means of the EPF Composer the method content of the OOWS-BP method.

Since at this stage the method model is specified without detailing the

techniques, languages and notations that will be used during the method

enactment, this part of the model is composed of generic products (e.g.

business process model, services model, etc.), tasks (e.g. business process

analysis, system specification, etc.) and roles (e.g. analyst, developer, etc.).

Once the method content is defined, the process model is built. The process

model corresponds to the method process part of a SPEM method. Therefore,

the second step has been to create by means of the EPF Composer the Work

Breakdown Structure that establishes the tasks execution order.

Furthermore, as described in chapter 3, during the construction of the

method model it is possible to reuse conceptual fragments stored in the

Method Base repository (assembly-based approach). Specifically, during the

definition of the OOWS-BP method model a product fragment containing the

task system specification has been used. In order to do so, first it has been

extracted from the repository by means of the repository client, and then, its

content (i.e. the method task) has been automatically integrated into the

method content part of the model.

94

Fig. 5.2 shows a snapshot of the EPF Composer containing the OOWS-BP

method model resulting from the method design phase. On the left part of the

figure, the Library view shows some method content elements (i.e. tasks,

roles, etc.) in a tree viewer. On the right part, details of the process are

depicted as a Work Breakdown Structure.

Fig. 5.2. Case study specification in the EPF Composer

Moreover, table 5.1 provides further details about all these tasks.

Specifically, this table contains the tasks predecessors, the performing roles

and the input/output products. In addition, all the tasks are briefly described

below.

95

Table 5.1. OOWS-BP tasks

Business Process Analysis

The analyst specifies as a non-executable process model the business process

that will be supported by the generated web application.

System Specification

The developer defines the business process in terms of the OO-Method

models and the services model.

Business Process Design (subprocess)

The developer completes the business process model with additional

information.

Business Process Model Preprocess

The developer builds an extension of the business process model in order to

specify additional information that is not supported by the notation used to

create the business process model.

Business Process Design

96

The developer completes the business process model with information that

was not specified by the analyst.

Web Specification

This task automatically generates from the previously built models a

navigational model and a presentation model, that is, the specification of the

web application as defined by the OOWS approach [23].

Web Application Generation

This task automatically generates the web application from its specification.

This application is implemented by means of the framework Tapestry.

Executable Business Process (subprocess)

This task embodies a transformation chain that obtains the executable WS-

BPEL specification from the business process model.

BPMN to Babel

This automatic task executes a M2M transformation that obtains an

intermediate representation of the business process model (babel notation).

Babel to BPEL

This automatic task executes a M2M transformation that transforms the

business process model (in babel notation) into an executable WS_BPEL

model.

WS-BPEL Completion

This task executes a M2M transformation that completes the WS-BPEL

model so that it can be imported by the process engine.

WSDL and XSD Generation

This task generates the WSDL and XSD files that complete the WS-BPEL

model in order to make it deployable. Specifically, the WSDL files define the

interface associated to the new service defined by the WS-BPEL and the XSD

files define the data types used by it.

97

5.2.2. Method configuration

Once the product and process parts of the method model have been specified,

the method configuration phase can start. Following the process defined in

chapter 3 for method configuration, in this phase the method engineer must

make use of the repository client in order to (1) select technical fragments and

(2) associate them with tasks and products of the method model. This

association represents that the technical fragments must be included in the

generated CASE tool in order to provide support to the tasks and products

they are associated to.

Fig. 5.3 shows the Eclipse view that implements the repository client in

MOSKitt4ME. This view is showing the fragments that support the OOWS-

BP tasks and products. Moreover, the right part of Fig. 5.3 shows an example

of association of a technical fragment (BPMN editor) with a method product

(business process model).

Fig. 5.3. Technical fragments supporting the case study

In order to give more information about all these fragments, table 5.2

shows for each of them the supported method elements and the Eclipse

plugins it contains. In addition, a brief description of the fragments is given

98

below. Finally, the overall associations between the OOWS-BP elements and

the technical fragments are summarized in tables 5.3 and 5.4.

Table 5.2. OOWS-BP technical fragments

BPMN editor (STP)

This technical fragment contains the Eclipse plugins that implement the

BPMN graphical editor developed as part of the SOA Tools Platform Project

(STP) [86].

OOWS metamodel

This fragment contains the plugins that implement the OOWS metamodel.

99

BPMNX metamodel

This fragment contains the plugins that implement the extension of the BPMN

metamodel.

BPMN2OOWS transformation

This technical fragment encapsulates the M2M transformation implemented in

ATL [5] that obtains the OOWS navigational and presentation models.

OOWS2WebApplication transformation

This fragment encapsulates the M2T transformation implemented in

MOFScript [54] that obtains the final web application from the conceptual

models (OOWS, BPMN, etc.).

Babel metamodel

This fragment contains the plugins that implement the Babel metamodel. This

metamodel enables the creation of BPMN models that can be transformed in

WS-BPEL models by the transformation bpmn2bpel.

Bpmn2babel transformation

This fragment contains the plugins that implement the ATL M2M

transformation that automatically obtains a babel model from a business

process model specified in BPMN.

Babel2bpel transformation

This fragment contains the M2M transformation implemented in ATL that

obtains the WS-BPEL model from the Babel model.

BPEL refinement transformation

This fragment encapsulates the plugins that implement the ATL M2M

transformation that completes the WS-BPEL model so that it can be imported

in the process engine.

OOWS2WSDLandXSD transformation

100

This fragment contains the M2T transformation implemented in MOFScript

that obtains the WSDL and XSD files associated to the WS-BPEL process.

Summary

In order to provide an overview of the products and task of the method and

which technical fragments provide support to them, table 5.3 shows the

associations between products and technical fragments and table 5.4 the

associations between tasks and technical fragments.

Table 5.3. Relationship between products and technical fragments

Table 5.4. Relationship between tasks and technical fragments

101

5.2.3. Method implementation

In this phase, the method engineer invokes the model transformation that

obtains from the configured method model the CASE tool that supports the

method. As described in chapter 4, this transformation has been implemented

in MOSKitt4ME as a M2T transformation that obtains from the method

model a product configuration file through which the final tool is obtained.

This tool is a MOSKitt reconfiguration that only contains the required plugins

to support the method (i.e. the plugins contained in the technical fragments,

the process engine and the Eclipse views that compose the GUI). Specifically,

the M2T transformation is invoked by means of the MOSKitt transformation

manager, which is shown in Fig. 5.4. Through this Eclipse view, all the

transformations registered in MOSKitt can be launched.

Fig. 5.4. MOSKitt transformation manager

When selecting the SPEM2MOSKittConf transformation, a wizard is

opened (see Fig. 5.5). Specifically, in this wizard the input and output

parameters of the transformation can be specified. The input parameter

corresponds to the SPEM model resulting from the method configuration

phase. The output parameter corresponds to the product configuration file

through which the MOSKitt reconfiguration supporting the method will be

obtained.

102

Fig. 5.5. MOSKitt transformation wizard

Once the product configuration file is generated, the export wizard is

automatically launched. This wizard is shown in Fig. 5.6. Specifically, it

allows the method engineer to generate the final CASE tool from the product

configuration file. For this purpose, at least the following information must be

specified:

 Configuration: The product configuration file. It is automatically set

when the wizard is opened.

 Root directory: Name of the folder hosting the generated tool. By

default this folder is named eclipse.

 Destination: Path of the file system where the folder Root directory

will be placed. If selected the option “Archive file” a package (zip file)

of the tool is obtained.

103

Fig. 5.6. Export wizard

In order to illustrate the contents of the product configuration file, Fig 5.7

shows the list of features that establish the plugins that must be included in the

final CASE tool. Specifically, the features that correspond to the plugins

contained in the technical fragments have been emphasized. The remaining

features correspond to software dependencies and to the Project Manager

Component.

104

Fig. 5.7. Product configuration file

Once the export process is finished, a MOSKitt reconfiguration supporting

the method is obtained. As already shown in chapter 4, these generated tools

include (aside from the Eclipse plugins that support the method) a software

component called the Project Manager Component. This component provides

a series of Eclipse views that assist the software engineer during the method

enactment. As an example, Fig. 5.8 and Fig. 5.9 show snapshots of the

Product Explorer and Process views respectively. Specifically, in the

example, the state of the running method instance is on the system

specification task. Therefore, the Product Explorer view only shows the

product business process model, and the Process view only shows as

executable the task system specification.

105

Fig. 5.8. Product Explorer view

Fig. 5.9. Process view

5.3. Conclusions

The methodological framework and software architecture proposed in this

thesis have proven successful in supporting the design and implementation of

the OOWS-BP method [90]. This chapter illustrates how the three phases that

compose the framework have been followed to build the method specification

and to obtain a CASE tool that supports the method.

106

It is worth noting that the CASE tool that has been obtained provides rich

support to the method, since it integrates in a seamless way all the tools that

are required to support its execution and also provides guidance to the

software engineer in the performance of the method tasks. For a more in-

depth view on how the case study has been developed, snapshots and

screencasts are available at http://users.dsic.upv.es/~vtorres/moskitt4me/.

http://users.dsic.upv.es/~vtorres/moskitt4me/

107

6. Conclusions

This chapter presents the conclusions of the work introduced in this

master‟s thesis. Specifically, section 6.1 outlines the main contributions made

by the proposal. Then, section 6.2 describes how the proposal has been

validated, and section 6.3 presents future work that can be carried out to

extend it. Finally, the publications that have been obtained during the course

of the work are listed and detailed in section 6.4.

6.1. Contributions

This section summarizes the main contributions of the present work.

Specifically, this section is divided into two subsections. Section 6.1.1

describes the contributions related to the methodological framework presented

in chapter 3 and section 6.1.2 the contributions related to the software

architecture defined in chapter 4.

6.1.1. The methodological framework

The main contributions that the methodological framework presented in this

thesis makes to the Method Engineering field are outlined below.

Model Driven Development

The methodological framework faces from a MDD perspective the design and

implementation of methods. Specifically, meta-modeling and model

transformations techniques are used to perform the method definition and the

(semi)automatic generation of the CASE tool support.

The use of meta-modeling in the Method Engineering field is not new.

Many proposals have made use of meta-models as a way of formalizing the

108

concepts that are available during the method definition. Thereby, methods

are defined as instances of a meta-model, i.e. as machine-processable models.

However, these proposals do not take advantage of the possibilities offered by

the MDD. The main innovation of the framework is that, contrary to current

Method Engineering proposals, it leverages these models going one step

further. Specifically, these models are used as input of model transformations

that carry out the (semi)automatic construction of CASE tools that support the

specified methods.

Method Engineering language

The methodological framework proposes the use of a standard language (i.e.

the SPEM standard [87]) for the definition of software production methods.

As illustrated in chapter 2, Method Engineering proposals that make use of

standard languages for method specification are still non-existent. Indeed, in

[41] it is predicted that one of the likely topics for research initiatives in the

next years will be a new generation of CAME tools based on internationally

standardized methodology meta-models.

Method dimensions

The software production methods that are defined by means of the

methodological framework cover the four dimensions of methods, i.e. the

product, process, people and tool dimensions.

As illustrated in chapter 2, most of the Method Engineering proposals only

cover the product and process dimensions, being the people and tool

dimensions almost completely overlooked. As a result, proposals that take

into account all the method dimensions together are still non-existent.

Method Engineering lifecycle

The methodological framework proposed in this thesis equally encompasses

the method design and method implementation phases of the Method

Engineering lifecycle.

In general, Method Engineering proposals either focus on the method

design or the method implementation. The former provide adequate means for

defining software production methods but very limited CASE tool generation

109

capabilities. The latter focus on facilitating the construction of CASE tools

suited to context needs, but do not provide means for defining software

production methods.

6.1.2. Software architecture

Another important contribution of this work is the definition of a software

architecture that proposes a series of technology-independent components that

aim to support the methodological framework. Therefore, the main goal of

this architecture is to propose a solution that establishes how CAME tools

must be structured in order to adequately support the design and

implementation of software production methods.

Furthermore, this master‟s thesis provides implementation details of the

proposed architecture on the MOSKitt platform, whose plug-in based

architecture turns it into a very suitable platform to face the Method

Engineering challenges. Specifically, the MOSKitt4ME prototype has been

developed. The main goal of this prototype is to eventually become a

complete CAME environment that does not present the deficiencies of current

CAME/metaCASE technology.

6.2. Validation of the proposal

The proposal presented in this thesis has been put into practice in order to

validate it. Specifically, a case study (i.e. the OOWS-BP method [90]) has

been developed in the MOSKitt4ME prototype. This prototype has

successfully supported the specification of the method and the generation of

the supporting CASE tool. However, this project is ambitious and, therefore,

the prototype will be enhanced in the near future in order to include the

obtained results in a MOSKitt released version. Thereby, the MOSKitt

community (ranging from analysts to end users) will be able to test each new

release of the tool and provide valuable feedback that will contribute to the

improvement of the tool and the proposal presented in this thesis. Specifically,

as soon as the first version of the tool is included in MOSKitt, CIT‟s users

will make use of it in order to specify the gvMétrica method and build its

corresponding supporting tool. This setting constitutes an adequate

110

environment to validate the proposal since gvMétrica is a method that is

currently being used in real projects within the context of the CIT.

6.3. Future work

The work presented in this thesis is not closed research. Different topics will

be tackled in the near future in order to improve some limitations. These

topics are briefly described below.

Megamodeling

During the execution of software production methods based on MDD (e.g.

OOWS-BP [90]) a high number of MDD artefacts (transformations, meta-

models, models, etc.) come into play. Therefore, CASE environments

supporting these methods must provide mechanisms that facilitate the

management of these artefacts. This hinders the already complicated task of

(semi)automatically obtaining CASE tools from method specifications, one of

the main goals of Method Engineering.

Megamodeling [8] is proposed as a possible solution to facilitate this task.

By means of a megamodeling tool, CASE environments can manage their

MDD artefacts centrally and at a high level of abstraction. Thereby, the

complexity of the CASE tool generation process is significantly reduced. The

main reason for this is that the implementation of this megamodeling tool is

independent of the supported method and, therefore, it can be integrated into

the CASE tool transparently for the generation process.

Method variability

One of the big challenges of Method Engineering takes into account the

variability of methods both at modeling level and runtime [2]. Variability

appears as a relevant challenge in Method Engineering, since it is very

common that context changes entailing method adaptation during the progress

of a project. So, mechanisms must be included in the methodological

framework in order to deal with this variability. At modeling level, the use of

techniques based on fragment substitution to specify this variability is

111

proposed. These techniques permit to keep separately the common and

variable parts of the method, which makes the models more legible and easier

to specify and maintain. At implementation level, the introduction in

MOSKitt4ME of a reconfiguration engine (e.g. MoRE [14]) is proposed. This

would enable the CASE tool reconfiguration at runtime based on context

changes.

Prototype enhancement

The MOSKitt4ME prototype must be enhanced so that it overcomes some

limitations. For instance, the integration of a process engine such as Activiti

[1] is being planned. This would provide better support to the execution of

method instances.

Furthermore, a very important issue that needs to be improved is the

management of the technical fragments dependencies. That is, when the

method model is finished, it contains a set of technical fragments that aim at

providing support to the product and tasks in the generated CASE tool. In

order to adequately install the plugins contained in the fragments into the final

CASE tool, their software dependencies must be resolved. For this purpose,

the software dependencies must be specified within the fragments, and these

dependencies must also be stored in the repository.

6.4. Publications

During the development of the work presented in this thesis, the following

publications have been produced:

1. Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Methodological

Framework and Software Infrastructure for the Construction of Software

Production Methods. International Conference on Software Processes

(2010)

2. Cervera, M., Albert, M., Torres, V., Pelechano, V., Cano, J., Bonet, B.:

A Technological Framework to support Model Driven Method

Engineering. 7
th
 Taller sobre Desarrollo de Software Dirigido por

Modelos (2010)

112

3. Cervera, M., Albert, M., Torres, V., Pelechano, V.: Turning Method

Engineering Support into Reality. To be published in: the 4
th
 IFIP WG8.1

Working Conference on Method Engineering (2011)

First of all, the first publication was presented at ICSP, an International

Conference ranked A by the Computing Research and Education (CORE)

association. Specifically, this publication provides an overview of the phases

that compose the methodological framework, illustrating their application by

means of the OOWS-BP case study.

Then, in order to provide a more in-depth view on the method

implementation phase of the framework, a second publication was elaborated

and presented at DSDM, a workshop hosted at the 3
rd

 Congreso Español de

Informática (CEDI), which took place in Valencia. Specifically, this

publication focuses on the application of model transformations for

(semi)automating the construction of CASE tools that support software

production methods, a part of the work that is of big interest for the MDD

community.

Finally, the paper “Turning Method Engineering Support into Reality” has

been recently accepted for presentation and publication in the proceedings of

the IFIP WG 8.1 Working Conference on Method Engineering. This paper

describes the methodological framework in more detail, focusing on the MDD

infrastructure that supports its different phases.

113

References

[1] Activiti, http://www.activiti.org/

[2] Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H.,

Ocampo, A.: Scoping Software Process Models - Initial Concepts and

Experience from Defining Space Standards. ICSP, 160-172 (2008)

[3] Arni-Bloch, N.: Towards a CAME Tools for Situational Method

Engineering. In Proceedings of the 1
st
 International Conference on

Interoperability of Enterprise Software and Applications, Geneva

(2001)

[4] Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling

Foundation. IEEE Software, IEEE Computer Society, 20, 36-41 (2003)

[5] Atlas Transformation Language (ATL), http://www.eclipse.org/atl/

[6] Beck, K., Andres, C.: Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional (2004)

[7] Bergstra, J., Jonkers, H., Obbink, J.: A Software Development Model

for Method Engineering. In: Roukens J., Renuart J. (eds.) Esprit 1984:

Status Report of Ongoing Work. Elsevier Science Publishers,

Amsterdam, (1985)

[8] Bezivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In:

Proceedings of the OOPSLA/GPCE: Best Practices for Model-Driven

Software Development workshop, 19th Annual ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(2004)

http://www.activiti.org/
http://www.eclipse.org/atl/

114

[9] Brinkkemper, S.: Method engineering: engineering of information

systems development methods and tools. Information and Software

Technology, 38, 275-280, (1996)

[10] Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for

Method Engineering. CAiSE '98: Proceedings of the 10th International

Conference on Advanced Information Systems Engineering, Springer-

Verlag, 381-400 (1998)

[11] Brinkkemper, S.; Saeki, M., Harmsen, F.: Meta-Modelling Based

Assembly Techniques for Situational Method Engineering. Information

Systems, 24, 209-228 (1999)

[12] Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering

Language for the Description of Systems Development Methods.

CAiSE '01: Proceedings of the 13th International Conference on

Advanced Information Systems Engineering, Springer-Verlag, 473-476

(2001)

[13] Business Process Model and Notation (BPMN). OMG Available

Specification version 2.0. OMG Document Number: dtc/2010-06-05

[14] Cetina, C.; Giner, P.; Fons, J., Pelechano, V.: Autonomic Computing

through Reuse of Variability Models at Runtime: The Case of Smart

Homes. Computer, IEEE Computer Society Press, 42, 37-43 (2009)

[15] Deneckère, R., Souveyet, C.: Patterns for Extending An OO Model

with Temporal Features. In OOIS‟98 Proceedings, C. Rolland, G.

Grosz, Eds. Springer-Verlag, London, 201-218 (1998)

[16] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

[17] Eclipse Modeling Project, http://www.eclipse.org/modeling/

[18] Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/

[19] Englebert, V., Hainaut, J.-L.: DB-MAIN: A Next Generation Meta-

CASE. Information Systems, 24, 99-112 (1999)

[20] Ferguson, R.I., Parrington, N.F., Dunne, P., Hardy, C., Archibald, J.M.,

Thompson, J.B.: MetaMOOSE - an object-oriented framework for the

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/
http://www.eclipse.org/epf/

115

construction of CASE tools. Information and Software Technology, 42,

115-128 (2000)

[21] Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process

Framework. An Introduction. Addison-Wesley, London, UK, 330pp

(2002)

[22] Fitzgerald, B., Russo, N. L., O'Kane, T.: Software development method

tailoring at Motorola. Communications of the ACM, 46, 64-70 (2003)

[23] Fons, J.: OOWS: A Model Driven Method for the Development of Web

Applications. Ph.D. thesis, Technical University of Valencia (2008)

[24] Glass, R. L.: Process Diversity and a Computing Old Wives'/Husbands'

Tale. IEEE Software, IEEE Computer Society Press, 17, 128 (2000)

[25] Glass, R. L.: Questioning the Software Engineering Unquestionables.

IEEE Software, IEEE Computer Society Press, 20, 120 (2003)

[26] Glass, R. L.: Matching methodology to problem domain.

Communications of the ACM, 47, 19-21 (2004)

[27] Gonzalez-Perez, C., Henderson-Sellers, B.: A Powertype-Based

Metamodelling Framework. Software and Systems Modeling, 5, 72-90

(2006)

[28] Gonzalez-Perez, C., Henderson-Sellers, B.: On the Ease of Extending a

Powertype-Based Methodology Metamodel. In Meta-Modelling and

Ontologies. Proceedings of the 2
nd

 Workshop on Meta-Modelling,

WOMM‟06, P-96, 11-25 (2006)

[29] Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for

Software Engineering. Wiley Publishing (2008)

[30] Grundy, J. C., Venable, J. R.: Towards an Integrated Environment for

Method Engineering. In proceedings of the IFIP 8.1/8.2 Working

Conference on Method Engineering, Hall, 45-62 (1996)

[31] Gupta, D., Prakash, N.: Engineering Methods from Method

Requirements Specifications. Requirements Engineering, 6, 135-160

(2001)

116

[32] Guzélian, G., Cauvet, C.: SO2M : Towards a Service-Oriented

Approach for Method Engineering. In: the 2007 World Congress in

Computer Science, Computer Engineering and Applied Computing, in

Proceedings of International Conference Information and Knowledge

Engineering IKE‟07, Las Vegas, Nevada, USA (2007)

[33] Harmsen, F., Brinkkemper, S.: Design and Implementation of a Method

Base Management System for a Situational CASE Environment.

Proceedings of the Second Asia Pacific Software Engineering

Conference, IEEE Computer Society, 430 (1995)

[34] Harmsen, F., Saeki, M.: Comparison of Four Method Engineering

Languages. Proceedings of the IFIP TC8, WG8.1/8.2 Working

Conference on Method engineering : Principles of Method Construction

and Tool Support, Chapman & Hall, Ltd., 209-231 (1996)

[35] Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young

(1997)

[36] Henderson-Sellers, B., Lowe, D., Haire, B.: OPEN Process Support for

Web Development. Annals of Software Engineering 13, 163-201

(2002)

[37] Henderson-Sellers, B.: Method Engineering for OO Systems

Development. Communications of the ACM Vol. 46. Nº 10, pp. 73-78,

(2003)

[38] Henderson-Sellers, B.: Method Engineering: Theory and Practice. In

Information Systems Technology and Its Applications. 5
th
 International

Conference ISTA‟06. Klagenfurt, Austria, D. Karagiannis, H.C. Mayr,

Eds. Lecture Notes in Informatics (LNI) – Proceedings, Volume P-84,

Gesellschaft Für Informatik, Bonn, 13- 23 (2006)

[39] Henderson-Sellers, B., Gonzalez-Perez, C., Ralyté, J.: Comparison of

Method Chunks and Method Fragments for Situational Method

Engineering. ASWEC '08: Proceedings of the 19th Australian

Conference on Software Engineering, IEEE Computer Society, 479-488

(2008)

117

[40] Henderson-Sellers, B., Gonzalez-Perez, C.: Standardizing Methodology

Metamodelling and Notation: An ISO Exemplar. Information Systems

and e-Business Technologies, Springer Berlin Heidelberg, 5, 1-12

(2008)

[41] Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering:

State-of-the-Art Review. Journal of Universal Computer Science, 16,

424-478 (2010)

[42] Heym, M., Österle, H.: A Semantic Data Model for Methodology

Engineering. In: 5
th
 Workshop on Computer-Aided Software

Engineering, pp. 142-155. IEEE Press, Los Alamitos (1992)

[43] Iacovelli, A., Souveyet, C., Rolland, C.: Method as a Service (MaaS).

RCIS, 371-380 (2008)

[44] Isazadeh, H., Lamb, D. A.: CASE Environments and MetaCASE Tools,

(1997)

[45] ISO/IEC 24744: Software Engineering: Metamodel for Development

Methodologies. International Standards Organization/ International

Electrotechnical Commission, Geneva (2007)

[46] Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable

Multi-User and Multi-Tool CASE and CAME Environment. CAiSE, 1-

21 (1996)

[47] Kruchten, P.: The Rational Unified Process: An Introduction. Addison-

Wesley Longman Publishing Co., Inc. (2003)

[48] Kumar, K., Welke, R. J.: Methodology Engineering: A Proposal for

Situation-Specific Methodology Construction. Challenges and

Strategies for Research in Systems Development, John Wiley & Sons,

Inc., 257-269 (1992)

[49] Martin, C.: MetaCASE: dream or reality. Electro‟94 International

Conference, 195-199 (1994)

[50] MetaCase Consulting: ABC To Metacase Technology. Technical report

(1999)

118

[51] MetaCASE Consulting: Method Workbench User‟s Guide, MetaCASE

Consulting, Jyväskylä, Finland (2005),

http://www.metacase.com/support/40/manuals/mwb40sr2a4.pdf

[52] Mirbel, I., Ralyté, J.: Situational method engineering: combining

assembly-based and roadmap-driven approaches. Requirements

Engineering, 11, 58-78, (2006)

[53] Mirbel, I.: Connecting method engineering knowledge: a community

based approach. Situational Method Engineering, 176-192 (2007)

[54] MOFScript, http://www.eclipse.org/gmt/mofscript/

[55] MOSKitt, http://www.moskitt.org/

[56] Niknafs, A., Asadi, M., Abolhassani, H.: Ontology-Based Method

Engineering. International Journal of Computer Science and Network

Security, 7, (2007)

[57] Niknafs, A., Ramsin, R.: Computer-Aided Method Engineering: An

Analysis of Existing Environments. CAiSE, 525-540 (2008)

[58] Niknafs, A., Asadi, M.: Towards a Process Modeling Language for

Method Engineering Support. CSIE‟09: Proceedings of the 2009 WRI

World Congress on Computer Science and Information Engineering,

IEEE Computer Society, 674-681 (2009)

[59] Odell, J.J.: Power Types. Journal of Object-Oriented Programming

7(2), 8-12 (1994)

[60] Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method

approach for information systems modeling: from object-oriented

conceptual modeling to automated programming. Information Systems,

26(7), 507–534 (2001)

[61] Plihon, V.: MENTOR: An Environment Supporting the Construction of

Methods. Asia-Pacific Software Engineering Conference, IEEE

Computer Society, 0, 384 (1996)

[62] Plug-in Development Environment, http://www.eclipse.org/pde/

http://www.informatik.uni-trier.de/~ley/db/conf/ifip8-1/ifip8-1-2007.html#Mirbel07
http://www.eclipse.org/gmt/mofscript/
http://www.moskitt.org/
http://www.eclipse.org/pde/

119

[63] Prakash, N.: Towards a Formal Definition of Methods. Requirements

Engineering. 1: Vol. 2. - pp. 23-50 (1997)

[64] Prakash, N.: On method statics and dynamics. Information Systems,

Elsevier Science Ltd., 24, 613-637 (1999)

[65] Punter, H.T., Lemmen, K.: The MEMA Model: Towards a New

Approach for Method Engineering. Information and Software

Technology 38(4), 295-305 (1996)

[66] Ralyté, J.: Reusing Scenario Based Approaches in Requirement

Engineering Methods: CREWS Method Base. DEXA '99: Proceedings

of the 10th International Workshop on Database & Expert Systems

Applications, IEEE Computer Society, 305 (1999)

[67] Ralyté, J., Rolland, C.: An Assembly Process Model for Method

Engineering. CAiSE '01: Proceedings of the 13th International

Conference on Advanced Information Systems Engineering, Springer-

Verlag, 267-283 (2001)

[68] Ralyté, J., Rolland, C.: An Approach for Method Reengineering.

ER‟01: Proceedings of the 20
th
 International Conference on Conceptual

Modeling, Springer-Verlag, 471-484 (2001)

[69] Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for

situational method engineering. CAiSE‟03: Proceedings of the 15th

international conference on Advanced information systems engineering,

Springer-Verlag, 95-110 (2003)

[70] Ralyté, J.: Towards Situational Methods for Information Systems

Development: Engineering Reusable Method Chunks. In Proceedings

of the International Conference on Information Systems Development,

Vilnius Technika, 271-282 (2004)

[71] Ralyté, J., Rolland, C., Ayed, M. B.: An Approach for Evolution-

Driven Method Engineering. Information Modeling Methods and

Methodologies, 80-101 (2005)

[72] Reusable Asset Specification (RAS) OMG Available Specification

version 2.2. OMG Document Number: formal/2005-11-02

120

[73] Roger, J. E., Suttenbach, R., Ebert, J., Uhe, I.: Meta-CASE in Practice:

a Case for KOGGE. Springer , 203-216 (1997)

[74] Rolland, C.: Modeling the Evolution of Artifacts. ICRE‟94:

Proceedings of the 1
st
 International Conference on Requirements

Engineering, Colorado, 216-219 (1994)

[75] Rolland, C., Souveyet, C., Moreno, M.: An approach for defining ways-

of-working. Information Systems, Elsevier Science Ltd., 20, 337-359

(1995)

[76] Rolland, C., Prakash, N.: A proposal for context-specific method

engineering. Proceedings of the IFIP TC8, WG8.1/8.2 working

conference on Method engineering : principles of method construction

and tool support, Chapman & Hall, Ltd., 191-208 (1996)

[77] Rolland, C., Plihon, V.: Using Generic Method Chunks to Generate

Process Models Fragments. Proceedings of the 2nd International

Conference on Requirements Engineering (ICRE '96), IEEE Computer

Society, 173 (1996)

[78] Rolland, C.: A Primer For Method Engineering. Proceedings of the

INFORSID Conference, 10-13 (1997)

[79] Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of

Process Modelling. Requirements Engineering Journal 4(4), 169-187

(1999)

[80] Rolland, C.: Method engineering: towards methods as services.

Software Process Improvement and Practice, 14, 143-164 (2009)

[81] Saeki, M.: CAME : The First Step to Automated Method Engineering.

In OOPSLA‟03: Workshop on Process Engineering for Object-Oriented

and Component-Based Development, 7-18 (2003)

[82] Schmitt, J.R.: Product Modeling in Requirements Engineering Process

Modeling. IFIP TC8 International Conference on Information Systems

Development Process, North Holland, (1993)

121

[83] Seligmann, P.S., Wijers, G. M., Sol, H.G.: Analyzing the structure of

I.S. methodologies, an alternative approach. In Proc. of the 1
st
 Dutch

Conference on Information Systems, Amersfoort, The Netherlands

(1989)

[84] Si-Said, S., Rolland, C., Grosz, G.: MENTOR: A Computer Aided

Requirements Engineering environment. Advanced Information

Systems Engineering, Springer Berlin / Heidelberg, 1080, 22-43 (1996)

[85] Slooten, K. v., Brinkkemper, S.: A Method Engineering Approach to

Information Systems Development. In: Proceedings of the IFIP WG8.1

Working Conference on Information System Development Process,

North-Holland Publishing Co., 167-186 (1993)

[86] SOA Tools Platform Project (STP), http://www.eclipse.org/stp/

[87] Software & Systems Process Engineering Meta-model (SPEM) OMG

Available Specification version 2.0. OMG Document Number:

formal/2008-04-01

[88] ter Hofstede, A. H. M., Verhoef, T. F.: On the feasibility of situational

method engineering. Information Systems, Elsevier Science Ltd., 22,

401-422 (1997)

[89] Tolvanen, J.-P.: Incremental Method Engineering with Modeling Tools:

Theoretical Principles and Empirical Evidence. University of Jyväskylä

(1998)

[90] Torres, V.: A Web Engineering Approach for the Development of

Business Process-Driven Web applications. Ph.D. thesis, Technical

University of Valencia (2008)

[91] Wistrand, K., Karlsson, F.: Method Components - Rationale Revealed.

CAiSE, 189-201 (2004)

[92] Xpand, http://www.eclipse.org/modeling/m2t/?project=xpand

http://www.eclipse.org/stp/
http://www.eclipse.org/modeling/m2t/?project=xpand

