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This report presents a model-driven approach to support the design and implementation of 

software development methods and also describes how it has been implemented within the 

MOSKitt platform. Furthermore, this report presents an extension of the proposal to deal with 

method variability. This extension is based on the notion of method family. 

1. A Model-Driven Approach for the Design and Implementation of 

Software Development Methods 

1.1. Background 

Method Engineering (ME) is the engineering discipline that covers the design, construction and 

adaptation of methods, techniques and tools for the development of information systems 

(Brinkkemper, 1996). The first research works developed in ME date back to the early nineties 

where Kumar and Welke established the basis of this area (Kumar & Welke, 1992). Thereafter, 

many research efforts have attempted to provide solutions to the challenges that ME entails. 

Some of the most relevant contributions are those by Brinkkemper, Prakash, Ralyté and 

Karlsson (Brinkkemper, 1996; Brinkkemper et al., 1999; Prakash, 1997; Prakash, 1999; Ralyté & 

Rolland, 2001; Karlsson & Agerfalk, 2004; Karlsson & Agerfalk, 2009). These works are based 

on a modular view of methods whereby methods are built by assembling different kinds of 

methods modules, namely method fragments, method blocks, method chunks and method 

components respectively. These proposals (among others) have contributed to establish a 

solid and wide theoretical basis in the ME field. However, industry uptake of ME approaches is 

being currently slow, as acknowledged in a recent state-of-the-art review (Henderson-Sellers & 

Ralyté, 2010). The main cause of this reality is the lack of adequate Computer-Aided Method 

Engineering (CAME) environments that allow putting ME theory into practice. Surveys such as 

the one presented in (Niknafs & Ramsin, 2008) put in evidence this reality and demonstrate 

that most of the software support is provided as prototype tools that do not cover the whole 

ME lifecycle. Examples of such prototypes are: MERU (Gupta & Prakash, 2001), Decamerone 

(Harmsen, 1997), Method Editor (Saeki, 2003) and MENTOR (Si-Said et al., 1996). Up until now, 

MetaEdit+ (Kelly et al., 1996) is the only tool that has been commercialized. 

In this work we aim to overcome the limitations of current CAME technology by applying 

Model-Driven Development (MDD) techniques. Thus, we present a methodological framework 

and a supporting CAME environment that provide complete support to the design and 

implementation of methods in the context of MDD. The CAME environment has been 

implemented as an extension of the MOSKitt platform, since its plugin-based architecture and 

its integrated modelling tools turn it into a suitable software platform to support the proposal. 



1.2. The Proposal 

The ME proposal that is presented in this work is situated within the context of MDD and aims 

at providing support to the design and implementation of software development methods. 

According to MDD principles, the design of methods is performed by specifying methods as 

models (Method Design phase) and the implementation of these methods (i.e., the generation 

of the supporting CASE environments) is performed by means of model transformations 

(Method Implementation phase). These two phases are illustrated in figure 1 and summarized 

below. Further details are provided in (Cervera et al., 2010; Cervera et al., 2012). 

 

Figure 1. Proposal overview 

Method Design 

During the method design phase, the method engineer defines the method as a model by 

means of the SPEM 2.0 standard. The construction of this model can be performed from 

scratch or reusing method fragments that are retrieved from a repository. In addition, during 

the construction of this model the method engineer can store in the repository pieces of this 

model that will be available as method fragments for the construction of other method 

models. 

In order to provide a more in-depth view on how method fragments are managed in our 

proposal, we present below a taxonomy that classifies the various types of fragments that are 

defined in our work and the relationships between them. Furthermore, the method fragments 

that represent SPEM 2.0 elements are associated with the SPEM 2.0 classes that denote the 

type of elements they contain. 



 

Figure 2. Fragment taxonomy and SPEM 2.0 classes 

Figure 2 (left) shows the fragment taxonomy. As the figure shows, a method fragment can be 

either a conceptual fragment or a technical fragment. Conceptual fragments contain 

definitions of parts of methods such as roles, work products, tasks or processes. Technical 

fragments contain tools supporting the creation of method products. Conceptual fragments 

can be process fragments or content fragments. Process fragments contain reusable process 

patterns. Content fragments contain definitions of SPEM 2.0 method content, that is, tasks, 

work products and roles, which are stored respectively in task fragments, product fragments, 

and role fragments. On the other hand, technical fragments can be tool fragments or guidance 

fragments. Tool fragments contain software tools (e.g., editors or model transformations) that 

enable the creation of products. Guidance fragments contain guidelines about the 

performance of tasks. Finally, this taxonomy also illustrates relationships between method 

fragments. The “uses” relationship represents that a process pattern stored in a process 

fragment can make use of one or more elements contained in content fragments (tasks, 

products, etc.). Moreover, the “subprocess” relationship represents that a process pattern can 

be applied to build larger process patterns and the “references” relationship represents that a 

method content element may reference other method content elements (e.g., a task definition 

referencing its output work products definitions). The “depends” relationship represents that 

the tool contained in a tool fragment may depend on tools of other tool fragments for its 

correct operation. Last but not least, the “supports” relationship represents that products and 

tasks are associated with the technical fragments that will support them during the method 

enactment. 

Figure 2 (right) shows a simplified view of the SPEM 2.0 meta-model. Some of the classes of 

this meta-model have been associated with the conceptual fragments of our taxonomy. These 

associations illustrate a containment relationship. For instance, process fragments are 

associated with the SPEM 2.0 class “Activity”. Thus, we are representing that process 

fragments contain a SPEM 2.0 model that includes one instance of this class. Note that in this 

case the “Activity” class is constrained. Specifically, process fragments must contain one 

instance of the class “Activity” that represents a SPEM 2.0 process pattern (also known as 

capability pattern). 



In our proposal, method fragments are stored in the repository as reusable assets based on 

the RAS standard (Object Management Group, 2005). In order to allow method engineers to 

search and retrieve method fragments from the repository, the fragments are defined by a set 

of properties. These properties are stored in the manifest file of the RAS asset that embodies 

the fragment. The main properties characterizing method fragments are: “situation”, “type”, 

“origin”, and “objective”. Situation describes the context in which the fragment can be reused. 

Type describes the nature of the content of the fragment. For conceptual fragments, the valid 

types are “task”, “role”, “product” and “process”. For technical fragments, type describes the 

kind of tool or guide included in the fragment, e.g., “editor”, “model transformation”, “cheat 

sheet”, etc. Origin and objective describe respectively the method from which the fragment 

was created and the goal the fragment helps achieve. 

Method Implementation 

In this phase, a model transformation (Cervera et al., 2010) generates a CASE environment 

that provides support to the method that has been specified during the method design. As 

figure 3 shows, this CASE environment is composed of a dynamic part and a static part. 

 

Figure 3. Generated CASE environment 

The dynamic part is composed of those elements that are obtained from the method model 

and are, therefore, method-dependent. As figure 3 shows, the dynamic elements are the tools 

that provide software support to the method (i.e., graphical editors, model transformations, 

etc.). These tools are specified within the method model as technical fragments. Therefore, the 

model transformation must take these tools from the repository (and their dependencies) and 

integrate them in the generated CASE environment. In the context of MOSKitt, the tools 

contained in the technical fragments are implemented as Eclipse plugins and therefore their 



integration into the final CASE environment can be automatically performed since this tool is 

also based on Eclipse. Unfortunately, the integration of tools developed outside of the context 

of Eclipse cannot be guaranteed. 

On the other hand, the static part is composed of those components that are always 

installed in the CASE tool irrespective of the method that has been specified. As figure 3 

shows, these elements are the Project Manager Component (PMC) and the Process Engine. 

The PMC provides a GUI for the CASE environment and aims at assisting software engineers 

during the method enactment (i.e., during the course of the development projects). To achieve 

this goal, the PMC makes use of the SPEM 2.0 method model at runtime and also invokes the 

Process Engine, which is in charge of executing the method process part. For this purpose, the 

method process part must be represented in terms of an executable language, e.g. BPMN 2.0. 

Thus, in our proposal a BPMN 2.0 model is obtained from the SPEM 2.0 method model during 

the CASE tool generation process. Further details about the PMC (and the method 

implementation phase in general) are provided in (Cervera et al., 2012). 

1.3. MOSKitt4ME : Implementation of the Proposal in MOSKitt 

The proposal presented in the previous section has been implemented as an extension of the 

MOSKitt tool. This extension is called MOSKitt4ME and its architecture is depicted in figure 4. 

 

Figure 4. MOSKitt4ME architecture 



Specifically, MOSKitt4ME is built upon MOSKitt modules, which are divided into three groups: 

• Infrastructure modules: these modules provide facilities for processing, manipulating 

and managing MOSKitt artifacts such as models or model transformations. For 

instance, the “TrManager” module provides mechanisms to declare and invoke model 

transformations and the “ModelSync” module implements the infrastructure needed 

to define the synchronization between models that have been transformed and 

traced. 

• Functional modules: these modules provide specific tools that allow creating different 

kind of resources such as models, diagrams or text files. For instance, the “UML2” 

module implements a graphical editor that allows creating UML 2.0 diagrams. 

• Method support modules: these modules provide support to the gvMetrica method, 

in particular for defining and running its development processes. These processes are 

defined by means of the Dashboard tool and executed by means of the Dashboard 

Interpreter. 

In this context, MOSKitt4ME modules aim to improve the method support provided in MOSKitt 

by the Dashboard and Dashboard Interpreter tools. The Dashboard tool provides a graphical 

editor for defining software development methods. However, this tool is very limited in terms 

of support for modeling the elements of gvMetrica. On the other hand, the Dashboard 

Interpreter provides an execution environment for enacting method instances. However, this 

tool has not been successful in terms of user satisfaction due to its low usability. 

In order to solve these problems, MOSKitt4ME provides a ME environment that supports 

the definition of methods by means of the SPEM 2.0 standard, and also the enactment of 

method instances. For this purpose, MOSKitt4ME defines six modules. The first four constitute 

the CAME part of MOSKitt4ME, since they are focused on method design, and the last two 

modules constitute the CASE part, since they aim at assisting software engineers during the 

method enactment. These modules are the following: 

• EPF Composer: an SPEM 2.0 editor that is provided as part of the Eclipse Process 

Framework (EPF) Project and has been integrated in MOSKitt to allow method 

engineers to create method models based on the SPEM 2.0 standard. 

• Activiti Designer: a BPMN 2.0 graphical editor that is provided as part of the Activiti 

Project and has been integrated in MOSKitt to allow method engineers to define 

processes based on the BPMN 2.0 standard. 

• SPEM2BPMN: a Model-To-Model (M2M) transformation that obtains from a SPEM 2.0 

model an executable representation of the process part in terms of BPMN 2.0. 

• Repository client: an Eclipse view that allows the method engineer to connect with the 

repository to store or retrieve method fragments. This component is not yet 

implemented in the current version of MOSKitt4ME. 

• Project manager (PMC): provides a set of Eclipse views that assist software engineers 

during the method enactment (Cervera et al., 2012). 

• Activiti Engine: a process engine that is provided as part of the Activiti Project and has 

been integrated in MOSKitt to enable the execution of BPMN 2.0 processes defined by 

means of the Activiti Designer.  



These modules work as follows. The method engineer defines the method (in this case 

gvMetrica) by means of the EPF Composer. The repository client can be used to search for 

method fragments and integrate them in the method model under construction (and also to 

store new method fragments in the repository). Once the method is finished, the SPEM2BPMN 

transformation allows the method engineer to obtain an executable representation of the 

method process part in terms of BPMN 2.0. This process definition can be manually enhanced 

by means of the Activiti Designer. This is often needed since BPMN 2.0 provides more 

expressiveness than SPEM 2.0 with respect to process elicitation. Then, the SPEM 2.0 and 

BPMN 2.0 models are stored in the gvMetrica module. The Project Manager and Activiti Engine 

read these models from the gvMetrica module to perform the method enactment (i.e., to 

assist software engineers during the course of the software development projects). 

It is important to highlight that in MOSKitt4ME the transformation that generates CASE 

environments (see subsection 1.2) is not implemented since MOSKitt4ME is intended for 

supporting gvMetrica and all the required tools are already installed in MOSKitt (the functional 

modules). Thereby, only the static part of the CASE tool (the PMC and the process engine) is 

needed. 

2. Incorporating Variability 

2.1. Background 

Theoretically, software development methods define complete and integrated approaches for 

building software systems. However, practice has proven that a particular method is only 

suitable for a very specific project type whereas software companies normally deal with a high 

diversity of software projects. Sources of these diversities may be differences among project 

characteristics such as domains of the systems to be developed (e.g., web application, mobile 

application, etc.), development lifecycles (e.g., waterfall, spiral, etc.), budget, project size, 

project duration, etc. Due to these diversities, software companies are forced to adapt their 

methods to the particular situations where the methods are to be applied. Thus, software 

companies make use of a multitude of method variants, whereby each of these variants is valid 

for a specific context or project type. In this scenario, which solutions do software companies 

use to adequately handle method variability? 

A common approach to manage method variability is keeping all method variants in 

separate method models. This approach is called “multi-model approach” (Hallerbach et al., 

2010). Nonetheless, this solution is only feasible if few variants exist or they differ to a large 

degree from each other. Otherwise, a multi-model approach will bring high maintenance costs 

as well as redundancies and inconsistencies between method models. A better approach is to 

combine principles of Method Engineering and Software Product Line Engineering (SPLE), 

which leads to the notion of method family. Method families have been recently proposed in 

(Asadi et al., 2011; Kornyshova et al., 2011) and are defined by analogy to the notion of 

product family (Gurp, 2001) as a set of related methods that share common parts while others 

are variable. These common and variable parts can be organized in a variability model from 

which specific methods can be configured according to project characteristics. This approach 



allows avoiding the aforementioned drawbacks since the common and variable parts are 

specified separately and are not replicated. 

Since we consider that method families represent an adequate solution to handle method 

variability, we extend our ME approach to incorporate support for method families. With our 

solution we intend to go a step beyond related work, providing the following contributions: 

1. A methodological approach that not only supports the specification of method families 

but also the generation of the supporting CASE environments. Thereby, method and 

software engineers are able to properly handle method variability both at method 

design and method implementation levels. Current approaches such as (Asadi et al., 

2011) and (Kornyshova et al., 2011) only cover method family specification. 

2. A methodological approach that provides support to the process part of method 

families. Current approaches define method families that allow the method engineer 

to configure specific methods by assembling common and variable parts. However, 

they do not support a complete specification of the control-flow that governs the 

execution order of these parts (i.e., their orchestration). 

3. A CAME environment that provides complete software support to our methodological 

approach. To the best of our knowledge, it has not yet been developed a CAME 

environment that provides support to method families. 

 

Figure 5. Proposal overview (refined to support variability) 



2.2. Proposal Extension 

We extend our ME proposal to support the definition of method families and the generation of 

the supporting CASE environments. Thereby, we now divide our approach in two phases: 

Method Family Design and Method Family Implementation. These two phases are illustrated in 

figure 5 and detailed below. 

Method Family Design 

During this phase the method engineer defines the method family. In our approach, this is 

performed in two steps. 

Step 1) Population of the repository 

In this step, the method engineer populates the repository with the reusable components (in 

this case method fragments) that are required for a complete specification of the method 

family. In other words, the method engineer builds (if they are not already available in the 

repository) the conceptual fragments that represent the common and variable parts of the 

family and also develops, together with software engineers, the technical fragments that 

provide software support to the conceptual fragments. A key benefit of developing 

components that are reusable is that the method family can be easily used to build new 

methods at low cost and high quality. 

Step 2) Definition of the method family 

In this step, the method engineer builds the set of models that represent the method family. 

Firstly, the method engineer defines either from scratch or reusing method fragments a base 

method model by means of SPEM 2.0. The base method model contains the commonalities 

that share all method variants and also the specification of those parts that are subject to 

variation (i.e., variation points). A variation point can be defined as a precise position within a 

method model that admits different possibilities according to the current context or situation 

(Ayora, 2011). In SPEM 2.0, variation points can be specified by means of empty activities 

(Martínez-Ruíz et al., 2009). When a specific method is later configured, process patterns will 

be applied in these activities. 

In parallel to (or after) the definition of the base method model, the method engineer must 

define the variability model. In our approach, the variability model is defined as a feature 

model (Lee et al., 2002). In SPLE, feature modeling is the activity of identifying externally 

visible characteristics of software products (i.e, features) and organizing them into a model 

called a feature model. In a feature model, common features among different products are 

modeled as mandatory features, while variable features are modeled as optional or 

alternative. By analogy to SPLE, in the context of method families a feature model must gather 

all features of methods that allow the method engineer to configure different method 

variants. Since we consider that there is a strong relation between project characteristics and 

method variability (that is to say, changes in the project characteristics are the triggers of 

method variation), we suggest that features in the feature model represent project 

characteristics. Specifically, project characteristics are represented as interior nodes in the 

feature model and the project characteristics possible values are represented as variants of 



these interior nodes. These variants in the feature model must be linked with the variation 

points of the base method model that are subject to variation according to the particular 

project characteristic values that the variants represent. Furthermore, each variation point 

(and variant) must be associated with one or more process fragments that contain the process 

patterns that can be applied in the variation point
1
 (if the specific variant is active). For the 

association of process fragments, variants and variation points, we suggest the use of a 

weaving model. The weaving model allows associating all these elements in a loosely coupled 

manner, that is, without adding any further information to the related models. 

As an example, consider a software company that develops systems for two different 

domains, e.g., mobile applications and embedded systems. In this context, method engineers 

determine that “domain” is a significant characteristic of the projects that are carried out in 

the company and therefore it is included in the variability model as a feature (interior node). 

This feature will contain two variants, namely “mobile application” and “embedded system”. 

Now, let us consider that there is only one variability point, called “system design”, in the base 

method of the company that is affected by this project characteristic.  This variability point is 

modeled as an empty activity where a different process pattern will be applied depending on 

the value of the “domain” feature. In other words, depending on whether a project is for 

developing a mobile application or an embedded system, the “system design” activity will be 

performed differently. In addition, let us consider that the repository contains two process 

fragments that define (as process patterns) two different ways of performing the system 

design. These fragments are called respectively “design for mobile applications” and “design 

for embedded systems”. According to this scenario, the weaving model will contain the 

following associations between elements: 

1. “system design” - “design for mobile applications” - “mobile application” 

2. “system design” - “design for embedded systems” - “embedded system” 

For instance, the first association is read as follows. In the variability point “system design”, the 

process pattern “design for mobile applications” will be applied when the feature “mobile 

application” is active. 

Method Family Implementation 

In this phase, a CASE environment supporting the method family specified in the previous 

phase is generated by means of a model transformation. Similarly to the tool illustrated in 

figure 3, the infrastructure of this CASE environment is composed of the Project Manager 

Component, the Process Engine and the tools supporting the tasks and products of the method 

family (the technical fragments). In addition, the CASE environment also includes the three 

models that define the method family so that they can be used at runtime. These three models 

are included “as is” and then the process fragments referenced in the weaving model (and the 

other fragments associated to these process fragments according to the relationships 

illustrated in figure 2) are integrated in the base method model. These elements (process 

patterns, tasks, roles, etc.) are required in order to enable the automatic generation of specific 

                                                           
1
 Note that it is sufficient to link features with process fragments because all other type of fragments can be 

reached from them thanks to the relationships defined in figure 2. 



method models from the base method model (see below). Finally, unlike the CASE 

environment depicted in figure 3, CASE environments now include a model-based 

reconfiguration engine, called MoRE-ME, which is an extension of MoRE (Cetina et al., 2009) 

for ME. MoRE-ME allows method and software engineers to deal with method variability, since 

it enables the dynamic reconfiguration of method variants when changes in the project 

characteristics arise. Thereby, we provide support to the dynamic nature of projects, an issue 

that is not yet properly addressed in the ME field (Rolland, 2009). Moreover, projects based on 

different methods can coexist within the same CASE environment. This was not supported in 

the previous version of our proposal. 

Figure 6 illustrates the architecture of the CASE environments that are generated in the 

method family implementation phase. This architecture is an extension of the architecture 

shown in figure 3.  Within these CASE environments, software engineers create new 

development projects, specify their characteristics and dynamically configure specific methods 

suited to the projects where they are to be applied. Once a specific method is configured for a 

particular project, the CASE environment assists software engineers during the method 

enactment. All the steps involved from the creation of a project to the enactment of its specific 

development method are indicated in figure 6 and detailed below. 

 

Figure 6. Generated CASE environment (refined to support variability) 

 

 



Step 1) Specification of a software project 

This step involves the creation of a new project by means of the PMC or the modification of 

the characteristics of an existing project. In both cases, a specific method that governs the 

execution of the project must be obtained. In the first case, a new method will be obtained 

from the base method model. In the second case, the specific method model associated to the 

project will be reconfigured. For this purpose, in this step the software engineer must specify 

the project characteristics. These characteristics define the type of project that is to be 

performed and, therefore, they allow obtaining the appropriate method variant from the 

method family. The configuration of a specific method variant according to the project 

characteristics is automatically performed by MoRE-ME. This is illustrated in figure 7. 

 

Figure 7. Configuration of methods by MoRE-ME 

As figure 7 shows, in a first step MoRE-ME translates the project characteristics into a 

resolution. Resolutions are used by MoRE-ME to (de)activate features of the feature model. 

Specifically, a resolution is a list of pairs (F, S) in which F indicates a feature and S the feature’s 

state (Cetina et al., 2009).  More formally, let FM be a feature model, then: 

R = {(F, S)} | F ∈ FM ∧ S ∈ {Active, Inactive} 

Thereby, when the software engineer specifies the characteristics of the project, MoRE-ME 

generates a resolution called Rn (n indicates that the project characteristics have changed for 

the nth time, thus being R0 the initial resolution for new projects). This resolution is composed 

of those features (and variants) that represent the project characteristics (and their values) 

specified by the method engineer. For instance, a possible resolution R0 for the example of the 

previous subsection is: 

R0 = {(Domain, Active), (Mobile application, Active), (Embedded System, Inactive)} 



This resolution is used by MoRE-ME to update the current configuration of the feature model 

(step 2). The current configuration (CC) indicates the set of all active features of the feature 

model (Cetina et al., 2009). More formally, let FM be a feature model, then: 

CC = {F} | F ∈ FM ∧ F.state = Active 

Also in step 2, MoRE-ME makes use of the CC, the resolution Rn and the weaving model to 

calculate the increments and decrements to be applied on the method model
2
. More formally, 

the increments and decrements to be applied on the method model (MM) are defined as 

follows. Let PP be an operation that returns the process patterns associated to a feature of the 

feature model, then: 

MM∆ = PP (F | (F, S) ∈ Rn ∧ S = Active ∧ F ∉ CC) 

MM∇ = PP (F | (F, S) ∈ Rn ∧ S = Inactive ∧ F ∈ CC) 

MM∆ is the set of all process patterns to be applied on the method model. Specifically, this set 

is composed of those patterns that are associated to the features of Rn that are set as active 

and are not included in the current configuration. On the other hand, MM∇ is the set of all 

process patterns to be removed from the method model. Specifically, this set is composed of 

those patterns that are associated to the features of Rn that are set as inactive and are 

included in the current configuration. 

Finally, the last step involves the application and removal of the process patterns contained 

respectively in MM∆ and MM∇. In case of the creation of a new project (n = 0), the specific 

method model of the project will be obtained just by applying MM∆ on the base method 

model. However, in case of the modification of project characteristics (n ≥ 1), the specific 

method model already exists. Therefore, this model must be reconfigured by removing the 

process patterns contained in MM∇ and applying the process patterns contained in MM∆. 

It is very important to highlight that when n ≥ 1 only the process patterns involved in the 

part of the method that has not been executed will be added or removed. In other words, the 

part of the method that has already been executed remains unmodified. This is important in 

order to enable the automatic update of the process instance associated to the project. 

Step 2) Generation of the executable process 

Before deploying the specific method model obtained in step 1 into the process engine, an 

executable representation of the method process part must be obtained. Specifically, we 

suggest mapping the method process part into BPMN 2.0 by means of a M2M transformation. 

Further details about this step are provided in (Cervera et al., 2012). 

Step 3) Manual update of the executable process 

The executable representation of the process in terms of BPMN 2.0 can be manually modified 

to represent more complex workflows. This is usually needed since BPMN 2.0 provides more 

                                                           
2
 This method model will be the base method model for R0 and a specific method model for Rn where n ≥ 1. 



expressiveness than SPEM 2.0 with respect to process elicitation. Further details about this 

step are provided in (Cervera et al., 2012). 

Step 4) Process deployment 

Once the process specification is finished, it must be deployed in the process engine so that 

the PMC can execute process instances. If n ≥ 1 (see figure 7), when the process instance is 

created after deployment, it must be updated to reflect the previous state of the project. This 

involves marking as executed the tasks that were executed in the previous process instance. 

Step 5) Method use 

Once the process has been deployed and the process instance has been started, both the 

process engine and the SPEM 2.0 model are used by the PMC to assist software engineers 

during the project lifecycle (Cervera et al., 2012). It is important to highlight that during the 

course of the projects, the project characteristics that were selected during their creation may 

change. In this case, the five steps illustrated in figure 6 must be performed again in order to 

reconfigure the specific method model associated to the project (i.e., to adapt the method to 

the new characteristics of the project). 

2.3. Variability in MOSKitt4ME 

Figure 8 shows the new architecture of MOSKitt4ME for supporting variability. As the figure 

shows, the CAME part is now composed of the MOSKitt Feature Modeler, the EPF Composer, 

the ATLAS Model Weaver (AMW) and the Repository Client. These components allow the 

method engineer to define the three models that compose the gvMetrica method family, that 

is, the feature model, the base SPEM 2.0 model and the weaving model. The feature model 

defines the characteristics of the different types of projects that can be performed in the 

context of the CIT. The base SPEM 2.0 model defines a method that embodies the common 

part of all method variants of the family. This model also defines the variation points (as empty 

activities) and the process patterns that can be applied in the variation points. Finally, the 

weaving model contains the associations between project characteristics (features), variation 

points and process patterns. 

On the other hand, the CASE part is now composed of the PMC, the Activiti Engine, the 

Activiti Designer, the SPEM2BPMN transformation and MoRE-ME. These tools allow software 

and method engineers to perform the steps described in the previous subsection. 



 

Figure 8. MOSKitt4ME architecture (refined to support variability) 

An example 

This subsection presents a brief but illustrative example of some of the ideas put forward in 

this report. In figure 9 one can see an excerpt of a feature model created by means of the 

Feature Modeler. This feature model contains some of the project characteristics that are 

considered relevant within the CIT. For instance, since different method variants are used 

when the target platform of the software varies, the feature model contains a feature called 

“Target Platform”. This feature contains two alternative variants “gvNIX” and “gvHidra”. In 

addition, figure 9 also shows two excerpts of the base SPEM 2.0 model. The upper-right corner 

of the figure shows some process patterns. Specifically, the process pattern “NALP-CCSI-

GVHIDRA” has been associated (by means of a weaving model, not shown in the example) with 

the “gvHidra” feature. Thus, the method engineer is indicating that this process pattern must 

be applied on the base method model when the software engineer creates a new project for 

developing an application whose target platform is gvHidra. The lower-right corner shows an 

excerpt of the base method that contains a variation point called “CCSI: Preparar desarrollo”. 

The feature “gvHidra” has been associated with this variation point. Thus, the method 



engineer is indicating that the process pattern “NAPL-CCSI-GVHIDRA” will be applied in this 

variation point when the feature “gvHidra” is activated. 

 

Figure 9. Example of method family 

The application of the process pattern is illustrated in figure 10. Specifically, the PMC provides 

a project creation wizard that allows software engineers to specify the project characteristics. 

In the example, the software engineer has specified that the project to be created is for 

developing an application based on gvHidra. When this project characteristic is selected, 

MoRE-ME activates the corresponding feature in the feature model. Then, it applies the 

process pattern in the base method to obtain the specific method model that will govern the 

execution of the project. 



 

Figure 10. Application of a process pattern 

References 

Asadi, M., Mohabbati, B., Gasevic, D., Bagheri, E.: Developing Families of Method-Oriented 

Architecture. Engineering Methods in the Service-Oriented Context, Springer Berlin, 

Heidelberg, 351, 168-183 (2011) 

Ayora, C.: Modelling and Managing Variability in Business Processes. Master’s Thesis. 

Universitat Politècnica de València (2011) 

Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development 

Methods and Tools. Information and Software Technology, 38, 275-280 (1996) 

Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for 

situational method engineering. Inf. Syst. 24, 209-228 (1999) 

Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic Computing through Reuse of Variability 

Models at Runtime: The Case of Smart Homes. Computer, IEEE Computer Society Press, 42, 37-

43 (2009)  

Cervera, M., Albert, M., Torres, V., Pelechano, V.: A methodological framework and software 

infrastructure for the construction of software production methods. In: Yang, Y., Münch, J., 

Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 112-125. Springer-Verlag, Berlin, Heidelberg 

(2010) 



Cervera, M., Albert, M., Torres, V., Pelechano, V., Bonet, B., Cano, J.: A technological 

framework to support model driven method engineering. In Actas de los Talleres de las 

Jornadas de Ingeniera del Software y Bases de Datos, 47-56 (2010) 

Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Model-Driven Approach for the Design and 

Implementation of Software Development Methods. To be published in: International Journal 

of Information System Modeling and Design (2012) 

Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifications. 

Requirements Engineering, 6, 135-160 (2001) 

Gurp, J. V., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product Lines. 

Proceedings of the Working IEEE/IFIP Conference on Software Architecture, IEEE Computer 

Society, 45- 54 (2001) 

Hallerbach, A., Bauer, T., Reichert, M.: Configuration and Management of Process Variants. 

International Handbook on Business Process Management I, Springer, 237-255 (2010)  

Harmsen, A.F.: Situational Method Engineering. Ph.D. thesis, Univ. of Twente, Utrecht (1997) 

Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Review. 

Journal of Universal Computer Science, 16, 424-478 (2010) 

Karlsson, F., Agerfalk, P.J.: Method configuration: adapting to situational characteristics while 

creating reusable assets. Information and Software Technology 46, 619-633 (2004) 

Karlsson, F., Agerfalk, P.J.: Towards structured flexibility in information systems development: 

Devising a method for method configuration. J. Database Manag. 20, 51-75 (2009) 

Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully configurable multi-user and multi-tool CASE 

and CAME environment. In Constantopoulos, P.; Mylopoulos, J. & Vassiliou, Y. (ed.). Advanced 

Information Systems Engineering, 1080, 1-21 (1996) 

Kornyshova, E., Deneckère, R., Rolland, C.: Method Families Concept: Application to Decision-

Making Methods. Enterprise, Business-Process and Information Systems Modeling, Springer 

Berlin Heidelberg, 81, 413-427 (2011) 

Kumar, K., Welke, R. J.: Methodology Engineering: A Proposal for Situation-Specific 

Methodology Construction. Challenges and Strategies for Research in Systems Development, 

John Wiley & Sons, Inc., 257-269 (1992) 

Lee, K., Kang, K. C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line 

Software Engineering. Proceedings of the 7th International Conference on Software Reuse: 

Methods, Techniques, and Tools, Springer-Verlag, 62-77 (2002)  

Martínez-Ruíz, T., García, F., Piattini, M.: Modelado de Líneas de Procesos mediante SPEM 

v2.0. Conferencia iberoamericana de Software Engineering, 195-207, (2009) 

Niknafs, A., Ramsin, R.: Computer-Aided Method Engineering: An Analysis of Existing 

Environments. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 525–540. 

Springer, Heidelberg (2008) 

Object Management Group. (2007). Software & Systems Process Engineering Metamodel 

(v2.0). http://www.omg.org/spec/SPEM/2.0/ 



Object Management Group. (2005). Reusable Asset Specification (v2.2). 

http://www.omg.org/spec/RAS/ 

Prakash, N.: Towards a formal definition of methods. Requir. Eng. 2, 23-50 (1997) 

Prakash, N.: On method statics and dynamics. Inf. Syst. 24, 613-637 (1999) 

Ralyté, J., Rolland, C.: An approach for method reengineering. In: S.Kunii, H., Jajodia, S., 

Solvberg, A. (eds.) ER 2001, LNCS, vol. 2224, pp. 471-484. Springer Berlin / Heidelberg (2001) 

Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich, K., 

Geppert, A., Norrie, M. (eds.) Advanced Information Systems Engineering, LNCS, vol. 2068, pp. 

267-283. Springer Berlin / Heidelberg (2001) 

Rolland, C.: Method engineering: towards methods as services. Software Process: 

Improvement and Practice 14(3), 143-164 (2009) 

Saeki, M.: CAME: The First Step to Automated Method Engineering. In Workshop on Process 

Engineering for Object-Oriented and Component-Based Development (2003) 

Si-Said, S.; Rolland, C., Grosz, G.: MENTOR: A Computer Aided Requirements Engineering 

environment. Advanced Information Systems Engineering, 1080, 22-43 (1996) 


