
Method Engineering

Mario Cervera Úbeda

This report presents a model-driven approach to support the design and implementation of

software development methods and also describes how it has been implemented within the

MOSKitt platform. Furthermore, this report presents an extension of the proposal to deal with

method variability. This extension is based on the notion of method family.

1. A Model-Driven Approach for the Design and Implementation of

Software Development Methods

1.1. Background

Method Engineering (ME) is the engineering discipline that covers the design, construction and

adaptation of methods, techniques and tools for the development of information systems

(Brinkkemper, 1996). The first research works developed in ME date back to the early nineties

where Kumar and Welke established the basis of this area (Kumar & Welke, 1992). Thereafter,

many research efforts have attempted to provide solutions to the challenges that ME entails.

Some of the most relevant contributions are those by Brinkkemper, Prakash, Ralyté and

Karlsson (Brinkkemper, 1996; Brinkkemper et al., 1999; Prakash, 1997; Prakash, 1999; Ralyté &

Rolland, 2001; Karlsson & Agerfalk, 2004; Karlsson & Agerfalk, 2009). These works are based

on a modular view of methods whereby methods are built by assembling different kinds of

methods modules, namely method fragments, method blocks, method chunks and method

components respectively. These proposals (among others) have contributed to establish a

solid and wide theoretical basis in the ME field. However, industry uptake of ME approaches is

being currently slow, as acknowledged in a recent state-of-the-art review (Henderson-Sellers &

Ralyté, 2010). The main cause of this reality is the lack of adequate Computer-Aided Method

Engineering (CAME) environments that allow putting ME theory into practice. Surveys such as

the one presented in (Niknafs & Ramsin, 2008) put in evidence this reality and demonstrate

that most of the software support is provided as prototype tools that do not cover the whole

ME lifecycle. Examples of such prototypes are: MERU (Gupta & Prakash, 2001), Decamerone

(Harmsen, 1997), Method Editor (Saeki, 2003) and MENTOR (Si-Said et al., 1996). Up until now,

MetaEdit+ (Kelly et al., 1996) is the only tool that has been commercialized.

In this work we aim to overcome the limitations of current CAME technology by applying

Model-Driven Development (MDD) techniques. Thus, we present a methodological framework

and a supporting CAME environment that provide complete support to the design and

implementation of methods in the context of MDD. The CAME environment has been

implemented as an extension of the MOSKitt platform, since its plugin-based architecture and

its integrated modelling tools turn it into a suitable software platform to support the proposal.

1.2. The Proposal

The ME proposal that is presented in this work is situated within the context of MDD and aims

at providing support to the design and implementation of software development methods.

According to MDD principles, the design of methods is performed by specifying methods as

models (Method Design phase) and the implementation of these methods (i.e., the generation

of the supporting CASE environments) is performed by means of model transformations

(Method Implementation phase). These two phases are illustrated in figure 1 and summarized

below. Further details are provided in (Cervera et al., 2010; Cervera et al., 2012).

Figure 1. Proposal overview

Method Design

During the method design phase, the method engineer defines the method as a model by

means of the SPEM 2.0 standard. The construction of this model can be performed from

scratch or reusing method fragments that are retrieved from a repository. In addition, during

the construction of this model the method engineer can store in the repository pieces of this

model that will be available as method fragments for the construction of other method

models.

In order to provide a more in-depth view on how method fragments are managed in our

proposal, we present below a taxonomy that classifies the various types of fragments that are

defined in our work and the relationships between them. Furthermore, the method fragments

that represent SPEM 2.0 elements are associated with the SPEM 2.0 classes that denote the

type of elements they contain.

Figure 2. Fragment taxonomy and SPEM 2.0 classes

Figure 2 (left) shows the fragment taxonomy. As the figure shows, a method fragment can be

either a conceptual fragment or a technical fragment. Conceptual fragments contain

definitions of parts of methods such as roles, work products, tasks or processes. Technical

fragments contain tools supporting the creation of method products. Conceptual fragments

can be process fragments or content fragments. Process fragments contain reusable process

patterns. Content fragments contain definitions of SPEM 2.0 method content, that is, tasks,

work products and roles, which are stored respectively in task fragments, product fragments,

and role fragments. On the other hand, technical fragments can be tool fragments or guidance

fragments. Tool fragments contain software tools (e.g., editors or model transformations) that

enable the creation of products. Guidance fragments contain guidelines about the

performance of tasks. Finally, this taxonomy also illustrates relationships between method

fragments. The “uses” relationship represents that a process pattern stored in a process

fragment can make use of one or more elements contained in content fragments (tasks,

products, etc.). Moreover, the “subprocess” relationship represents that a process pattern can

be applied to build larger process patterns and the “references” relationship represents that a

method content element may reference other method content elements (e.g., a task definition

referencing its output work products definitions). The “depends” relationship represents that

the tool contained in a tool fragment may depend on tools of other tool fragments for its

correct operation. Last but not least, the “supports” relationship represents that products and

tasks are associated with the technical fragments that will support them during the method

enactment.

Figure 2 (right) shows a simplified view of the SPEM 2.0 meta-model. Some of the classes of

this meta-model have been associated with the conceptual fragments of our taxonomy. These

associations illustrate a containment relationship. For instance, process fragments are

associated with the SPEM 2.0 class “Activity”. Thus, we are representing that process

fragments contain a SPEM 2.0 model that includes one instance of this class. Note that in this

case the “Activity” class is constrained. Specifically, process fragments must contain one

instance of the class “Activity” that represents a SPEM 2.0 process pattern (also known as

capability pattern).

In our proposal, method fragments are stored in the repository as reusable assets based on

the RAS standard (Object Management Group, 2005). In order to allow method engineers to

search and retrieve method fragments from the repository, the fragments are defined by a set

of properties. These properties are stored in the manifest file of the RAS asset that embodies

the fragment. The main properties characterizing method fragments are: “situation”, “type”,

“origin”, and “objective”. Situation describes the context in which the fragment can be reused.

Type describes the nature of the content of the fragment. For conceptual fragments, the valid

types are “task”, “role”, “product” and “process”. For technical fragments, type describes the

kind of tool or guide included in the fragment, e.g., “editor”, “model transformation”, “cheat

sheet”, etc. Origin and objective describe respectively the method from which the fragment

was created and the goal the fragment helps achieve.

Method Implementation

In this phase, a model transformation (Cervera et al., 2010) generates a CASE environment

that provides support to the method that has been specified during the method design. As

figure 3 shows, this CASE environment is composed of a dynamic part and a static part.

Figure 3. Generated CASE environment

The dynamic part is composed of those elements that are obtained from the method model

and are, therefore, method-dependent. As figure 3 shows, the dynamic elements are the tools

that provide software support to the method (i.e., graphical editors, model transformations,

etc.). These tools are specified within the method model as technical fragments. Therefore, the

model transformation must take these tools from the repository (and their dependencies) and

integrate them in the generated CASE environment. In the context of MOSKitt, the tools

contained in the technical fragments are implemented as Eclipse plugins and therefore their

integration into the final CASE environment can be automatically performed since this tool is

also based on Eclipse. Unfortunately, the integration of tools developed outside of the context

of Eclipse cannot be guaranteed.

On the other hand, the static part is composed of those components that are always

installed in the CASE tool irrespective of the method that has been specified. As figure 3

shows, these elements are the Project Manager Component (PMC) and the Process Engine.

The PMC provides a GUI for the CASE environment and aims at assisting software engineers

during the method enactment (i.e., during the course of the development projects). To achieve

this goal, the PMC makes use of the SPEM 2.0 method model at runtime and also invokes the

Process Engine, which is in charge of executing the method process part. For this purpose, the

method process part must be represented in terms of an executable language, e.g. BPMN 2.0.

Thus, in our proposal a BPMN 2.0 model is obtained from the SPEM 2.0 method model during

the CASE tool generation process. Further details about the PMC (and the method

implementation phase in general) are provided in (Cervera et al., 2012).

1.3. MOSKitt4ME : Implementation of the Proposal in MOSKitt

The proposal presented in the previous section has been implemented as an extension of the

MOSKitt tool. This extension is called MOSKitt4ME and its architecture is depicted in figure 4.

Figure 4. MOSKitt4ME architecture

Specifically, MOSKitt4ME is built upon MOSKitt modules, which are divided into three groups:

• Infrastructure modules: these modules provide facilities for processing, manipulating

and managing MOSKitt artifacts such as models or model transformations. For

instance, the “TrManager” module provides mechanisms to declare and invoke model

transformations and the “ModelSync” module implements the infrastructure needed

to define the synchronization between models that have been transformed and

traced.

• Functional modules: these modules provide specific tools that allow creating different

kind of resources such as models, diagrams or text files. For instance, the “UML2”

module implements a graphical editor that allows creating UML 2.0 diagrams.

• Method support modules: these modules provide support to the gvMetrica method,

in particular for defining and running its development processes. These processes are

defined by means of the Dashboard tool and executed by means of the Dashboard

Interpreter.

In this context, MOSKitt4ME modules aim to improve the method support provided in MOSKitt

by the Dashboard and Dashboard Interpreter tools. The Dashboard tool provides a graphical

editor for defining software development methods. However, this tool is very limited in terms

of support for modeling the elements of gvMetrica. On the other hand, the Dashboard

Interpreter provides an execution environment for enacting method instances. However, this

tool has not been successful in terms of user satisfaction due to its low usability.

In order to solve these problems, MOSKitt4ME provides a ME environment that supports

the definition of methods by means of the SPEM 2.0 standard, and also the enactment of

method instances. For this purpose, MOSKitt4ME defines six modules. The first four constitute

the CAME part of MOSKitt4ME, since they are focused on method design, and the last two

modules constitute the CASE part, since they aim at assisting software engineers during the

method enactment. These modules are the following:

• EPF Composer: an SPEM 2.0 editor that is provided as part of the Eclipse Process

Framework (EPF) Project and has been integrated in MOSKitt to allow method

engineers to create method models based on the SPEM 2.0 standard.

• Activiti Designer: a BPMN 2.0 graphical editor that is provided as part of the Activiti

Project and has been integrated in MOSKitt to allow method engineers to define

processes based on the BPMN 2.0 standard.

• SPEM2BPMN: a Model-To-Model (M2M) transformation that obtains from a SPEM 2.0

model an executable representation of the process part in terms of BPMN 2.0.

• Repository client: an Eclipse view that allows the method engineer to connect with the

repository to store or retrieve method fragments. This component is not yet

implemented in the current version of MOSKitt4ME.

• Project manager (PMC): provides a set of Eclipse views that assist software engineers

during the method enactment (Cervera et al., 2012).

• Activiti Engine: a process engine that is provided as part of the Activiti Project and has

been integrated in MOSKitt to enable the execution of BPMN 2.0 processes defined by

means of the Activiti Designer.

These modules work as follows. The method engineer defines the method (in this case

gvMetrica) by means of the EPF Composer. The repository client can be used to search for

method fragments and integrate them in the method model under construction (and also to

store new method fragments in the repository). Once the method is finished, the SPEM2BPMN

transformation allows the method engineer to obtain an executable representation of the

method process part in terms of BPMN 2.0. This process definition can be manually enhanced

by means of the Activiti Designer. This is often needed since BPMN 2.0 provides more

expressiveness than SPEM 2.0 with respect to process elicitation. Then, the SPEM 2.0 and

BPMN 2.0 models are stored in the gvMetrica module. The Project Manager and Activiti Engine

read these models from the gvMetrica module to perform the method enactment (i.e., to

assist software engineers during the course of the software development projects).

It is important to highlight that in MOSKitt4ME the transformation that generates CASE

environments (see subsection 1.2) is not implemented since MOSKitt4ME is intended for

supporting gvMetrica and all the required tools are already installed in MOSKitt (the functional

modules). Thereby, only the static part of the CASE tool (the PMC and the process engine) is

needed.

2. Incorporating Variability

2.1. Background

Theoretically, software development methods define complete and integrated approaches for

building software systems. However, practice has proven that a particular method is only

suitable for a very specific project type whereas software companies normally deal with a high

diversity of software projects. Sources of these diversities may be differences among project

characteristics such as domains of the systems to be developed (e.g., web application, mobile

application, etc.), development lifecycles (e.g., waterfall, spiral, etc.), budget, project size,

project duration, etc. Due to these diversities, software companies are forced to adapt their

methods to the particular situations where the methods are to be applied. Thus, software

companies make use of a multitude of method variants, whereby each of these variants is valid

for a specific context or project type. In this scenario, which solutions do software companies

use to adequately handle method variability?

A common approach to manage method variability is keeping all method variants in

separate method models. This approach is called “multi-model approach” (Hallerbach et al.,

2010). Nonetheless, this solution is only feasible if few variants exist or they differ to a large

degree from each other. Otherwise, a multi-model approach will bring high maintenance costs

as well as redundancies and inconsistencies between method models. A better approach is to

combine principles of Method Engineering and Software Product Line Engineering (SPLE),

which leads to the notion of method family. Method families have been recently proposed in

(Asadi et al., 2011; Kornyshova et al., 2011) and are defined by analogy to the notion of

product family (Gurp, 2001) as a set of related methods that share common parts while others

are variable. These common and variable parts can be organized in a variability model from

which specific methods can be configured according to project characteristics. This approach

allows avoiding the aforementioned drawbacks since the common and variable parts are

specified separately and are not replicated.

Since we consider that method families represent an adequate solution to handle method

variability, we extend our ME approach to incorporate support for method families. With our

solution we intend to go a step beyond related work, providing the following contributions:

1. A methodological approach that not only supports the specification of method families

but also the generation of the supporting CASE environments. Thereby, method and

software engineers are able to properly handle method variability both at method

design and method implementation levels. Current approaches such as (Asadi et al.,

2011) and (Kornyshova et al., 2011) only cover method family specification.

2. A methodological approach that provides support to the process part of method

families. Current approaches define method families that allow the method engineer

to configure specific methods by assembling common and variable parts. However,

they do not support a complete specification of the control-flow that governs the

execution order of these parts (i.e., their orchestration).

3. A CAME environment that provides complete software support to our methodological

approach. To the best of our knowledge, it has not yet been developed a CAME

environment that provides support to method families.

Figure 5. Proposal overview (refined to support variability)

2.2. Proposal Extension

We extend our ME proposal to support the definition of method families and the generation of

the supporting CASE environments. Thereby, we now divide our approach in two phases:

Method Family Design and Method Family Implementation. These two phases are illustrated in

figure 5 and detailed below.

Method Family Design

During this phase the method engineer defines the method family. In our approach, this is

performed in two steps.

Step 1) Population of the repository

In this step, the method engineer populates the repository with the reusable components (in

this case method fragments) that are required for a complete specification of the method

family. In other words, the method engineer builds (if they are not already available in the

repository) the conceptual fragments that represent the common and variable parts of the

family and also develops, together with software engineers, the technical fragments that

provide software support to the conceptual fragments. A key benefit of developing

components that are reusable is that the method family can be easily used to build new

methods at low cost and high quality.

Step 2) Definition of the method family

In this step, the method engineer builds the set of models that represent the method family.

Firstly, the method engineer defines either from scratch or reusing method fragments a base

method model by means of SPEM 2.0. The base method model contains the commonalities

that share all method variants and also the specification of those parts that are subject to

variation (i.e., variation points). A variation point can be defined as a precise position within a

method model that admits different possibilities according to the current context or situation

(Ayora, 2011). In SPEM 2.0, variation points can be specified by means of empty activities

(Martínez-Ruíz et al., 2009). When a specific method is later configured, process patterns will

be applied in these activities.

In parallel to (or after) the definition of the base method model, the method engineer must

define the variability model. In our approach, the variability model is defined as a feature

model (Lee et al., 2002). In SPLE, feature modeling is the activity of identifying externally

visible characteristics of software products (i.e, features) and organizing them into a model

called a feature model. In a feature model, common features among different products are

modeled as mandatory features, while variable features are modeled as optional or

alternative. By analogy to SPLE, in the context of method families a feature model must gather

all features of methods that allow the method engineer to configure different method

variants. Since we consider that there is a strong relation between project characteristics and

method variability (that is to say, changes in the project characteristics are the triggers of

method variation), we suggest that features in the feature model represent project

characteristics. Specifically, project characteristics are represented as interior nodes in the

feature model and the project characteristics possible values are represented as variants of

these interior nodes. These variants in the feature model must be linked with the variation

points of the base method model that are subject to variation according to the particular

project characteristic values that the variants represent. Furthermore, each variation point

(and variant) must be associated with one or more process fragments that contain the process

patterns that can be applied in the variation point
1
 (if the specific variant is active). For the

association of process fragments, variants and variation points, we suggest the use of a

weaving model. The weaving model allows associating all these elements in a loosely coupled

manner, that is, without adding any further information to the related models.

As an example, consider a software company that develops systems for two different

domains, e.g., mobile applications and embedded systems. In this context, method engineers

determine that “domain” is a significant characteristic of the projects that are carried out in

the company and therefore it is included in the variability model as a feature (interior node).

This feature will contain two variants, namely “mobile application” and “embedded system”.

Now, let us consider that there is only one variability point, called “system design”, in the base

method of the company that is affected by this project characteristic. This variability point is

modeled as an empty activity where a different process pattern will be applied depending on

the value of the “domain” feature. In other words, depending on whether a project is for

developing a mobile application or an embedded system, the “system design” activity will be

performed differently. In addition, let us consider that the repository contains two process

fragments that define (as process patterns) two different ways of performing the system

design. These fragments are called respectively “design for mobile applications” and “design

for embedded systems”. According to this scenario, the weaving model will contain the

following associations between elements:

1. “system design” - “design for mobile applications” - “mobile application”

2. “system design” - “design for embedded systems” - “embedded system”

For instance, the first association is read as follows. In the variability point “system design”, the

process pattern “design for mobile applications” will be applied when the feature “mobile

application” is active.

Method Family Implementation

In this phase, a CASE environment supporting the method family specified in the previous

phase is generated by means of a model transformation. Similarly to the tool illustrated in

figure 3, the infrastructure of this CASE environment is composed of the Project Manager

Component, the Process Engine and the tools supporting the tasks and products of the method

family (the technical fragments). In addition, the CASE environment also includes the three

models that define the method family so that they can be used at runtime. These three models

are included “as is” and then the process fragments referenced in the weaving model (and the

other fragments associated to these process fragments according to the relationships

illustrated in figure 2) are integrated in the base method model. These elements (process

patterns, tasks, roles, etc.) are required in order to enable the automatic generation of specific

1
 Note that it is sufficient to link features with process fragments because all other type of fragments can be

reached from them thanks to the relationships defined in figure 2.

method models from the base method model (see below). Finally, unlike the CASE

environment depicted in figure 3, CASE environments now include a model-based

reconfiguration engine, called MoRE-ME, which is an extension of MoRE (Cetina et al., 2009)

for ME. MoRE-ME allows method and software engineers to deal with method variability, since

it enables the dynamic reconfiguration of method variants when changes in the project

characteristics arise. Thereby, we provide support to the dynamic nature of projects, an issue

that is not yet properly addressed in the ME field (Rolland, 2009). Moreover, projects based on

different methods can coexist within the same CASE environment. This was not supported in

the previous version of our proposal.

Figure 6 illustrates the architecture of the CASE environments that are generated in the

method family implementation phase. This architecture is an extension of the architecture

shown in figure 3. Within these CASE environments, software engineers create new

development projects, specify their characteristics and dynamically configure specific methods

suited to the projects where they are to be applied. Once a specific method is configured for a

particular project, the CASE environment assists software engineers during the method

enactment. All the steps involved from the creation of a project to the enactment of its specific

development method are indicated in figure 6 and detailed below.

Figure 6. Generated CASE environment (refined to support variability)

Step 1) Specification of a software project

This step involves the creation of a new project by means of the PMC or the modification of

the characteristics of an existing project. In both cases, a specific method that governs the

execution of the project must be obtained. In the first case, a new method will be obtained

from the base method model. In the second case, the specific method model associated to the

project will be reconfigured. For this purpose, in this step the software engineer must specify

the project characteristics. These characteristics define the type of project that is to be

performed and, therefore, they allow obtaining the appropriate method variant from the

method family. The configuration of a specific method variant according to the project

characteristics is automatically performed by MoRE-ME. This is illustrated in figure 7.

Figure 7. Configuration of methods by MoRE-ME

As figure 7 shows, in a first step MoRE-ME translates the project characteristics into a

resolution. Resolutions are used by MoRE-ME to (de)activate features of the feature model.

Specifically, a resolution is a list of pairs (F, S) in which F indicates a feature and S the feature’s

state (Cetina et al., 2009). More formally, let FM be a feature model, then:

R = {(F, S)} | F ∈ FM ∧ S ∈ {Active, Inactive}

Thereby, when the software engineer specifies the characteristics of the project, MoRE-ME

generates a resolution called Rn (n indicates that the project characteristics have changed for

the nth time, thus being R0 the initial resolution for new projects). This resolution is composed

of those features (and variants) that represent the project characteristics (and their values)

specified by the method engineer. For instance, a possible resolution R0 for the example of the

previous subsection is:

R0 = {(Domain, Active), (Mobile application, Active), (Embedded System, Inactive)}

This resolution is used by MoRE-ME to update the current configuration of the feature model

(step 2). The current configuration (CC) indicates the set of all active features of the feature

model (Cetina et al., 2009). More formally, let FM be a feature model, then:

CC = {F} | F ∈ FM ∧ F.state = Active

Also in step 2, MoRE-ME makes use of the CC, the resolution Rn and the weaving model to

calculate the increments and decrements to be applied on the method model
2
. More formally,

the increments and decrements to be applied on the method model (MM) are defined as

follows. Let PP be an operation that returns the process patterns associated to a feature of the

feature model, then:

MM∆ = PP (F | (F, S) ∈ Rn ∧ S = Active ∧ F ∉ CC)

MM∇ = PP (F | (F, S) ∈ Rn ∧ S = Inactive ∧ F ∈ CC)

MM∆ is the set of all process patterns to be applied on the method model. Specifically, this set

is composed of those patterns that are associated to the features of Rn that are set as active

and are not included in the current configuration. On the other hand, MM∇ is the set of all

process patterns to be removed from the method model. Specifically, this set is composed of

those patterns that are associated to the features of Rn that are set as inactive and are

included in the current configuration.

Finally, the last step involves the application and removal of the process patterns contained

respectively in MM∆ and MM∇. In case of the creation of a new project (n = 0), the specific

method model of the project will be obtained just by applying MM∆ on the base method

model. However, in case of the modification of project characteristics (n ≥ 1), the specific

method model already exists. Therefore, this model must be reconfigured by removing the

process patterns contained in MM∇ and applying the process patterns contained in MM∆.

It is very important to highlight that when n ≥ 1 only the process patterns involved in the

part of the method that has not been executed will be added or removed. In other words, the

part of the method that has already been executed remains unmodified. This is important in

order to enable the automatic update of the process instance associated to the project.

Step 2) Generation of the executable process

Before deploying the specific method model obtained in step 1 into the process engine, an

executable representation of the method process part must be obtained. Specifically, we

suggest mapping the method process part into BPMN 2.0 by means of a M2M transformation.

Further details about this step are provided in (Cervera et al., 2012).

Step 3) Manual update of the executable process

The executable representation of the process in terms of BPMN 2.0 can be manually modified

to represent more complex workflows. This is usually needed since BPMN 2.0 provides more

2
 This method model will be the base method model for R0 and a specific method model for Rn where n ≥ 1.

expressiveness than SPEM 2.0 with respect to process elicitation. Further details about this

step are provided in (Cervera et al., 2012).

Step 4) Process deployment

Once the process specification is finished, it must be deployed in the process engine so that

the PMC can execute process instances. If n ≥ 1 (see figure 7), when the process instance is

created after deployment, it must be updated to reflect the previous state of the project. This

involves marking as executed the tasks that were executed in the previous process instance.

Step 5) Method use

Once the process has been deployed and the process instance has been started, both the

process engine and the SPEM 2.0 model are used by the PMC to assist software engineers

during the project lifecycle (Cervera et al., 2012). It is important to highlight that during the

course of the projects, the project characteristics that were selected during their creation may

change. In this case, the five steps illustrated in figure 6 must be performed again in order to

reconfigure the specific method model associated to the project (i.e., to adapt the method to

the new characteristics of the project).

2.3. Variability in MOSKitt4ME

Figure 8 shows the new architecture of MOSKitt4ME for supporting variability. As the figure

shows, the CAME part is now composed of the MOSKitt Feature Modeler, the EPF Composer,

the ATLAS Model Weaver (AMW) and the Repository Client. These components allow the

method engineer to define the three models that compose the gvMetrica method family, that

is, the feature model, the base SPEM 2.0 model and the weaving model. The feature model

defines the characteristics of the different types of projects that can be performed in the

context of the CIT. The base SPEM 2.0 model defines a method that embodies the common

part of all method variants of the family. This model also defines the variation points (as empty

activities) and the process patterns that can be applied in the variation points. Finally, the

weaving model contains the associations between project characteristics (features), variation

points and process patterns.

On the other hand, the CASE part is now composed of the PMC, the Activiti Engine, the

Activiti Designer, the SPEM2BPMN transformation and MoRE-ME. These tools allow software

and method engineers to perform the steps described in the previous subsection.

Figure 8. MOSKitt4ME architecture (refined to support variability)

An example

This subsection presents a brief but illustrative example of some of the ideas put forward in

this report. In figure 9 one can see an excerpt of a feature model created by means of the

Feature Modeler. This feature model contains some of the project characteristics that are

considered relevant within the CIT. For instance, since different method variants are used

when the target platform of the software varies, the feature model contains a feature called

“Target Platform”. This feature contains two alternative variants “gvNIX” and “gvHidra”. In

addition, figure 9 also shows two excerpts of the base SPEM 2.0 model. The upper-right corner

of the figure shows some process patterns. Specifically, the process pattern “NALP-CCSI-

GVHIDRA” has been associated (by means of a weaving model, not shown in the example) with

the “gvHidra” feature. Thus, the method engineer is indicating that this process pattern must

be applied on the base method model when the software engineer creates a new project for

developing an application whose target platform is gvHidra. The lower-right corner shows an

excerpt of the base method that contains a variation point called “CCSI: Preparar desarrollo”.

The feature “gvHidra” has been associated with this variation point. Thus, the method

engineer is indicating that the process pattern “NAPL-CCSI-GVHIDRA” will be applied in this

variation point when the feature “gvHidra” is activated.

Figure 9. Example of method family

The application of the process pattern is illustrated in figure 10. Specifically, the PMC provides

a project creation wizard that allows software engineers to specify the project characteristics.

In the example, the software engineer has specified that the project to be created is for

developing an application based on gvHidra. When this project characteristic is selected,

MoRE-ME activates the corresponding feature in the feature model. Then, it applies the

process pattern in the base method to obtain the specific method model that will govern the

execution of the project.

Figure 10. Application of a process pattern

References

Asadi, M., Mohabbati, B., Gasevic, D., Bagheri, E.: Developing Families of Method-Oriented

Architecture. Engineering Methods in the Service-Oriented Context, Springer Berlin,

Heidelberg, 351, 168-183 (2011)

Ayora, C.: Modelling and Managing Variability in Business Processes. Master’s Thesis.

Universitat Politècnica de València (2011)

Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development

Methods and Tools. Information and Software Technology, 38, 275-280 (1996)

Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for

situational method engineering. Inf. Syst. 24, 209-228 (1999)

Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic Computing through Reuse of Variability

Models at Runtime: The Case of Smart Homes. Computer, IEEE Computer Society Press, 42, 37-

43 (2009)

Cervera, M., Albert, M., Torres, V., Pelechano, V.: A methodological framework and software

infrastructure for the construction of software production methods. In: Yang, Y., Münch, J.,

Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 112-125. Springer-Verlag, Berlin, Heidelberg

(2010)

Cervera, M., Albert, M., Torres, V., Pelechano, V., Bonet, B., Cano, J.: A technological

framework to support model driven method engineering. In Actas de los Talleres de las

Jornadas de Ingeniera del Software y Bases de Datos, 47-56 (2010)

Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Model-Driven Approach for the Design and

Implementation of Software Development Methods. To be published in: International Journal

of Information System Modeling and Design (2012)

Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifications.

Requirements Engineering, 6, 135-160 (2001)

Gurp, J. V., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product Lines.

Proceedings of the Working IEEE/IFIP Conference on Software Architecture, IEEE Computer

Society, 45- 54 (2001)

Hallerbach, A., Bauer, T., Reichert, M.: Configuration and Management of Process Variants.

International Handbook on Business Process Management I, Springer, 237-255 (2010)

Harmsen, A.F.: Situational Method Engineering. Ph.D. thesis, Univ. of Twente, Utrecht (1997)

Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Review.

Journal of Universal Computer Science, 16, 424-478 (2010)

Karlsson, F., Agerfalk, P.J.: Method configuration: adapting to situational characteristics while

creating reusable assets. Information and Software Technology 46, 619-633 (2004)

Karlsson, F., Agerfalk, P.J.: Towards structured flexibility in information systems development:

Devising a method for method configuration. J. Database Manag. 20, 51-75 (2009)

Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully configurable multi-user and multi-tool CASE

and CAME environment. In Constantopoulos, P.; Mylopoulos, J. & Vassiliou, Y. (ed.). Advanced

Information Systems Engineering, 1080, 1-21 (1996)

Kornyshova, E., Deneckère, R., Rolland, C.: Method Families Concept: Application to Decision-

Making Methods. Enterprise, Business-Process and Information Systems Modeling, Springer

Berlin Heidelberg, 81, 413-427 (2011)

Kumar, K., Welke, R. J.: Methodology Engineering: A Proposal for Situation-Specific

Methodology Construction. Challenges and Strategies for Research in Systems Development,

John Wiley & Sons, Inc., 257-269 (1992)

Lee, K., Kang, K. C., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line

Software Engineering. Proceedings of the 7th International Conference on Software Reuse:

Methods, Techniques, and Tools, Springer-Verlag, 62-77 (2002)

Martínez-Ruíz, T., García, F., Piattini, M.: Modelado de Líneas de Procesos mediante SPEM

v2.0. Conferencia iberoamericana de Software Engineering, 195-207, (2009)

Niknafs, A., Ramsin, R.: Computer-Aided Method Engineering: An Analysis of Existing

Environments. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 525–540.

Springer, Heidelberg (2008)

Object Management Group. (2007). Software & Systems Process Engineering Metamodel

(v2.0). http://www.omg.org/spec/SPEM/2.0/

Object Management Group. (2005). Reusable Asset Specification (v2.2).

http://www.omg.org/spec/RAS/

Prakash, N.: Towards a formal definition of methods. Requir. Eng. 2, 23-50 (1997)

Prakash, N.: On method statics and dynamics. Inf. Syst. 24, 613-637 (1999)

Ralyté, J., Rolland, C.: An approach for method reengineering. In: S.Kunii, H., Jajodia, S.,

Solvberg, A. (eds.) ER 2001, LNCS, vol. 2224, pp. 471-484. Springer Berlin / Heidelberg (2001)

Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich, K.,

Geppert, A., Norrie, M. (eds.) Advanced Information Systems Engineering, LNCS, vol. 2068, pp.

267-283. Springer Berlin / Heidelberg (2001)

Rolland, C.: Method engineering: towards methods as services. Software Process:

Improvement and Practice 14(3), 143-164 (2009)

Saeki, M.: CAME: The First Step to Automated Method Engineering. In Workshop on Process

Engineering for Object-Oriented and Component-Based Development (2003)

Si-Said, S.; Rolland, C., Grosz, G.: MENTOR: A Computer Aided Requirements Engineering

environment. Advanced Information Systems Engineering, 1080, 22-43 (1996)

