
Extending the JDT

• Can be fun, if

• API exposes what you need to see

• Extension points exist where you want to adapt

• JDT offers a wealth of API and extension points

• Not every RFE can create new API

• Conflicts with other clients

• Performance impact

• Maintenance costs

• What if your RFE gets rejected?

• Abandon your project?

• Copy&Paste

• Use Object Teams
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Relation between two Projects

JDT
Core

UIDebug

...
commit

Object Teams

lead

Java OT/J

OTDT

Equinox OT/Equinox



Cheat with Style

• What if API is missing?
• Ignore restrictions, even private

• What if extension point is missing?
• We have other means for extending:

• specialize instances not classes

• What about maintainability?
• Do minimal harm
• Group extensions to higher-level modules: teams.



Exercise Stopwatch

• New → Example → Stop Watch Example

• src / ... / Main.java
→ Run As → Java Application

Note: to stop application click      (Console view)

Find role class WatchUI.WatchDisplay:

• When are instances of this role created ?

• When is its method update() called?

Extra (Demo):

• Terminate application when watch is reset at 3 seconds.



Object Teams in a nutshell

   MyTeam
teamField: someType
teamMethod(T2): Type2

BasePkg● team
collaboration module

● role
members of a team

● playedBy
connect role to base

● callout
forward to base

● callin
intercept base method

● decapsulation
break base encapsulation

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()
method2()

C1

roleMeth1  ->  method1
callout

roleMeth2  <-  method2 callin

Flavors:
● before
● after
● replace

 «playedBy»

  «playedBy»



OT/Equinox

Plug-in B

export

internal

CB1

CB2

CB4
CB3

Plug-in C

CC1Team1

R1
rm←bm

R2

«aspectBinding»

«playedBy»     

     «playedBy»



Exercise: AntiDemo Plug-in

• Write a new Plug-in
• adapting org.eclipse.jdt.core

• Change the Java naming rules
• Class names cannot start with “Foo”

• Hint: JavaConventions#validateXZY()

• In a runtime workbench
• Try to create a class “Foobar”
• Be inventive!

Note: you may need to scroll to see
   Enable OT/Equinox



Demo: Reachability Analysis

Implement a Plug-in that finds unreachable code.
• All “main” methods are considered reachable.

• All methods called from a reachable method are also reachable.

• Method calls inside dead code should not be considered.
(e.g. “if (false) m();”)

• Analyzing method calls must consider polymorphism /overriding.

• Methods that are only called from unreachable methods are not 
reachable (including “islands”: cycles of unreachable methods).

Need a whole-system call graph.
+ local flow analysis

+ inheritance information



Design

Piggy-back on the JDT compiler
• Find all MethodDeclarations during resolve

• Record start nodes, like “main” methods
• Create a graph of MethodBindings

• Connect nodes when analysing MessageSends

• Ignore calls in dead code
• Start from set of all methods

• subtract all methods reachable from a start node
• consider method overriding

• Only work during full build

• report remaining methods after subtracting



No Limits – No Pain

playedBy:  every object is extensible

callout: every method / field can be made accessible

callin:  every method is overridable

warnings for decapsulation: proceed at your own (low) risk

• interface (bidirectional) fully explicit

• lean & mean = powerful & maintainable



Extending the JDT into new Dimensions

Each feature is a module / team

• Define suitable structure using teams & roles

• Create connections using playedBy, callout & callin
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Summary

• JDT delivers powerful program manipulation services
• Java Model, Search engine and DOM AST

• Use them to add your own tool to the Eclipse Java IDE
• but also in headless mode (can be used programmatically)

• E.g. EMF, metrics tools, …
• Full J2SE 5.0/6.0/7.0 support
• Full-fledged batch compiler

• Community feedback is essential

• bug reports:
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=JDT

• Forum:
http://www.eclipse.org/forums/index.php/f/13

  

https://bugs.eclipse.org/bugs/enter_bug.cgi?product=JDT


Give Feedback on the Sessions

 

1 Sign In:  www.eclipsecon.org

2 Select Session Evaluate

3 Vote 
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