
Extending the JDT

• Can be fun, if

• API exposes what you need to see

• Extension points exist where you want to adapt

• JDT offers a wealth of API and extension points

• Not every RFE can create new API

• Conflicts with other clients

• Performance impact

• Maintenance costs

• What if your RFE gets rejected?

• Abandon your project?

• Copy&Paste

• Use Object Teams

The JDT Dragon meets Object Teams

Ayushman Jain
IBM Bangalore, India

ayushman.jain@in.ibm.com

Stephan Herrmann
GK Software AG, Berlin

stephan@cs.tu-berlin.de

mailto:ayushman.jain@in.ibm.com
mailto:stephan@cs.tu-berlin.de

3

Relation between two Projects

JDT
Core

UIDebug

...
commit

Object Teams

lead

Java OT/J

OTDT

Equinox OT/Equinox

Cheat with Style

• What if API is missing?
• Ignore restrictions, even private

• What if extension point is missing?
• We have other means for extending:

• specialize instances not classes

• What about maintainability?
• Do minimal harm
• Group extensions to higher-level modules: teams.

Exercise Stopwatch

• New → Example → Stop Watch Example

• src / ... / Main.java
→ Run As → Java Application

Note: to stop application click (Console view)

Find role class WatchUI.WatchDisplay:

• When are instances of this role created ?

• When is its method update() called?

Extra (Demo):

• Terminate application when watch is reset at 3 seconds.

Object Teams in a nutshell

 MyTeam
teamField: someType
teamMethod(T2): Type2

BasePkg● team
collaboration module

● role
members of a team

● playedBy
connect role to base

● callout
forward to base

● callin
intercept base method

● decapsulation
break base encapsulation

Role1

Role2

roleMeth1()
roleMeth2() C2

method1()
method2()

C1

roleMeth1 -> method1
callout

roleMeth2 <- method2 callin

Flavors:
● before
● after
● replace

 «playedBy»

 «playedBy»

OT/Equinox

Plug-in B

export

internal

CB1

CB2

CB4
CB3

Plug-in C

CC1Team1

R1
rm←bm

R2

«aspectBinding»

«playedBy»

 «playedBy»

Exercise: AntiDemo Plug-in

• Write a new Plug-in
• adapting org.eclipse.jdt.core

• Change the Java naming rules
• Class names cannot start with “Foo”

• Hint: JavaConventions#validateXZY()

• In a runtime workbench
• Try to create a class “Foobar”
• Be inventive!

Note: you may need to scroll to see
 Enable OT/Equinox

Demo: Reachability Analysis

Implement a Plug-in that finds unreachable code.
• All “main” methods are considered reachable.

• All methods called from a reachable method are also reachable.

• Method calls inside dead code should not be considered.
(e.g. “if (false) m();”)

• Analyzing method calls must consider polymorphism /overriding.

• Methods that are only called from unreachable methods are not
reachable (including “islands”: cycles of unreachable methods).

Need a whole-system call graph.
+ local flow analysis

+ inheritance information

Design

Piggy-back on the JDT compiler
• Find all MethodDeclarations during resolve

• Record start nodes, like “main” methods
• Create a graph of MethodBindings

• Connect nodes when analysing MessageSends

• Ignore calls in dead code
• Start from set of all methods

• subtract all methods reachable from a start node
• consider method overriding

• Only work during full build

• report remaining methods after subtracting

No Limits – No Pain

playedBy: every object is extensible

callout: every method / field can be made accessible

callin: every method is overridable

warnings for decapsulation: proceed at your own (low) risk

• interface (bidirectional) fully explicit

• lean & mean = powerful & maintainable

Extending the JDT into new Dimensions

Each feature is a module / team

• Define suitable structure using teams & roles

• Create connections using playedBy, callout & callin

13

Summary

• JDT delivers powerful program manipulation services
• Java Model, Search engine and DOM AST

• Use them to add your own tool to the Eclipse Java IDE
• but also in headless mode (can be used programmatically)

• E.g. EMF, metrics tools, …
• Full J2SE 5.0/6.0/7.0 support
• Full-fledged batch compiler

• Community feedback is essential

• bug reports:
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=JDT

• Forum:
http://www.eclipse.org/forums/index.php/f/13

https://bugs.eclipse.org/bugs/enter_bug.cgi?product=JDT

Give Feedback on the Sessions

1 Sign In: www.eclipsecon.org

2 Select Session Evaluate

3 Vote

15

Legal Notice

• Copyright © IBM Corp., 2007-2010. All rights reserved. This presentation and the
source code in it are made available under the EPL, v1.0.

• Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.

• Eclipse and the Eclipse logo are trademarks of Eclipse Foundation, Inc.

• IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation,
in the United States, other countries or both.

• Other company, product, or service names may be trademarks or service marks of
others.

• THE INFORMATION DISCUSSED IN THIS PRESENTATION IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO
VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION, IT IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, AND IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, SUCH
INFORMATION. ANY INFORMATION CONCERNING IBM'S PRODUCT PLANS
OR STRATEGY IS SUBJECT TO CHANGE BY IBM WITHOUT NOTICE

