Feature Design Specification CDT 2.0 Parser Symbol Table

Feature Design Specification

CDT 2.0 Parser Symbol Table

1/9

Feature Design Specification

Table of Contents

C Scoping Rules.......ccceeviiiniiiniiiiinieneeeeceee
Address of Overloaded Functions............ccccceeenueenee
Symbol Iterator........cccuveeeiiiniiiniieneeeeccc e
Prefix LOOKUP....coooiiii e,
TEMPLALES.....eenviieiieeiiieie e
Building the Table...........ccociiiiiiiiiiiiiiiiecee,
Definitions........cccoevuieiiniiiniiiiiiiiiicieecce e
InStantiation.........coovueeeriiiieiiiieenieereeeeee e

History

Version Author Date
0.1 Andrew Niefer 01/23/04 Initial Draft

2/9

CDT 2.0 Parser Symbol Table

.. 4

Description

Feature Design Specification CDT 2.0 Parser Symbol Table
Introduction

Language Support

Types

(ANSI C 6.2.5) _Complex, _Imaginary, and _Bool types need to be handled by the
symbol table. Conversion of these types to other floating and integer types must be
considered during function resolution.

GNU extensions make the _Complex and _Imaginary types available in C++.

ANSI C and GNU extensions to C++ allow for a 64 bit long long int which also needs to
be supported by the symbol table.

The following flags will be added to the Typel nf o class: i sConpl ex, i sl magi nary, and
i sLongLong. The “t _ Bool ” type will also be added.

Anonymous Structures & Unions

(ANSI C++ 9.5) A union of the form

union { menber-specification } ;
is called an anonymous union; it defines an unnamed object of unnamed type. For the
purposes of name lookup, the members of the anonymous union are considered to have
been defined in the scope in which the anonymous union is declared.

Because a union for which objects or pointers are declared is not an anonymous union,
the parser won' t know untiit reaches the end of the union whether or not it is
anonymous. The symbol table will provide a function to convert a normal union into an
anonymous union once this information is known. The following will be added to

IContainerSymbol:
voi d convert ToAnonymous() ;
voi d i sAnonymous();

GNU extends this functionality to unnamed struct fields within structs/unions.

C Scoping Rules

(bug46246) In C, there is one namespace for the tags of structures, unions and
enumerations. This means that they need to be handled differently from how they are
handled in C++ when they are nested.

3/9

Feature Design Specification CDT 2.0 Parser Symbol Table

Eg:

struct A {
struct B { int ab; }; b;
int a;

b

struct A al;

struct B bi;

Address of Overloaded Functions

(ANSI C++ 13.4) A use of an overloaded function name without arguments is resolved
in certain contexts to a function, a pointer to function, or a pointer to member function for
a specific function from the overload set. The function selected is the one whose type
matches the target type required in the context. The target can be:

- an object or reference being initialized

- the left side of an assignment

- aparameter of a function

- aparameter of a user-defined operator

- the return value of a function, operator function or conversion
« an explicit type conversion.

The following function will be added to | Cont ai ner Synmbol to support this:

| Par anet eri zedSynbol target edFuncti onLookup(Typel nfo target Type,
String nane);

Symbol lterator

The symbol table must provide an iterator over its contents so that the symbols can be
retrieved in the order in which they were added. There are 3 different kinds of symbols
that must be returned in such an iterator and they are all stored separately in the symbol
table: normal symbols, constructors, and using directives. These need to be kept separate
so that they can be considered separately during lookup.

So, we add a new LinkedList that all symbols will be added to in addition to their
standard storage structures. The IContainerSymbol will contain the following:

public Iterator getContentslterator();

Originally, using directives were simply stored as a list of the nominated namespaces.
However, in order for the using directives returned by the contents iterator to not be
confused with normal namespace definitions, we need to store the using directives in a

4/9

Feature Design Specification CDT 2.0 Parser Symbol Table

different format which will allow attaching a using directive AST node to it. The
following interfaces will be declared:
public interface | ExtensibleSynbol {
publ i ¢ Parser Synbol Tabl e get Synbol Tabl e() ;

public | Synbol ASTExt ensi on get ASTEXxt ensi on();
public void set ASTExt ensi on(| Synbol ASTExt ensi on obj);

}

public interface | UsingD rectiveSynbol extends |ExtensibleSynbol {
publ i c I Contai ner Synbol get Nanespace();
}

The | Synbol interface will be modified to extend | Ext ensi bl eSynbol . All interface
functions dealing with using directives will be modified to use the new
| Usi ngDi r ecti veSynbol interface.

Concerns:

« Local code blocks are only hooked into the symbol table in one direction, so while we
can traverse scopes starting at the local scopes and going out, we do not see them
when going in the other direction and so they will not be returned by the iterator unless
they are added to the symbol table in the normal fashion.

« When enumerators are added to an enumeration, they are actually added to the scope
containing the enumeration. (Fields added to anonymous structures & unions will be
handled similarly). Special consideration will need to be given to this situation if we
want the iterator to return the enumerators as members of the enumeration and not the
containing scope.

Prefix Lookup

The symbol table must support prefix lookup for content assist. The following function
will be added to the | Cont ai ner Synbol interface:
public List prefixLookup(TypeFilter filter,
String prefix,

bool ean qualified)
t hrows Par ser Synbol Tabl eExcepti on;

The TypeFi | t er class will define what kinds of symbols should be found by the lookup.
Elaborated lookup will be modified to use this class as well.

The symbol table will define a lookup mode, with two possible values: PREFI X, and
NORMVAL. When the lookup mode is PREFIX, then the lookup will match symbols that

5/9

Feature Design Specification CDT 2.0 Parser Symbol Table

begin with the given prefix. Additionally, in prefix mode, lookup will not stop once a
symbol is found, and ambiguity exceptions will not be thrown but noted and the results
filtered accordingly.

Content assist will require the results of this lookup to be filtered according to access
visibility. Accordingly | Cont ai ner Synbol will have the following function:

publ i ¢ bool ean isVisible(|ISynbol synbol,
| Cont ai ner Synbol qual i fyi ngSynbol);

This method will consider C++ access visibility rules to return whether or not the given
symbol is visible. In order to properly do this, the symbol table will now need to keep
track of friendship so the following functions will be added to the
| Deri vabl eCont ai ner Synbol interface:
public void addFriend(|Synbol synbol)
t hrows Par ser Synbol Tabl eExcepti on;
public | Synbol | ookupForFriendship(String nanme)
t hrows Par ser Synbol Tabl eExcepti on;
public | ParaneterizedSynbol | ookupFunctionForFriendshi p(
String nane,
Li st paraneters)

t hrows Par ser Synbol Tabl eExcepti on;
public List getFriends();

Templates

Building the Table

Templates will be represented in the table using either an | Par anet er i zedSynbol or a
new | Tenpl at eSynbol which derives from | Par anet eri zedSynbol . In either case, the
template will contain the template parameters and one symbol which will be the class or
function which are represented in the normal way. References to the template parameters
will be handled in the normal manner as if the template parameter was a type.

Eg: The following code:

tenplate < class T > A{
Tt
b

would be represented as follows:

6/9

Feature Design Specification CDT 2.0 Parser Symbol Table

IParameterized 3ymbol

e Typelnfo
Name = "A Type =1_template
Typeinio
Cortained Symbols : ;
v |DerivableContainerSymbol
Parameters R Typelnfo
Name = "A Type =1_class
Typelnfo
Contained Symbols
1Symbol
Mame ="T"
Typeinfo |Symbol Typelnfo
Mamea = "t Type = {_type
Typelnio Type Symbol
Typelnfo
Type = {_templateParameler
TemplateParameter Type = {_type

Template specializations will be represented with an | Speci al i zedSynbol which will
derive from the interface used to represent templates, and will in fact be templates in their
own right. | Speci al i zedSynbol s will contain both a list of parameters and a list of
arguments. Each template will contain a list of all its specializations, which includes both
explicit specializations and class template partial specializations.

Eg: The following code:

tenmplate< class T1, class T2 > class A {};
template< class T > class A<int, T > {};

would be represented as follows:

IParameterizedSymbaol
i i Typelnfo
A Type = t_lemplate
Typalnfo
Contained Symbol
e RIS |DerivableContainerSymbol
Parameters i s Typelnfo
Specializations — T?pn;?n;o Type =t_dlass
ISpecializedSymbol
ISymbol Cantained S : i
J ymbols IDerivableContainerSymbaol
Mame = "T1” Typelnfo - i ym Typelnfo
Typelnfa Type = i_templateParamater IAERE Tarmla ;0 Type =1 class
TemplateParametes Type =t typa ‘ Arguments il
1Symbaol T
ypelnfo
—3 Nams = “T2" Typelinfo 1Symbaol e E]
Typelnfo Type = i_templateParameter Mama = *T" Typelnfo ype = i_int
TemplateParametarType = _type e Type = 1 templateParametar
PG TemplateParamaterType = ¢ type Typelnfo
Type =t_type
TypeSymbolt

7/9

Feature Design Specification CDT 2.0 Parser Symbol Table

When a templated symbol is looked up, the symbol table will decide based on the
arguments given whether the primary template or one of the specializations is returned.

Definitions

A member function, a member class, a static data member or a member template of a
class template can be defined outside the class template definition. The names of the
template parameters used in the definition of the member may be different from the
template parameter names used in the class template definition.

Eg:

tenplate < class T1, class T2 > class A {
void f();
b

tenplate < class U, class V > void A< U, V >:f(){}

A special lookup function, | ookupTenpl at eFor Def i ni ti on, will be required to lookup

the template using the alternately named template parameters. Once the correct template
is determined, the member definition can be hooked up to the declaration using the same
method used for normal forward declarations.

Because the member definition' semplate parameters have different names than the
template's declaration' s grameters, the new parameter names must be kept so that, for
example, name lookups for “U” for example inside f () will correctly resolve to the
proper template parameter. The template can keep a map of member definition to
alternate parameter list for this purpose. Because of this, it may be necessary for

| ookupTenpl at eFor Def i ni ti on to return a factory capable of creating the member
definition instead of simply returning the template symbol.

Members of class template partial specializations are unrelated to the members of the
primary template. So specialization definitions can be handled in the same manner, the
only difference being the selection of the proper specialization by the

| ookupTenpl at eFor Def i ni ti on function.

Instantiation

Before a template can be referenced in code, it must be instantiated. There are two ways
a template can be instantiated: implicitly and explicitly.

tenplate < class T >void f(Tt) { }
template void f<int>(int t); //explicit instantiation
f<int>(1); /[linplicit instantiation

f(1); /lalso inplicit instantiation

8/9

Feature Design Specification CDT 2.0 Parser Symbol Table

The mechanics of both types of instantiations will be the same, though an explicit
instantiation would need to be requested by the parser, and an implicit instantiation could
be triggered by the symbol table during a lookup.

To actually instantiate the template, first the symbol table would need to decide which
definition of the template should be used. It does this by considering the arguments and
comparing the primary template and all its specializations.

Once the template or specialization has been selected, it is instantiated by cloning the
templated symbol and its contents. Then, in that clone, all references to the template
parameters are replaced by references to the appropriate template argument. The clone
will then be used to represent the instantiated template, and for all intents and purposes it
will completely resemble a normal class or function. This means that none of the existing
symbol table code needs to worry about whether or not symbols it encounters are
template instances.

9/9

